精选浙江专用2018版高考数学大一轮复习第七章不等式7.5绝对值不等式教师用书

合集下载

2018版高考数学(浙江专用文理通用)大一轮复习讲义:第七章数列、推理与证明第3讲含答案

2018版高考数学(浙江专用文理通用)大一轮复习讲义:第七章数列、推理与证明第3讲含答案

基础巩固题组(建议用时:40分钟)一、选择题1.已知{a n},{b n}都是等比数列,那么()A.{a n+b n},{a n·b n}都一定是等比数列B.{a n+b n}一定是等比数列,但{a n·b n}不一定是等比数列C。

{a n+b n}不一定是等比数列,但{a n·b n}一定是等比数列D。

{a n+b n},{a n·b n}都不一定是等比数列解析两个等比数列的积仍是一个等比数列.答案C2。

在等比数列{a n}中,如果a1+a4=18,a2+a3=12,那么这个数列的公比为()A.2B.错误!C。

2或错误! D.-2或错误!解析设数列{a n}的公比为q,由错误!=错误!=错误!=错误!=错误!=错误!,得q=2或q=错误!.故选C.答案C3。

(必修5P67A1(2)改编)一个蜂巢里有1只蜜蜂。

第1天,它飞出去找回了5个伙伴;第2天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有________只蜜蜂( )A。

55 986 B。

46 656 C.216 D。

36解析设第n天蜂巢中的蜜蜂数量为a n,根据题意得数列{a n}成等比数列,a1=6,q=6,所以{a n}的通项公式a n=6×6n-1,到第6天,所有的蜜蜂都归巢后,蜂巢中一共有a6=6×65=66=46 656只蜜蜂,故选B.答案B4.(2015·全国Ⅱ卷)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B。

42 C。

63 D。

84解析设等比数列{a n}的公比为q,则由a1=3,a1+a3+a5=21得3(1+q2+q4)=21,解得q2=-3(舍去)或q2=2,于是a3+a5+a7=q2(a1+a3+a5)=2×21=42,故选B.答案B5。

2018版高考数学浙江专用文理通用大一轮复习讲义:第七

2018版高考数学浙江专用文理通用大一轮复习讲义:第七

基础巩固题组 (建议用时:40分钟)一、选择题1.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( ) A.120B.70C.75D.100解析 因为S n n =n +2,所以⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75.答案 C2.(2017·杭州调研)数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( ) A.9B.8C.17D.16解析 S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9. 答案 A3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A.200B.-200C.400D.-400解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×=4×(-50)=-200. 答案 B4.(2017·高安中学模拟)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16等于( ) A.5B.6C.7D.16解析 根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.故选C. 答案 C5.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 016=( ) A.22 016-1B.3·21 008-3 C.3·21 008-1D.3·21 007-2解析 a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2.∴a n +2a n =2.∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,∴S 2 016=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 015+a 2 016 =(a 1+a 3+a 5+…+a 2 015)+(a 2+a 4+a 6+…+a 2 016) =1-21 0081-2+2(1-21 008)1-2=3·21 008-3.故选B.答案 B 二、填空题6.(2017·嘉兴一中检测)有穷数列1,1+2,1+2+4,…,1+2+4+…+2n -1所有项的和为________.解析 由题意知所求数列的通项为1-2n1-2=2n-1,故由分组求和法及等比数列的求和公式可得和为2(1-2n)1-2-n =2n +1-2-n .答案 2n +1-2-n7.(2016·宝鸡模拟)数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________.解析 由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n ,则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20, ∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21) =1+10×12=6.答案 68.(2017·安阳二模)已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n-1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析 由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=3(1-4n)1-4=4n -1.答案 4n-1 三、解答题9.(2016·北京卷)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,由⎩⎪⎨⎪⎧b 2=b 1q =3,b 3=b 1q 2=9得⎩⎪⎨⎪⎧b 1=1,q =3. ∴b n =b 1qn -1=3n -1,又a 1=b 1=1,a 14=b 4=34-1=27,∴1+(14-1)d =27,解得d =2.∴a n =a 1+(n -1)d =1+(n -1)×2=2n -1(n =1,2,3,…). (2)由(1)知a n =2n -1,b n =3n -1,因此c n =a n +b n =2n -1+3n -1.从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1=n (1+2n -1)2+1-3n1-3=n 2+3n-12. 10.(2017·贵阳一模)已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 13(1-S n +1)(n ∈N *),令T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .解 (1)当n =1时,a 1=S 1,由S 1+12a 1=1,得a 1=23,当n ≥2时,S n =1-12a n ,S n -1=1-12a n -1,则S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ),所以a n =13a n -1(n ≥2).故数列{a n }是以23为首项,13为公比的等比数列.故a n =23·⎝ ⎛⎭⎪⎫13n -1=2·⎝ ⎛⎭⎪⎫13n (n ∈N *).(2)因为1-S n =12a n =⎝ ⎛⎭⎪⎫13n .所以b n =log 13(1-S n +1)=log 13⎝ ⎛⎭⎪⎫13n +1=n +1,因为1b n b n +1=1(n +1)(n +2)=1n +1-1n +2,所以T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2=n 2(2n +2). 能力提升题组 (建议用时:25分钟)11.(2016·郑州模拟)已知数列{a n }的通项公式为a n =1(n +1)n +n n +1(n ∈N *),其前n 项和为S n ,则在数列S 1,S 2,…,S 2 016中,有理数项的项数为( )A.42B.43C.44D.45解析 a n =1(n +1)n +n n +1=(n +1)n -n n +1[(n +1)n +n n +1][(n +1)n -n n +1] =n n -n +1n +1. 所以S n =1-22+⎝ ⎛⎭⎪⎫22-33+⎝ ⎛⎭⎪⎫33-44+…+⎝ ⎛⎭⎪⎫nn-n +1n +1=1-n +1n +1, 因此S 3,S 8,S 15…为有理项,又下标3,8,15,…的通项公式为n 2-1(n ≥2), 所以n 2-1≤2 016,且n ≥2,所以2≤n ≤44,所以有理项的项数为43. 答案 B12.(2017·济南模拟)在数列{a n }中,a n +1+(-1)na n =2n -1,则数列{a n }的前12项和等于( ) A.76B.78C.80D.82解析 因为a n +1+(-1)na n =2n -1,所以a 2-a 1=1,a 3+a 2=3,a 4-a 3=5,a 5+a 4=7,a 6-a 5=9,a 7+a 6=11,…,a 11+a 10=19,a 12-a 11=21,所以a 1+a 3=2,a 4+a 2=8,…,a 12+a 10=40,所以从第一项开始,依次取两个相邻奇数项的和都等于2,从第二项开始,依次取两个相邻偶数项的和构成以8为首项,以16为公差的等差数列,以上式相加可得,S 12=a 1+a 2+a 3+…+a 12=(a 1+a 3)+(a 5+a 7)+(a 9+a 11)+(a 2+a 4)+(a 6+a 8)+(a 10+a 12)=3×2+8+24+40=78. 答案 B13.(2017·台州调研)已知数列{a n }满足:a 1=2,a n +1=1+a n1-a n,则a 1a 2a 3…a 15=________;设b n =(-1)na n ,数列{b n }前n 项的和为S n ,则S 2 016=________.解析 ∵a 1=2,a n +1=1+a n 1-a n ,∴a 2=1+21-2=-3,a 3=1-31+3=-12,a 4=1-121+12=13,a 5=1+131-13=2.∴a 4n +1=2,a 4n +2=-3,a 4n +3=-12,a 4n =13.∴a 4n +1·a 4n +2·a 4n +3·a 4n =2×(-3)×⎝ ⎛⎭⎪⎫-12×13=1.∴a 1a 2a 3…a 15=a 13a 14a 15=a 1a 2a 3=2×(-3)×⎝ ⎛⎭⎪⎫-12=3. ∵b n =(-1)na n ,∴b 4n +1=-2,b 4n +2=-3,b 4n +3=12,b 4n =13.∴b 4n +1+b 4n +2+b 4n +3+b 4n =-2-3+12+13=-256.∴S 2 016=-256×2 0164=-2 100.答案 3 -2 10014.(2015·山东卷)已知数列{a n }是首项为正数的等差数列,数列⎩⎨⎧⎭⎬⎫1a n ·a n +1的前n 项和为n 2n +1. (1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n . 解 (1)设数列{a n }的公差为d , 令n =1,得1a 1a 2=13, 所以a 1a 2=3.① 令n =2,得1a 1a 2+1a 2a 3=25, 所以a 2a 3=15.② 解①②得a 1=1,d =2, 所以a n =2n -1. (2)由(1)知b n =2n ·22n -1=n ·4n,所以T n =1×41+2×42+…+n ×4n, 所以4T n =1×42+2×43+…+n ×4n +1,两式相减,得-3T n =41+42+ (4)-n ·4n +1=4(1-4n)1-4-n ·4n +1=1-3n 3×4n +1-43.所以T n =3n -19×4n +1+49=4+(3n -1)4n +19.15.(2016·浙江卷)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和. 解 (1)由题意得⎩⎪⎨⎪⎧a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n . 所以,数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)设b n =|3n -1-n -2|,n ∈N *,b 1=2,b 2=1,当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3,当n ≥3时,T n =3+9(1-3n -2)1-3-(n +7)(n -2)2=3n-n 2-5n +112,所以T n =⎩⎪⎨⎪⎧2,n =1,3n -n 2-5n +112,n ≥2,n ∈N *.。

2018版高考数学(浙江专用文理通用)大一轮复习教师用书

2018版高考数学(浙江专用文理通用)大一轮复习教师用书

第1讲直线的方程最新考纲 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知识梳理1.直线的倾斜角与斜率(1)直线的倾斜角①定义:当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角;②规定:当直线l与x轴平行或重合时,规定它的倾斜角为0;③范围:直线的倾斜角α的取值范围是.设直线的倾斜角为θ,则有tan θ∈.又θ∈∪∪,所以-1≤tan θ≤1,又θ∈1.直线的倾斜角和斜率的关系:(1)任何直线都存在倾斜角,但并不是任意直线都存在斜率.(2)直线的倾斜角α和斜率k之间的对应关系:2..用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.1.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2.根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.基础巩固题组 (建议用时:30分钟)一、选择题1.直线3x -y +a =0(a 为常数)的倾斜角为( ) A.30° B.60° C.120°D.150°解析 直线的斜率为k =tan α=3,又因为0°≤α<180°,所以α=60°. 答案 B2.已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则直线l 的方程是( ) A.x +y -2=0 B.x -y +2=0 C.x +y -3=0D.x -y +3=0解析 圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0. 答案 D3.直线x +(a 2+1)y +1=0的倾斜角的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π4B.⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,πD.⎣⎢⎡⎭⎪⎫π4,π2∪⎣⎢⎡⎭⎪⎫3π4,π解析 ∵直线的斜率k =-1a 2+1,∴-1≤k <0,则倾斜角的范围是⎣⎢⎡⎭⎪⎫3π4,π.答案 B4.(2017·浙江三市十二校联考)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是( ) A.6x -4y -3=0 B.3x -2y -3=0 C.2x +3y -2=0D.2x +3y -1=0解析 因为抛物线y 2=2x 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l 的方程为y =32⎝ ⎛⎭⎪⎫x -12,化为一般式,得6x -4y -3=0.答案 A5.(2017·湖州质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13B.-13C.-32D.23解析 依题意,设点P (a ,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13. 答案 B6.(2017·浙江五校联考)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )解析 当a >0,b >0时,-a <0,-b <0.选项B 符合. 答案 B7.(2016·衡水一模)已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( ) A.y =3x +2 B.y =3x -2 C.y =3x +12D.y =-3x +2解析 ∵直线x -2y -4=0的斜率为12,∴直线l 在y 轴上的截距为2,∴直线l 的方程为y =3x +2,故选A. 答案 A8.(2017·福州模拟)若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴、y 轴上的截距之和的最小值为( ) A.1B.2C.4D.8解析 ∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b=1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b=2+b a +a b≥2+2b a ·ab=4, 当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4. 答案 C二、填空题9.(2017·温州调研)已知三角形的三个顶点A (-5,0,),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________;BC 边上中线的方程为________.解析 BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y+5=0.故BC 边上中线的方程为x +13y +5=0(-5≤x ≤32).答案 x +13y +5=0 x +13y +5=0⎝ ⎛⎭⎪⎫-5≤x ≤32 10.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎢⎡⎭⎪⎫π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π,则k 的取值范围是________.解析 当π6≤α<π4时,33≤tan α<1,∴33≤k <1.当2π3≤α<π时,-3≤tan α<0, 即-3≤k <0, ∴k ∈⎣⎢⎡⎭⎪⎫33,1∪ C.D.⎣⎢⎡⎦⎥⎤12,1解析 由题意知y ′=2x +2,设P (x 0,y 0),则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.答案 A16.已知直线l 过坐标原点,若直线l 与线段2x +y =8(2≤x ≤3)有公共点,则直线l 的斜率的取值范围是________.解析 设直线l 与线段2x +y =8(2≤x ≤3)的公共点为P (x ,y ). 则点P (x ,y )在线段AB 上移动,且A (2,4),B (3,2), 设直线l 的斜率为k . 又k OA =2,k OB =23.如图所示,可知23≤k ≤2.∴直线l 的斜率的取值范围是⎣⎢⎡⎦⎥⎤23,2.答案 ⎣⎢⎡⎦⎥⎤23,2 17.设M =π2 011-2 012π 2 012+2 011,N =π2 013-2 012π2 014+2 011,则M 与N 的大小关系为________.解析 设A =(-2 011,2 012),B (π 2 012,π2 011),C (π2 014,π2 013),则有M =π 2 011-2 012π2 012+2 011=k AB ,N =π 2 013-2 012π 2 014-(-2 011)=k AC (如图所示),则直线BD 的倾斜角∠BDO 和直线AC 的倾斜角∠CEO 均为锐角,且∠BDO <∠CEO ,所以k AB <k AC ,即M <N .答案 M <N18.在平面直角坐标系xOy 中,设A 是半圆O :x 2+y 2=2(x ≥0)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则 直线AB 的方程是________.解析 直线OA 的方程为y =x ,代入半圆方程得A (1,1), ∴H (1,0),直线HB 的方程为y =x -1, 代入半圆方程得B ⎝⎛⎭⎪⎫1+32,-1+32.所以直线AB 的方程为y -1-1+32-1=x -11+32-1,即3x +y -3-1=0. 答案3x +y -3-1=0第2讲 两直线的位置关系最新考纲 1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.知 识 梳 理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行.(2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应.相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.距离公式(1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |(2)点到直线的距离公式平面上任意一点P0(x 0,y 0)到直线l :Ax +By +C =0的距离d (3)两条平行线间的距离公式一般地,两条平行直线l1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d 诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) (3)若两直线的方程组成的方程组有唯一解,则两直线相交.( )(4)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( )(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( ) 解析 (1)两直线l 1,l 2有可能重合.(2)如果l 1⊥l 2,若l 1的斜率k 1=0,则l 2的斜率不存在. 答案 (1)× (2)× (3)√ (4)√ (5)√2.(2016·北京卷)圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为( ) A.1 B.2 C. 2D.2 2解析 圆(x +1)2+y 2=2的圆心坐标为(-1,0),由y =x +3得x -y +3=0,则圆心到直线的距离d =|-1-0+3|12+(-1)2= 2.答案 C3.(2017·金华四校联考)直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m =( ) A.2 B.-3 C.2或-3D.-2或-3解析 直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2,故m =2或-3.故选C. 答案 C4.直线2x +2y +1=0,x +y +2=0之间的距离是________. 解析 先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =|2-12|2=324.答案3245.(必修2P89练习2改编)已知P (-2,m ),Q (m ,4),且直线PQ 垂直于直线x +y +1=0,则m =________.解析 由题意知 m -4-2-m=1,所以m -4=-2-m ,所以m =1.答案 16.(2017·浙江五校联考)已知动点P 的坐标为(x ,1-x ),x ∈R ,则动点P 的轨迹方程为________,它到原点距离的最小值为________.解析 设点P 的坐标为(x ,y ),则y =1-x ,即动点P 的轨迹方程为x +y -1=0;原点到直线x +y -1=0的距离为d =|0+0-1|12+12=22,即为所求原点到动点P 的轨迹的最小值. 答案 x +y -1=022考点一 两直线的平行与垂直【例1】 (1)已知两条直线l 1:(a -1)x +2y +1=0,l 2:x +ay +3=0平行,则a 等于( ) A.-1 B.2 C.0或-2D.-1或2(2)已知两直线方程分别为l 1:x +y =1,l 2:ax +2y =0,若l 1⊥l 2,则a =________.解析 (1)若a =0,两直线方程分别为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a ≠0;当a ≠0时,两直线平行,则有a -11=2a ≠13,解得a =-1或2. (2)因为l 1⊥l 2,所以k 1k 2=-1. 即(-1)·⎝ ⎛⎭⎪⎫-a 2=-1,解得a =-2.答案 (1)D (2)-2规律方法 (1)当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. 【训练1】 (1)(2017·重庆一中检测)若直线l 1:(a -1)x +y -1=0和直线l 2:3x +ay +2=0垂直,则实数a 的值为( ) A.12B.32C.14D.34(2)(2017·诸暨模拟)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________. 解析 (1)由已知得3(a -1)+a =0,解得a =34.(2)由两直线平行可得,a (b -3)=2b ,即2b +3a =ab ,2a +3b=1.又a ,b 为正数,所以2a+3b =(2a +3b )·⎝ ⎛⎭⎪⎫2a +3b =13+6a b +6b a≥13+26a b ·6ba=25,当且仅当a =b =5时取等号,故2a +3b 的最小值为25. 答案 (1)D (2)25考点二 两直线的交点与距离问题【例2】 (1)已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.(2)直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析 (1)法一 由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴交点坐标为⎝⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.又∵交点位于第一象限, ∴⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.法二 如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点), ∴动直线的斜率k 需满足k PA <k <k PB . ∵k PA =-16,k PB =12.∴-16<k <12.(2)法一 当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0. 由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1, 即|3k -1|=|-3k -3|,∴k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.法二 当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4). ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1.答案 (1)⎝ ⎛⎭⎪⎫-16,12 (2)x +3y -5=0或x =-1规律方法 (1)求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数分别化为对应相等. 【训练2】 (1)曲线y =2x -x 3在横坐标为-1的点处的切线为l ,则点P (3,2)到直线l 的距离为( ) A.722B.922C.1122D.91010(2)(2017·衢州模拟)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A. 2B.823C. 3D.833解析 (1)曲线y =2x -x 3上横坐标为-1的点的纵坐标为-1,故切点坐标为(-1,-1).切线斜率为k =y ′|x =-1=2-3×(-1)2=-1,故切线l 的方程为y -(-1)=-1×,整理得x +y +2=0.由点到直线的距离公式,得点P (3,2)到直线l 的距离为|3+2+2|12+12=722. (2)因为l 1∥l 2,所以1a -2=a 3≠62a ,所以⎩⎪⎨⎪⎧a (a -2)=3,2a 2≠18,a ≠2,a ≠0,解得a =-1,所以l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪⎪⎪6-232=823,故选B. 答案 (1)A (2)B 考点三 对称问题【例3】 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程.解 (1)设A ′(x ,y ),再由已知⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,∴A ′⎝ ⎛⎭⎪⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上. 设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得M ′⎝ ⎛⎭⎪⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线方程为9x -46y +102=0. (3)法一 在l :2x -3y +1=0上任取两点, 如M (1,1),N (4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0. 法二 设P (x ,y )为l ′上任意一点, 则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.规律方法 (1)解决点关于直线对称问题要把握两点,点M 与点N 关于直线l 对称,则线段MN 的中点在直线l 上,直线l 与直线MN 垂直.(2)如果直线或点关于点成中心对称问题,则只需运用中点公式就可解决问题.(3)若直线l 1,l 2关于直线l 对称,则有如下性质:①若直线l 1与l 2相交,则交点在直线l 上;②若点B 在直线l 1上,则其关于直线l 的对称点B ′在直线l 2上.【训练3】 光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解 法一 由⎩⎪⎨⎪⎧x -2y +5=0,3x -2y +7=0,得⎩⎪⎨⎪⎧x =-1,y =2. ∴反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0),由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5.而PP ′的中点Q 的坐标为⎝ ⎛⎭⎪⎫x 0-52,y 02,又Q 点在l 上,∴3·x 0-52-2·y 02+7=0.由⎩⎪⎨⎪⎧y 0x 0+5=-23,32(x 0-5)-y 0+7=0.得⎩⎪⎨⎪⎧x 0=-1713,y 0=-3213.根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0. 法二 设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ), 则y 0-y x 0-x =-23, 又PP ′的中点Q ⎝⎛⎭⎪⎫x +x 02,y +y 02在l 上,∴3×x +x 02-2×y +y2+7=0,由⎩⎪⎨⎪⎧y 0-y x 0-x =-23,3×x +x2-(y +y 0)+7=0.可得P 点的横、纵坐标分别为x 0=-5x +12y -4213,y 0=12x +5y +2813,代入方程x -2y +5=0中,化简得29x -2y +33=0, ∴所求反射光线所在的直线方程为29x -2y +33=0.1.两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l 1,l 2,l 1∥l 2⇔k 1=k 2;l 1⊥l 2⇔k 1·k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率一定要特别注意.2.对称问题一般是将线与线的对称转化为点与点的对称.利用坐标转移法解决问题.1.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据判定定理判断,若直线无斜率,要单独考虑.2.在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B 2时,一定要注意将两方程中x ,y 的系数分别化为相同的形式.基础巩固题组 (建议用时:30分钟)一、选择题1.直线2x +y +m =0和x +2y +n =0的位置关系是( ) A.平行 B.垂直 C.相交但不垂直D.不能确定解析 直线2x +y +m =0的斜率k 1=-2,直线x +2y +n =0的斜率为k 2=-12,则k 1≠k 2,且k 1k 2≠-1.故选C. 答案 C2.(2017·浙江名校协作体联考)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 依题意得,直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎪⎨⎪⎧a (a -2)=3×1,a ×1≠3×1,解得a =-1,因此选C. 答案 C3.过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为( ) A.19x -9y =0 B.9x +19y =0 C.19x -3y =0D.3x +19y =0解析 法一 由⎩⎪⎨⎪⎧x -3y +4=0,2x +y +5=0,得⎩⎪⎨⎪⎧x =-197,y =37,则所求直线方程为:y =37-197x =-319x ,即3x +19y =0.法二 设直线方程为x -3y +4+λ(2x +y +5)=0, 即(1+2λ)x -(3-λ)y +4+5λ=0,又直线过点(0,0), 所以(1+2λ)·0-(3-λ)·0+4+5λ=0, 解得λ=-45,故所求直线方程为3x +19y =0.4.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A.x +2y -1=0 B.2x +y -1=0 C.x +2y +3=0D.x +2y -3=0解析 设所求直线上任一点(x ,y ),则它关于直线x =1的对称点(2-x ,y )在直线x -2y +1=0上,即2-x -2y +1=0,化简得x +2y -3=0. 答案 D5.(2017·安庆模拟)若直线l 1:x +3y +m =0(m >0)与直线l 2:2x +6y -3=0的距离为10,则m =( ) A.7B.172C.14D.17解析 直线l 1:x +3y +m =0(m >0),即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离为10,所以|2m +3|4+36=10,求得m =172,故选B.答案 B6.平面直角坐标系中直线y =2x +1关于点(1,1)对称的直线方程是( ) A.y =2x -1 B.y =-2x +1 C.y =-2x +3D.y =2x -3解析 在直线y =2x +1上任取两个点A (0,1),B (1,3),则点A 关于点(1,1)对称的点为M (2,1),点B 关于点(1,1)对称的点为N (1,-1).由两点式求出对称直线MN 的方程为y +11+1=x -12-1,即y =2x -3,故选D. 答案 D7.(2017·丽水调研)已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( ) A.(3,3) B.(2,3) C.(1,3)D.⎝ ⎛⎭⎪⎫1,32 解析 直线l 1的斜率为k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2).两式联立,解得⎩⎨⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3).故选C.8.从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为( ) A.x +2y -4=0 B.2x +y -1=0 C.x +6y -16=0D.6x +y -8=0解析 由直线与向量a =(8,4)平行知:过点(2,3)的直线的斜率k =12,所以直线的方程为y -3=12(x -2),其与y 轴的交点坐标为(0,2),又点(2,3)关于y 轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式知A 正确. 答案 A 二、填空题9.(2017·宁波月考)点(2,1)关于点(-1,-1)的对称点坐标为________;关于直线x -y +1=0的对称点为________.解析 设点(2,1)关于点(-1,-1)的对称点为(x 0,y 0),则⎩⎪⎨⎪⎧-1=2+x 02,-1=1+y 02,∴⎩⎪⎨⎪⎧x 0=-4,y 0=-3,即所求对称点为(-4,-3).设点(2,1)关于直线x -y +1=0的对称点为(x 0,y 0),则⎩⎪⎨⎪⎧y 0-1x 0-2=-1,x 0+22-y 0+12+1=0,解得⎩⎪⎨⎪⎧x 0=0,y 0=3,故所求对称点为(0,3). 答案 (-4,-3) (0,3)10.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________. 解析 由⎩⎪⎨⎪⎧y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9. 答案 -911.(2017·余姚市检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析 显然直线l 的斜率不存在时,不满足题意; 设所求直线方程为y -4=k (x -3), 即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2, ∴k =2或k =-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 答案 2x +3y -18=0或2x -y -2=012.(2016·长沙一调)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析 设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 答案 6x -y -6=013.(2017·温州十校联考)设两直线l 1:(3+m )x +4y =5-3m 与l 2:2x +(5+m )y =8,若l 1∥l 2,则m =________;若l 1⊥l 2,则m =________. 解析 若l 1∥l 2,则3+m 2=45+m ≠5-3m8⇒m =-7;若l 1⊥l 2,则(3+m )×2+4(5+m )=0⇒m =-133.答案 -7 -133能力提升题组 (建议用时:15分钟)14.(2017·舟山市调研)在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2的值为( ) A.102B.10C.5D.10解析 由题意知P (0,1),Q (-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,∴M 位于以PQ 为直径的圆上,∵|PQ |=9+1=10,∴|MP |2+|MQ |2=|PQ |2=10,故选D. 答案 D15.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( ) A.210 B.6 C.3 3D.2 5解析 易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1(4,2)与A 2(-2,0)两点间的距离.于是|A 1A 2|=(4+2)2+(2-0)2=210. 答案 A16.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析 易知A (0,0),B (1,3)且两直线互相垂直, 即△APB 为直角三角形,∴|PA |·|PB |≤|PA |2+|PB |22=|AB |22=102=5.当且仅当|PA |=|PB |时,等号成立. 答案 517.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________.解析 设平面上任一点M ,因为|MA |+|MC |≥|AC |,当且仅当A ,M ,C 共线时取等号,同理|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA |+|MC |+|MB |+|MD |最小,则点M 为所求.∵k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1), 即2x -y =0.①又∵k BD =5-(-1)1-7=-1,∴直线BD 的方程为y -5=-(x -1), 即x +y -6=0.②由①②得⎩⎪⎨⎪⎧2x -y =0,x +y -6=0,解得⎩⎪⎨⎪⎧x =2,y =4,所以M (2,4).答案 (2,4)18.(2017·绍兴一中检测)两平行直线l 1,l 2分别过点P (-1,3),Q (2,-1),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间的距离的取值范围是________.解析 ∵l 1∥l 2,且P ∈l 1,Q ∈l 2,∴l 1,l 2间的最大距离为|PQ |=[2-(-1)]2+(-1-3)2=5,又l 1与l 2不重合,所以l 1,l 2之间距离的范围是(0,5]. 答案 (0,5]第3讲 圆的方程最新考纲 掌握确定圆的几何要素,掌握圆的标准方程与一般方程.知 识 梳 理1.圆的定义和圆的方程平面上的一点M (x 0,y 0)与圆C :(x -a )2+(y -b )2=r 2之间存在着下列关系: (1)d >r ⇔M 在圆外,即(x 0-a )2+(y 0-b )2>r 2⇔M 在圆外;(2)d =r ⇔M 在圆上,即(x 0-a )2+(y 0-b )2=r 2⇔M 在圆上;(3)d <r ⇔M 在圆内,即(x 0-a )2+(y 0-b )2<r 2⇔M 在圆内.诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)确定圆的几何要素是圆心与半径.( ) (2)方程x 2+y 2=a 2表示半径为a 的圆.( ) (3)方程x 2+y 2+4mx -2y +5m =0表示圆.( )(4)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( )解析 (2)当a =0时,x 2+y 2=a 2表示点(0,0);当a <0时,表示半径为|a |的圆. (3)当(4m )2+(-2)2-4×5m >0,即m <14或m >1时才表示圆.答案 (1)√ (2)× (3)× (4)√2.(2015·北京卷)圆心为(1,1)且过原点的圆的方程是( )A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2解析由题意得圆的半径为2,故该圆的方程为(x-1)2+(y-1)2=2,故选D.答案 D3.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是( )A.(-1,1)B.(0,1)C.(-∞,-1)∪(1,+∞)D.a=±1解析因为点(1,1)在圆的内部,所以(1-a)2+(1+a)2<4,所以-1<a<1.答案 A4.(2016·浙江卷)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________.解析由已知方程表示圆,则a2=a+2,解得a=2或a=-1.当a=2时,方程不满足表示圆的条件,故舍去.当a=-1时,原方程为x2+y2+4x+8y-5=0,化为标准方程为(x+2)2+(y+4)2=25,表示以(-2,-4)为圆心,半径为5的圆.答案(-2,-4) 55.(必修2P124A4改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.解析设圆心坐标为C(a,0),∵点A(-1,1)和B(1,3)在圆C上,∴|CA|=|CB|,即(a+1)2+1=(a-1)2+9,解得a=2,所以圆心为C(2,0),半径|CA|=(2+1)2+1=10,∴圆C的方程为(x-2)2+y2=10.答案(x-2)2+y2=106.(2017·湖州调研)若圆C与圆x2+y2+2x=0关于直线x+y-1=0对称,则圆心C的坐标为________;圆C的一般方程是________.解析已知圆x2+y2+2x=0的圆心坐标是(-1,0)、半径是1,设圆C的圆心(a,b),则有⎩⎪⎨⎪⎧ba +1=1,a -12+b 2-1=0,由此解得a =1,b =2,即圆心C 的坐标为(1,2),因此圆C 的方程是(x -1)2+(y -2)2=1,即x 2+y 2-2x -4y +4=0. 答案 (1,2) x 2+y 2-2x -4y +4=考点一 圆的方程【例1】 (1)(2017·金华调研)过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为________.(2)已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为________.解析 (1)法一 由已知k AB =0,所以AB 的中垂线方程为x =3.①过B 点且垂直于直线x -y -1=0的直线方程为y -1=-(x -2),即x +y -3=0,②联立①②,解得⎩⎪⎨⎪⎧x =3,y =0,所以圆心坐标为(3,0),半径r =(4-3)2+(1-0)2=2,所以圆C 的方程为(x -3)2+y 2=2.法二 设圆的方程为(x -a )2+(y -b )2=r 2(r >0),∵点A (4,1),B (2,1)在圆上,故⎩⎪⎨⎪⎧(4-a )2+(1-b )2=r 2,(2-a )2+(1-b )2=r 2, 又∵b -1a -2=-1,解得a =3,b =0,r =2, 故所求圆的方程为(x -3)2+y 2=2.(2)设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 将P ,Q 两点的坐标分别代入得⎩⎪⎨⎪⎧2D -4E -F =20,3D -E +F =-10.①②又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根, 由|x 1-x 2|=6,得D 2-4F =36,④由①,②,④解得D =-2,E =-4,F =-8,或D =-6,E =-8,F =0. 故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.答案 (1)(x -3)2+y 2=2 (2)x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0规律方法 求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;(2)代数法,即设出圆的方程,用待定系数法求解.【训练1】 (1)(2016·天津卷)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________.(2)(2017·武汉模拟)以抛物线y 2=4x 的焦点为圆心,与该抛物线的准线相切的圆的标准方程为________.解析 (1)因为圆C 的圆心在x 轴的正半轴上,设C (a ,0),且a >0,所以圆心到直线2x -y =0的距离d =2a5=455,解得a =2,所以圆C 的半径r =|CM |=4+5=3,所以圆C 的方程为(x -2)2+y 2=9.(2)抛物线y 2=4x 的焦点为(1,0),准线为x =-1,故所求圆的圆心为(1,0),半径为2,所以该圆的标准方程为(x -1)2+y 2=4. 答案 (1)(x -2)2+y 2=9 (2)(x -1)2+y 2=4 考点二 与圆有关的最值问题【例2】 已知实数x ,y 满足方程x 2+y 2-4x +1=0. (1)求y x的最大值和最小值; (2)求y -x 的最大值和最小值; (3)求x 2+y 2的最大值和最小值.解 原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆. (1)y x的几何意义是圆上一点与原点连线的斜率, 所以设y x=k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =±3(如图1).所以y x的最大值为3,最小值为- 3.(2)y -x 可看作是直线y =x +b 在y 轴上的截距,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6(如图2).所以y -x 的最大值为-2+6,最小值为-2- 6.(3)x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图3). 又圆心到原点的距离为(2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3. 规律方法 把有关式子进行转化或利用所给式子的几何意义解题,充分体现了数形结合以及转化的数学思想,其中以下几类转化极为常见: (1)形如m =y -bx -a的最值问题,可转化为动直线斜率的最值问题; (2)形如t =ax +by 的最值问题,可转化为动直线截距的最值问题;(3)形如m =(x -a )2+(y -b )2的最值问题,可转化为两点间距离的平方的最值问题. 【训练2】 (1)(2017·义乌市诊断)圆心在曲线y =2x(x >0)上,与直线2x +y +1=0相切,且面积最小的圆的方程为( ) A.(x -2)2+(y -1)2=25 B.(x -2)2+(y -1)2=5 C.(x -1)2+(y -2)2=25D.(x -1)2+(y -2)2=5(2)(2014·全国Ⅱ卷)设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________.解析 (1)设圆心坐标为C ⎝ ⎛⎭⎪⎫a ,2a (a >0),则半径r =2a +2a +15≥22a ×2a+15=5,当且仅当2a =2a,即a =1时取等号.所以当a =1时圆的半径最小,此时r =5,C (1,2),所以面积最小的圆的方程为(x -1)2+(y -2)2=5.(2)如图所示,过点O 作OP ⊥MN 交MN 于点P .在Rt △OMP 中,|OP |=|OM |·sin 45°, 又|OP |≤1,得|OM |≤1sin 45°= 2.∴|OM |=1+x 20≤2,∴x 20≤1. 因此-1≤x 0≤1. 答案 (1)D (2)考点三 与圆有关的轨迹问题【例3】 设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.解 如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y2,线段MN 的中点坐标为⎝ ⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42.从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又N (x +3,y -4)在圆上, 故(x +3)2+(y -4)2=4.因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285(点P 在直线OM 上时的情况).规律方法 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: (1)直接法,直接根据题目提供的条件列出方程; (2)定义法,根据圆、直线等定义列方程; (3)几何法,利用圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.【训练3】 (2014·全国Ⅰ卷)已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.解 (1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x ,2-y ). 由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0, 即(x -1)2+(y -3)2=2.由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为x +3y -8=0.又|OM |=|OP |=22,O 到l 的距离为4105,所以|PM |=4105,S △POM =12×4105×4105=165,故△POM 的面积为165.1.确定一个圆的方程,需要三个独立条件.“选形式、定参数”是求圆的方程的基本方法,是指根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.2.解答圆的问题,应注意数形结合,充分运用圆的几何性质,简化运算.1.求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程.2.求轨迹方程和求轨迹是有区别的,求轨迹方程得出方程即可,而求轨迹在得出方程后还要指明轨迹表示什么曲线.基础巩固题组 (建议用时:40分钟)一、选择题1.已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( ) A.x 2+y 2=2 B.x 2+y 2= 2 C.x 2+y 2=1D.x 2+y 2=4解析 AB 的中点坐标为(0,0),|AB |=[1-(-1)]2+(-1-1)2=22, ∴圆的方程为x 2+y 2=2. 答案 A2.(2017·嘉兴七校联考)圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为( ) A.(x -2)2+(y -1)2=1 B.(x +1)2+(y -2)2=1 C.(x +2)2+(y -1)2=1D.(x -1)2+(y +2)2=1解析 已知圆的圆心C (1,2)关于直线y =x 对称的点为C ′(2,1),∴圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为(x -2)2+(y -1)2=1,故选A. 答案 A3.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则实数a 的取值范围是( )A.(-∞,-2)∪⎝ ⎛⎭⎪⎫23,+∞ B.⎝ ⎛⎭⎪⎫-23,0C.(-2,0)D.⎝⎛⎭⎪⎫-2,23 解析 方程为⎝ ⎛⎭⎪⎫x +a 22+(y +a )2=1-a -3a 24表示圆,则1-a -3a 24>0,解得-2<a <23.答案 D4.(2017·绍兴一中检测)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( )A.(x -2)2+(y +1)2=1 B.(x -2)2+(y +1)2=4 C.(x +4)2+(y -2)2=4D.(x +2)2+(y -1)2=1解析 设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎪⎨⎪⎧x =4+x2,y =-2+y 02,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以x 20+y 20=4,即(2x -4)2+(2y +2)2=4, 化简得(x -2)2+(y +1)2=1. 答案 A5.(2015·全国Ⅱ卷)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53 B.213C.253D.43解析 由点B (0,3),C (2,3),得线段BC 的垂直平分线方程为x =1,①由点A (1,0),B (0,3),得线段AB 的垂直平分线方程为y -32=33⎝⎛⎭⎪⎫x -12,②联立①②,解得△ABC 外接圆的圆心坐标为⎝⎛⎭⎪⎫1,233,其到原点的距离为 12+⎝ ⎛⎭⎪⎫2332=213.故选B.答案 B 二、填空题6.若圆C 经过坐标原点和点(4,0),且与直线y =1相切,则圆C 的方程是________. 解析 设圆心C 坐标为(2,b )(b <0),则|b |+1=4+b 2.解得b =-32,半径r =|b |+1=52,故圆C 的方程为:(x -2)2+⎝ ⎛⎭⎪⎫y +322=254.答案 (x -2)2+⎝ ⎛⎭⎪⎫y +322=2547.(2017·广州模拟)已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为________.解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=-34k 2+1.所以,当k =0时圆C 的面积最大.答案 (0,-1)8.(2017·丽水调研)已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是________;最长弦所在直线的方程为________.解析 过点M 的最短弦与CM 垂直,圆C :x 2+y 2-4x -2y =0的圆心为C (2,1),∵k CM =1-02-1=1,∴最短弦所在直线的方程为y -0=-(x -1),即x +y -1=0.由于直线过圆心C (2,1)时弦最长,此弦与最短弦垂直,故其斜率为1,此弦所在的直线方程为y -0=x -1,即为x -y -1=0.答案 x +y -1=0 x -y -1=0 三、解答题9.已知三条直线l 1:x -2y =0,l 2:y +1=0,l 3:2x +y -1=0两两相交,先画出图形,再求过这三个交点的圆的方程.解 l 2平行于x 轴,l 1与l 3互相垂直.三交点A ,B ,C 连线构成直角三角形,经过A ,B ,C 三点的圆就是以AB 为直径的圆.。

2018版高考数学(浙江专用文理通用)大一轮复习讲义:第七章数列、推理与证明第1讲含答案

2018版高考数学(浙江专用文理通用)大一轮复习讲义:第七章数列、推理与证明第1讲含答案

基础巩固题组(建议用时:40分钟)一、选择题1。

数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n等于() A。

错误!B。

cos 错误!C.cos 错误!πD.cos 错误!π解析令n=1,2,3,…,逐一验证四个选项,易得D正确。

答案D2。

数列错误!,-错误!,错误!,-错误!,…的第10项是()A.-错误!B.-错误!C.-错误!D。

-错误!解析所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子。

很容易归纳出数列{a n}的通项公式a n=(-1)n+1·错误!,故a10=-错误!.答案C3。

(2017·绍兴一中检测)在数列{a n}中,已知a1=1,a n+1=2a n+1,则其通项公式a n=( )A.2n-1B.2n-1+1C.2n-1D.2(n-1)解析法一由a n+1=2a n+1,可求a2=3,a3=7,a4=15,…,验证可知a n=2n-1。

法二由题意知a n+1+1=2(a n+1),∴数列{a n+1}是以2为首项,2为公比的等比数列,∴a n+1=2n,∴a n=2n-1.答案A4.数列{a n}的前n项积为n2,那么当n≥2时,a n等于()A。

2n-1 B。

n2C.错误!D。

错误!解析设数列{a n}的前n项积为T n,则T n=n2,当n≥2时,a n=错误!=错误!。

答案D5。

数列{a n}满足a n+1+a n=2n-3,若a1=2,则a8-a4=( ) A.7 B。

6 C.5 D.4解析依题意得(a n+2+a n+1)-(a n+1+a n)=-(2n-3),即a n+2-a n =2,所以a8-a4=(a8-a6)+(a6-a4)=2+2=4。

答案D二、填空题6.若数列{a n}满足关系a n+1=1+错误!,a8=错误!,则a5=________.解析借助递推关系,则a8递推依次得到a7=错误!,a6=错误!,a5=错误!.答案错误!7.(2017·绍兴月考)已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a 1=________;a n =________.解析 当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎨⎧4,n =1,2n +1,n ≥2。

2018版高考数学(浙江专用文理通用)大一轮复习讲义第七章数列、推理与证明第5讲Word版含答案

2018版高考数学(浙江专用文理通用)大一轮复习讲义第七章数列、推理与证明第5讲Word版含答案

基础巩固题组(建议用时:40分钟)一、选择题1.若a,b∈R,则下面四个式子中恒成立的是( )A.lg(1+a2)>0B.a2+b2≥2(a-b-1)C.a2+3ab>2b2D.ab<a+1 b+1解析在B中,∵a2+b2-2(a-b-1)=(a2-2a+1)+(b2+2b+1)=(a-1)2+(b+1)2≥0,∴a2+b2≥2(a-b-1)恒成立.答案 B2.用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,应假设( )A.三个内角都不大于60°B.三个内角都大于60°C.三个内角至多有一个大于60°D.三个内角至多有两个大于60°答案 B3.已知m>1,a=m+1-m,b=m-m-1,则以下结论正确的是( )A.a>bB.a<bC.a=bD.a,b大小不定解析∵a=m+1-m=1m+1+m,b=m-m-1=1m+m-1.而m+1+m>m+m-1>0(m>1),∴1m+1+m<1m+m-1,即a<b.答案 B4.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证b2-ac <3a”索的因应是( )A.a-b>0B.a-c>0C.(a-b)(a-c)>0D.(a-b)(a-c)<0解析由题意知b2-ac<3a⇐b2-ac<3a2⇐(a+c)2-ac<3a2⇐a2+2ac+c2-ac-3a2<0⇐-2a 2+ac +c 2<0⇐2a 2-ac -c 2>0⇐(a -c )(2a +c )>0⇐(a -c )(a -b )>0.答案 C5.①已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2;②已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下正确的是( )A.①与②的假设都错误B.①与②的假设都正确C.①的假设正确;②的假设错误D.①的假设错误;②的假设正确解析 反证法的实质是否定结论,对于①,其结论的反面是p +q >2,所以①不正确;对于②,其假设正确.答案 D二、填空题 6.6+7与22+5的大小关系为________.解析 要比较6+7与22+5的大小,只需比较(6+7)2与(22+5)2的大小,只需比较6+7+242与8+5+410的大小, 只需比较42与210的大小,只需比较42与40的大小,∵42>40,∴6+7>22+ 5. 答案 6+7>22+ 5 7.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是__________________.答案 都不能被5整除8.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b ≥2成立的条件的序号是________.解析 要使b a +a b ≥2,只需b a >0成立,即a ,b 不为0且同号即可,故①③④能使b a +a b≥2成立.答案 ①③④三、解答题9.若a ,b ,c 是不全相等的正数,求证:lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c .证明 ∵a ,b ,c ∈(0,+∞),∴a +b 2≥ab >0,b +c 2≥bc >0,a +c 2≥ac >0.又上述三个不等式中等号不能同时成立.∴a +b 2·b +c 2·c +a 2>abc 成立.上式两边同时取常用对数,得lg ⎝⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg abc , ∴lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c .10.设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和.(1)求证:数列{S n }不是等比数列;(2)数列{S n }是等差数列吗?为什么?(1)证明 假设数列{S n }是等比数列,则S 22=S 1S 3,即a 21(1+q )2=a 1·a 1·(1+q +q 2),因为a 1≠0,所以(1+q )2=1+q +q 2,即q =0,这与公比q ≠0矛盾,所以数列{S n }不是等比数列.(2)解 当q =1时,S n =na 1,故{S n }是等差数列;当q ≠1时,{S n }不是等差数列,否则2S 2=S 1+S 3,即2a 1(1+q )=a 1+a 1(1+q +q 2),得q =0,这与公比q ≠0矛盾.综上,当q =1时,数列{S n }是等差数列;当q ≠1时,数列{S n }不是等差数列.能力提升题组(建议用时:25分钟) 11.已知函数f (x )=⎝ ⎛⎭⎪⎫12x,a ,b 是正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为( )A.A ≤B ≤CB.A ≤C ≤BC.B ≤C ≤AD.C ≤B ≤A 解析 ∵a +b 2≥ab ≥2ab a +b ,又f (x )=⎝ ⎛⎭⎪⎫12x 在R 上是减函数,∴f ⎝ ⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝⎛⎭⎪⎫2ab a +b . 答案 A 12.设a ,b ,c 均为正实数,则三个数a +1b ,b +1c ,c +1a( ) A.都大于2 B.都小于2C.至少有一个不大于2D.至少有一个不小于2 解析 ∵a >0,b >0,c >0,∴⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b + ⎝ ⎛⎭⎪⎫c +1c ≥6,当且仅当a =b =c =1时,“=”成立,故三者不能都小于2,即至少有一个不小于2.答案 D13.如果a a +b b >a b +b a ,则a ,b 应满足的条件是________.解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a )=(a -b )(a -b )=(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0.∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .答案 a ≥0,b ≥0且a ≠b14.设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y+xy . 证明 由于x ≥1,y ≥1,所以要证明x +y +1xy ≤1x +1y+xy , 只需证xy (x +y )+1≤y +x +(xy )2.将上式中的右式减左式,得-=-=(xy +1)(xy -1)-(x +y )(xy -1)=(xy -1)(xy -x -y +1)=(xy -1)(x -1)(y -1).因为x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0,从而所要证明的不等式成立.15.(2016·浙江卷)设函数f (x )=x 3+11+x,x ∈,证明: (1)f (x )≥1-x +x 2;(2)34<f (x )≤32. 证明 (1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x , 由于x ∈,有1-x 41+x ≤1x +1, 即1-x +x 2-x 3≤1x +1,所以f (x )≥1-x +x 2. (2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32, 所以f (x )≤32. 由(1)得f (x )≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34, 又因为f ⎝ ⎛⎭⎪⎫12=1924>34, 所以f (x )>34. 综上,34<f (x )≤32.。

2018版高考数学浙江,文理通用大一轮复习讲义教师版文

2018版高考数学浙江,文理通用大一轮复习讲义教师版文

1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可判断Ax+By+C>0表示的直线是Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念【知识拓展】1.画二元一次不等式表示的平面区域的直线定界,特殊点定域:(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.2.利用“同号上,异号下”判断二元一次不等式表示的平面区域: 对于Ax +By +C >0或Ax +By +C <0,则有(1)当B (Ax +By +C )>0时,区域为直线Ax +By +C =0的上方; (2)当B (Ax +By +C )<0时,区域为直线Ax +By +C =0的下方. 3.最优解和可行解的关系:最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( × ) (2)点(x 1,y 1),(x 2,y 2)在直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0,异侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0.( √ )(3)第二、四象限表示的平面区域可以用不等式xy <0表示.( √ ) (4)线性目标函数的最优解是唯一的.( × )(5)最优解指的是使目标函数取得最大值或最小值的可行解.( √ )(6)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( × )1.下列各点中,不在x +y -1≤0表示的平面区域内的是( ) A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3)答案 C解析 把各点的坐标代入可得(-1,3)不适合,故选C.2.(教材改编)不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是( )答案 C解析 用特殊点代入,比如(0,0),容易判断为C. 3.(2016·北京)若x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .5 答案 C解析 不等式组表示的可行域如图中阴影部分所示.令z =2x +y ,则y =-2x +z ,作直线2x +y =0并平移,当直线过点A 时,截距最大,即z 取得最大值,由⎩⎪⎨⎪⎧ 2x -y =0,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2,所以A 点坐标为(1,2),可得2x +y 的最大值为2×1+2=4. 4.(2017·杭州质检)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥0,若z =2x +y ,则z 的最大值等于________,z 的最小值等于________. 答案 2 0解析 作出可行域(图略),由y =-2x +z ,知当z =2x +y 经过点(1,0)时,z max =2; 当z =2x +y 经过点(0,0)时,z min =0.题型一 二元一次不等式(组)表示的平面区域 命题点1 不含参数的平面区域问题例1 (1)不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的( )(2)不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A.32B.23C.43D.34 答案 (1)C (2)C解析 (1)(x -2y +1)(x +y -3)≤0⇒⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0,或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.画出平面区域后,只有C 符合题意.(2)由题意得不等式组表示的平面区域如图阴影部分,A (0,43),B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.故选C.命题点2 含参数的平面区域问题例2 (1)(2015·重庆)若不等式组⎩⎪⎨⎪⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为( ) A .-3B .1C.43D .3(2)若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k的值是_________________. 答案 (1)B (2)73解析 (1)不等式组表示的平面区域如图,则图中A 点纵坐标y A =1+m ,B 点纵坐标y B =2m +23,C 点横坐标x C =-2m ,∴S △ABD =S △ACD -S △BCD =12×(2+2m )×(1+m )-12×(2+2m )×2m +23=(m +1)23=43,∴m =1或m =-3,当m =-3时,不满足题意应舍去, ∴m =1.(2)不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域. 因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52. 当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43, 所以k =73.思维升华 (1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可. (2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.(1)不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为( ) A .(0,3] B .-1,1] C .(-∞,3]D .3,+∞)(2)已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为( )A .1B .-1C .0D .-2 答案 (1)D (2)A解析 (1)直线y =kx -1过定点M (0,-1),由图可知,当直线y =kx -1经过直线y =x +1与直线x +y =3的交点C (1,2)时,k 最小,此时k CM =2-(-1)1-0=3,因此k ≥3,即k ∈3,+∞).故选D.(2)由于x =1与x +y -4=0不可能垂直,所以只可能x +y -4=0与kx -y =0垂直或x =1与kx -y =0垂直.①当x +y -4=0与kx -y =0垂直时,k =1,检验知三角形区域面积为1,即符合要求. ②当x =1与kx -y =0垂直时,k =0,检验不符合要求. 题型二 求目标函数的最值问题 命题点1 求线性目标函数的最值例3 (1)(2016·全国丙卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.(2)已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,z =|2x -2y -1|,则z 的取值范围是( )A .53,5]B .0,5]C .0,5)D .53,5)答案 (1)32(2)C解析 (1)满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0的可行域为以A (-2,-1),B (0,1),C ⎝⎛⎭⎫1,12为顶点的三角形内部及边界,则y =-x +z 过点C ⎝⎛⎭⎫1,12时Z 取得最大值32. (2)由约束条件⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0作可行域如图,联立⎩⎪⎨⎪⎧ x =2,x +y -1=0,解得⎩⎪⎨⎪⎧x =2,y =-1,∴A (2,-1), 联立⎩⎪⎨⎪⎧x +y -1=0,x -2y +1=0,解得⎩⎨⎧x =13,y =23,∴B (13,23).令u =2x -2y -1,则y =x -u 2-12,由图可知,当y =x -u 2-12经过点A (2,-1)时,直线y =x-u 2-12在y 轴上的截距最小,u 最大,最大值为2×2-2×(-1)-1=5;当y =x -u 2-12经过点B (13,23)时,直线y =x -u 2-12在y 轴上的截距最大,u 最小,最小值为2×13-2×23-1=-53. ∴-53≤u <5,∴z =|u |∈0,5).命题点2 求非线性目标函数的最值 例4 实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x ≥0,y ≤2.(1)若z =yx ,求z 的最大值和最小值,并求z 的取值范围;(2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围. 解 由⎩⎪⎨⎪⎧x -y +1≤0,x ≥0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx表示可行域内任一点与坐标原点连线的斜率,因此yx的范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), ∴k OB =21=2,即z min =2,∴z 的取值范围是2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的最小值为OA 2,最大为OB 2.由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), ∴OA 2=(02+12)2=1,∴z max =5,OB 2=(12+22)2=5, ∴z 的取值范围是1,5]. 引申探究1.若z =y -1x -1,求z 的取值范围.解 z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.∴z 的取值范围是(-∞,0].2.若z =x 2+y 2-2x -2y +3.求z 的最大值、最小值. 解 z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方PQ 2,(PQ )2max =(0-1)2+(2-1)2=2,(PQ )2min =(|1-1+1|12+(-1)2)2=12,∴z max =2+1=3,z min =12+1=32.命题点3 求参数值或取值范围例5 (1)(2015·山东)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若z =ax +y 的最大值为4,则a 等于( )A .3B .2C .-2D .-3(2)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =________.答案 (1)B (2)12解析 (1)不等式组表示的平面区域如图阴影部分所示.易知A (2,0),由⎩⎪⎨⎪⎧x -y =0,x +y =2,得B (1,1). 由z =ax +y ,得y =-ax +z .∴当a =-2或a =-3时,z =ax +y 在O (0,0)处取得最大值,最大值为z max =0,不满足题意,排除C ,D 选项;当a =2或3时,z =ax +y 在A (2,0)处取得最大值, ∴2a =4,∴a =2,排除A ,故选B.(2)作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧ x =1,y =a (x -3),得⎩⎪⎨⎪⎧x =1,y =-2a , ∴z min =2-2a =1,解得a =12.思维升华 (1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值.(2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义:①x 2+y 2表示点(x ,y )与原点(0,0)的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离; ②yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率. (3)当目标函数中含有参数时,要根据临界位置确定参数所满足的条件.(1)(2016·临沂检测)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 的最小值是( )A .-3B .0C.32D .3(2)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.答案 (1)A (2)1,32]解析 (1)作出不等式组⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,表示的可行域(如图所示的△ABC 的边界及内部).平移直线z =x -y ,易知当直线z =x -y 经过点C (0,3)时,目标函数z =x -y 取得最小值,即z min =-3.(2)画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤4,1≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1,32].题型三 线性规划的实际应用问题例6 (2016·全国乙卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元. 答案 216000解析 设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,得线性约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *,目标函数z =2100x +900y . 作出可行域为图中的四边形,包括边界,顶点为(60,100),(0,200),(0,0),(90,0),在(60,100)处取得最大值,z max =2100×60+900×100=216000(元).思维升华 解线性规划应用问题的一般步骤(1)审题:仔细阅读材料,抓住关键,准确理解题意,明确有哪些限制条件,借助表格或图形理清变量之间的关系.(2)设元:设问题中起关键作用(或关联较多的)量为未知量x ,y ,并列出相应的不等式组和目标函数.(3)作图:准确作出可行域,平移找点(最优解). (4)求解:代入目标函数求解(最大值或最小值). (5)检验:根据结果,检验反馈.(2016·杭州质检)某校今年计划招聘女教师a 名,男教师b 名,若a ,b 满足不等式组⎩⎪⎨⎪⎧2a -b ≥5,a -b ≤2,a <7,a ,b ∈N ,设这所学校今年计划招聘教师最多x 名,则x 等于( )A .10B .12C .13D .16 答案 C解析 如图所示,画出约束条件所表示的区域,即可行域,作直线l :b +a =0,平移直线l ,再由a ,b ∈N ,可知当a =6,b =7时,x max =a +b =13..含参数的线性规划问题典例 (1)在直角坐标系xOy 中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤2x ,y ≤k (x -1)-1表示一个三角形区域,则实数k的取值范围是________.(2)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若z =ax +y 的最大值为4,则a =________.错解展示解析 (1)如图,直线y =k (x -1)-1过点(1,-1),作出直线y =2x ,当k <-1或0<k <2或k >2时,不等式组表示一个三角形区域. (2)由不等式组表示的可行域,可知z =ax +y 在点A (1,1)处取到最大值4, ∴a +1=4,∴a =3.答案 (1)(-∞,-1)∪(0,2)∪(2,+∞) (2)3 现场纠错解析 (1)直线y =k (x -1)-1过定点(1,-1),当这条直线的斜率为负值时,该直线与y 轴的交点必须在坐标原点上方,即直线的斜率为(-∞,-1),只有此时可构成三角形区域.(2)作出不等式组表示的可行域如图中阴影部分所示.由⎩⎪⎨⎪⎧x -y =0,x +y =2,得A (1,1). z =ax +y 等价于y =-ax +z , 因为z 的最大值为4,即直线y =-ax +z 的纵截距最大为4. 若z =ax +y 在A (1,1)处取得最大值, 则纵截距必小于2,故只有直线y =-ax +z 过点(2,0)且-a <0时符合题意, ∴4=a ×2+0,即a =2. 答案 (1)(-∞,-1) (2)2纠错心得 (1)含参数的平面区域问题,要结合直线的各种情况进行分析,不能凭直觉解答. (2)目标函数含参的线性规划问题,要根据z 的几何意义确定最优解,切忌搞错符号.1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)答案 B解析 由3×(-3)-2×(-1)-a ]·3×4-2×(-6)-a ]<0, 得(a +7)(a -24)<0,∴-7<a <24.2.(2016·诸暨高三期末)已知实数x ,y 满足条件⎩⎪⎨⎪⎧x ≥0,y ≥0,2x +y ≤2,则x 2+y 2的最大值为( )A .2B .1C.255 D.45答案 A解析 可行域表示的是以(0,0),(1,0),(0,2)为顶点的三角形区域(含边界).x 2+y 2表示可行域内一点(x ,y )到原点的距离,易知(0,2)到原点的最大距离为2,故选A. 3.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a 表示的平面区域是一个三角形,则a 的取值范围是( )A.⎣⎡⎭⎫43,+∞ B .(0,1]C.⎣⎡⎦⎤1,43 D .(0,1]∪⎣⎡⎭⎫43,+∞答案 D解析 不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图(阴影部分),求A ,B 两点的坐标分别为⎝⎛⎭⎫23,23和(1,0),若原不等式组表示的平面区域是一个三角形,则a的取值范围是0<a ≤1或a ≥43.4.(2016·浙江)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则AB 等于( )A .22B .4C .32D .6 答案 C解析 已知不等式组表示的平面区域如图中△PMQ 所示.因为直线x +y -2=0与直线x +y =0平行,所以区域内的点在直线x +y -2=0上的投影构成线段AB ,则AB =PQ .由⎩⎪⎨⎪⎧x -3y +4=0,x +y =0,解得P (-1,1), 由⎩⎪⎨⎪⎧x =2,x +y =0,解得Q (2,-2). 所以AB =PQ =(-1-2)2+(1+2)2=3 2.5.(2016·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函数z =2x +5y 的最小值为( )A .-4B .6C .10D .17 答案 B解析 由约束条件作出可行域如图所示,目标函数可化为y =-25x +15z ,在图中画出直线y =-25x ,平移该直线,易知经过点A 时z 最小. 又知点A 的坐标为(3,0), ∴z min =2×3+5×0=6.故选B.6.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ) A .1800元 B .2400元 C .2800元 D .3100元答案 C解析 设每天生产甲种产品x 桶,乙种产品y 桶, 则根据题意得x 、y 满足的约束条件为⎩⎪⎨⎪⎧x ≥0,x ∈N ,y ≥0,y ∈N ,x +2y ≤12,2x +y ≤12.设获利z 元, 则z =300x +400y . 画出可行域如图.画出直线l :300x +400y =0, 即3x +4y =0.平移直线l ,从图中可知,当直线过点M 时, 目标函数取得最大值.由⎩⎪⎨⎪⎧ x +2y =12,2x +y =12,解得⎩⎪⎨⎪⎧x =4,y =4,即M 的坐标为(4,4), ∴z max =300×4+400×4=2800(元).故选C.7.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1答案 D解析 如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1. 8.(2016·枣庄模拟)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x >0,4x +3y ≤4,y ≥0,则ω=y +1x的最小值是( ) A .-2 B .2 C .-1 D .1答案 D解析 作出不等式组对应的平面区域如图,ω=y +1x的几何意义是区域内的点P (x ,y )与定点A (0,-1)所在直线的斜率,由图象可知当P 位于点D (1,0)时,直线AP 的斜率最小,此时ω=y +1x 的最小值为-1-00-1=1.故选D.9.若关于x ,y 的不等式组⎩⎪⎨⎪⎧x ≤0,x +y ≥0,kx -y +1≥0表示的平面区域是等腰直角三角形,则其表示的平面区域的面积为______. 答案 12或14解析 直线kx -y +1=0过点(0,1),要使不等式组表示的区域为直角三角形,只有直线kx -y +1=0垂直于y 轴(如图(1))或与直线x +y =0垂直(如图(2))时才符合题意.所以S =12×1×1=12或S =12×22×22=14.10.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________. 答案 ⎝⎛⎭⎫12,+∞解析 画出x 、y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.11.(2017·宜春中学、新余一中联考)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是________. 答案 3,11]解析 设z =x +2y +3x +1=x +1+2(y +1)x +1=1+2·y +1x +1,设z ′=y +1x +1,则z ′的几何意义为动点P (x ,y )到定点D (-1,-1)的斜率.画出可行域如图阴影部分所示,则易得z ′∈k DA ,k DB ],即z ′∈1,5],∴z =1+2·z ′∈3,11].*12.(2016·嘉兴期末)设不等式组⎩⎪⎨⎪⎧x -y ≤0,x +y ≤4,x ≥1表示的平面区域为M ,点P (x ,y )是平面区域内的动点,则z =2x -y 的最大值是________,若直线l :y =k (x +2)上存在区域M 内的点,则k 的取值范围是________. 答案 2 13,1]解析 不等式组对应的平面区域是以点(1,1),(1,3)和(2,2)为顶点的三角形,当z =2x -y 经过点(2,2)时取得最大值2.又k =y x +2经过点(1,1)时取得最小值13,经过点(1,3)时取得最大值1,所以k 的取值范围是13,1].13.已知D 是以点A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界与内部).如图所示.(1)写出表示区域D 的不等式组;(2)设点B (-1,-6),C (-3,2)在直线4x -3y -a =0的异侧,求a 的取值范围. 解 (1)直线AB ,AC ,BC 的方程分别为7x -5y -23=0,x +7y -11=0,4x +y +10=0. 原点(0,0)在区域D 内,故表示区域D 的不等式组为⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(2)根据题意有4×(-1)-3×(-6)-a ]4×(-3)-3×2-a ]<0, 即(14-a )(-18-a )<0,解得-18<a <14.故a 的取值范围是(-18,14).14.某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每辆车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1600x +2400y . 由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作出可行域如图阴影部分所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1600x +2400y 经过可行域的点P 时,直线z =1600x +2400y 在y 轴上的截距z 2400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小.。

浙江专用2018版高考数学大一轮复习第七章不等式7.2一元二次不等式及其解法课件

浙江专用2018版高考数学大一轮复习第七章不等式7.2一元二次不等式及其解法课件

跟踪训练1 解下列不等式: (1)0<x2-x-2≤4; 解答
原不等式等价于
2 2 x - x - 2>0 , x -x-2>0, x-2x+1>0, x>2或x<-1, 2 ⇔ 2 ⇔ ⇔ x -x-2≤4 x -x-6≤0 x-3x+2≤0 -2≤x≤3.
§7.2 一元二次不等式及其解法
内容索引
基础知识 题型分类
自主学习 深度剖析
课时训练
基础知识
自主学习
知识梳理
1.“三个二次”的关系
判别式
Δ=b2-4ac
Δ>0
Δ=0
Δ<0
二次函数y=ax2+bx +c (a>0)的图象
一元二次方程ax2+bx 有两相异实根
+c=0 (a>0)的根 x1,x2(x1<x2)
x 8 由题意得,y=1001-10· 1001+50x.
因为售价不能低于成本价,所以
x 1 - 100 -80≥0. 10
所以y=f(x)=40(10-x)(25+4x),定义域为x∈[0,2].
(2)若再要求该商品一天营业额至少为10 260元,求x的取值范围. 由题意得40(10-x)(25+4x)≥10 260,
ቤተ መጻሕፍቲ ባይዱ 思维升华
(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图 象在给定的区间上全部在x轴上方,恒小于0就是相应的二次函数的图象 在给定的区间上全部在x轴下方.另外常转化为求二次函数的最值或用分 离参数法求最值. (2)解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁 的范围,谁就是主元,求谁的范围,谁就是参数.

2018版高考数学(浙江文理通用)大一轮复习讲义课件第七章不等式7.4

2018版高考数学(浙江文理通用)大一轮复习讲义课件第七章不等式7.4

思维升华
(1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形, 然后利用基本不等式求解. (2) 条件不等式的最值问题:通过条件转化成能利用基本不等式的形式 求解. (3) 求参数的值或范围:观察题目特点,利用基本不等式确定相关成立 条件,从而得参数的值或范围.
知识拓展
不等式的恒成立、能成立、恰成立问题 (1)恒成立问题:若f(x)在区间D上存在最小值,则不等式f(x)>A在区间D f(x)min>A(x∈D) ; 上恒成立⇔______________ 若 f(x) 在区间 D 上存在最大值,则不等式 f(x)<B 在区间 D 上恒成立 ⇔ f(x)max<B(x∈D).
a+b2 a +b (4) ≥________ 2 (a,b∈R).
2 2
a+b2 (3)ab≤_______ 2 (a,b∈R).
2 以上不等式等号成立的条件均为a=b.
3.算术平均数与几何平均数
a+b ab , 2 设a>0,b>0,则a,b的算术平均数为_______ ,几何平均数为 _____
§7.4 基本不等式及其应用
内容索引
基础知识
自主学习
题型分类
课时训练
深度剖析
基础知识
自主学习
知识梳理
a+b 1.基本不等式 ab≤ 2
(1)基本不等式成立的条件: a>0,b>0 . (2)等号成立的条件:当且仅当 a=b 时取等号. 2.几个重要的不等式 (1)a2+b2≥
b a 2ab (a,b∈R). (2) + ≥ 2 (a,b 同号). a b
思考辨析 判断下列结论是否正确(请在括号中打“√”或“×”)

2018版高考数学浙江专用文理通用大一轮复习教师用书:1~2章 含答案 精品

2018版高考数学浙江专用文理通用大一轮复习教师用书:1~2章 含答案 精品

第1讲集合最新考纲 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.知识梳理1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A.(2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则A B或B A.(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算(1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B.(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).诊断自测1.判断正误(在括号内打“√”或“×”)(1)任何集合都有两个子集.( )(2)已知集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A=B=C.( )(3)若{x2,1}={0,1},则x=0,1.( )(4)若A∩B=A∩C,则B=C.( )解析(1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.集合A是函数y=x2的定义域,即A=(-∞,+∞);集合B是函数y=x2的值域,即B=.答案(1)B (2)(-∞,4]规律方法(1)若B⊆A,应分B=∅和B≠∅两种情况讨论.(2)已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常要合理利用数轴、Venn图,化抽象为直观进行求解.【训练2】(1)(2017·镇海中学质检)若集合A={x|x>0},且B⊆A,则集合B可能是( ) A.{1,2} B.{x|x≤1}C.{-1,0,1}D.R(2)(2016·郑州调研)已知集合A={x|x=x2-2,x∈R},B={1,m},若A⊆B,则m的值为( )A.2B.-1C.-1或2D.2或2解析(1)因为A={x|x>0},且B⊆A,再根据选项A,B,C,D可知选项A正确.(2)由x=x2-2,得x=2,则A={2}.因为B={1,m}且A⊆B,所以m=2.答案(1)A (2)A考点三集合的基本运算【例3】(1)(2015·全国Ⅰ卷)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为( )A.5B.4C.3D.2(2)(2016·浙江卷)设集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=( )A. B.(-2,3]C.1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到.解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的又一体现.1.集合问题解题中要认清集合中元素的属性(是数集、点集还是其他类型集合),要对集合进行化简.2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.基础巩固题组(建议用时:25分钟)一、选择题1.(2015·全国Ⅱ卷)已知集合A={1,2,3},B={2,3},则( )A.A=BB.A∩B=∅C.A BD.B A解析∵A={1,2,3},B={2,3},∴2,3∈A且2,3∈B,1∈A但1∉B,∴B A.答案 D2.(2016·全国Ⅱ卷)已知集合A={1,2,3},B={x|x2<9},则A∩B=( )A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}解析由于B={x|x2<9}={x|-3<x<3},又A={1,2,3},因此A∩B={1,2}.答案 D3.(2017·肇庆模拟)已知集合A={x|lg x>0},B={x|x≤1},则( )A.A∩B≠∅B.A∪B=RC.B⊆AD.A⊆B解析由B={x|x≤1},且A={x|lg x>0}=(1,+∞),∴A∪B=R.答案 B4.已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是( )A.(-∞,-1]B. D.(-∞,-1]∪.答案 C5.(2016·山东卷)设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B =( ) A.(-1,1) B.(0,1) C.(-1,+∞)D.(0,+∞)解析 由y =2x,x ∈R ,知y >0,则A =(0,+∞). 又B ={x |x 2-1<0}=(-1,1). 因此A ∪B =(-1,+∞). 答案 C6.(2016·浙江卷)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则(∁U P )∪Q =( ) A.{1} B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}解析 ∵U ={1,2,3,4,5,6},P ={1,3,5},∴∁U P ={2,4,6},∵Q ={1,2,4},∴(∁U P )∪Q ={1,2,4,6}. 答案 C7.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( ) A.1B.3C.7D.31解析 具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2. 答案 B8.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A.{x |x ≥0} B.{x |x ≤1} C.{x |0≤x ≤1}D.{x |0<x <1}解析 ∵A ={x |x ≤0},B ={x |x ≥1}, ∴A ∪B ={x |x ≤0或x ≥1},在数轴上表示如图. ∴∁U (A ∪B )={x |0<x <1}. 答案 D 二、填空题9.已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是________. 解析 ∵1∉{x |x 2-2x +a >0},∴1∈{x |x 2-2x +a ≤0},即1-2+a ≤0,∴a ≤1. 答案 (-∞,1]10.(2017·宁波调研)集合A ={0,|x |},B ={1,0,-1},若A ∪B =B ,则A ∩B =________;A ∪B =________;∁B A =________.解析 A ={0,|x |},B ={1,0,-1},若A ∪B =B ,则A ⊆B ,∴|x |=1,∴A ∩B ={0,1},A ∪B ={-1,0,1},∁B A ={-1}.答案 {0,1} {-1,0,1} {-1}11.集合A ={x |x <0},B ={x |y =lg},若A -B ={x |x ∈A ,且x ∉B },则A -B =________. 解析 由x (x +1)>0,得x <-1或x >0, ∴B =(-∞,-1)∪(0,+∞), ∴A -B =,又B ={x |x <m +1},且A ⊆B , 所以m +1>2 017,则m >2 016. 答案 (2 016,+∞)13.(2017·金华模拟)设集合A ={x ∈N |6x +1∈N },B ={x |y =ln(x -1)},则A =________,B =________,A ∩(∁R B )=________.解析 当x =0,1,2,5时,6x +1的值分别为6,3,2,1,当x ∈N 且x ≠0,1,2,5时,6x +1∉N ,∴A ={0,1,2,5},由x -1>0,得x >1,∴B ={x |x >1},∁R B ={x |x ≤1},∴A ∩(∁R B )={0,1}.答案 {0,1,2,5} {x |x >1} {0,1}能力提升题组 (建议用时:10分钟)14.(2016·全国Ⅲ卷改编)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则(∁R S )∩T =( ) A.B.(-∞,-∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10, ∴m ≥9,则m 的取值范围是1.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.2.充要条件的几种判断方法(1)定义法:直接判断若p 则q 、若q 则p 的真假.(2)等价法:即利用A ⇒B 与綈B ⇒綈A ;B ⇒A 与綈A ⇒綈B ;A ⇔B 与綈B ⇔綈A 的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3)利用集合间的包含关系判断:设A={x|p(x)},B={x|q(x)};若A⊆B,则p是q的充分条件或q是p的必要条件;若A B,则p是q的充分不必要条件,若A=B,则p是q的充要条件.1.当一个命题有大前提而要写出其他三种命题时,必须保留大前提.2.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p,则q”的形式.3.判断条件之间的关系要注意条件之间关系的方向,正确理解“p的一个充分而不必要条件是q”等语言.基础巩固题组(建议用时:25分钟)一、选择题1.(2015·山东卷)设m∈R, 命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( )A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.答案 D2.“x=1”是“x2-2x+1=0”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析因为x2-2x+1=0有两个相等的实数根为x=1,所以“x=1”是“x2-2x+1=0”的充要条件.答案 A3.设α,β是两个不同的平面,m是直线且m⊂α,则“m∥β”是“α∥β”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析 m ⊂α,m ∥β⇒/ α∥β,但m ⊂α,α∥β⇒m ∥β,∴“m ∥β”是“α∥β”的必要不充分条件. 答案 B4.(2017·安徽江南十校联考)“a =0”是“函数f (x )=sin x -1x+a 为奇函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 显然a =0时,f (x )=sin x -1x为奇函数;当f (x )为奇函数时,f (-x )+f (x )=0.又f (-x )+f (x )=sin(-x )-1-x +a +sin x -1x+a =0. 因此2a =0,故a =0.所以“a =0”是“函数f (x )为奇函数”的充要条件. 答案 C5.下列结论错误的是( )A.命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0” B.“x =4”是“x 2-3x -4=0”的充分条件C.命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D.命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0” 解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题.答案 C6.设x ∈R ,则“1<x <2”是“|x -2|<1”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 由|x -2|<1,得1<x <3,所以1<x <2⇒1<x <3;但1<x <3 ⇒1<x <2. 所以“1<x <2”是“|x -2|<1”的充分不必要条件. 答案 A7.已知命题p :x 2+2x -3>0;命题q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( ) A.C.解析 由x 2+2x -3>0,得x <-3或x >1,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,等价于q 是p 的充分不必要条件.故a ≥1.答案 A8.(2017·台州模拟)已知a ,b 都是实数,那么“a >b ”是“ln a >ln b ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 由ln a >ln b ⇒a >b >0⇒a >b ,故必要性成立.当a =1,b =0时,满足a >b ,但ln b 无意义,所以ln a >ln b 不成立,故充分性不成立. 答案 B 二、填空题9.(2017·杭州调研)已知λ是实数,a 是向量,若λa =0,则λ=________或a =________(使命题为真命题). 解析 ∵λa =0,∴λ=0或a =0. 答案 0 010.(2017·丽水月考)命题“若x 2-3x +2=0,则x =1”的逆命题为________,否命题为________,逆否命题为________.解析 “若x 2-3x +2=0,则x =1”的逆命题为“若x =1,则x 2-3x +2=0”;否命题为“若x 2-3x +2≠0,则x ≠1”;逆否命题为“若x ≠1,则x 2-3x +2≠0”.答案 若x =1,则x 2-3x +2=0 若x 2-3x +2≠0,则x ≠1 若x ≠1,则x 2-3x +2≠0 11.“sin α=cos α”是“cos 2α=0”的________条件. 解析 cos 2α=0等价于cos 2α-sin 2α=0, 即cos α=±sin α.由cos α=sin α得到cos 2α=0;反之不成立.∴“sin α=cos α”是“cos 2α=0”的充分不必要条件. 答案 充分不必要12.已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是________.解析 令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}. ∵p 是q 的充分不必要条件,∴MN ,∴⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3. 答案 (0,3)13.有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题.其中真命题的序号是________.解析 ①原命题的否命题为“若a ≤b ,则a 2≤b 2”错误.②原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”正确.③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”正确. 答案 ②③能力提升题组 (建议用时:15分钟)14.(2016·四川卷)设p :实数x ,y 满足x >1且y >1,q :实数x ,y 满足x +y >2,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 若x >1且y >1,则x +y >2.所以p ⇒q ;反之x +y >2 x >1且y =1,例如x =3,y =0,所以qp .因此p 是q 的充分不必要条件. 答案 A15.(2017·南昌十所省重点中学联考)已知m ∈R ,“函数y =2x+m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 由y =2x+m -1=0,得m =1-2x,则m <1. 由于函数y =log m x 在(0,+∞)上是减函数, 所以0<m <1.因此“函数y =2x+m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的必要不充分条件. 答案 B16.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x<8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析 A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x<8,x ∈R ={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B,∴m+1>3,即m>2.答案(2,+∞)17.(2017·绍兴调研)把下面不完整的命题补充完整,并使之成为真命题.若函数f(x)=3+log2x的图象与g(x)的图象关于________对称,则函数g(x)=________(注:填上你认为可以成为真命题的一种情形即可,不必考虑所有可能的情形). 解析①∵点P(x0,y0)关于x轴对称的点P′(x0,-y0),∴f(x)=3+log2x关于x轴对称的函数解析式为g(x)=-3-log2x;②点M(x0,y0)关于y轴对称的点是M′(-x0,y0),故f(x)=3+log2x关于y轴对称的函数解析式为g(x)=3+log2(-x).其他情形,类似可得. 答案(不唯一)如①x轴-3-log2x;②y轴3+log2(-x);③原点-3-log2(-x);④直线y=x2x-3等18.已知a+b≠0,证明a2+b2-a-b+2ab=0成立的充要条件是a+b=1.证明先证充分性:若a+b=1,则b=1-a,所以a2+b2-a-b+2ab=a2+(1-a)2-a-(1-a)+2a(1-a)=a2+1-2a+a2-a-1+a+2a-2a2=0.即a2+b2-a-b+2ab=0,充分性得证,再证必要性:若a2+b2-a-b+2ab=0,即(a+b)2-(a+b)=0,(a+b-1)(a+b)=0,因为a+b≠0,所以a+b-1=0,即a+b=1,必要性得证,综上可得,a2+b2-a-b+2ab=0成立的充要条件是a+b=1.第1讲 函数及其表示最新考纲 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;3.了解简单的分段函数,并能简单地应用(函数分段不超过三段).知 识 梳 理1.函数与映射的概念(1)在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. 3.函数的表示法表示函数的常用方法有解析法、图象法和列表法. 4.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)函数y =1与y =x 0是同一个函数.( )(2)与x 轴垂直的直线和一个函数的图象至多有一个交点.( ) (3)函数y =x 2+1-1的值域是{y |y ≥1}.( )(4)若两个函数的定义域与值域相同,则这两个函数相等.( )解析 (1)函数y =1的定义域为R ,而y =x 0的定义域为{x |x ≠0},其定义域不同,故不是同一函数.(3)由于x 2+1≥1,故y =x 2+1-1≥0,故函数y =x 2+1-1的值域是{y |y ≥0}. (4)若两个函数的定义域、对应法则均对应相同时,才是相等函数. 答案 (1)× (2)√ (3)× (4)×2.(必修1P25B2改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析 A 中函数定义域不是,C 中图象不表示函数,D 中函数值域不是. 答案 B3.(2017·舟山一模)函数y =1-x22x 2-3x -2的定义域为( )A.(-∞,1]B.C.,则函数g (x )=f (x +1)x -1的定义域是____________.解析 (1)要使函数f (x )有意义,应满足⎩⎪⎨⎪⎧x x -1>0,x ≥0,解得x >1,故函数f (x )=ln xx -1+x 12的定义域为(1,+∞). (2)∵y =f (x )的定义域为,∴g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 017,x -1≠0.∴0≤x ≤2 016,且x ≠1.因此g (x )的定义域为{x |0≤x ≤2 016,且x ≠1}. 答案 (1)B (2){x |0≤x ≤2 016,且x ≠1} 规律方法 求函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解.(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知f (x )的定义域为,则f (g (x ))的定义域可由a ≤g (x )≤b 求出;若已知f (g (x ))的定义域为,则f (x )的定义域为g (x )在x ∈时的值域.【训练1】 (1)(2015·湖北卷)函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( )A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6](2)若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________. 解析 (1)要使函数f (x )有意义,应满足⎩⎪⎨⎪⎧4-|x |≥0,x 2-5x +6x -3>0,∴⎩⎪⎨⎪⎧|x |≤4,x -2>0且x ≠3,则2<x ≤4,且x ≠3. 所以f (x )的定义域为(2,3)∪(3,4].(2)因为函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,则x 2+2ax -a ≥0恒成立.因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. 答案 (1)C (2) 考点二 求函数的解析式【例2】 (1)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,则f (x )=________;(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________;(3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,则f (x )=________.解析 (1)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=x -1,则2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32.∴f (x )=12x 2-32x +2.(3)在f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1中,将x 换成1x ,则1x换成x ,得f ⎝ ⎛⎭⎪⎫1x=2f (x )·1x-1,由⎩⎪⎨⎪⎧f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x-1,解得f (x )=23x +13.答案 (1)lg2x -1(x >1) (2)12x 2-32x +2 (3)23x +13规律方法 求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法.(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围.(3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x ).(4)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式.【训练2】 (1)已知f (x +1)=x +2x ,则f (x )=________.(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.(3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )=__________. 解析 (1)令x +1=t ,则x =(t -1)2(t ≥1),代入原式得f (t )=(t -1)2+2(t -1)=t 2-1,所以f (x )=x 2-1(x ≥1).(2)当-1≤x ≤0时,0≤x +1≤1, 由已知f (x )=12f (x +1)=-12x (x +1).(3)当x ∈(-1,1)时, 有2f (x )-f (-x )=lg(x +1).① 将x 换成-x ,则-x 换成x , 得2f (-x )-f (x )=lg(-x +1).②由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).答案 (1)x 2-1(x ≥1) (2)-12x (x +1)(3)23lg(x +1)+13lg(1-x )(-1<x <1) 考点三 分段函数(多维探究) 命题角度一 求分段函数的函数值【例3-1】 (2015·全国Ⅱ卷)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( ) A.3B.6C.9D.12解析 根据分段函数的意义,f (-2)=1+log 2(2+2)=1+2=3.又log 212>1 ∴f (log 212)=2(log 212-1)=2log 26=6, 因此f (-2)+f (log 212)=3+6=9. 答案 C命题角度二 求参数的值或取值范围【例3-2】 (1)(2015·山东卷)设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=4,则b =( )A.1B.78C.34D.12(2)(2014·全国Ⅰ卷)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.解析 (1)f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b ,若52-b <1,即b >32时, 则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫56=f ⎝ ⎛⎭⎪⎫52-b =3⎝ ⎛⎭⎪⎫52-b -b =4, 解之得b =78,不合题意舍去.若52-b ≥1,即b ≤32,则252-b =4,解得b =12. (2)当x <1时,ex -1≤2,解得x ≤1+ln 2,当x ≥1时,x 13≤2,解得x ≤8,所以1≤x ≤8. 综上可知x 的取值范围是(-∞,8]. 答案 (1)D (2)(-∞,8]规律方法 (1)根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.(2)已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围. 提醒 当分段函数的自变量范围不确定时,应分类讨论.【训练3】 (1)(2015·全国Ⅰ卷)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( ) A.-74B.-54C.-34D.-14(2)(2017南京、盐城模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤0,-(x -1)2,x >0,则不等式f (x )≥-1的解集是________. 解析 (1)当a ≤1时,f (a )=2a -1-2=-3,即2a -1=-1,不成立,舍去;当a >1时,f (a )=-log 2(a +1)=-3, 即log 2(a +1)=3, 解得a =7,此时f (6-a )=f (-1)=2-2-2=-74.故选A.(2)当x ≤0时,由题意得x2+1≥-1,解之得-4≤x ≤0.当x >0时,由题意得-(x -1)2≥-1,解之得0<x ≤2, 综上f (x )≥-1的解集为{x |-4≤x ≤2}. 答案 (1)A (2){x |-4≤x ≤2}1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是2.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图象的基础.因此,我们一定要树立函数定义域优先意识.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、构造解方程组法.4.分段函数问题要用分类讨论思想分段求解.1.复合函数f 的定义域也是解析式中x 的范围,不要和f (x )的定义域相混.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A 到B 的一个映射,A ,B 若不是数集,则这个映射便不是函数.3.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论.基础巩固题组 (建议用时:30分钟)一、选择题1.(2017·绍兴质检)函数f (x )=log 2(x 2+2x -3)的定义域是( ) A.B.(-3,1)C.(-∞,-3]∪的值为( ) A.1B.2C.3D.4解析 由映射g 的对应法则,可知g (1)=4, 由映射f 的对应法则,知f (4)=1,故f =1. 答案 A3.已知f (x )是一次函数,且f =x +2,则f (x )=( ) A.x +1 B.2x -1 C.-x +1D.x +1或-x -1解析 设f (x )=kx +b (k ≠0),又f =x +2, 得k (kx +b )+b =x +2,即k 2x +kb +b =x +2. ∴k 2=1,且kb +b =2,解得k =b =1. 答案 A4.(2017·湖州一模)f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x(x ≤0),log 3x (x >0),则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=( )A.-2B.-3C.9D.-9解析 ∵f ⎝ ⎛⎭⎪⎫19=log 319=-2, ∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9.答案 C5.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =(表示不大于x 的最大整数)可以表示为( ) A.y =⎣⎢⎡⎦⎥⎤x 10B.y =⎣⎢⎡⎦⎥⎤x +310C.y =⎣⎢⎡⎦⎥⎤x +410D.y =⎣⎢⎡⎦⎥⎤x +510解析 取特殊值法,若x =56,则y =5,排除C ,D ;若x =57,则y =6,排除A ,选B. 答案 B6.(2016·全国Ⅱ卷)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( ) A.y =x B.y =lg x C.y =2xD.y =1x解析 函数y =10lg x的定义域、值域均为(0,+∞),而y =x ,y =2x的定义域均为R ,排除A ,C ;y =lg x 的值域为R ,排除B ,故选D. 答案 D7.(2016·江苏卷)设f (x )是定义在R 上且周期为2的函数,在区间10.(2017·湖州调研)已知f (x )=⎩⎪⎨⎪⎧x -3,x ≥9,f (f (x +4)),x <9,则f (10)=________;f (7)=________.解析 f (10)=10-3=7;f (7)=f (f (7+4))=f (f (11))=f (11-3)=f (8)=f (f (8+4))=f (f (12))=f (12-3)=f (9)=9-3=6.答案 7 611.已知函数f (x )满足f ⎝⎛⎭⎪⎫2x +|x |=log 2x |x |,则f (x )的解析式是________. 解析 根据题意知x >0,所以f ⎝ ⎛⎭⎪⎫1x =log 2x ,则f (x )=log 21x=-log 2x .答案 f (x )=-log 2x12.(2017·温州调研)已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0),x 2+x (x ≤0),则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=________,方程f (x )=2的解为________.解析 ∵f (x )=⎩⎪⎨⎪⎧log 2x (x >0),x 2+x (x ≤0),f ⎝ ⎛⎭⎪⎫12=log 212=-1,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (-1)=(-1)2+(-1)=0.当x >0时,由log 2x =2得x =4,当x ≤0时,由x 2+x =2得x =-2(x =+1舍去). 答案 0 -2或413.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x <0,x 2-2x ,x ≥0.若f (-a )+f (a )≤0,则实数a 的取值范围是________.解析 依题意可知⎩⎪⎨⎪⎧a ≥0,(-a )2+2(-a )+a 2-2a ≤0或 ⎩⎪⎨⎪⎧a <0,(-a )2-2(-a )+a 2+2a ≤0,解得a ∈. 答案能力提升题组 (建议用时:15分钟)14.(2015·湖北卷)设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.则( )A.|x |=x |sgn x |B.|x |=x sgn|x |C.|x |=|x |sgn xD.|x |=x sgn x解析 当x >0时,|x |=x ,sgn x =1,则|x |=x sgn x ; 当x <0时,|x |=-x ,sgn x =-1,则|x |=x sgn x ; 当x =0时,|x |=x =0,sgn x =0,则|x |=x sgn x . 答案 D15.设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1B. C.⎣⎢⎡⎭⎪⎫23,+∞D..答案 (0,1]17.(2015·浙江卷)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (f (-3))=________,f (x )的最小值是________.解析 ∵f (-3)=lg =lg 10=1, ∴f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时,取等号,此时f (x )min =22-3<0;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3. 答案 0 22-318.(2017·台州模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2-1,x ≤0,x -1,x >0,g (x )=2x -1,则f (g (2))=________,f 的值域为________.解析 g (2)=22-1=3,∴f (g (2))=f (3)=2,g (x )的值域为(-1,+∞),∴若-1<g (x )≤0;f =2-1∈=g (x )-1∈(-1,+∞),∴f 的值域是>0,则函数f (x )在区间D 上是增函数.( )(2)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( )(3)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( ) (4)函数y =f (x )在上递增,∴f (x )∈(-1,2];当x >1时,记x =+(x -),其中为不大于x 的最大整数,则x -∈)=3x --1∈∪. 答案 2 (-1,2]考点一 确定函数的单调性(区间)【例1】 (1)函数f (x )=log 12(x 2-4)的单调递增区间为( )A.(0,+∞)B.(-∞,0)C.(2,+∞)D.(-∞,-2)(2)试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.(1)解析 由x 2-4>0,得x >2或x <-2. ∴f (x )的定义域为(-∞,-2)∪(2,+∞). 令t =x 2-4,则y =log 12t (t >0).∵t =x 2-4在(-∞,-2)上是减函数,且y =log 12t 在(0,+∞)上是减函数,∴函数f (x )在(-∞,-2)上是增函数,即f (x )单调递增区间为(-∞,-2). 答案 D(2)解 法一 设-1<x 1<x 2<1,f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),函数f (x )在(-1,1)上递减; 当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上递增. 法二 f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上递增.规律方法 (1)求函数的单调区间,应先求定义域,在定义域内求单调区间,如例1(1). (2)函数单调性的判断方法有:①定义法;②图象法;③利用已知函数的单调性;④导数法. (3)函数y =f (g (x ))的单调性应根据外层函数y =f (t )和内层函数t =g (x )的单调性判断,遵循“同增异减”的原则.【训练1】 判断函数f (x )=x +ax(a >0)在(0,+∞)上的单调性,并给出证明. 解 f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数. 证明如下:法一 设x 1,x 2是任意两个正数,且0<x 1<x 2, 则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫x 1+a x 1-⎝ ⎛⎭⎪⎫x 2+a x 2=x 1-x 2x 1x 2(x 1x 2-a ).当0<x 1<x 2≤a 时,0<x 1x 2<a ,又x 1-x 2<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数. 当a ≤x 1<x 2时,x 1x 2>a ,又x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +a x(a >0)在(0,a ]上是减函数,在[a ,+∞)上为增函数.法二 f ′(x )=1-ax 2,令f ′(x )>0,则1-a x2>0, 解得x >a 或x <-a (舍).令f ′(x )<0,则1-a x2<0,解得-a <x <a . ∵x >0,∴0<x <a .∴f (x )在(0,a ]上为减函数,在[a ,+∞)上为增函数. 考点二 确定函数的最值【例2】 (1)(2017·丽水一模)已知函数f (x )=⎩⎪⎨⎪⎧log 13x ,x >1,-x 2+2x ,x ≤1,则f (f (3))=________,函数f (x )的最大值是________.(2)已知函数f (x )=x 2+2x +ax,x ∈上单调递增,则f (x )≤1,综上可知,f (x )的最大值为1.答案 -3 1(2)解 ①当a =12时,f (x )=x +12x +2,设1≤x 1<x 2,则f (x 2)-f (x 1)=(x 2-x 1)⎝ ⎛⎭⎪⎫1-12x 1x 2,∵1≤x 1<x 2,∴x 2-x 1>0,2x 1x 2>2, ∴0<12x 1x 2<12,1-12x 1x 2>0,∴f (x 2)-f (x 1)>0,f (x 1)<f (x 2). ∴f (x )在区间.规律方法 (1)求函数最值的常用方法:①单调性法;②基本不等式法;③配方法;④图象法;⑤导数法.(2)利用单调性求最值,应先确定函数的单调性,然后根据性质求解.若函数f (x )在闭区间上是增函数,则f (x )在上的最大值为f (b ),最小值为f (a ).若函数f (x )在闭区间上是减函数,则f (x )在上的最大值为f (a ),最小值为f (b ).【训练2】 如果函数f (x )对任意的实数x ,都有f (1+x )=f (-x ),且当x ≥12时,f (x )=log 2(3x -1),那么函数f (x )在上的最大值与最小值之和为( ) A.2B.3C.4D.-1解析 根据f (1+x )=f (-x ),可知函数f (x )的图象关于直线x =12对称.又函数f (x )在⎣⎢⎡⎭⎪⎫12,+∞上单调递增,故f (x )在⎝⎛⎦⎥⎤-∞,12上单调递减,则函数f (x )在上的最大值与最小值之和为f (-2)+f (0)=f (1+2)+f (1+0)=f (3)+f (1)=log 28+log 22=4. 答案 C考点三 函数单调性的应用(典例迁移)【例3】 (1)如果函数f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.(2)(2017·宁波模拟)定义在R 上的奇函数y =f (x )在(0,+∞)上递增,且f ⎝ ⎛⎭⎪⎫12=0,则不等式f (log 19x )>0的解集为________.解析 (1)对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0.所以y =f (x )在(-∞,+∞)上是增函数. 所以⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2.故实数a 的取值范围是⎣⎢⎡⎭⎪⎫32,2.(2)∵y =f (x )是定义在R 上的奇函数,且y =f (x )在(0,+∞)上递增. ∴y =f (x )在(-∞,0)上也是增函数,又f ⎝ ⎛⎭⎪⎫12=0,知f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=0. 故原不等式f (log 19x )>0可化为f (log 19x )>f ⎝ ⎛⎭⎪⎫12或f (log 19x )>f ⎝ ⎛⎭⎪⎫-12,∴log 19x >12或-12<log 19x <0,解得0<x <13或1<x <3.所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x <13或1<x <3.答案 (1)⎣⎢⎡⎭⎪⎫32,2 (2)⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x <13或1<x <3【迁移探究1】 在例题第(1)题中,条件不变,若设m =f (-12),n =f (a ),t =f (2),试比较m ,n ,t 的大小.解 由例题知f (x )在(-∞,+∞)上是增函数, 且32≤a <2,又-12<a <2, ∴f ⎝ ⎛⎭⎪⎫-12<f (a )<f (2),即m <n <t . 【迁移探究2】 在例题第(2)题中,若条件改为:“定义在R 上的偶函数y =f (x )在 1.利用定义证明或判断函数单调性的步骤: (1)取值 ;(2)作差;(3)定号;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法、利用基本不等式.闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时,最值一定在端点处取到.1.区分两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连接,不要用“∪”.例如,函数f (x )在区间(-1,0)上是减函数,在(0 ,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f (x )=1x.基础巩固题组 (建议用时:40分钟)一、选择题1.若函数f (x )=|2x +a |的单调递增区间是上的最大值等于( ) A.-1B.1C.6D.12解析 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6. 答案 C4.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.c <b <a B.b <a <c C.b <c <aD.a <b <c解析 ∵函数图象关于x =1对称,∴a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,又y =f (x )在(1,+∞)上单调递增,∴f (2)<f ⎝ ⎛⎭⎪⎫52<f (3),即b <a <c . 答案 B5.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( ) A.(8,+∞) B.(8,9] C.D.(0,8)解析 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f ≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.答案 B 二、填空题6.(2017·宁波调研)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x +ax ,x >1,若f (f (1))=4a ,则实数a =________,函数f (x )的单调增区间为________.解析 ∵f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x +ax ,x >1,∴f (1)=12+1=2,f (f (1))=f (2)=22+2a ,由f (f (1))=4a ,∴22+2a =4a ,∴a =2.当x ≤1时,f (x )在(-∞,0]上递减,在上递增,且f (1)=2;当x >1时,f (x )=2x+2x 在(1,+∞)上递增,令x =1时f (1)=2+2=4,故f (x )的单调增区间为∪(1,+∞)=上的最大值为________.解析 由于y =⎝ ⎛⎭⎪⎫13x在R 上递减,y =log 2(x +2)在上递增,所以f (x )在上单调递减,故f (x )在上的最大值为f (-1)=3. 答案 38.(2017·潍坊模拟)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.解析 作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.答案 (-∞,1]∪(a 为实数). (1)当a =1时,求函数y =f (x )的值域;(2)求函数y =f (x )在区间(0,1]上的最大值及最小值,并求出当函数f (x )取得最值时x 的值.解 (1)当a =1时,f (x )=2x -1x,任取1≥x 1>x 2>0,则f (x 1)-f (x 2)=2(x 1-x 2)-⎝ ⎛⎭⎪⎫1x 1-1x 2=(x 1-x 2)⎝⎛⎭⎪⎫2+1x 1x 2.∵1≥x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0.∴f (x 1)>f (x 2),∴f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值1,所以f (x )的值域为(-∞,1].(2)当a ≥0时,y =f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值2-a ; 当a <0时,f (x )=2x +-ax,当-a2≥1,即a ∈(-∞,-2]时,y =f (x )在(0,1]上单调递减,无最大值,当x =1时取得最小值2-a ; 当-a2<1,即a ∈(-2,0)时,y =f (x )在⎝⎛⎦⎥⎤0,-a 2上单调递减,在⎣⎢⎡⎦⎥⎤-a2,1上单调递增,无最大值,当x =-a2时取得最小值2-2a . 能力提升题组 (建议用时:25分钟)11.(2017·郑州质检)若函数f (x )=a x(a >0,a ≠1)在上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在B.(1,3)C.D.(2-2,2+2)解析 由题可知f (x )=e x-1>-1,g (x )=-x 2+4x -3=-(x -2)2+1≤1, 若f (a )=g (b ),则g (b )∈(-1,1], 即-b 2+4b -3>-1,即b 2-4b +2<0,解得2-2<b <2+ 2.所以实数b 的取值范围为(2-2,2+2). 答案 D13.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析 依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, ∴h (x )在x =2时,取得最大值h (2)=1. 答案 114.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在,不等式-1≤f (x )≤6恒成立,求实数t 的最大值及此时a 的值.解 (1)当a =3时,f (x )=⎩⎪⎨⎪⎧-x 2+2x =-(x -1)2+1,x <3,x 2-4x =(x -2)2-4,x ≥3, 函数f (x )的单调递增区间为(-∞,1),(3,+∞),单调递减区间为(1,3).(2)f (x )=⎩⎪⎨⎪⎧-x 2+(a -1)x ,x <a ,x 2-(a +1)x ,x ≥a ,①当a ≤-1时,a ≤a -12<a +12≤0,f (x )在上单调递增,f (x )min =f (0)=0,f (x )max =f (t )=t 2-(a +1)t ,由题意得f (x )max ≤6,即 t 2-(a +1)t ≤6,解得0≤t ≤(a +1)+(a +1)2+242.令m =-(a +1)≥0,h (m )=m 2+24-m2=12m 2+24+m在上单调递增,所以h (m )max =h (1)=3, 即当a =0时,t max =3. 综上所述,t max =3,此时a =0.第3讲 函数的奇偶性与周期性最新考纲 1.结合具体函数,了解函数奇偶性的含义;2.会运用函数的图象理解和研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.知 识 梳 理1.函数的奇偶性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)函数y =x 2在x ∈(0,+∞)时是偶函数.( ) (2)若函数f (x )为奇函数,则一定有f (0)=0.( )(3)若函数y =f (x +a )是偶函数,则函数y =f (x )的图象关于直线x =a 对称.( ) (4)若函数y =f (x +b )是奇函数,则函数y =f (x )的图象关于点(b ,0)中心对称.( ) 解析 (1)由于偶函数的定义域关于原点对称,故y =x 2在(0,+∞)上不是偶函数,(1)错. (2)由奇函数定义可知,若f (x )为奇函数,其在x =0处有意义时才满足f (0)=0,(2)错. 答案 (1)× (2)× (3)√ (4)√2.(2017·西安铁中月考)下列函数为奇函数的是( ) A.y =x B.y =e xC.y =cos xD.y =e x-e -x解析 A ,B 中显然为非奇非偶函数;C 中y =cos x 为偶函数.D 中函数定义域为R ,又f (-x )=e -x-e x =-(e x -e -x )=-f (x ),∴y =e x -e -x为奇函数. 答案 D3.已知f (x )=ax 2+bx 是定义在上的偶函数,那么a +b 的值是( ) A.-13B.13C.12D.-12。

(浙江专用)高考数学大一轮复习 第七章 不等式 第5讲 绝对值不等式练习(含解析)-人教版高三全册数

(浙江专用)高考数学大一轮复习 第七章 不等式 第5讲 绝对值不等式练习(含解析)-人教版高三全册数

第5讲 绝对值不等式[基础达标]1.(2019·某某期中)不等式1≤|2x -1|<2的解集为( )A .⎝ ⎛⎭⎪⎫-12,0∪⎣⎢⎡⎭⎪⎫1,32B .⎝ ⎛⎭⎪⎫-12,32C .⎝ ⎛⎦⎥⎤-12,0∪⎣⎢⎡⎭⎪⎫1,32 D .(-∞,0]∪[1,+∞)解析:选C.由题意得,⎩⎪⎨⎪⎧-2<2x -1<22x -1≥1或2x -1≤-1, 解得:-12<x ≤0或1≤x <32,故不等式的解集是⎝ ⎛⎦⎥⎤-12,0∪⎣⎢⎡⎭⎪⎫1,32,故选C.2.(2019·某某高三第二次适应性考试)不等式|x -1|+|x +1|<4的解集是( ) A .{x |x >-2} B .{x |x <2}C .{x |x >0或x <-2}D .{x |-2<x <2}解析:选D.根据题意,原不等式等价于⎩⎪⎨⎪⎧x ≤-1,1-x -x -1<4或⎩⎪⎨⎪⎧-1<x ≤1,1-x +x +1<4或⎩⎪⎨⎪⎧x >1,x -1+x +1<4,解之取并集即得原不等式的解集为{x |-2<x <2}.3.(2019·某某高三质量检测)对任意实数x ,若不等式|x +2|+|x +1|>k 恒成立,则实数k 的取值X 围是( )A .(-∞,0)∪[2,+∞)B .[-2,-1]∪(0,+∞)C .(-∞,1)D .(-∞,1]解析:选C.因为|x +2|+|x +1|≥|x +2-x -1|=1,所以当且仅当k <1时,不等式|x +2|+|x +1|>k 恒成立.4.(2019·某某市某某市高考模拟)已知f (x )=x 2+3x ,若|x -a |≤1,则下列不等式一定成立的是( )A .|f (x )-f (a )|≤3|a |+3B .|f (x )-f (a )|≤2|a |+4C .|f (x )-f (a )|≤|a |+5D .|f (x )-f (a )|≤2(|a |+1)2解析:选B.因为f (x )=x 2+3x ,所以f (x )-f (a )=x 2+3x -(a 2+3a )=(x -a )(x +a +3),所以|f (x )-f (a )|=|(x -a )(x +a +3)|=|x -a ||x +a +3|,因为|x -a |≤1,所以a -1≤x ≤a +1,所以2a +2≤x +a +3≤2a +4,所以|f (x )-f (a )|=|x -a ||x +a +3|≤|2a +4|≤2|a |+4,故选B.5.(2019·某某市柯桥区高三期中)已知x ,y ∈R ,( ) A .若|x -y 2|+|x 2+y |≤1,则(x +12)2+(y -12)2≤32B .若|x -y 2|+|x 2-y |≤1,则(x -12)2+(y -12)2≤32C .若|x +y 2|+|x 2-y |≤1,则(x +12)2+(y +12)2≤32D .若|x +y 2|+|x 2+y |≤1,则(x -12)2+(y +12)2≤32解析:选B.对于A ,|x -y 2|+|x 2+y |≤1,由(x +12)2+(y -12)2≤32化简得x 2+x +y 2-y ≤1,二者没有对应关系;对于B ,由(x 2-y )+(y 2-x )≤|x 2-y |+|y 2-x |=|x -y 2|+|x 2-y |≤1,所以x 2-x +y 2-y ≤1,即(x -12)2+(y -12)2≤32,命题成立;对于C ,|x +y 2|+|x 2-y |≤1,由(x +12)2+(y +12)2≤32化简得x 2+x +y 2+y ≤1,二者没有对应关系;对于D ,|x +y 2|+|x2+y |≤1,化简(x -12)2+(y +12)2≤32得x 2-x +y 2+y ≤1,二者没有对应关系.故选B.6.不等式|x -1|+|x +2|≥5的解集为________.解析:由⎩⎪⎨⎪⎧x ≤-2,-(x -1)-(x +2)≥5得x ≤-3;由⎩⎪⎨⎪⎧-2<x <1,-(x -1)+(x +2)≥5得无解; 由⎩⎪⎨⎪⎧x ≥1,(x -1)+(x +2)≥5得x ≥2. 即所求的解集为{x |x ≤-3或x ≥2}. 答案:{x |x ≤-3或x ≥2}7.对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为________. 解析:|x -2y +1|=|(x -1)-2(y -1)|≤|x -1|+|2(y -2)+2|≤1+2|y -2|+2≤5,即|x -2y +1|的最大值为5.答案:58.(2019·某某市高三高考模拟)若关于x 的不等式|x |+|x +a |<b 的解集为(-2,1),则实数对(a ,b )=________.解析:因为不等式|x |+|x +a |<b 的解集为(-2,1),所以⎩⎪⎨⎪⎧2+|-2+a |=b 1+|1+a |=b ,解得a=1,b =3.答案:(1,3)9.(2019·某某市柯桥区高三模拟)对任意x ∈R 不等式x 2+2|x -a |≥a 2恒成立,则实数a 的取值X 围是________.解析:因为不等式x 2+2|x -a |≥a 2对任意的x ∈R 恒成立, ①x ≥a 时,(x +a )(x -a )+2(x -a )≥0, (x -a )(x +a +2)≥0,因为x -a ≥0,因此只需x +a +2≥0,x ≥-(a +2), -(a +2)≤a ,解得a ≥-1. ②x <a 时,(x +a )(x -a )-2(x -a )≥0, (x -a )(x -2+a )≥0,因为x -a <0,只需x ≤2-a ,2-a ≥a ,解得a ≤1.综上所述:-1≤a ≤1. 答案:[-1,1]10.(2019·某某市六校联盟模拟)已知函数f (x )=|x +a |+|x -2|.当a =-4时,不等式f (x )≥6的解集为________;若f (x )≤|x -3|的解集包含[0,1],则实数a 的取值X 围是________.解析:当a =-4时,f (x )≥6,即|x -4|+|x -2|≥6,即⎩⎪⎨⎪⎧x ≤24-x +2-x ≥6或⎩⎪⎨⎪⎧2<x <44-x +x -2≥6 或⎩⎪⎨⎪⎧x ≥4x -4+x -2≥6,解得x ≤0或x ≥6. 所以原不等式的解集为(-∞,0]∪[6,+∞). 由题可得f (x )≤|x -3|在[0,1]上恒成立. 即|x +a |+2-x ≤3-x 在[0,1]上恒成立,即-1-x ≤a ≤1-x 在[0,1]上恒成立.即-1≤a ≤0. 答案:(-∞,0]∪[6,+∞) [-1,0]11.若函数f (x )=|x +1|+2|x -a |的最小值为5,某某数a 的值.解:由于f (x )=|x +1|+2|x -a |, 当a >-1时,f (x )=⎩⎪⎨⎪⎧-3x +2a -1,x <-1,-x +2a +1,-1≤x ≤a ,3x -2a +1,x >a .作出f (x )的大致图象如图所示, 由函数f (x )的图象可知f (a )=5, 即a +1=5,所以a =4.同理,当a ≤-1时,-a -1=5,所以a =-6. 所以实数a 的值为4或-6.12.已知函数f (x )=|x -3|-|x -a |.(1)当a =2时,解不等式f (x )≤-12;(2)若存在实数x ,使得不等式f (x )≥a 成立,某某数a 的取值X 围. 解:(1)因为a =2,所以f (x )=|x -3|-|x -2| =⎩⎪⎨⎪⎧1,x ≤2,5-2x ,2<x <3,-1,x ≥3,所以f (x )≤-12等价于⎩⎪⎨⎪⎧x ≤2,1≤-12或⎩⎪⎨⎪⎧2<x <3,5-2x ≤-12或⎩⎪⎨⎪⎧x ≥3,-1≤-12,解得114≤x <3或x ≥3,所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≥114.(2)由不等式的性质可知f (x )=|x -3|-|x -a |≤|(x -3)-(x -a )|=|a -3|, 所以若存在实数x ,使得不等式f (x )≥a 成立,则|a -3|≥a ,解得a ≤32,所以实数a 的取值X 围是⎝⎛⎦⎥⎤-∞,32. [能力提升]1.(2017·高考某某卷)已知a ∈R ,函数f (x )=⎪⎪⎪⎪⎪⎪x +4x-a +a 在区间[1,4]上的最大值是5,则a 的取值X 围是________.解析:因为x ∈[1,4],所以x +4x ∈[4,5],①当a ≤92时,f (x )max =|5-a |+a =5-a+a =5,符合题意;②当a >92时,f (x )max =|4-a |+a =2a -4=5,所以a =92(矛盾),故a的取值X 围是⎝⎛⎦⎥⎤-∞,92. 答案:⎝⎛⎦⎥⎤-∞,92 2.(2019·某某省五校协作体联考)已知函数f (x )=|2x -a |+a . (1)若不等式f (x )≤6的解集为{x |-2≤x ≤3},某某数a 的值;(2)在(1)的条件下,若存在实数t ,使f ⎝ ⎛⎭⎪⎫t 2≤m -f (-t )成立,某某数m 的取值X 围.解:(1)由|2x -a |+a ≤6,得|2x -a |≤6-a ,所以a -6≤2x -a ≤6-a ,即a -3≤x ≤3,所以a -3=-2,所以a =1.(2)因为f ⎝ ⎛⎭⎪⎫t 2≤m -f (-t ),所以|t -1|+|2t +1|+2≤m ,令y =|t -1|+|2t +1|+2,则y =⎩⎪⎨⎪⎧-3t +2,t ≤-12,t +4,-12<t <1,3t +2,t ≥1.所以y min =72,所以m ≥72.3.(2019·某某高考科目教学质检)已知函数f (x )=|x -4|+|x -a |(a <3)的最小值为2.(1)解关于x 的方程f (x )=a ;(2)若存在x ∈R ,使f (x )-mx ≤1成立,某某数m 的取值X 围.解:(1)由f (x )=|x -4|+|x -a |≥|x -4-(x -a )|=|a -4|(当(x -4)(x -a )≤0时取等号),知|a -4|=2,解得a =6(舍去)或a =2.方程f (x )=a 即|x -4|+|x -2|=2,由绝对值的几何意义可知2≤x ≤4.(2)不等式f (x )-mx ≤1即f (x )≤mx +1,由题意知y =f (x )的图象至少有一部分不在直线y =mx +1的上方,作出对应的图象观察可知,m ∈(-∞,-2)∪⎣⎢⎡⎭⎪⎫14,+∞.4.(2019·某某校级月考)已知函数f (x )=x 2+|x -t |. (1)当t =1时,求不等式f (x )≥1的解集;(2)设函数f (x )在[0,2]上的最小值为h (t ),求h (t )的表达式. 解:(1)当t =1时,f (x )=x 2+|x -1|. 因为f (x )≥1,所以当x ≥1时,x 2+x -1≥1,所以x ≥1或x ≤-2. 所以x ≥1.当x <1时,x 2-x +1≥1,所以x ≥1或x ≤0. 所以x ≤0.综上:不等式的解集为{x |x ≥1或x ≤0}. (2)因为f (x )=x 2+|x -t |,x ∈[0,2],所以当t ≥2时,f (x )=x 2-x +t ,h (t )=f ⎝ ⎛⎭⎪⎫12=t -14,当t ≤0时,f (x )=x 2+x -t ,h (t )=f (0)=-t ,当0<t <2时,f (x )=⎩⎪⎨⎪⎧x 2-x +t ,x ∈[0,t ]x 2+x -t ,x ∈(t ,2].所以h (t )=⎩⎪⎨⎪⎧t -14,12≤t <2t 2,0<t <12.所以h (t )=⎩⎪⎨⎪⎧-t ,t ≤0t 2,0<t ≤12t -14,t >12.。

浙江专用2018版高考数学复习第七章不等式7.2一元二次不等式及其解法教师用书

浙江专用2018版高考数学复习第七章不等式7.2一元二次不等式及其解法教师用书

(浙江专用)2018版高考数学大一轮复习 第七章 不等式 7.2 一元二次不等式及其解法教师用书1.“三个二次”的关系2.常用结论(x -a )(x -b )>0或(x -a )(x -b )<0型不等式的解法口诀:大于取两边,小于取中间.【知识拓展】1.f xg x>0(<0)⇔f(x)·g(x)>0(<0).2.f xg x≥0(≤0)⇔f(x)·g(x)≥0(≤0)且g(x)≠0.以上两式的核心要义是将分式不等式转化为整式不等式.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若不等式ax2+bx+c<0的解集为(x1,x2),则必有a>0.( √)(2)若不等式ax2+bx+c>0的解集是(-∞,x1)∪(x2,+∞),则方程ax2+bx+c=0的两个根是x1和x2.( √)(3)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的解集为R.( ×)(4)不等式ax2+bx+c≤0在R上恒成立的条件是a<0且Δ=b2-4ac≤0.(×)(5)若二次函数y=ax2+bx+c的图象开口向下,则不等式ax2+bx+c<0的解集一定不是空集.( √)1.(教材改编)不等式x2-3x-10>0的解集是( )A.(-2,5) B.(5,+∞)C.(-∞,-2) D.(-∞,-2)∪(5,+∞)答案 D解析解方程x2-3x-10=0得x1=-2,x2=5,由于y=x2-3x-10的图象开口向上,所以x2-3x-10>0的解集为(-∞,-2)∪(5,+∞).2.设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N等于( )A.(0,4] B.[0,4)C.[-1,0) D.(-1,0]答案 B解析∵M={x|x2-3x-4<0}={x|-1<x<4},∴M∩N=[0,4).3.(2016·梧州模拟)不等式2x+1<1的解集是( )A.(-∞,-1)∪(1,+∞)B .(1,+∞)C .(-∞,-1)D .(-1,1) 答案 A 解析 由2x +1<1得1-x x +1<0, ∴(x -1)(x +1)>0,∴x >1或x <-1.4.(教材改编)若关于x 的不等式ax 2+bx +2>0的解集是(-12,13),则a +b =________.答案 -14解析 ∵x 1=-12,x 2=13是方程ax 2+bx +2=0的两个根,∴⎩⎪⎨⎪⎧a 4-b2+2=0,a 9+b 3+2=0,解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14.题型一 一元二次不等式的求解 命题点1 不含参数的不等式例1 求不等式-2x 2+x +3<0的解集. 解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0得x 1=-1,x 2=32,∴不等式2x 2-x -3>0的解集为(-∞,-1)∪(32,+∞),即原不等式的解集为(-∞,-1)∪(32,+∞).命题点2 含参数的不等式例2 解关于x 的不等式:x 2-(a +1)x +a <0. 解 由x 2-(a +1)x +a =0,得(x -a )(x -1)=0, ∴x 1=a ,x 2=1,①当a >1时,x 2-(a +1)x +a <0的解集为{x |1<x <a }, ②当a =1时,x 2-(a +1)x +a <0的解集为∅,③当a <1时,x 2-(a +1)x +a <0的解集为{x |a <x <1}. 引申探究将原不等式改为ax 2-(a +1)x +1<0,求不等式的解集. 解 若a =0,原不等式等价于-x +1<0,解得x >1. 若a <0,原不等式等价于(x -1a)(x -1)>0,解得x <1a或x >1.若a >0,原不等式等价于(x -1a)(x -1)<0.①当a =1时,1a =1,(x -1a )(x -1)<0无解;②当a >1时,1a<1,解(x -1a)(x -1)<0,得1a<x <1;③当0<a <1时,1a >1,解(x -1a )(x -1)<0,得1<x <1a.综上所述,当a <0时,解集为{x |x <1a或x >1};当a =0时,解集为{x |x >1}; 当0<a <1时,解集为{x |1<x <1a};当a =1时,解集为∅; 当a >1时,解集为{x |1a<x <1}.思维升华 含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式; (3)对方程的根进行讨论,比较大小,以便写出解集.解下列不等式:(1)0<x 2-x -2≤4;(2)求不等式12x 2-ax >a 2(a ∈R )的解集. 解 (1)原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧x -x +,x -x +⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,所以原不等式的解集为{x |-2≤x <-1或2<x ≤3}. (2)∵12x 2-ax >a 2,∴12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得x 1=-a 4,x 2=a3.①a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3; ②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0}; ③a <0时,-a 4>a 3,解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4. 综上所述,当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4.题型二 一元二次不等式恒成立问题 命题点1 在R 上的恒成立问题例3 (1)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0]B .[-3,0)C .[-3,0]D .(-3,0)(2)设a 为常数,任意x ∈R ,ax 2+ax +1>0,则a 的取值范围是( ) A .(0,4) B .[0,4) C .(0,+∞) D .(-∞,4)答案 (1)D (2)B解析 (1)∵2kx 2+kx -38<0为一元二次不等式,∴k ≠0,又2kx 2+kx -38<0对一切实数x 都成立,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k -38,解得-3<k <0.(2)任意x ∈R ,ax 2+ax +1>0,则必有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0或a =0,∴0≤a <4.命题点2 在给定区间上的恒成立问题例4 设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. 解 要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:方法一 令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)⇒m -6<0,所以m <6,所以m <0. 综上所述,m 的取值范围是{m |m <67}.方法二 因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 所以,m 的取值范围是⎩⎨⎧⎭⎬⎫m |m <67.命题点3 给定参数范围的恒成立问题例5 对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围.解 由f (x )=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4, 令g (m )=(x -2)m +x 2-4x +4.由题意知在[-1,1]上,g (m )的值恒大于零,∴⎩⎪⎨⎪⎧g -=x --+x 2-4x +4>0,g =x -+x 2-4x +4>0.解得x <1或x >3.故当x 的取值范围为(-∞,1)∪(3,+∞)时,对任意的m ∈[-1,1],函数f (x )的值恒大于零.思维升华 (1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.(1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________. 答案 (-22,0) 解析 作出二次函数f (x )的草图,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f m ,fm +,即⎩⎪⎨⎪⎧m 2+m 2-1<0,m +2+m m +-1<0,解得-22<m <0. (2)已知不等式mx 2-2x -m +1<0,是否存在实数m 对所有的实数x ,使不等式恒成立?若存在,求出m 的取值范围;若不存在,请说明理由. 解 不等式mx 2-2x -m +1<0恒成立,即函数f (x )=mx 2-2x -m +1的图象全部在x 轴下方.当m =0时,1-2x <0,则x >12,不满足题意;当m ≠0时,函数f (x )=mx 2-2x -m +1为二次函数, 需满足开口向下且方程mx 2-2x -m +1=0无解,即⎩⎪⎨⎪⎧m <0,Δ=4-4m-m ,不等式组的解集为空集,即m 无解.综上可知,不存在这样的m . 题型三 一元二次不等式的应用例6 某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围.解 (1)由题意得,y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x . 因为售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0.所以y =f (x )=40(10-x )(25+4x ),定义域为x ∈[0,2]. (2)由题意得40(10-x )(25+4x )≥10 260, 化简得8x 2-30x +13≤0,解得12≤x ≤134.所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.思维升华 求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型.(3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义. (4)回归实际问题,将数学结论还原为实际问题的结果.某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件销售价提高1元,销售量就要减少10件.那么要保证每天所赚的利润在320元以上,销售价每件应定为( ) A .12元B .16元C .12元到16元之间D .10元到14元之间答案 C解析 设销售价定为每件x 元,利润为y , 则y =(x -8)[100-10(x -10)], 依题意有(x -8)[100-10(x -10)]>320, 即x 2-28x +192<0,解得12<x <16, 所以每件销售价应定为12元到16元之间.15.转化与化归思想在不等式中的应用典例 (1)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.(2)已知函数f (x )=x 2+2x +a x,若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.思想方法指导 函数的值域和不等式的解集转化为a ,b 满足的条件;不等式恒成立可以分离常数,转化为函数值域问题. 解析 (1)由题意知f (x )=x 2+ax +b=⎝ ⎛⎭⎪⎫x +a 22+b -a 24.∵f (x )的值域为[0,+∞), ∴b -a 24=0,即b =a 24.∴f (x )=⎝ ⎛⎭⎪⎫x +a 22. 又∵f (x )<c ,∴⎝ ⎛⎭⎪⎫x +a 22<c ,即-a 2-c <x <-a2+c .∴⎩⎪⎨⎪⎧-a 2-c =m , ①-a2+c =m +6. ②②-①,得2c =6,∴c =9.(2)∵x ∈[1,+∞)时,f (x )=x 2+2x +ax>0恒成立,即x 2+2x +a >0恒成立.即当x ≥1时,a >-(x 2+2x )=g (x )恒成立.而g (x )=-(x 2+2x )=-(x +1)2+1在[1,+∞)上单调递减, ∴g (x )max =g (1)=-3,故a >-3. ∴实数a 的取值范围是{a |a >-3}. 答案 (1)9 (2){a |a >-3}1.不等式(x -1)(2-x )≥0的解集为( ) A .{x |1≤x ≤2} B .{x |x ≤1或x ≥2} C .{x |1<x <2} D .{x |x <1或x >2}答案 A解析 由(x -1)(2-x )≥0可知(x -2)(x -1)≤0, 所以不等式的解集为{x |1≤x ≤2}.2.不等式组⎩⎪⎨⎪⎧x x +,-1<x <1的解集为( )A .{x |-2<x <-1}B .{x |-1<x <0}C .{x |0<x <1}D .{x |x >1}答案 C解析 x (x +2)>0的解集为{x |x <-2或x >0}, 又-1<x <1,∴0<x <1,即{x |0<x <1}.3.(2016·临安中学模拟)若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( ) A .{a |0<a <4} B .{a |0≤a <4} C .{a |0<a ≤4} D .{a |0≤a ≤4}答案 D解析 由题意知a =0时,满足条件.当a ≠0时,由⎩⎪⎨⎪⎧ a >0,Δ=-a 2-4a ≤0,得0<a ≤4.所以0≤a ≤4.4.设函数f (x )=⎩⎪⎨⎪⎧ x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)答案 A解析 由题意得⎩⎪⎨⎪⎧ x ≥0,x 2-4x +6>3或⎩⎪⎨⎪⎧ x <0,x +6>3,解得-3<x <1或x >3.5.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,那么a +b 等于( )A .-3B .1C .-1D .3答案 A解析 由题意,A ={x |-1<x <3},B ={x |-3<x <2},A ∩B ={x |-1<x <2},则不等式x 2+ax +b <0的解集为{x |-1<x <2}.由根与系数的关系可知,a =-1,b =-2,所以a +b =-3,故选A.6.已知函数f (x )=(ax -1)(x +b ),如果不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是( )A .(-∞,-32)∪(12,+∞) B .(-32,12) C .(-∞,-12)∪(32,+∞) D .(-12,32)答案 A解析 由题意得f (x )=0的两个解是x 1=-1,x 2=3且a <0,由f (-2x )<0得-2x >3或-2x <-1,∴x <-32或x >12. 7.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( ) A .(2,3) B .(-∞,2)∪(3,+∞)C.⎝ ⎛⎭⎪⎫13,12 D.⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞ 答案 A解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝ ⎛⎭⎪⎫-13=b a ,-12×⎝ ⎛⎭⎪⎫-13=-1a.解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3). *8.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( )A .-1<b <0B .b >2C .b <-1或b >2D .不能确定 答案 C解析 由f (1-x )=f (1+x )知f (x )图象的对称轴为直线x =1,则有a 2=1,故a =2. 由f (x )的图象可知f (x )在[-1,1]上为增函数.∴x ∈[-1,1]时,f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,令b 2-b -2>0,解得b <-1或b >2.9.若不等式-2≤x 2-2ax +a ≤-1有唯一解,则a 的值为________.答案 1±52解析 若不等式-2≤x 2-2ax +a ≤-1有唯一解,则x 2-2ax +a =-1有两个相等的实根,所以Δ=4a 2-4(a +1)=0,解得a =1±52. 10.设f (x )是定义在R 上的以3为周期的奇函数,若f (1)>1,f (2)=2a -3a +1,则实数a 的取值范围是________.答案 (-1,23) 解析 ∵f (x +3)=f (x ),∴f (2)=f (-1+3)=f (-1)=-f (1)<-1.∴2a -3a +1<-1⇔3a -2a +1<0⇔(3a -2)(a +1)<0, ∴-1<a <23. *11.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x ,那么,不等式f (x +2)<5的解集是______________________.答案 {x |-7<x <3}解析 令x <0,则-x >0,∵x ≥0时,f (x )=x 2-4x ,∴f (-x )=(-x )2-4(-x )=x 2+4x ,又f (x )为偶函数,∴f (-x )=f (x ),∴x <0时,f (x )=x 2+4x ,故有f (x )=⎩⎪⎨⎪⎧x 2-4x ,x ≥0,x 2+4x ,x <0.再求f (x )<5的解,由⎩⎪⎨⎪⎧ x ≥0,x 2-4x <5,得0≤x <5;由⎩⎪⎨⎪⎧ x <0,x 2+4x <5,得-5<x <0,即f (x )<5的解集为(-5,5).由于f (x )向左平移两个单位即得f (x +2),故f (x +2)<5的解集为{x |-7<x <3}.12.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集;(2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小. 解 (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ).当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),∵a >0,且0<x <m <n <1a, ∴x -m <0,1-an +ax >0.∴f (x )-m <0,即f (x )<m .*13.(2016·烟台模拟)已知不等式(a +b )x +(2a -3b )<0的解为x >-34,解不等式(a -2b )x 2+2(a -b -1)x +(a -2)>0.解 因为(a +b )x +(2a -3b )<0,所以(a +b )x <3b -2a ,因为不等式的解为x >-34, 所以a +b <0,且3b -2a a +b =-34, 解得a =3b <0,则不等式(a -2b )x 2+2(a -b -1)x +(a -2)>0等价为bx 2+(4b -2)x +(3b -2)>0,即x 2+(4-2b )x +(3-2b)<0, 即(x +1)(x +3-2b)<0. 因为-3+2b<-1, 所以不等式的解为-3+2b<x <-1. 即所求不等式的解集为{x |-3+2b <x <-1}.。

【小初高学习】2018版高考数学大一轮复习第七章不等式7.5绝对值不等式教师用书

【小初高学习】2018版高考数学大一轮复习第七章不等式7.5绝对值不等式教师用书

(浙江专用)2018版高考数学大一轮复习第七章不等式 7.5 绝对值不等式教师用书1.绝对值三角不等式(1)定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.(2)定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集:(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.【知识拓展】|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法:(1)利用绝对值不等式的几何意义求解,体现了数形结合的思想;(2)利用“零点分段法”求解,体现了分类讨论的思想;(3)通过构造函数,利用函数的图象求解,体现了函数与方程的思想.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)|x+2|的几何意义是数轴上坐标为x的点到点2的距离.( ×)(2)|x|>a的解集是{x|x>a或x<-a}.( ×)(3)|a+b|=|a|+|b|成立的条件是ab≥0.(√)(4)若ab<0,则|a+b|<|a-b|.( √)(5)对一切x∈R,不等式|x-a|+|x-b|>|a-b|成立.( ×)1.(2015·山东)不等式|x-1|-|x-5|<2的解集是( )A.(-∞,4) B.(-∞,1)C.(1,4) D.(1,5)答案 A解析①当x≤1时,原不等式可化为1-x-(5-x)<2,∴-4<2,不等式恒成立,∴x≤1.②当1<x<5时,原不等式可化为x-1-(5-x)<2,∴x<4,∴1<x<4,③当x≥5时,原不等式可化为x-1-(x-5)<2,该不等式不成立.综上,原不等式的解集为(-∞,4).2.不等式|x+1|-|x-2|>k的解集为R,则实数k的取值范围为( )A.(3,+∞) B.(-∞,-3)C.(-∞,-1) D.(-∞,0)答案 B解析根据绝对值的几何意义,设数x,-1,2在数轴上对应的点分别为P、A、B,则原不等式等价于|PA|-|PB|>k恒成立.∵|AB|=3,即|x+1|-|x-2|≥-3.故当k<-3时,原不等式恒成立.3.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是( )A.[2,4] B.[1,2]C.[-2,4] D.[-4,-2]答案 C解析∵|x-a|+|x-1|≥|(x-a)-(x-1)|=|a-1|,要使|x-a|+|x-1|≤3有解,可使|a-1|≤3,∴-3≤a-1≤3,∴-2≤a ≤4.4.若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a 的取值范围是______. 答案 [-1,12]解析 设y =|2x -1|+|x +2|=⎩⎪⎨⎪⎧-3x -1,x <-2,-x +3,-2≤x <12,3x +1,x ≥12.当x <-2时,y =-3x -1>5;当-2≤x <12时,5≥y =-x +3>52;当x ≥12时,y =3x +1≥52,故函数y =|2x -1|+|x +2|的最小值为52.因为不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,所以52≥a 2+12a+2.解不等式52≥a 2+12a +2,得-1≤a ≤12,故a 的取值范围为[-1,12].题型一 绝对值不等式的解法例1 (2016·全国乙卷)已知函数f (x )=|x +1|-|2x -3|. (1)在图中画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.解 (1)f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤ 32,-x +4,x >32,y =f (x )的图象如图所示.(2)由f (x )的表达式及图象可知,当f (x )=1时,x =1或x =3; 当f (x )=-1时,x =13或x =5,故f (x )>1的解集为{x |1<x <3};f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x |x <13或x >5.所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x |x <13或1<x <3或x >5.思维升华 解绝对值不等式的基本方法有:(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;(3)利用绝对值的几何意义,数形结合求解.(1)不等式|x -1|+|x +2|≥5的解集为________.(2)设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A ,则a =________.答案 (1){x |x ≤-3或x ≥2} (2)1解析 (1)方法一 要去掉绝对值符号,需要对x 与-2和1进行大小比较,-2和1可以把数轴分成三部分.当x <-2时,不等式等价于-(x -1)-(x +2)≥5,解得x ≤-3;当-2≤x <1时,不等式等价于-(x -1)+(x +2)≥5,即3≥5,无解;当x ≥1时,不等式等价于x -1+x +2≥5,解得x ≥2.综上,不等式的解集为{x |x ≤-3或x ≥2}.方法二 |x -1|+|x +2|表示数轴上的点x 到点1和点-2的距离的和,如图所示,数轴上到点1和点-2的距离的和为5的点有-3和2,故满足不等式|x -1|+|x +2|≥5的x 的取值为x ≤-3或x ≥2,所以不等式的解集为{x |x ≤-3或x ≥2}.(2)∵32∈A ,且12∉A ,∴|32-2|<a ,且|12-2|≥a ,解得12<a ≤32,又∵a ∈N *,∴a =1.题型二 利用绝对值不等式求最值例2 (1)对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为( ) A .1 B .2 C .3 D .4(2)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为________. 答案 (1)C (2)5 解析 (1)∵x ,y ∈R ,∴|x -1|+|x |≥|(x -1)-x |=1, |y -1|+|y +1|≥|(y -1)-(y +1)|=2, ∴|x -1|+|x |+|y -1|+|y +1|≥1+2=3, ∴|x -1|+|x |+|y -1|+|y +1|的最小值为3.(2)|x -2y +1|=|(x -1)-2(y -1)|≤|x -1|+|2(y -2)+2|≤1+2|y -2|+2≤5,即|x -2y +1|的最大值为5.思维升华 求含绝对值的函数最值时,常用的方法有三种:(1)利用绝对值的几何意义;(2)利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥|a |-|b |;(3)利用零点分区间法.(1)关于x 的不等式|2 014-x |+|2 015-x |≤d 有解时,d 的取值范围是________.(2)不等式|x +1x|≥|a -2|+sin y 对一切非零实数x ,y 均成立,则实数a 的取值范围为________.答案 (1)[1,+∞) (2)[1,3]解析 (1)∵|2 014-x |+|2 015-x |≥|2 014-x -2 015+x |=1, ∴关于x 的不等式|2 014-x |+|2 015-x |≤d 有解时,d ≥1. (2)∵x +1x∈(-∞,-2]∪[2,+∞),∴|x +1x|∈[2,+∞),其最小值为2.又∵sin y 的最大值为1,故不等式|x +1x|≥|a -2|+sin y 恒成立时,有|a -2|≤1,解得a ∈[1,3]. 题型三 绝对值不等式的综合应用命题点1 绝对值不等式和函数的综合例3 (2016·桐乡一模)已知f (x )=ax 2+bx +c ,a ,b ,c ∈R ,定义域为[-1,1], (1)当a =1,|f (x )|≤1时,求证:|1+c |≤1;(2)当b >2a >0时,是否存在x ∈[-1,1],使得|f (x )|≥b? (1)证明 ∵|f (-1)|=|1-b +c |≤1, |f (1)|=|1+b +c |≤1,∵|1-b +c +1+b +c |≤|1-b +c |+|1+b +c |≤2, ∴|2+2c |≤2,∴|1+c |≤1. (2)解 由b >2a >0,得-b2a <-1,则f (x )在[-1,1]上递增, ∴f (x )∈[a -b +c ,a +b +c ]. ①当a +c >0时,a +b +c >b >0,此时有|f (1)|≥b ,即存在x =1,使得|f (x )|≥b 成立. ②当a +c <0时,a -b +c <-b <0,此时有|f (-1)|≥b ,即存在x =-1使得|f (x )|≥b 成立. ③当a +c =0时,f (x )∈[-b ,b ],存在x 使得|f (x )|≥b 成立. 综上,存在x =±1使得|f (x )|≥b 成立.思维升华 (1)恒成立问题可转化为函数的最值问题;(2)和绝对值有关的最值可以利用绝对值的性质进行改编或者化为分段函数解决. 命题点2 绝对值不等式和数列的综合例4 (2016·浙江样卷)已知数列{a n }满足a 1=1,a n +1=12a n +1(n ∈N *).(1)证明:数列{|a n -12|}为单调递减数列;(2)记S n 为数列{|a n +1-a n |}的前n 项和,证明:S n <53(n ∈N *).证明 (1)由题意知a n >0,故|a n +1-12||a n -12|=|12a n +1-12||a n -12|=12a n +1<1,∴数列{|a n -12|}为单调递减数列.(2)∵a 1=1,a 2=13,∴当n ≥3时,|a n -12|<16,得13<a n <23,故a n ≥13(n ∈N *).∴|a n +1-12||a n -12|=12a n +1≤35.∴|a n +1-a n |=|a n +1-12+12-a n |≤|a n +1-12|+|a n -12|,∴S n =|a 2-a 1|+|a 3-a 2|+…+|a n +1-a n |≤|a 1-12|+|a 2-12|+…+|a n -12|+|a 2-12|+|a 3-12|+…+|a n +1-12|≤12[1-35n]1-35+16[1-35n]1-35<121-35+161-35=54+512=53.思维升华 (1)和绝对值不等式有关的范围或最值问题,可利用绝对值的几何意义或绝对值三角不等式进行放缩.(2)利用特殊点的函数值可探求范围;若函数解析式中含有绝对值,也可化为分段函数.已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围. 解 (1)当a =-3时,f (x )=⎩⎪⎨⎪⎧-2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1; 当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4. 所以当a =-3时,f (x )≥3的解集为{x |x ≤1或x ≥4}.(2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |. 当x ∈[1,2]时,|x -4|-|x -2|≥|x +a | ⇔4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a . 由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0. 故满足条件的a 的取值范围为[-3,0].16.绝对值不等式的解法典例 不等式|x +1|+|x -1|≥3的解集为_____________________.思想方法指导 对|x -a |+|x -b |≥c 型不等式的解法,一般可采用三种方法求解:几何法、分区间讨论法和图象法.解析 方法一 当x ≤-1时,原不等式可化为 -(x +1)-(x -1)≥3,解得x ≤-32;当-1<x <1时,原不等式可以化为x +1-(x -1)≥3,即2≥3,不成立,无解;当x ≥1时,原不等式可以化为x +1+x -1≥3,所以x ≥32.综上,原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞. 方法二 将原不等式转化为|x +1|+|x -1|-3≥0. 构造函数y =|x +1|+|x -1|-3, 即y =⎩⎪⎨⎪⎧-2x -3,x ≤-1,-1,-1<x <1,2x -3,x ≥1.作出函数的图象,如图所示:函数的零点是-32,32.从图象可知,当x ≤-32或x ≥32时,y ≥0,即|x +1|+|x -1|-3≥0.∴原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞.方法三 如图所示,设数轴上与-1,1对应的点分别为A ,B ,那么A ,B 两点的距离之和为2,因此区间[-1,1]上的数都不是不等式的解.设在A 点左侧有一点A 1,到A ,B 两点的距离之和为3,A 1对应数轴上的x .∴-1-x +1-x =3,得x =-32.同理设B 点右侧有一点B 1,到A ,B 两点的距离之和为3,B 1对应数轴上的x ,∴x -1+x -(-1)=3,得x =32.从数轴上可看到,点A 1,B 1之间的点到A ,B 的距离之和都小于3;点A 1的左边或点B 1的右边的任何点到A ,B 的距离之和都大于3. ∴原不等式的解集是⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞. 答案 ⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞1.不等式|2x -1|<3的解集是( ) A .(1,2) B .(-1,2)C .(-2,-1)D .(-∞,-2)∪(2,+∞)答案 B解析 |2x -1|<3⇔-3<2x -1<3⇔-1<x <2. 2.不等式|2x -1|-|x -2|<0的解集是( ) A .{x |-1<x <1} B .{x |x <-1} C .{x |x >1} D .{x |x <-1或x >1} 答案 A解析 方法一 原不等式即为|2x -1|<|x -2|, ∴4x 2-4x +1<x 2-4x +4, ∴3x 2<3,∴-1<x <1.方法二 原不等式等价于不等式组①⎩⎪⎨⎪⎧x ≥2,2x -1-x -或②⎩⎪⎨⎪⎧12<x <2,2x -1+x -或③⎩⎪⎨⎪⎧x ≤12,-x -+x -不等式组①无解,由②得12<x <1,由③得-1<x ≤12.综上可得-1<x <1,∴原不等式的解集为{x |-1<x <1}. 3.函数y =|x -1|+|x +3|的最小值为( ) A .1 B .2 C .3 D .4 答案 D解析 y =|x -1|+|x +3|=|1-x |+|x +3|≥|1-x +x +3|=4, 当且仅当(1-x )(x +3)≥0,即-3≤x ≤1时取“=”. ∴当-3≤x ≤1时,函数y =|x -1|+|x +3|取得最小值4. 4.在实数范围内,不等式||x -2|-1|≤1 (x ∈R )的解集是( ) A .(0,4) B .[0,2] C .[0,4] D .(-2,2)答案 C解析 由||x -2|-1|≤1,得-1≤|x -2|-1≤1, 即0≤|x -2|≤2,∴-2≤x -2≤2,∴0≤x ≤4.5.若不存在实数x 使|x -3|+|x -1|≤a 成立,则实数a 的取值范围是( ) A .(1,3) B .(-∞,2) C .(0,2) D .(1,+∞) 答案 B解析 |x -3|+|x -1|的几何意义为数轴上表示x 的点到表示3和1的点的距离之和,所以函数y =|x -3|+|x -1|的最小值为2,实数a 的取值范围是(-∞,2).6.(2016·杭州质检)不等式|x -1|+|x -2|≤5的解集为________.答案 [-1,4]解析 |x -1|+|x -2|表示数轴上的点到点1和点2的距离之和.如图,点A 和点B 之间的点到点1和点2的距离之和都小于5.∴原不等式的解集为[-1,4].7.设函数f (x )=|2x -1|+x +3,对f (-2)=________;若f (x )≤5,则x 的取值范围是__________.答案 6 [-1,1]解析 f (-2)=|2×(-2)-1|-2+3=6;f (x )≤5⇒|2x -1|+x +3≤5⇒|2x -1|≤2-x ⇒x -2≤2x -1≤2-x ,∴⎩⎪⎨⎪⎧ 2x -1≥x -2,2x -1≤2-x ⇒-1≤x ≤1.8.不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则实数a 的取值范围是________. 答案 (-∞,2)解析 由绝对值的几何意义知|x -4|+|x +5|≥9,则log 3(|x -4|+|x +5|)≥2,所以要使不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a <2.9.已知f (x )=|x -3|,g (x )=-|x -7|+m ,若函数f (x )的图象恒在函数g (x )图象的上方,则m 的取值范围是________.答案 (-∞,4)解析 由题意,可得不等式|x -3|+|x -7|-m >0恒成立,即(|x -3|+|x -7|)min >m ,由于数轴上的点到点3和点4的距离之和的最小值为4,所以要使不等式恒成立,则m <4.10.若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为________. 答案 (5,7)解析 由|3x -b |<4,得-4<3x -b <4,即-4+b 3<x <4+b 3, ∵不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则⎩⎪⎨⎪⎧ 0≤-4+b 3<1,3<4+b 3≤4⇒⎩⎪⎨⎪⎧ 4≤b <7,5<b ≤8,∴5<b <7.11.已知函数f (x )=|x +3|-|x -2|.(1)求不等式f (x )≥3的解集;(2)若f (x )≥|a -4|有解,求a 的取值范围.解 (1)f (x )=|x +3|-|x -2|≥3,当x ≥2时,有x +3-(x -2)≥3,解得x ≥2;当x ≤-3时,-x -3+(x -2)≥3,解得x ∈∅;当-3<x <2时,有2x +1≥3,解得1≤x <2.综上,f (x )≥3的解集为{x |x ≥1}.(2)由绝对值不等式的性质可得||x +3|-|x -2||≤|(x +3)-(x -2)|=5,则有-5≤|x +3|-|x -2|≤5.若f (x )≥|a -4|有解,则|a -4|≤5,解得-1≤a ≤9.所以a 的取值范围是[-1,9].12.(2016·全国甲卷)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解 f (x )=⎩⎪⎨⎪⎧ -2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2, 解得x >-1,所以-1<x ≤-12; 当-12<x <12时,f (x )<2; 当x ≥12时,由f (x )<2得2x <2,解得x <1,所以12≤x <1. 所以f (x )<2的解集M ={x |-1<x <1}.(2)证明 由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0,即(a +b )2<(1+ab )2,因此|a +b |<|1+ab |.13.设f (x )=|x -1|+|x +1|.(1)求f (x )≤x +2的解集;(2)若不等式f (x )≥|a +1|-|2a -1||a |对任意实数a ≠0恒成立,求x 的取值范围. 解 (1)由f (x )≤x +2,得⎩⎪⎨⎪⎧ x +2≥0,x ≤-1,1-x -x -1≤x +2或⎩⎪⎨⎪⎧ x +2≥0,-1<x <1,1-x +x +1≤x +2或⎩⎪⎨⎪⎧ x +2≥0,x ≥1,x -1+x +1≤x +2, 解得0≤x ≤2,∴f (x )≤x +2的解集为{x |0≤x ≤2}.(2)∵⎪⎪⎪⎪⎪⎪|a +1|-|2a -1||a | =⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪1+1a -⎪⎪⎪⎪⎪⎪2-1a ≤⎪⎪⎪⎪⎪⎪1+1a +2-1a =3 (当且仅当⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫2-1a ≤0时,取等号), ∴由不等式f (x )≥|a +1|-|2a -1||a |对任意实数a ≠0恒成立,可得|x -1|+|x +1|≥3, 解不等式,得x ≤-32或x ≥32.。

2018版高考数学(浙江专用文理通用)大一轮复习讲义:第七章数列、推理与证明第4讲含答案

2018版高考数学(浙江专用文理通用)大一轮复习讲义:第七章数列、推理与证明第4讲含答案

基础巩固题组(建议用时:40分钟)一、选择题1。

等差数列{a n}的通项公式为a n=2n+1,其前n项和为S n,则数列错误!的前10项的和为()A.120 B。

70 C.75 D.100解析因为错误!=n+2,所以错误!的前10项和为10×3+错误!=75.答案C2.(2017·杭州调研)数列{a n}的前n项和为S n,已知S n=1-2+3-4+…+(-1)n-1·n,则S17=()A.9B.8C.17 D。

16解析S17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9。

答案A3。

数列{a n}的通项公式为a n=(-1)n-1·(4n-3),则它的前100项之和S100等于( )A。

200 B。

-200 C。

400 D。

-400解析S100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×=4×(-50)=-200.答案B4.(2017·高安中学模拟)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S16等于()A。

5 B。

6 C。

7 D。

16解析根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S16=2×0+7=7。

故选C.答案C5。

已知数列{a n}满足a1=1,a n+1·a n=2n(n∈N*),则S2 016=( )A.22 016-1 B.3·21 008-3C.3·21 008-1 D。

推荐2018版高考数学大一轮复习第七章不等式7.1不等关系与不等式教师用书

推荐2018版高考数学大一轮复习第七章不等式7.1不等关系与不等式教师用书

(浙江专用)2018版高考数学大一轮复习 第七章 不等式 7.1 不等关系与不等式教师用书1.两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧a -b >0⇔a > b a -b =0⇔a = ba -b <0⇔a < b(a ,b ∈R );(2)作商法⎩⎪⎨⎪⎧ab>1⇔a > b ab =1⇔a = ba b <1⇔a < b(a ∈R ,b >0).2.不等式的基本性质不等式的一些常用性质 (1)倒数的性质 ①a >b ,ab >0⇒1a <1b.②a <0<b ⇒1a <1b.③a >b >0,0<c <d ⇒a c >b d. ④0<a <x <b 或a <x <b <0⇒1b <1x <1a.(2)有关分数的性质 若a >b >0,m >0,则 ①b a <b +m a +m ;b a >b -ma -m(b -m >0). ②a b >a +mb +m ;a b <a -mb -m(b -m >0). 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( √ ) (2)若a b>1,则a >b .( × )(3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( × ) (4)一个非零实数越大,则其倒数就越小.( × ) (5)a >b >0,c >d >0⇒a d >b c.( √ ) (6)若ab >0,则a >b ⇔1a <1b.( √ )1.设a <b <0,则下列不等式中不成立的是( ) A.1a >1bB.1a -b >1aC .|a |>-b D.-a >-b答案 B解析 由题设得a <a -b <0,所以有1a -b <1a成立,。

2018高考数学(浙江省专用)复习专题测试:第七章 不等式 §7-5 绝对值不等式

2018高考数学(浙江省专用)复习专题测试:第七章 不等式 §7-5 绝对值不等式

方法总结
解含有两个绝对值的不等式时,主要采用零点分段法求解.另外,若所证不等式的两
边均为非负数,则先把两边平方,然后利用作差法求解. 评析 本题考查绝对值不等式的解法及不等式的证明,考查分类讨论的思想.属中档题.
x 1 +|xa -a|(a>0).
6.(2014课标Ⅱ,24,10分)设函数f(x)= (1)证明:f(x)≥2;
.
3 x 2a 1( x a ), x 2a 1(a x 1) 3 x 2a 1( x , 1),
∴f(x)min=-a-1,∴-a-1=5,∴a=-6. 当a>-1时,f(x)= ∴f(x)min=a+1, ∴a+1=5,
3x 2a 1( x 1), x 2a 1(1 x a ) 3x 2a 1( x a ), ,
a

1 a
5 2
21
当0<a≤3时,f(3)=6-a+ ,1 由 f(3)<5 5 5得 21 <a≤3. , 2 2
1 . 5 2
评析 ,考查了分类讨论思想. 综上,a本题考查了含绝对值不等式的解法 的取值范围是 .

以下为教师用书专用
7.(2015重庆,16,5分)若函数f(x)=|x+1|+2|x-a|的最小值为5,则实数a= 答案 解析 -6或4 当a≤-1时,f(x)=
5 3
1 ,则a= 3
.
依题意,知a≠0.|ax-2|<3⇔-3<ax-2<3⇔-1<ax<5,当a>0时,不等式的解集为
1 5 , , a a
从而有

2018版高考数学浙江,文理通用大一轮复习讲义教师版文

2018版高考数学浙江,文理通用大一轮复习讲义教师版文

1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大)【知识拓展】不等式的恒成立、能成立、恰成立问题(1)恒成立问题:若f (x )在区间D 上存在最小值,则不等式f (x )>A 在区间D 上恒成立⇔f (x )min >A (x∈D );若f (x )在区间D 上存在最大值,则不等式f (x )<B 在区间D 上恒成立⇔f (x )max <B (x ∈D ). (2)能成立问题:若f (x )在区间D 上存在最大值,则在区间D 上存在实数x 使不等式f (x )>A 成立⇔f (x )max >A (x ∈D );若f (x )在区间D 上存在最小值,则在区间D 上存在实数x 使不等式f (x )<B 成立⇔f (x )min <B (x ∈D ).(3)恰成立问题:不等式f (x )>A 恰在区间D 上成立⇔f (x )>A 的解集为D ; 不等式f (x )<B 恰在区间D 上成立⇔f (x )<B 的解集为D . 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =x +1x的最小值是2.( × )(2)函数f (x )=cos x +4cos x ,x ∈(0,π2)的最小值等于4.( × )(3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( × )(4)若a >0,则a 3+1a2的最小值为2a .( × )(5)不等式a 2+b 2≥2ab 与a +b2≥ab 有相同的成立条件.( × )(6)两个正数的等差中项不小于它们的等比中项.( √ )1.(教材改编)设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80B .77C .81D .82 答案 C解析 ∵x >0,y >0,∴x +y2≥xy ,即xy ≤(x +y 2)2=81,当且仅当x =y =9时,(xy )max =81.2.(教材改编)已知x >0,a >0,当y =x +ax 取最小值时,x 的值为( )A .1B .a C.a D .2a 答案 C解析 y =x +ax ≥2a ,当且仅当x =ax 即x =a 时,y =x +ax有最小值2a .3.若a >0,b >0,且a +b =4,则下列不等式恒成立的是( ) A.1ab ≤14 B.1a +1b ≤1 C.ab ≥2 D .a 2+b 2≥8答案 D解析 4=a +b ≥2ab (当且仅当a =b 时,等号成立),即ab ≤2,ab ≤4,1ab ≥14,选项A ,C不成立;1a +1b =a +b ab =4ab ≥1,选项B 不成立;a 2+b 2=(a +b )2-2ab =16-2ab ≥8,选项D成立.4.(2016·宁波期末)若正数x ,y 满足x 2+4y 2+x +2y =1,则xy 的最大值为________. 答案2-34解析 由题意得1=x 2+4y 2+x +2y ≥4xy +22·xy , 则xy ≤6-24,则xy ≤(6-24)2=2-34.题型一 利用基本不等式求最值 命题点1 通过配凑法利用基本不等式例1 (1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________. (2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(3)函数y =x 2+2x -1(x >1)的最小值为________.答案 (1)23(2)1 (3)23+2解析 (1)x (4-3x )=13·(3x )(4-3x )≤13·3x +(4-3x )2]2=43,当且仅当3x =4-3x ,即x =23时,取等号.(2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x)+3≤-2+3=1. 当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1. (3)y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当(x -1)=3(x -1),即x =3+1时,等号成立.命题点2 通过常数代换法利用基本不等式例2 已知a >0,b >0,a +b =1,则1a +1b 的最小值为________.答案 4解析 ∵a >0,b >0,a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b ≥2+2b a ·a b =4,即1a +1b 的最小值为4,当且仅当a =b =12时等号成立. 引申探究1.若条件不变,求(1+1a )(1+1b)的最小值.解 (1+1a )(1+1b )=(1+a +b a )(1+a +b b )=(2+b a )·(2+ab )=5+2(b a +ab )≥5+4=9.当且仅当a =b =12时,取等号.2.已知a >0,b >0,1a +1b =4,求a +b 的最小值.解 由1a +1b =4,得14a +14b=1.∴a +b =(14a +14b )(a +b )=12+b 4a +a 4b ≥12+2b 4a ·a4b=1.当且仅当a =b =12时取等号.3.若将条件改为a +2b =3,求1a +1b 的最小值.解 ∵a +2b =3, ∴13a +23b =1, ∴1a +1b =(1a +1b )(13a +23b )=13+23+a 3b +2b 3a ≥1+2a 3b ·2b 3a =1+223. 当且仅当a =2b 时,取等号.思维升华 (1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.(1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________.(2)已知x ,y ∈(0,+∞),2x -3=(12)y ,若1x +m y (m >0)的最小值为3,则m =________.答案 (1)5 (2)4解析 (1)方法一 由x +3y =5xy ,可得15y +35x =1,∴3x +4y =(3x +4y )(15y +35x )=95+45+3x 5y +12y 5x ≥135+125=5. 当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立,∴3x +4y 的最小值是5.方法二 由x +3y =5xy ,得x =3y5y -1,∵x >0,y >0,∴y >15,∴3x +4y =9y5y -1+4y =13(y -15)+95+45-4y5y -1+4y=135+95·15y -15+4(y -15) ≥135+23625=5, 当且仅当y =12时等号成立,∴(3x +4y )min =5.(2)由2x -3=(12)y 得x +y =3,1x +m y =13(x +y )(1x +m y ) =13(1+m +y x +mx y ) ≥13(1+m +2m ) (当且仅当y x =mxy ,即y =mx 时取等号),∴13(1+m +2m )=3, 解得m =4.题型二 基本不等式的实际应用例3 某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则该公司年平均利润的最大值是________万元. 答案 8解析 年平均利润为y x =-x -25x +18=-(x +25x )+18,∵x +25x≥2x ·25x=10, ∴y x =18-(x +25x )≤18-10=8, 当且仅当x =25x即x =5时,取等号.思维升华 (1)设变量时一般要把求最大值或最小值的变量定义为函数. (2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品________件. 答案 80解析 设每件产品的平均费用为y 元,由题意得 y =800x +x 8≥2800x ·x8=20. 当且仅当800x =x8(x >0),即x =80时“=”成立.题型三 基本不等式的综合应用命题点1 基本不等式与其他知识交汇的最值问题例4 (1)(2016·杭州二模)正实数x ,y 满足:1x +1y =1,则x 2+y 2-10xy 的最小值为_____.(2)(2016·山西忻州一中等第一次联考)设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n 的最小值是________.答案 (1)-36 (2)92解析 (1)1x +1y=1⇒x +y =xy ,x 2+y 2-10xy =(x +y )2-12xy =(xy )2-12xy =(xy -6)2-36, 由x +y =xy ≥2xy ,得xy ≥4, 故(x 2+y 2-10xy )min =-36. (2)a n =a 1+(n -1)d =n ,S n =n (1+n )2, ∴S n +8a n =n (1+n )2+8n =12(n +16n +1)≥12(2n ·16n +1)=92, 当且仅当n =4时取等号. ∴S n +8a n 的最小值是92. 命题点2 求参数值或取值范围例5 (1)已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为( )A .9B .12C .18D .24(2)已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.答案 (1)B (2)-83,+∞)解析 (1)由3a +1b ≥ma +3b ,得m ≤(a +3b )(3a +1b )=9b a +ab+6.又9b a +a b +6≥29+6=12(当且仅当9b a =ab 时等号成立), ∴m ≤12,∴m 的最大值为12.(2)对任意x ∈N *,f (x )≥3恒成立,即x 2+ax +11x +1≥3恒成立,即知a ≥-(x +8x )+3.设g (x )=x +8x ,x ∈N *,则g (2)=6,g (3)=173.∵g (2)>g (3),∴g (x )min =173,∴-(x +8x )+3≤-83, ∴a ≥-83,故a 的取值范围是-83,+∞).思维升华 (1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.(1)(2016·杭州四地六校联考)已知函数f (x )=x +a x+2的值域为(-∞,0]∪4,+∞),则a 的值是( ) A.12B.32C .1D .2 (2)已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为( ) A.32B.53C.94D.256 答案 (1)C (2)A解析 (1)由题意可得a >0,①当x >0时,f (x )=x +ax +2≥2a +2,当且仅当x =a 时取等号;②当x <0时,f (x )=x +ax +2≤-2a +2,当且仅当x =-a 时取等号,所以⎩⎨⎧2-2a =0,2a +2=4,解得a =1,故选C.(2)由各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,可得a 1q 6=a 1q 5+2a 1q 4, 所以q 2-q -2=0, 解得q =2或q =-1(舍去). 因为a m a n =4a 1,所以q m +n -2=16,所以2m+n -2=24,所以m +n =6.所以1m +4n =16(m +n )(1m +4n )=16(5+n m +4m n ) ≥16(5+2n m ·4m n )=32. 当且仅当n m =4mn ,即m =2,n =4时等号成立,故1m +4n 的最小值等于32..利用基本不等式求最值典例 (1)已知x >0,y >0,且1x +2y =1,则x +y 的最小值是________.(2)函数y =1-2x -3x (x <0)的值域为________.错解展示解析 (1)∵x >0,y >0,∴1=1x +2y ≥22xy, ∴xy ≥22,∴x +y ≥2xy =42,∴x +y 的最小值为4 2.(2)∵2x +3x ≥26,∴y =1-2x -3x ≤1-2 6.∴函数y =1-2x -3x (x <0)的值域为(-∞,1-26].答案 (1)42 (2)(-∞,1-26] 现场纠错解析 (1)∵x >0,y >0, ∴x +y =(x +y )(1x +2y)=3+y x +2xy ≥3+22(当且仅当y =2x 时取等号),∴当x =2+1,y =2+2时,(x +y )min =3+2 2. (2)∵x <0,∴y =1-2x -3x =1+(-2x )+(-3x)≥1+2(-2x )·3-x=1+26,当且仅当x =-62时取等号,故函数y =1-2x -3x (x <0)的值域为1+26,+∞).答案 (1)3+22 (2)1+26,+∞)纠错心得 利用基本不等式求最值时要注意条件:一正二定三相等;多次使用基本不等式要验证等号成立的条件.1.已知a ,b ∈R ,且ab ≠0,则下列结论恒成立的是( ) A .a +b ≥2ab B.a b +b a ≥2 C .|a b +b a |≥2D .a 2+b 2>2ab答案 C解析 因为a b 和b a 同号,所以|a b +b a |=|a b |+|ba|≥2.2.设非零实数a ,b ,则“a 2+b 2≥2ab ”是“a b +ba ≥2”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 因为a ,b ∈R 时,都有a 2+b 2-2ab =(a -b )2≥0, 即a 2+b 2≥2ab ,而a b +ba≥2⇔ab >0,所以“a 2+b 2≥2ab ”是“a b +ba≥2”的必要不充分条件,故选B.3.(2016·余姚模拟)已知x >0,y >0,lg2x +lg8y =lg2,则1x +13y 的最小值是( )A .2B .22C .4D .2 3 答案 C解析 因为lg2x +lg8y =lg2,所以x +3y =1, 所以1x +13y =(1x +13y )(x +3y )=2+3y x +x3y ≥4,当且仅当3y x =x 3y ,即x =12,y =16时,取等号.4.(2016·平顶山至阳中学期中)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( )A .1+ 2B .1+ 3C .3D .4答案 C解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,故选C. 5.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) A.22B .22C.2D .2 答案 D解析 ∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy , 即(2xy -2)(2xy +1)≥0, ∴2xy ≥2,∴xy ≥2.*6.设a >b >c >0,则2a 2+1ab +1a (a -b )-10ac +25c 2的最小值是( )A .2B .4C .25D .5解析 2a 2+1ab +1a (a -b )-10ac +25c 2=(a -5c )2+a 2-ab +ab +1ab +1a (a -b )=(a -5c )2+ab +1ab +a (a -b )+1a (a -b )≥0+2+2=4,当且仅当a -5c =0,ab =1,a (a -b )=1时,等号成立, 即取a =2,b =22,c =25时满足条件. *7.(2016·吉林九校第二次联考)若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值是( )A .1B .6C .9D .16 答案 B解析 ∵正数a ,b 满足1a +1b =1,∴b =a a -1>0,解得a >1.同理可得b >1,所以1a -1+9b -1=1a -1+9a a -1-1=1a -1+9(a -1)≥21a -1·9(a -1)=6,当且仅当1a -1=9(a -1),即a =43时等号成立,所以最小值为6.故选B.8.(2016·浙江省五校高三第二次联考)对任意的θ∈(0,π2),不等式1sin 2θ+4cos 2θ≥|2x -1|成立,则实数x 的取值范围是( ) A .-3,4] B .0,2] C .-32,52]D .-4,5]答案 D 解析 因为1sin 2θ+4cos 2θ=sin 2θ+cos 2θsin 2θ+4(sin 2θ+cos 2θ)cos 2θ=cos 2θsin 2θ+4sin 2θcos 2θ+5≥2×cos 2θsin 2θ·4sin 2θcos 2θ+5=9, 当且仅当cos 2θsin 2=4sin 2θcos 2,即tan θ=22时等号成立,所以|2x -1|≤9,解得-4≤x ≤5,故选D.9.(2016·唐山一模)已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为________.答案 4,12]解析 ∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22,∴6-(x 2+4y 2)≤x 2+4y 22,∴x 2+4y 2≥4(当且仅当x =2y 时取等号). 又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6,∴z =x 2+4y 2=6-2xy ≤12 (当且仅当x =-2y 时取等号). 综上可知4≤x 2+4y 2≤12.10.(2016·潍坊模拟)已知a ,b 为正实数,直线x +y +a =0与圆(x -b )2+(y -1)2=2相切,则a 2b +1的取值范围是________. 答案 (0,+∞)解析 ∵x +y +a =0与圆(x -b )2+(y -1)2=2相切, ∴d =|b +1+a |2=2,∴a +b +1=2,即a +b =1, ∴a 2b +1=(1-b )2b +1=(b +1)2-4(b +1)+4b +1 =(b +1)+4b +1-4≥24-4=0.又∵a ,b 为正实数,∴等号取不到. ∴a 2b +1的取值范围是(0,+∞). *11.(2016·东莞模拟)函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n 的最小值为________.答案 8解析 y =log a (x +3)-1的图象恒过定点A (-2,-1), 由A 在直线mx +ny +1=0上. 得-2m -n +1=0即2m +n =1.∴1m +2n =2m +n m +2(2m +n )n =n m +4m n +4≥24+4=8(当且仅当n m =4m n ,即m =14,n =12时等号成立).12.(2017·浙江联考)若正数x ,y ,z 满足3x +4y +5z =6,则12y +z +4y +2z x +z 的最小值为________.答案 73解析 12y +z +4y +2z x +z =12y +z +6-3(x +z )x +z=12y +z +6x +z-3, 令2y +z =a ,x +z =b ,则2(2y +z )+3(x +z )=3x +4y +5z =2a +3b =6, 即a 3+b2=1, 原式=(1a +6b )(a 3+b2)-3=13+b 2a +2a b ≥73. 13.某项研究表明:在考虑行车安全情况下,某路段车流量F (单位时间经过测量点的车辆数,单位:辆/小时)与车辆速度v (假设车辆以相同速度v 行驶,单位:米/秒),平均车长l (单位:米)的值有关,其公式F =76000vv 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为________辆/小时.(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/小时. 答案 (1)1900 (2)100 解析 (1)当l =6.05时,F =76000v +121v +18≤760002v ·121v +18=1900,当且仅当v =11时取最大值.(2)当l =5时,F =76000v +100v +18≤2000,当且仅当v =10时取等号,∴最大车流量比(1)中增加2000-1900=100(辆/小时).14.运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油(2+x 2360)升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 解 (1)设所用时间为t =130x(h),y =130x ×2×(2+x 2360)+14×130x ,x ∈50,100].所以这次行车总费用y 关于x 的表达式是 y =2340x +1318x ,x ∈50,100].(2)y =2340x +1318x ≥2610,当且仅当2340x =1318x ,即x =1810时,等号成立.故当x =1810时,这次行车的总费用最低,最低费用的值为2610元.。

2018版高考数学浙江专用文理通用大一轮复习讲义:第七

2018版高考数学浙江专用文理通用大一轮复习讲义:第七

基础巩固题组 (建议用时:40分钟)一、选择题1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( ) A.(-1)n+12B.cos n π2 C.cosn +12πD.cosn +22π解析 令n =1,2,3,…,逐一验证四个选项,易得D 正确. 答案 D2.数列23,-45,67,-89,…的第10项是( )A.-1617B.-1819C.-2021D.-2223解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式a n =(-1)n +1·2n2n +1,故a 10=-2021. 答案 C3.(2017·绍兴一中检测)在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式a n =( ) A.2n-1 B.2n -1+1C.2n -1D.2(n -1)解析 法一 由a n +1=2a n +1,可求a 2=3,a 3=7,a 4=15,…,验证可知a n =2n-1. 法二 由题意知a n +1+1=2(a n +1),∴数列{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n-1. 答案 A4.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n 等于( ) A.2n -1B.n 2C.(n +1)2n 2D.n 2(n -1)2解析 设数列{a n }的前n 项积为T n ,则T n =n 2,当n ≥2时,a n =T n T n -1=n 2(n -1)2.答案 D5.数列{a n }满足a n +1+a n =2n -3,若a 1=2,则a 8-a 4=( )A.7B.6C.5D.4解析 依题意得(a n +2+a n +1)-(a n +1+a n )=-(2n -3),即a n +2-a n =2,所以a 8-a 4=(a 8-a 6)+(a 6-a 4)=2+2=4. 答案 D 二、填空题6.若数列{a n }满足关系a n +1=1+1a n ,a 8=3421,则a 5=________.解析 借助递推关系,则a 8递推依次得到a 7=2113,a 6=138,a 5=85.答案 857.(2017·绍兴月考)已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a 1=________;a n =________.解析 当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2. 答案 4 ⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥28.(2017·嘉兴七校联考)已知数列{a n }的前n 项和为S n ,且a n ≠0(n ∈N *),又a n a n +1=S n ,则a 3-a 1=________.解析 因为a n a n +1=S n ,所以令n =1得a 1a 2=S 1=a 1,由于a 1≠0,则a 2=1,令n =2,得a 2a 3=S 2=a 1+a 2,即a 3=1+a 1,所以a 3-a 1=1.答案 1 三、解答题9.数列{a n }的通项公式是a n =n 2-7n +6. (1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项? (3)该数列从第几项开始各项都是正数? 解 (1)当n =4时,a 4=42-4×7+6=-6.(2)令a n =150,即n 2-7n +6=150,解得n =16或n =-9(舍去),即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍). ∴从第7项起各项都是正数.10.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.解 (1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1. 当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1. 于是a 1=1, a 2=31a 1, a 3=42a 2,……a n -1=nn -2a n -2,a n =n +1n -1a n -1.将以上n 个等式两端分别相乘, 整理得a n =n (n +1)2.显然,当n =1时也满足上式. 综上可知,{a n }的通项公式a n =n (n +1)2.能力提升题组 (建议用时:25分钟)11.设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163B.133C.4D.0解析 ∵a n =-3⎝ ⎛⎭⎪⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大为0.答案 D12.(2017·石家庄质检)已知数列{a n }满足a n +2=a n +1-a n ,且a 1=2,a 2=3,则a 2 016的值为________.解析 由题意得,a 3=a 2-a 1=1,a 4=a 3-a 2=-2,a 5=a 4-a 3=-3,a 6=a 5-a 4=-1,a 7=a 6-a 5=2,∴数列{a n }是周期为6的周期数列,而2 016=6×336,∴a 2 016=a 6=-1. 答案 -113.(2017·金丽衢十二校联考)对于各项均为整数的数列{a n },如果a i +i (i =1,2,3,…)为完全平方数,则称数列{a n }具有“P 性质”.不论数列{a n }是否具有“P 性质”,如果存在与{a n }不是同一数列的{b n },且{b n }同时满足下面两个条件: ①b 1,b 2,b 3,…,b n 是a 1,a 2,a 3,…,a n 的一个排列; ②数列{b n }具有“P 性质”,则称数列{a n }具有“变换P 性质”. 下面三个数列:①数列{a n }的前n 项和S n =n3(n 2-1);②数列1,2,3,4,5; ③1,2,3, (11)具有“P 性质”的为________;具有“变换P 性质”的为________.解析 对于①,当n ≥2时,a n =S n -S n -1=n 2-n ,∵a 1=0,∴a n =n 2-n ,∴a i +i =i 2(i =1,2,3,…)为完全平方数,∴数列{a n }具有“P 性质”;对于②,数列1,2,3,4,5,具有“变换P 性质”,数列{b n }为3,2,1,5,4,具有“P 性质”,∴数列{a n }具有“变换P 性质”;对于③,因为11,4都只有与5的和才能构成完全平方数,所以1,2,3,…,11,不具有“变换P 性质”. 答案 ① ②14.(2017·瑞安市模拟)已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又a =-7,∴a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2(n -1)=1+12n -2-a2,已知对任意的n ∈N *,都有a n ≤a 6成立, 结合函数f (x )=1+12x -2-a 2的单调性,可知5<2-a2<6,即-10<a <-8.即a 的取值范围是(-10,-8).15.已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n . (1)求数列{a n }与{b n }的通项公式;(2)设c n =a 2n ·b n ,证明:当且仅当n ≥3时,c n +1<c n . (1)解 当n =1时,a 1=S 1=4.对于n ≥2,有a n =S n -S n -1=2n (n +1)-2(n -1)n =4n . 又当n =1时,a 1=4适合上式,故{a n }的通项公式a n =4n . 将n =1代入T n =2-b n ,得b 1=2-b 1,故T 1=b 1=1. (求b n 法一)对于n ≥2,由T n -1=2-b n -1,T n =2-b n ,得b n =T n -T n -1=-(b n -b n -1),b n =12b n -1,所以数列{b n }是以1为首项,公比为12的等比数列,故b n =21-n .(求b n 法二)对于n ≥2,由T n =2-b n ,得T n =2-(T n -T n -1), 2T n =2+T n -1,T n -2=12(T n -1-2),T n -2=21-n (T 1-2)=-21-n,T n =2-21-n ,b n =T n -T n -1=(2-21-n )-(2-22-n )=21-n .又n =1时,b 1=1适合上式,故{b n }的通项公式b n =21-n.(2)证明 (法一)由c n =a 2n ·b n =n 225-n,得c n +1c n =12⎝ ⎛⎭⎪⎫1+1n 2. 当且仅当n ≥3时,1+1n ≤43<2,即c n +1<c n .(法二)由c n =a 2n ·b n =n 225-n,得c n +1-c n =24-n =24-n .当且仅当n≥3时,c n+1-c n<0,即c n+1<c n.。

2018版高考数学浙江专用文理通用大一轮复习讲义:第七

2018版高考数学浙江专用文理通用大一轮复习讲义:第七

基础巩固题组(建议用时:40分钟)一、选择题1.若a,b∈R,则下面四个式子中恒成立的是( )A.lg(1+a2)>0B.a2+b2≥2(a-b-1)C.a2+3ab>2b2D.ab<a+1 b+1解析在B中,∵a2+b2-2(a-b-1)=(a2-2a+1)+(b2+2b+1)=(a-1)2+(b+1)2≥0,∴a2+b2≥2(a-b-1)恒成立.答案 B2.用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,应假设( )A.三个内角都不大于60°B.三个内角都大于60°C.三个内角至多有一个大于60°D.三个内角至多有两个大于60°答案 B3.已知m>1,a=m+1-m,b=m-m-1,则以下结论正确的是( )A.a>bB.a<bC.a=bD.a,b大小不定解析∵a=m+1-m=1m+1+m,b=m-m-1=1m+m-1.而m+1+m>m+m-1>0(m>1),∴1m+1+m<1m+m-1,即a<b.答案 B4.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证b2-ac <3a”索的因应是( )A.a-b>0B.a-c>0C.(a-b)(a-c)>0D.(a-b)(a-c)<0解析由题意知b2-ac<3a⇐b2-ac<3a2⇐(a+c)2-ac<3a2⇐a2+2ac+c2-ac-3a2<0⇐-2a 2+ac +c 2<0 ⇐2a 2-ac -c 2>0⇐(a -c )(2a +c )>0⇐(a -c )(a -b )>0. 答案 C5.①已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2;②已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下正确的是( ) A.①与②的假设都错误 B.①与②的假设都正确 C.①的假设正确;②的假设错误 D.①的假设错误;②的假设正确解析 反证法的实质是否定结论,对于①,其结论的反面是p +q >2,所以①不正确;对于②,其假设正确. 答案 D 二、填空题6.6+7与22+5的大小关系为________. 解析 要比较6+7与22+5的大小, 只需比较(6+7)2与(22+5)2的大小, 只需比较6+7+242与8+5+410的大小,只需比较42与210的大小,只需比较42与40的大小,∵42>40,∴6+7>22+ 5. 答案6+7>22+ 57.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是__________________. 答案 都不能被5整除8.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +ab≥2成立的条件的序号是________.解析 要使b a +a b ≥2,只需b a >0成立,即a ,b 不为0且同号即可,故①③④能使b a +a b≥2成立. 答案 ①③④ 三、解答题9.若a ,b ,c 是不全相等的正数,求证:lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .证明 ∵a ,b ,c ∈(0,+∞), ∴a +b2≥ab >0,b +c2≥bc >0,a +c2≥ac >0.又上述三个不等式中等号不能同时成立. ∴a +b 2·b +c 2·c +a2>abc 成立.上式两边同时取常用对数, 得lg ⎝ ⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg abc ,∴lga +b 2+lgb +c2+lgc +a2>lg a +lg b +lg c .10.设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和. (1)求证:数列{S n }不是等比数列; (2)数列{S n }是等差数列吗?为什么?(1)证明 假设数列{S n }是等比数列,则S 22=S 1S 3, 即a 21(1+q )2=a 1·a 1·(1+q +q 2), 因为a 1≠0,所以(1+q )2=1+q +q 2, 即q =0,这与公比q ≠0矛盾, 所以数列{S n }不是等比数列.(2)解 当q =1时,S n =na 1,故{S n }是等差数列; 当q ≠1时,{S n }不是等差数列,否则2S 2=S 1+S 3,即2a 1(1+q )=a 1+a 1(1+q +q 2), 得q =0,这与公比q ≠0矛盾.综上,当q =1时,数列{S n }是等差数列;当q ≠1时,数列{S n }不是等差数列.能力提升题组 (建议用时:25分钟)11.已知函数f (x )=⎝ ⎛⎭⎪⎫12x,a ,b 是正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为( )A.A ≤B ≤CB.A ≤C ≤BC.B ≤C ≤AD.C ≤B ≤A解析 ∵a +b2≥ab ≥2ab a +b ,又f (x )=⎝ ⎛⎭⎪⎫12x 在R 上是减函数,∴f ⎝ ⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝⎛⎭⎪⎫2ab a +b .答案 A12.设a ,b ,c 均为正实数,则三个数a +1b ,b +1c ,c +1a( )A.都大于2B.都小于2C.至少有一个不大于2D.至少有一个不小于2解析 ∵a >0,b >0,c >0,∴⎝⎛⎭⎪⎫a +1b +⎝⎛⎭⎪⎫b +1c +⎝⎛⎭⎪⎫c +1a =⎝⎛⎭⎪⎫a +1a +⎝⎛⎭⎪⎫b +1b + ⎝ ⎛⎭⎪⎫c +1c ≥6,当且仅当a =b =c =1时,“=”成立,故三者不能都小于2,即至少有一个不小于2. 答案 D13.如果a a +b b >a b +b a ,则a ,b 应满足的条件是________. 解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a ) =(a -b )(a -b ) =(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0. ∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b . 答案 a ≥0,b ≥0且a ≠b14.设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y+xy .证明 由于x ≥1,y ≥1, 所以要证明x +y +1xy ≤1x +1y+xy ,只需证xy (x +y )+1≤y +x +(xy )2. 将上式中的右式减左式,得 - =-=(xy +1)(xy -1)-(x +y )(xy -1) =(xy -1)(xy -x -y +1) =(xy -1)(x -1)(y -1).因为x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0,从而所要证明的不等式成立.15.(2016·浙江卷)设函数f (x )=x 3+11+x ,x ∈,证明:(1)f (x )≥1-x +x 2; (2)34<f (x )≤32. 证明 (1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x,由于x ∈,有1-x 41+x ≤1x +1,即1-x +x 2-x 3≤1x +1,所以f (x )≥1-x +x 2. (2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32,所以f (x )≤32.由(1)得f (x )≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34,又因为f ⎝ ⎛⎭⎪⎫12=1924>34,所以f (x )>34.综上,34<f (x )≤32.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(浙江专用)2018版高考数学大一轮复习第七章不等式 7.5 绝对值不等式教师用书1.绝对值三角不等式(1)定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.(2)定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集:(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.【知识拓展】|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法:(1)利用绝对值不等式的几何意义求解,体现了数形结合的思想;(2)利用“零点分段法”求解,体现了分类讨论的思想;(3)通过构造函数,利用函数的图象求解,体现了函数与方程的思想.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)|x+2|的几何意义是数轴上坐标为x的点到点2的距离.( ×)(2)|x|>a的解集是{x|x>a或x<-a}.( ×)(3)|a+b|=|a|+|b|成立的条件是ab≥0.(√)(4)若ab<0,则|a+b|<|a-b|.( √)(5)对一切x∈R,不等式|x-a|+|x-b|>|a-b|成立.( ×)1.(2015·山东)不等式|x-1|-|x-5|<2的解集是( )A.(-∞,4) B.(-∞,1)C.(1,4) D.(1,5)答案 A解析①当x≤1时,原不等式可化为1-x-(5-x)<2,∴-4<2,不等式恒成立,∴x≤1.②当1<x<5时,原不等式可化为x-1-(5-x)<2,∴x<4,∴1<x<4,③当x≥5时,原不等式可化为x-1-(x-5)<2,该不等式不成立.综上,原不等式的解集为(-∞,4).2.不等式|x+1|-|x-2|>k的解集为R,则实数k的取值范围为( )A.(3,+∞) B.(-∞,-3)C.(-∞,-1) D.(-∞,0)答案 B解析根据绝对值的几何意义,设数x,-1,2在数轴上对应的点分别为P、A、B,则原不等式等价于|PA|-|PB|>k恒成立.∵|AB|=3,即|x+1|-|x-2|≥-3.故当k<-3时,原不等式恒成立.3.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是( )A.[2,4] B.[1,2]C.[-2,4] D.[-4,-2]答案 C解析∵|x-a|+|x-1|≥|(x-a)-(x-1)|=|a-1|,要使|x-a|+|x-1|≤3有解,可使|a-1|≤3,∴-3≤a-1≤3,∴-2≤a ≤4.4.若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a 的取值范围是______. 答案 [-1,12]解析 设y =|2x -1|+|x +2|=⎩⎪⎨⎪⎧-3x -1,x <-2,-x +3,-2≤x <12,3x +1,x ≥12.当x <-2时,y =-3x -1>5;当-2≤x <12时,5≥y =-x +3>52;当x ≥12时,y =3x +1≥52,故函数y =|2x -1|+|x +2|的最小值为52.因为不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,所以52≥a 2+12a+2.解不等式52≥a 2+12a +2,得-1≤a ≤12,故a 的取值范围为[-1,12].题型一 绝对值不等式的解法例1 (2016·全国乙卷)已知函数f (x )=|x +1|-|2x -3|. (1)在图中画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.解 (1)f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤ 32,-x +4,x >32,y =f (x )的图象如图所示.(2)由f (x )的表达式及图象可知,当f (x )=1时,x =1或x =3; 当f (x )=-1时,x =13或x =5,故f (x )>1的解集为{x |1<x <3};f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x |x <13或x >5.所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x |x <13或1<x <3或x >5.思维升华 解绝对值不等式的基本方法有:(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;(3)利用绝对值的几何意义,数形结合求解.(1)不等式|x -1|+|x +2|≥5的解集为________.(2)设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A ,则a =________.答案 (1){x |x ≤-3或x ≥2} (2)1解析 (1)方法一 要去掉绝对值符号,需要对x 与-2和1进行大小比较,-2和1可以把数轴分成三部分.当x <-2时,不等式等价于-(x -1)-(x +2)≥5,解得x ≤-3;当-2≤x <1时,不等式等价于-(x -1)+(x +2)≥5,即3≥5,无解;当x ≥1时,不等式等价于x -1+x +2≥5,解得x ≥2.综上,不等式的解集为{x |x ≤-3或x ≥2}.方法二 |x -1|+|x +2|表示数轴上的点x 到点1和点-2的距离的和,如图所示,数轴上到点1和点-2的距离的和为5的点有-3和2,故满足不等式|x -1|+|x +2|≥5的x 的取值为x ≤-3或x ≥2,所以不等式的解集为{x |x ≤-3或x ≥2}.(2)∵32∈A ,且12∉A ,∴|32-2|<a ,且|12-2|≥a ,解得12<a ≤32,又∵a ∈N *,∴a =1.题型二 利用绝对值不等式求最值例2 (1)对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为( ) A .1 B .2 C .3 D .4(2)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为________. 答案 (1)C (2)5 解析 (1)∵x ,y ∈R ,∴|x -1|+|x |≥|(x -1)-x |=1, |y -1|+|y +1|≥|(y -1)-(y +1)|=2, ∴|x -1|+|x |+|y -1|+|y +1|≥1+2=3, ∴|x -1|+|x |+|y -1|+|y +1|的最小值为3.(2)|x -2y +1|=|(x -1)-2(y -1)|≤|x -1|+|2(y -2)+2|≤1+2|y -2|+2≤5,即|x -2y +1|的最大值为5.思维升华 求含绝对值的函数最值时,常用的方法有三种:(1)利用绝对值的几何意义;(2)利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥|a |-|b |;(3)利用零点分区间法.(1)关于x 的不等式|2 014-x |+|2 015-x |≤d 有解时,d 的取值范围是________.(2)不等式|x +1x|≥|a -2|+sin y 对一切非零实数x ,y 均成立,则实数a 的取值范围为________.答案 (1)[1,+∞) (2)[1,3]解析 (1)∵|2 014-x |+|2 015-x |≥|2 014-x -2 015+x |=1, ∴关于x 的不等式|2 014-x |+|2 015-x |≤d 有解时,d ≥1. (2)∵x +1x∈(-∞,-2]∪[2,+∞),∴|x +1x|∈[2,+∞),其最小值为2.又∵sin y 的最大值为1,故不等式|x +1x|≥|a -2|+sin y 恒成立时,有|a -2|≤1,解得a ∈[1,3]. 题型三 绝对值不等式的综合应用命题点1 绝对值不等式和函数的综合例3 (2016·桐乡一模)已知f (x )=ax 2+bx +c ,a ,b ,c ∈R ,定义域为[-1,1], (1)当a =1,|f (x )|≤1时,求证:|1+c |≤1;(2)当b >2a >0时,是否存在x ∈[-1,1],使得|f (x )|≥b? (1)证明 ∵|f (-1)|=|1-b +c |≤1, |f (1)|=|1+b +c |≤1,∵|1-b +c +1+b +c |≤|1-b +c |+|1+b +c |≤2, ∴|2+2c |≤2,∴|1+c |≤1. (2)解 由b >2a >0,得-b2a <-1,则f (x )在[-1,1]上递增, ∴f (x )∈[a -b +c ,a +b +c ]. ①当a +c >0时,a +b +c >b >0,此时有|f (1)|≥b ,即存在x =1,使得|f (x )|≥b 成立. ②当a +c <0时,a -b +c <-b <0,此时有|f (-1)|≥b ,即存在x =-1使得|f (x )|≥b 成立. ③当a +c =0时,f (x )∈[-b ,b ],存在x 使得|f (x )|≥b 成立. 综上,存在x =±1使得|f (x )|≥b 成立.思维升华 (1)恒成立问题可转化为函数的最值问题;(2)和绝对值有关的最值可以利用绝对值的性质进行改编或者化为分段函数解决. 命题点2 绝对值不等式和数列的综合例4 (2016·浙江样卷)已知数列{a n }满足a 1=1,a n +1=12a n +1(n ∈N *).(1)证明:数列{|a n -12|}为单调递减数列;(2)记S n 为数列{|a n +1-a n |}的前n 项和,证明:S n <53(n ∈N *).证明 (1)由题意知a n >0,故|a n +1-12||a n -12|=|12a n +1-12||a n -12|=12a n +1<1,∴数列{|a n -12|}为单调递减数列.(2)∵a 1=1,a 2=13,∴当n ≥3时,|a n -12|<16,得13<a n <23,故a n ≥13(n ∈N *).∴|a n +1-12||a n -12|=12a n +1≤35.∴|a n +1-a n |=|a n +1-12+12-a n |≤|a n +1-12|+|a n -12|,∴S n =|a 2-a 1|+|a 3-a 2|+…+|a n +1-a n |≤|a 1-12|+|a 2-12|+…+|a n -12|+|a 2-12|+|a 3-12|+…+|a n +1-12|≤12[1-35n]1-35+16[1-35n]1-35<121-35+161-35=54+512=53.思维升华 (1)和绝对值不等式有关的范围或最值问题,可利用绝对值的几何意义或绝对值三角不等式进行放缩.(2)利用特殊点的函数值可探求范围;若函数解析式中含有绝对值,也可化为分段函数.已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围. 解 (1)当a =-3时,f (x )=⎩⎪⎨⎪⎧-2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1; 当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4. 所以当a =-3时,f (x )≥3的解集为{x |x ≤1或x ≥4}.(2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |. 当x ∈[1,2]时,|x -4|-|x -2|≥|x +a | ⇔4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a . 由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0. 故满足条件的a 的取值范围为[-3,0].16.绝对值不等式的解法典例 不等式|x +1|+|x -1|≥3的解集为_____________________.思想方法指导 对|x -a |+|x -b |≥c 型不等式的解法,一般可采用三种方法求解:几何法、分区间讨论法和图象法.解析 方法一 当x ≤-1时,原不等式可化为 -(x +1)-(x -1)≥3,解得x ≤-32;当-1<x <1时,原不等式可以化为x +1-(x -1)≥3,即2≥3,不成立,无解;当x ≥1时,原不等式可以化为x +1+x -1≥3,所以x ≥32.综上,原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞. 方法二 将原不等式转化为|x +1|+|x -1|-3≥0. 构造函数y =|x +1|+|x -1|-3, 即y =⎩⎪⎨⎪⎧-2x -3,x ≤-1,-1,-1<x <1,2x -3,x ≥1.作出函数的图象,如图所示:函数的零点是-32,32.从图象可知,当x ≤-32或x ≥32时,y ≥0,即|x +1|+|x -1|-3≥0.∴原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞.方法三 如图所示,设数轴上与-1,1对应的点分别为A ,B ,那么A ,B 两点的距离之和为2,因此区间[-1,1]上的数都不是不等式的解.设在A 点左侧有一点A 1,到A ,B 两点的距离之和为3,A 1对应数轴上的x .∴-1-x +1-x =3,得x =-32.同理设B 点右侧有一点B 1,到A ,B 两点的距离之和为3,B 1对应数轴上的x ,∴x -1+x -(-1)=3,得x =32.从数轴上可看到,点A 1,B 1之间的点到A ,B 的距离之和都小于3;点A 1的左边或点B 1的右边的任何点到A ,B 的距离之和都大于3. ∴原不等式的解集是⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞. 答案 ⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞1.不等式|2x -1|<3的解集是( ) A .(1,2) B .(-1,2)C .(-2,-1)D .(-∞,-2)∪(2,+∞) 答案 B解析 |2x -1|<3⇔-3<2x -1<3⇔-1<x <2. 2.不等式|2x -1|-|x -2|<0的解集是( ) A .{x |-1<x <1} B .{x |x <-1} C .{x |x >1} D .{x |x <-1或x >1} 答案 A解析 方法一 原不等式即为|2x -1|<|x -2|, ∴4x 2-4x +1<x 2-4x +4, ∴3x 2<3,∴-1<x <1.方法二 原不等式等价于不等式组①⎩⎪⎨⎪⎧x ≥2,2x -1-x -或②⎩⎪⎨⎪⎧12<x <2,2x -1+x -或③⎩⎪⎨⎪⎧x ≤12,-x -+x -不等式组①无解,由②得12<x <1,由③得-1<x ≤12.综上可得-1<x <1,∴原不等式的解集为{x |-1<x <1}. 3.函数y =|x -1|+|x +3|的最小值为( ) A .1 B .2 C .3 D .4 答案 D解析 y =|x -1|+|x +3|=|1-x |+|x +3|≥|1-x +x +3|=4, 当且仅当(1-x )(x +3)≥0,即-3≤x ≤1时取“=”. ∴当-3≤x ≤1时,函数y =|x -1|+|x +3|取得最小值4. 4.在实数范围内,不等式||x -2|-1|≤1 (x ∈R )的解集是( ) A .(0,4) B .[0,2] C .[0,4] D .(-2,2) 答案 C解析 由||x -2|-1|≤1,得-1≤|x -2|-1≤1, 即0≤|x -2|≤2,∴-2≤x -2≤2,∴0≤x ≤4.5.若不存在实数x 使|x -3|+|x -1|≤a 成立,则实数a 的取值范围是( ) A .(1,3) B .(-∞,2) C .(0,2) D .(1,+∞) 答案 B解析 |x -3|+|x -1|的几何意义为数轴上表示x 的点到表示3和1的点的距离之和,所以函数y =|x -3|+|x -1|的最小值为2,实数a 的取值范围是(-∞,2).6.(2016·杭州质检)不等式|x -1|+|x -2|≤5的解集为________.答案 [-1,4]解析 |x -1|+|x -2|表示数轴上的点到点1和点2的距离之和.如图,点A 和点B 之间的点到点1和点2的距离之和都小于5.∴原不等式的解集为[-1,4].7.设函数f (x )=|2x -1|+x +3,对f (-2)=________;若f (x )≤5,则x 的取值范围是__________.答案 6 [-1,1]解析 f (-2)=|2×(-2)-1|-2+3=6;f (x )≤5⇒|2x -1|+x +3≤5⇒|2x -1|≤2-x ⇒x -2≤2x -1≤2-x ,∴⎩⎪⎨⎪⎧ 2x -1≥x -2,2x -1≤2-x ⇒-1≤x ≤1.8.不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则实数a 的取值范围是________. 答案 (-∞,2)解析 由绝对值的几何意义知|x -4|+|x +5|≥9,则log 3(|x -4|+|x +5|)≥2,所以要使不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a <2.9.已知f (x )=|x -3|,g (x )=-|x -7|+m ,若函数f (x )的图象恒在函数g (x )图象的上方,则m 的取值范围是________.答案 (-∞,4)解析 由题意,可得不等式|x -3|+|x -7|-m >0恒成立,即(|x -3|+|x -7|)min >m ,由于数轴上的点到点3和点4的距离之和的最小值为4,所以要使不等式恒成立,则m <4.10.若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为________. 答案 (5,7)解析 由|3x -b |<4,得-4<3x -b <4,即-4+b 3<x <4+b 3, ∵不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则⎩⎪⎨⎪⎧ 0≤-4+b 3<1,3<4+b 3≤4⇒⎩⎪⎨⎪⎧ 4≤b <7,5<b ≤8,∴5<b <7.11.已知函数f (x )=|x +3|-|x -2|.(1)求不等式f (x )≥3的解集;(2)若f (x )≥|a -4|有解,求a 的取值范围.解 (1)f (x )=|x +3|-|x -2|≥3,当x ≥2时,有x +3-(x -2)≥3,解得x ≥2;当x ≤-3时,-x -3+(x -2)≥3,解得x ∈∅;当-3<x <2时,有2x +1≥3,解得1≤x <2.综上,f (x )≥3的解集为{x |x ≥1}.(2)由绝对值不等式的性质可得||x +3|-|x -2||≤|(x +3)-(x -2)|=5,则有-5≤|x +3|-|x -2|≤5.若f (x )≥|a -4|有解,则|a -4|≤5,解得-1≤a ≤9.所以a 的取值范围是[-1,9].12.(2016·全国甲卷)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解 f (x )=⎩⎪⎨⎪⎧ -2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2, 解得x >-1,所以-1<x ≤-12; 当-12<x <12时,f (x )<2; 当x ≥12时,由f (x )<2得2x <2,解得x <1,所以12≤x <1. 所以f (x )<2的解集M ={x |-1<x <1}.(2)证明 由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0,即(a +b )2<(1+ab )2,因此|a +b |<|1+ab |.13.设f (x )=|x -1|+|x +1|.(1)求f (x )≤x +2的解集;(2)若不等式f (x )≥|a +1|-|2a -1||a |对任意实数a ≠0恒成立,求x 的取值范围. 解 (1)由f (x )≤x +2,得⎩⎪⎨⎪⎧ x +2≥0,x ≤-1,1-x -x -1≤x +2或⎩⎪⎨⎪⎧ x +2≥0,-1<x <1,1-x +x +1≤x +2或⎩⎪⎨⎪⎧ x +2≥0,x ≥1,x -1+x +1≤x +2, 解得0≤x ≤2,∴f (x )≤x +2的解集为{x |0≤x ≤2}.(2)∵⎪⎪⎪⎪⎪⎪|a +1|-|2a -1||a | =⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪1+1a -⎪⎪⎪⎪⎪⎪2-1a ≤⎪⎪⎪⎪⎪⎪1+1a +2-1a =3 (当且仅当⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫2-1a ≤0时,取等号), ∴由不等式f (x )≥|a +1|-|2a -1||a |对任意实数a ≠0恒成立,可得|x -1|+|x +1|≥3, 解不等式,得x ≤-32或x ≥32.。

相关文档
最新文档