高中数学 算法初步 教师版

合集下载

苏教版高中数学必修三-第一章-算法初步1.2.3ppt课件

苏教版高中数学必修三-第一章-算法初步1.2.3ppt课件
.应用循环结构必须具备的条件: (1)算法问题中涉及到的运算进行了多次重复; (2)参与运算的数前后有规律可循. 2.循环结构解决累加(乘)时应注意的问题: (1)一般要引入累加(乘)变量和计数变量; (2)引入的变量要根据需要赋初值; (3)在循环体中要对计数变量的值加以改变,对判断框内 的变量的值也要改变.
教学时要以选择结构为知识的切入点,从学生的认知水 平和所需的知识特点入手,引导学生结合学过的选择结构, 不断地观察、分析,发现选择结构与循环结构之间的对应关 系;引导学生进行流程图的比较和分析,掌握两种循环结构 的区别和联系,理解循环条件的区别,并通过实例强化对循 环结构的理解和认识;从而化解难点. 引导学生回答所提问题, 理解两种循环结构的应用条件; 通过例题与练习让学生在应用循环结构的过程中体会该种结 构的特点和作用;以强化重点.
●教学建议 学生已经学习了算法的含义、顺序结构、选择结构及简 单的赋值问题.高一学生形象思维、感性认识较强,理性思 维、抽象认识能力还很薄弱,因此教学中选择学生熟悉的, 易懂的实例引入,通过对例子的分析,使学生逐步经历循环 结构设计的全过程,学会有条理的思考问题,表达循环结构, 并整理成流程图.
在教学中,应以学生为主体,教师为主导.指导学生学 会学习.学生在一定情境中对学习材料的亲身经验和发现, 才是学生学习的最有价值的东西.在传授知识的同时,必须 设法教给学生好的学习方法,让他们“会学习”.通过本节 课的教学,让学生学会从不同角度分析问题、解决问题;让 学生学会引申、变更问题,以培养学生发现问题、提出问题 的创造性能力.
【思路探究】 正整数. 【自主解答】 利用循环结构,重复操作,可求出最小
算法如下:
S1 S2 S3
S←1; i←3; 若 S≤5 000,则 S←S×i,i←i+2,重复 S3,否则

高中数学《算法初步》教案新人教A版必修

高中数学《算法初步》教案新人教A版必修

高中数学《算法初步》教案新人教A版必修章节一:算法概念及程序框图1. 教学目标:a. 理解算法的概念,体会算法在数学及日常生活中的应用。

b. 熟悉程序框图的基本组成部分,能够运用程序框图描述简单的算法。

2. 教学内容:a. 算法的定义及特性。

b. 程序框图的组成部分:顺序结构、条件结构、循环结构。

3. 教学重点与难点:a. 算法的概念理解。

b. 程序框图的绘制及应用。

4. 教学方法:a. 案例分析法:通过具体案例让学生理解算法概念。

b. 实践操作法:学生动手绘制程序框图,加深对算法理解。

5. 教学过程:a. 引入:通过日常生活中的算法案例,引导学生思考算法的概念。

b. 讲解:详细讲解算法的定义、特点及程序框图的组成部分。

c. 实践:学生动手绘制程序框图,教师巡回指导。

d. 总结:强调算法在实际问题中的应用价值。

章节二:顺序结构算法1. 教学目标:b. 能够运用顺序结构算法解决实际问题。

2. 教学内容:a. 顺序结构的定义及特点。

b. 顺序结构算法在实际问题中的应用。

3. 教学重点与难点:a. 顺序结构算法的理解。

b. 顺序结构算法在实际问题中的应用。

4. 教学方法:a. 案例分析法:通过具体案例让学生理解顺序结构算法。

b. 实践操作法:学生动手编写顺序结构算法,解决问题。

5. 教学过程:a. 引入:通过日常生活中的顺序结构算法案例,引导学生思考顺序结构的特点。

b. 讲解:详细讲解顺序结构的定义、特点及应用。

c. 实践:学生动手编写顺序结构算法,解决问题,教师巡回指导。

d. 总结:强调顺序结构算法在实际问题中的应用价值。

章节三:条件结构算法1. 教学目标:a. 理解条件结构的算法特点。

b. 能够运用条件结构算法解决实际问题。

2. 教学内容:b. 条件结构算法在实际问题中的应用。

3. 教学重点与难点:a. 条件结构算法的理解。

b. 条件结构算法在实际问题中的应用。

4. 教学方法:a. 案例分析法:通过具体案例让学生理解条件结构算法。

高中数学 第一章 算法初步 1.4 算法案例(3)教案 苏教版必修3(2021年最新整理)

高中数学 第一章 算法初步 1.4 算法案例(3)教案 苏教版必修3(2021年最新整理)

高中数学第一章算法初步1.4 算法案例(3)教案苏教版必修3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章算法初步1.4 算法案例(3)教案苏教版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章算法初步1.4 算法案例(3)教案苏教版必修3的全部内容。

1。

4 算法案例(3)教学目标:1.了解这种方法是求方程近似解的一般方法,能利用计算器求精确到0.01的实数解.2.理解二分法求方程近似解的算法,进一步理解函数与方程的关系.3.能根据算法语句与程序框图的知识设计完整的二分法求方程近似解的流程图并写出其伪代码.4.培养学生利用计算工具的能力.教学重点:1.利用二分法求给定精确度的方法近似解.2.能写出二分法求方程近似解的流程图和伪代码.教学难点:1.利用二分法求方程的近似解.2.二分法求方程近似解的流程图和伪代码.教学方法:1.通过模仿二分法求方程近似解,体会古人计算构思的巧妙.2.通过二分法求方程近似解的方法与步骤,了解数学计算转换为计算机计算的途径,从而探究计算计算法与数学算法的区别,体会计算机对数学学习的辅助作用.教学过程:一、问题情境在前面一节课中,我们已经学习了一些简单的算法,如不定方程的解、欧几里得辗转相除法求两个正整数的最大公约数等问题,对算法已经有了较为深刻的了解,下面,我们还将通过一个具体的算法案例,继续体会算法的思想.这就是我们本节课所要研究的问题—二分法求方程近似解.二、学生活动写出用区间二分法求解方程310x x --=在区间[1,1.5]内的一个近似解(误差不超过0.001)的一个算法.(1)算法设计思想:如图,如果估计出方程()0f x =在某区间[,]a b 内有一个根*x ,就能用二分法搜索求得符合误差限制c 的近似解.(2)算法步骤可以表示为:1S 取[,]a b 的中点20b a x +=,将区间一分为二; 根*x 在0x 的左2S 若0()0f x =,则0x 就是方程的根,否则判断侧还是右侧;若0()()0f a f x >,则*0(,)x x b ∈,以0x 代替a ;若0()()0f a f x <,则*0(,)x a x ∈,以0x 代替b ;转1S .3S 若||a b c -<,计算终止,此时*0x x ≈,否则三、建构教学伪代码1:R ea d a ,b ,c02a b x +← 结束 开始While ||a b c -≥ And 30010x x --≠If 3(1)a a --⨯300(1)x x --〈0 Then0b x ←Else0a x ←End If 02a bx +←End WhilePrint 0x伪代码2:Read ,,a b c0()2a b x +←3()1f a a a ←--3000()1f x x x ←--If 0()0f x = ThenGoTo 120If 0()()0f a f x < Then0b x ←Else0a x ←End IfIf ||a b c -≥ ThenGoTo 20Printx二分搜索的过程是一个多次重复的过程,故可以用循环结构来处理(代码1),课本解法是采用GoTo语句实现的(代码2).四、要点归纳与方法小结本节课学习了以下内容:1.二分法的算法和用伪代码表示该算法;2.GoTo语句的使用;3.解决实际问题的过程:分析-画流程图-写伪代码.。

高中数学《算法初步》教案新人教A版必修

高中数学《算法初步》教案新人教A版必修

高中数学《算法初步》教案新人教A版必修一、教学目标1. 理解算法的基本概念,了解算法在数学和日常生活中的应用。

2. 掌握算法的基本步骤,能够清晰地描述和分析算法的过程。

3. 学会使用循环结构编写算法,熟练掌握基本的编程技巧。

4. 通过解决实际问题,培养学生的逻辑思维能力和创新能力。

二、教学内容1. 算法的基本概念:算法、输入、输出、步骤2. 算法的基本步骤:排序、查找、乘法口诀、求解一元二次方程3. 循环结构:for循环、while循环、do-while循环4. 实际问题求解:编写算法解决生活中的实际问题,如计算器、购物清单等。

三、教学重点与难点1. 重点:算法的基本概念、基本步骤和循环结构。

2. 难点:循环结构的嵌套使用和复杂问题的算法设计。

四、教学方法与手段1. 采用问题驱动的教学方法,引导学生从实际问题中提炼出算法。

2. 使用多媒体教学手段,展示算法的过程和效果,增强学生的直观感受。

3. 引导学生通过编程实践,巩固算法知识,提高解决问题的能力。

五、教学安排1. 第一课时:介绍算法的基本概念,学习算法的输入、输出、步骤。

2. 第二课时:学习算法的基本步骤,掌握排序、查找、乘法口诀、求解一元二次方程等基本算法。

3. 第三课时:学习循环结构,掌握for循环、while循环、do-while循环的用法。

4. 第四课时:运用所学算法解决实际问题,编写算法程序。

5. 第五课时:进行课堂讨论,分享算法解决问题的经验,进行算法设计的交流和探讨。

六、教学过程1. 导入:通过引入日常生活中的算法例子,如计算购物找零、制定旅行计划等,激发学生的兴趣,引出算法的概念。

2. 新课导入:介绍算法的定义、特点和作用,引导学生了解算法在数学和科学领域中的应用。

3. 案例分析:分析排序、查找等基本算法,让学生通过具体案例理解算法的基本步骤和原理。

4. 编程实践:让学生动手编写简单的算法程序,如排序算法、查找算法等,加深对算法概念的理解。

苏教版高中数学必修三-第一章-算法初步1.2.1ppt课件

苏教版高中数学必修三-第一章-算法初步1.2.1ppt课件

已知一个三角形的三边长分别为 2,3,4.利用海伦公式设 计一个算法,求出该三角形的面积,并画出流程图.(海伦公 式:已知三角形的三边长分别为 a,b,c,则三角形的面积 S a+b+c = pp-ap-bp-c,其中 p= 2 )
【解】
先将三角形的各边长赋值,求出三角形周长的
一半,然后利用公式求解. 算法如下: S1 a←2,b←3,c←4;
组成的,其中图框
表示各种操作的类型, 图框中的 文字 和 符号 表示操作的内 容, 流程线 表示操作的先后次序.
2.常见的图框、流程线及功能
图形符号
功能 表示算法的 开始或 结束 ,一般画 起止框 成 圆角矩形 输入、输出 输入、 表示 操作,一般画成 平行四边形 输出框 或 计算 ,一般画成 矩形 处理框 表示 赋值 根据条件决定执行两条路径中 判断框 某一条 菱形 ,一般画成 表示 执行步骤 流程线 箭头线 表示 的
在老师的引导下,充分发挥学生的主观能动性,从问题 入手,通过分析问题、交流方案、解决问题、运用问题的探 索过程,让学生全程参与到问题的探索中而突破难点. 通过学生对常见的图框及功能的理解和认识,结合典型 例题及变式训练,使学生初步掌握顺序结构的流程图的设计 而强化了重点.
●教学流程
演示结束
§1.2 流程图 1.2.1 顺序结构
教师用书独具演示
●三维目标 1.知识与技能:掌握顺序结构的特点,设计方法. 2.过程与方法:学会用算法分析问题;能够使用顺序结 构编写简单的程序解决具体问题.
3.情感态度与价值观:体会用结构化方法解决数学问题 的便捷性;明确结构化在程序设计中的重要作用;激励尝试 使用多种方法解决问题;培养良好的编程习惯和态度. ●重点难点 重点:各种图框的功能,会用算法图框表示顺序结构. 难点:对顺序结构的概念的理解;利用图框表示流程线 顺序结构.

苏教版高中数学必修三-第一章-算法初步1.4ppt课件

苏教版高中数学必修三-第一章-算法初步1.4ppt课件
§1.4 算法案例
教师用书独具演示
●三维目标 1.知识与技能: (1)理解辗转相除法原理; (2)能用自然语言、流程图和伪代码表达辗转相除法; (3)能应用迭代算法思想.
2.过程与方法: (1)培养学生把具体问题抽象转化为算法语言的能力; (2)培养学生自主探索和合作学习的能力. 3.情感态度与价值观: (1)使学生进一步了解从具体到抽象,抽象到具体的辨证 思想方法,对学生进行辨证唯物主义教育; (2)创设和谐融洽的教学氛围和阶梯形问题,使学生在活 动中获得成功感,从而培养学生热爱数学、积极学习数学、 应用数学的热情.
已知函数 f(x)=x2-5, 画出求方程 f(x)=0 在[2,3] 上的一个近似解(误差不超过 0.001)的流程图, 并写出伪代码.
【思路探究】 解答本题可先回忆一下二分法求近似解
的步骤,由步骤画出流程图,然后再写出算法的伪代码.
【自主解答】 流程图如图所示:
伪代码为:
给定误差 c,用二分法求函数 f(x)的零点 x0 的近似值的步 骤如下: (1)确定区间[a,b],验证 f(a)f(b)<0,给定误差值; (2)求区间[a,b]的中点 x1; (3)计算 f(x1), 若 f(x1)=0,则 x1 就是函数的零点; 若 f(a)f(x1)<0,则令 b=x1(此时零点 x0∈(a,x1)); 若 f(x1)f(b)<0,则令 a=x1(此时零点 x0∈(x1,b)); (4)判断,若 |a-b |<c,计算终止,此时,x0≈x1,否则重 复步骤(2)~(4).
57,171=3×57,所以 228 与 1 995 的最大公约数为 57. (2)324=243×1+81,243=81×3,所以 324 与 243 的最 大公约数为 81,又 270=81×3+27,81=27×3,故 81 与 270 的最大公约数为 27,综上可知,324,243,270 这三个数的最大 公约数为 27.

高中数学《算法初步复习课》教案新人教版必修

高中数学《算法初步复习课》教案新人教版必修

高中数学《算法初步复习课》教案新人教版必修一、教学目标1. 理解算法的基本概念和性质。

2. 掌握算法的步骤和算法的表示方法。

3. 能够分析算法的效率和应用。

4. 培养学生的逻辑思维和解决问题的能力。

二、教学内容1. 算法的基本概念:算法、输入、输出、有穷性、确定性。

2. 算法的步骤:顺序结构、选择结构、循环结构。

3. 算法的表示方法:流程图、伪代码。

4. 算法的效率:时间复杂度、空间复杂度。

5. 算法的应用:排序算法、查找算法。

三、教学重点与难点1. 教学重点:算法的基本概念、算法的步骤、算法的表示方法、算法的效率。

2. 教学难点:算法的效率分析、排序算法和查找算法的应用。

四、教学方法1. 采用问题驱动的教学方法,引导学生通过问题解决来学习算法。

2. 使用案例分析和实例演示,帮助学生理解算法的概念和应用。

3. 利用流程图和伪代码,培养学生表达和设计算法的能力。

4. 组织学生进行小组讨论和合作学习,促进学生之间的交流和思考。

五、教学过程1. 导入:通过引入生活中的算法问题,激发学生的兴趣和思考。

2. 讲解算法的基本概念,引导学生理解算法的定义和性质。

3. 演示算法的步骤,通过实例讲解顺序结构、选择结构和循环结构的应用。

4. 介绍算法的表示方法,讲解流程图和伪代码的绘制和理解。

5. 分析算法的效率,讲解时间复杂度和空间复杂度的概念和计算方法。

6. 应用实例:讲解排序算法和查找算法的原理和实现。

7. 练习与讨论:学生独立完成练习题,并进行小组讨论和解答。

8. 总结与评价:总结本节课的重点内容,进行课堂评价和反馈。

9. 作业布置:布置相关的练习题,巩固所学内容。

10. 课后反思:教师进行课后反思,总结教学效果和学生的学习情况,为下一步的教学做好准备。

六、教学评估1. 课堂讲解评估:观察学生对算法概念的理解程度,以及对算法步骤和表示方法的掌握情况。

2. 练习题评估:通过学生完成的练习题,评估学生对算法效率和应用的理解和应用能力。

(教师用书)高中数学 第一章 算法初步教案 苏教版必修3

(教师用书)高中数学 第一章 算法初步教案 苏教版必修3

第一章算法初步§1.1算法的含义(教师用书独具)●三维目标1.知识与技能:了解算法的含义,体会算法的思想;能够设计解决具体问题的算法;理解算法应满足的要求.2.过程与方法:让学生感悟人们认识事物的一般规律:由具体到抽象,再由抽象到具体,培养学生的观察能力,表达能力和逻辑思维能力.3.情感态度与价值观:对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一有力工具,进一步提高探索、认识世界的能力.●重点难点重点:初步理解算法的含义,体会算法思想,能够用自然语言描述算法.难点:用自然语言描述算法.引导学生一起回顾如何解二元一次方程组,并引导他们归纳二元一次方程组的求解步骤,从而让学生经历算法分析的基本过程,培养思维的条理性,引导学生关注更具一般性解法,形成解法向算法过渡的准备,为建立算法概念打下基础而化解难点.引导学生回顾解一般的二元一次方程组的步骤,分析解题过程的结构,写出求一般的二元一次方程组的解的算法,并把它编成程序,让学生输入数据,体验计算机直接给出方程组的解.目的是让学生明白算法是用来解决某一类问题的,从而提高学生对算法的普遍适用性的认识,从而强化重点.(教师用书独具)●教学建议算法这部分的应用性很强,与日常生活联系紧密,虽然是新引入的章节,但很容易激发学生的学习兴趣.建议教师通过多媒体辅助教学,采用“问题探究式”教学法,以多媒体为辅助手段,让学生主动发现问题、分析问题、解决问题,培养学生的探究论证、逻辑思维能力.●教学流程创设问题情境,引出问题:宋丹丹的小品中要把大象关冰箱总共分几步?⇒引导学生结合所提出的问题归纳,分析,总结算法的含义.⇒通过引导学生回答所提问题理解算法的特点及能够解决的问题.⇒通过例1及其变式训练,使学生理解算法的含义及特征.⇒通过例2及其变式训练,使学生能设计算法(直接应用数学公式的算法).⇒通过例3及其变式训练,使学生明确解方程或方程组的算法并掌握其设计的方法和策略.⇒归纳整理,进行课堂小结,整体认识本节课所学知识并分层布置作业.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.宋丹丹的小品中有一个问题,把大象关进冰箱里需要几步.【提示】总共分三步:第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.对一类问题的机械的、统一的求解方法称为算法.(1)有限性:一个算法的步骤是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行,可以得到确定的结果,而不是模棱两可.(3)不惟一性:求解某一个问题的算法不一定是惟一的,可以有不同的算法,当然这些算法有繁简之分、优劣之别.(4)普遍性:很多具体的问题,都可以设计出合理的算法去解决.下列叙述能称为算法的个数是________.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100; ③3x >x +1;④求所有能被3整除的正数,即3,6,9,12…. 【思路探究】 根据算法的特征逐一作出判断.【自主解答】 ①②都是算法;③中没有给出一个确定的逻辑步骤来确定下一步做什么,不符合算法的确定性;④中的步骤是无限的,与算法的有限性矛盾.故应填2.【答案】 21.算法的定义是一个描述性定义,而算法的特征:明确性、有限性、可行性等揭示了算法的内涵,因此对于算法的了解,应从其特征入手.2.算法与普通数学问题的求解步骤是共性与个性的统一,但不能认为算法就是数学问题的求解步骤,它是解决一类问题的求解方法.下列语句中是算法的有________个.①从济南到巴黎,可以先乘火车到北京,再坐飞机抵达; ②利用公式S =12ah ,计算底为1、高为2的三角形的面积;③方程2x 2-x +1=0无实数根;④求M (1,2)与N (-3,-5)两点连线所在直线的方程,可先求直线MN 的斜率,再利用点斜式求得方程.【解析】 算法是解决某类问题而设计的一系列可操作或可计算的步骤,通过这些可有效地解决问题,显然四个语句中,①②④都是算法,③不是算法.【答案】 3设计一个算法,求底面边长为42,侧棱长为5的正四棱锥的体积.【思路探究】 由底边长可求底面积.由底面边长及侧棱长可求出正四棱锥的高,然后代入体积公式即可.【自主解答】S1 取a =42,l =5; S2 计算R =2·a2;S3 计算h =l 2-R 2; S4 计算S =a 2; S5 计算V =13Sh ;S6 输出运算结果.1.设计算法的步骤为:(1)认真分析问题,找出解决此问题的一般数学方法; (2)借助有关的变量或参数对算法加以表述; (3)将解决问题的过程划分为若干步骤;(4)用简练的语言将各个步骤表示出来,即为该具体问题的算法.2.设计算法要做到以下几点:(1)写出的算法必须能解决一类问题,并且能够重复使用;(2)要使算法尽量简单,步骤尽量少;(3)要保证算法正确,且计算机能够执行.(2013·潍坊高一检测)求两底面半径分别为2和4,高为4的圆台的表面积及体积,写出解决该问题的一个算法.【解】S1 取r 1=2,r 2=4,h =4; S2 计算l =r 2-r 12+h 2;S3 计算S =πr 21+πr 22+π(r 1+r 2)·l ; S4 计算V =13π(r 21+r 22+r 1r 2)·h ;S5 输出S 、V .写出解方程x 2-2x -3=0的一个算法.【思路探究】 解一元二次方程可用因式分解法和分式法,根据这两种方法写出算法. 【自主解答】 法一 S1 移项,得x 2-2x =3①; S2 将①两边同时加上1,并配方,得(x -1)2=4②; S3 将②两边开平方得x -1=±2③; S4 解③得x 1=3,x 2=-1.法二 S1 计算判别式Δ=(-2)2-4×1×(-3);S2 将a =1,b =-2,c =-3代入求根公式x =-b ±b 2-4ac 2a ,得x 1=3,x 2=-1.1.对于这类解方程(或方程组)的问题,设计其算法时,一般按照数学上解方程(或方程组)的方法进行设计.2.设计时要注意全面考虑方程(或方程组)的解的情况,即先确定方程(或方程组)是否有解,有解时,还需确定几个解,然后按照求解的步骤设计.写出求方程组⎩⎨⎧3x -2y =14, ①x +y =-2, ②的解的算法.【解】 法一 S1 ②×2+①,得5x =14-4③; S2 解方程③,得x =2④; S3 将④代入②,得2+y =-2⑤; S4 解⑤得y =-4; S5 得到方程组的解为⎩⎪⎨⎪⎧x =2,y =-4.法二 S1 由②式移项可得x =-2-y ③; S2 把③代入①,得y =-4④; S3 把④代入③,得x =2;S4 得到方程组的解为⎩⎪⎨⎪⎧x =2,y =-4.忽视算法的确定性致错给出将1 573分解成奇因数的乘积的形式的一个算法.【错解】 算法步骤如下: S1 判断1 573是否为素数:否;S2 寻找1 573的最小奇因数;不是2,不是3…….【错因分析】 第二步的结果是不确定的,“不是2,不是3……,到底有多少不确定”. 【防范措施】 算法的每一步都要有明确具体的结果,设计算法时要明确每一个步骤,只能有一个确定的后续步骤并且得到确定的结果,不能模棱两可.【正解】 算法步骤如下: S1 判断1 573是否为素数:否;S2 确定1 573的最小奇因数:11,即1 573=11×143; S3 判断143是否为素数:否;S4 确定143的最小奇因数:11,即143=11×13; S5 判断13是否为素数:是; S6 1 573=11×11×13.算法的含义要明确以下两点:1.算法是建立在解法基础上的操作过程,算法不一定有结果,答案可以由计算机解决.2.算法没有固定的模式,但有以下几个要求.(1)符合运算规则,计算机能操作.(2)每一个步骤都有一个明确的计算任务.(3)对重复操作步骤返回处理.(4)步骤个数尽可能少.(5)每个步骤的语言描述要准确,简明.1.给出以下叙述:①过河要走桥或乘船;②老师提出的问题能回答正确;③做米饭需刷锅、淘米、添水、加热等几个步骤;④学习通常需要预习、听讲、质疑、练习、复习巩固等步骤.其中能称为算法的是________.【解析】①②具有不确定性,③④与实际相符,每一步都具有确定性和可执行性,都可称为一个算法.【答案】③④2.在教材中的“猜数”游戏中,主持人告诉竞猜者某商品的价格低于4 000元,而该商品的实际价格为1 500元,则竞猜者用二分搜索法猜数时第一次的报数为________,按照教材中的规则,此人需要________次即可猜中.【解析】每次报数都是取中间值,所以第一次报数应该取0与4 000的中间值2 000,第二次报数0与2 000的中间值1 000,第三次报1 000与2 000的中间值1 500.【答案】 2 000 33.下面给出了一个计算圆的面积的算法:S1 取R=5;S2 计算S=πR2;S3 输出S.则S=________.【解析】S=π×52=25π.【答案】25π4.已知直角三角形两直角边长a,b,设计求斜边长c的一个算法.【解】S1 输入直角三角形的两直角边长a、b的值;S2 计算c=a2+b2;S3 输出斜边长c的值.一、填空题1.看下面的三段话,其中不是解决问题的算法的是________.①解一元二次方程的步骤是去分母,去括号,移项,合并同类项,系数化为1.②方程x2=4有两个实根.③求1+2+3+4的值,先计算1+2=3,再计算3+3=6,最后计算6+4=10,最终结果为10.【解析】结合算法的含义知②不是解决问题的算法.【答案】②2.下列关于算法的描述正确的是________.①算法与求解一个问题的方法相同②算法只能解决一个问题,不能重复使用③算法过程要一步一步执行,每步执行的操作必须确切④设计算法要本着简单可行的原则【解析】根据算法的含义及特点,只有③④正确.【答案】③④3.下列所给问题中,其中不能设计一个算法求解的是________.①二分法解方程x 2-3=0(精确到0.01); ②解方程组⎩⎪⎨⎪⎧x +y +5=0,x -y +3=0;③求半径为2的球的体积; ④证明y =x 2为偶函数.【解析】 根据算法特征知①②③都可以设计算法求解,而④不可以. 【答案】 ④4.用电水壶烧开水的一个算法过程如下: S1 打开电水壶的盖子,加水后盖上盖子; S2 接通电源;S3 在水开后,断开电源. 对于上述算法,有以下几种说法: ①顺序不能改变;②第一步与第二步可以互换; ③第二步是必须具有的步骤;④第三步可以变为“在水开后,倒出开水”. 其中说法正确的是________.【解析】 ①③正确,②④的说法不符合安全用电常识. 【答案】 ①③5.(2013·广州高一检测)完成不等式-2x -5>x +1的算法过程. S1 移项并合并同类项,得________.S2 在不等式的两边同时除以x 的系数,得________. 【解析】 依据解一元一次不等式的步骤进行. 【答案】 -3x >6 x <-26.已知一个学生的语文成绩是89,数学成绩是96,外语成绩是99,求他的总分和平均分的一个算法如下,请补充完整:S1 取A =89,B =96,C =99; S2 计算总分S =________; S3 计算平均分M =________; S4 输出S ,M .【解析】 总分S =89+96+99; 平均分M =89+96+993=S3.【答案】 89+96+99 S37.(2013·西宁高一检测)对于一般的二元一次方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2,设计解此方程组的算法时,第一步为________.【解析】 由于未知数的系数不确定,故该方程组不一定有解,当a 1b 2=a 2b 1时,该方程组无解,故第一步应为验证a 1b 2与a 2b 1是否相等.【答案】 验证a 1b 2=a 2b 1是否成立8.有一堆形状大小相同的珠子,其中只有一粒重量比其他的轻,某同学利用科学的算法,最多两次利用天平找出了这颗最轻的珠子,则这堆珠子最多的粒数是________.【解析】 最多是9粒,第一次是天平每边3粒,若平衡,则所求在剩余的3粒中,在这3粒中选出两粒,再放在天平的两边,若平衡,余下的一颗即为最轻的珠子,若不平衡,则天平高的一边即为最轻的珠子;若第一次天平不平衡,则在轻的一边选出两粒,再放在天平的两边,同样可以得到最轻的珠子.【答案】 9 二、解答题9.写出求一元二次方程ax 2+bx +c =0的根的一个算法. 【解】 算法如下:S1 计算Δ=b 2-4ac ; S2 若Δ<0,则方程无实根;S3 若Δ≥0,则x (1,2)=-b ±b 2-4ac2a.10.已知平面直角坐标系中点A (-2,0),B (3,1),写出求直线AB 的方程的一个算法. 【解】 法一 算法步骤如下. S1 求出直线AB 的斜率k =1-03--=15; S2 选定A (-2,0),用点斜式写出直线AB 的方程y -0=15[x -(-2)];S3 将第二步的运算结果化简,得到方程x -5y +2=0. 法二 算法步骤如下.S1 设直线AB 的方程为y =kx +b ;S2 将A (-2,0),B (3,1)代入第一步设出的方程,得到⎩⎪⎨⎪⎧-2k +b =0,3k +b =1;S3 解第二步所得的方程组,得到k =15,b =25;S4 把第三步得到的结果代入第一步所设的方程,得到y =15x +25;S5 将第四步所得的结果整理,得到方程x -5y +2=0.11.试写出一个判断圆(x -a )2+(y -b )2=r 2和直线Ax +By +C =0位置关系的算法. 【解】 S1 输入圆心的坐标(a ,b ),直线方程的系数A 、B 、C ; S2 计算Z 1=Ax 0+By 0+C ; S3 计算Z 2=A 2+B 2; S4 计算d =|Z 1|Z 2;S5 若d >r ,则相离;若d =r ,则相切,若d <r ,则相交.(教师用书独具)实际问题的算法设计有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题.【思路探究】 本题实质上是考查交换两个变量值的算法.要交换两个变量的值,要先寻找第三个变量作为中间变量,再进行交换.【规范解答】 S1 找一个大小与蓝和黑两个墨水瓶相同的空瓶子A ; S2 将蓝墨水倒入空瓶子A 中;S3 将黑墨水倒入原来装蓝墨水的瓶子中; S4 将蓝墨水倒入原来装黑墨水的瓶子中.两个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡一个大人或两个小孩,他们四人都会划船,但都不会游泳,他们如何渡河?请写出你设计的渡河的算法.【解】 S1 两个小孩同船渡过河去; S2 一个小孩划船回来;S3 一个大人独自划船渡过河去;S4 对岸的小孩划船回来;S5 两个小孩再同船渡过河去;S6 一个小孩划船回来;S7 余下的另一个大人独自划船渡过河去;S8 对岸的小孩划船回来;S9 两个小孩再同船渡过河去.§1.2流程图1.2.1 顺序结构(教师用书独具)●三维目标1.知识与技能:掌握顺序结构的特点,设计方法.2.过程与方法:学会用算法分析问题;能够使用顺序结构编写简单的程序解决具体问题.3.情感态度与价值观:体会用结构化方法解决数学问题的便捷性;明确结构化在程序设计中的重要作用;激励尝试使用多种方法解决问题;培养良好的编程习惯和态度.●重点难点重点:各种图框的功能,会用算法图框表示顺序结构.难点:对顺序结构的概念的理解;利用图框表示流程线顺序结构.(教师用书独具)●教学建议从知识结构上来说,学生在本章第一节已经了解了一些算法的基本思想,这是本节课的重要知识基础,从能力上来说,这个阶段的学生已经具有一定的分析问题、解决问题的能力,逻辑思维能力也初步形成,思维比较活跃但缺乏严谨性.因此,在设计教学中不仅要充分调动学生的学习积极性,更要注意培养学生严谨的数学思维和语言组织能力.由于学生首次接触算法图框,根据教学内容、教学目标和学生的认知水平,本节课主要采取问题导入式教学,即“创设情境,提出问题——讨论问题,提出方案——交流方案,解决问题——模拟练习,运用问题——归纳总结,完善认识”,通过对问题的探究过程让学生掌握新知识,同时在解决问题的过程中掌握新知识的应用和解题过程,提高学生独立解题的能力.在老师的引导下,充分发挥学生的主观能动性,从问题入手,通过分析问题、交流方案、解决问题、运用问题的探索过程,让学生全程参与到问题的探索中而突破难点.通过学生对常见的图框及功能的理解和认识,结合典型例题及变式训练,使学生初步掌握顺序结构的流程图的设计而强化了重点.●教学流程创设问题情境,引出问题:如何形象直观的表示算法?⇒引导学生结合前面学习过的算法的含义理解常见的图框及功能,把握流程图的概念.⇒通过引导学生回答所提问题理解顺序结构的特点及能够解决的问题.⇒通过例1及其变式训练,使学生对流程图能够正确的认识和理解.⇒通过例2及其变式训练,使学生掌握较顺序结构流程图的画法.⇒通过例3及其变式训练,使学生明确顺序结构在实际生活中的应用并掌握求解策略.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.1.如何形象直观的表示算法?【提示】图形方法.2.用图形方法表示算法有何优点? 【提示】 简洁、直观.1.流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2.常见的图框、流程线及功能顺序结构有何特点?【提示】 任何一个算法都离不开顺序结构,顺序结构是最简单、最基本的结构.依次进行多个处理的结构称为顺序结构.如图1-2-1,虚线框内是一个顺序结构,其中A 和B 两个框是依次执行的.顺序结构是一种最简单、最基本的结构.图1-2-1关于流程图的图形符号的理解正确的是______.(填序号)①流程图是描述算法的图形语言.②输入框可以在起始框后,也可以在判断框后.③判断框是唯一一个具有超过一个出口的图形符号.【思路探究】根据流程图的规则和每个框图所表示的功能逐一判断.【自主解答】①正确,由流程图的定义知.②正确,输入框可以在任何需要输入、输出的地方出现.③正确,判断框是具有多个出口的唯一符号.【答案】①②③正确理解流程图的概念,对构成流程图的各种图形符号的功能要准确把握,具体应用时注意其特点.掌握流程图的画法规则,画流程图的规则如下:(1)使用标准的图形符号;(2)一般按从上到下、从左到右的方向画;(3)除判断框外,大多数流程图的符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;(4)判断框分两大类:一类判断框是“Y”与“N”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果;(5)在图形符号内描述的语言要非常简练、清楚.下列说法正确的是________.①任何一个流程图都必须有起止框;②流程线表示算法步骤执行的顺序,用来连结图框;③一个自然语言描述的算法只能对应一个流程图;④流程图中的流程线可以箭头不朝下.【解析】一个自然语言描述的算法,可能有多个流程图与之对应.【答案】①②④(2013·连云港高一检测)利用梯形的面积公式计算上底长为2、下底长为4、高为5的梯形的面积,设计解决该问题的一个算法,并画出流程图.【思路探究】 根据梯形的面积公式S =12(a +b )·h ,其中a 为上底长,b 为下底长,h为高,只要令a ←2,b ←4,h ←5,代入公式即可.【自主解答】 算法如下: S1 a ←2,b ←4,h ←5; S2 S ←12(a +b )·h ;S3 输出S . 流程图如下:1.画流程图时,应先根据题意设计算法,再画流程图,一般不直接画流程图. 2.应用顺序结构表示算法的步骤:(1)仔细审题,理清题意,找到解决问题的方法; (2)梳理解题步骤;(3)用数学语言描述算法,明确输入量、计算过程、输出量; (4)用流程图表示算法过程.已知一个三角形的三边长分别为2,3,4.利用海伦公式设计一个算法,求出该三角形的面积,并画出流程图.(海伦公式:已知三角形的三边长分别为a ,b ,c ,则三角形的面积S =pp -a p -bp -c ,其中p =a +b +c2)【解】 先将三角形的各边长赋值,求出三角形周长的一半,然后利用公式求解. 算法如下:S1 a ←2,b ←3,c ←4;S2 p ←a +b +c2;S3 S ←p p -a p -b p -c ;S4 输出S .流程图如图所示.如图1-2-2所示是为解决某个问题而绘制的流程图,仔细分析各图框内的内容及图框之间的关系,回答下面的问题:图1-2-2(1)该流程图解决的是怎样的一个问题?(2)若最终输出的结果y 1=3,y 2=-2,当x 取5时输出的结果5a +b 的值应该是多少? (3)在(2)的前提下,输入的x 值越大,输出的ax +b 是不是越大?为什么? (4)在(2)的前提下,当输入的x 值为多大时,输出结果ax +b 等于0?【思路探究】 先分析流程图的功能,然后根据函数关系式中变量间的关系依次解答,同时还要注意流程图中不同形式的图框的功能.【自主解答】 (1)该流程图解决的是求函数f (x )=ax +b 的函数值的问题. (2)y 1=3,即2a +b =3,y 2=-2, 即-3a +b =-2.由⎩⎪⎨⎪⎧2a +b =3,-3a +b =-2,得⎩⎪⎨⎪⎧a =1,b =1.∴f (x )=x +1.∴当x 取5时,5a +b =f (5)=5+1=6.(3)输入x 值越大,输出的函数值ax +b 越大.因为函数为增函数.(4)令f (x )=x +1=0,得x =-1,因此,当输入x 的值为-1时,输出的函数值为0.1.已知流程图,回答问题,首先应理清流程图的结构,本例中的流程图为——顺序结构.2.已知流程图的函数问题,将框图所表示的算法翻译成自然语言,是由用自然语言表达的算法画出流程图的逆向过程.对这两种语言的互译有助于熟练掌握算法的设计,而将流程图翻译成自然语言相对而言比较陌生,是一个难点.阅读如图1-2-3所示的流程图,回答下面的问题.图1-2-3(1)图框①中x ←4的含义是什么?(2)图框②中y 1←x 3+2x +3的含义是什么?计算y 1(3)图框④中y2←x2-2x的含义是什么?计算y2【解】(1)图框①的功能是初始化变量,令x=4.(2)图框②中y1←x3+2x+3的含义:该图框是在执行①的前提下,即当x=4时,计算x3+2x+3的值,并令y1等于这个值,y1=43+2×4+3=75.(3)图框④中y2←x2-2x的含义:该图框是在执行③的前提下,即当x=-1时,计算x2-2x的值,并令y2等于这个值,y2=(-1)2-2×(-1)=3.混淆构成流程图的符号及作用致误已知x=4,y=2,画出计算W=3x+4y的值的流程图.【错解】流程图如图(1)所示.(1) (2)【错因分析】输出框用平行四边形,而此题的错解中用了矩形框.【防范措施】 1.流程图中特定的符号表示特定的含义,不能乱用.2.熟练掌握流程图中的常见符号的含义及功能,掌握画流程图的技巧和方法.【正解】如图(2)画流程图时所遵循的规则如下:(1)使用标准的图形符号;(2)一般按从上到下、从左到右的方向画;(3)除判断框外,大多数流程图的符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果,另一类是多分支判断,有几种不同的结果;(5)在图形符号内描述的语言要非常简练、清楚.1.下列是流程图的一部分,表示合理的是________.【解析】③是输入、输出框,不合要求,①②均可.【答案】①②2.流程图的图框“”可完成下列中的________.①输入a←10②判断a>10③输出a←10④赋值a←10【解析】图框为矩形框,其功能为计算或赋值,故④正确.【答案】④3.下列流程图1-2-4中输出S的值为________.图1-2-4【解析】该流程图的功能是求半径为r的圆的面积又r=5,∴S=25π.【答案】25π4.已知一个圆柱的底面半径为R,高为h,求出圆柱体积.设计解决该问题的一个算法,并画出相应的流程图.【解】算法如下:S1 输入R、h;S2 V←πR2h;S3 输出V.流程图如图.一、填空题1.下列关于流程线的说法.①流程线表示算法步骤执行的顺序,用来连结图框;②流程线只要是上下方向就表示自上向下执行可以不要箭头;③流程线无论什么方向,总要按箭头的指向执行;④流程线是带有箭头的线,它可以画成折线.其中正确的有________.【答案】①③④2.流程图中表示判断的图框是________.【解析】由各种图框的符号及含义表示可知一般用菱形框表示判断框.【答案】3.图1-2-5(2013·苏州高一检测)如图1-2-5所示,A杯原来装酒,B杯原来装油,C杯原来空杯,则流程图运行结果为(每次操作都全部倒完)A杯为______,B杯为________,C杯为________.【解析】运行结果为先把酒放到空杯C中,此时A杯空着,然后把B中的油放到A杯中,此时B杯空着,最后将C杯中的酒放到B杯中,此时C杯空着,此时A杯中为油,B 杯中为酒,C杯为空杯.【答案】油酒空杯4.如图1-2-6所示的流程图的输出结果P=________.图1-2-6【解析】P=m+5=2+5=7.【答案】75.图1-2-7(2013·宿迁高一检测)给出如图1-2-7所示流程图,若输出结果为12,则①处的图框中应填的是________.【解析】由b=a-3=12知a=15,∴3x-3=15即x=6,∴①中应填x←6.【答案】x←66.下列图1-2-8中的算法功能为________.(a>0,b>0)图1-2-8【解析】 d =a 2+b 2,c =d =a 2+b 2故可根据几何意义填,答案不唯一. 【答案】 求以a ,b 为直角的直角三角形斜边的长度7.图1-2-9(2)是计算图1-2-9(1)的阴影部分面积的一个流程图,则①中应该填________.图(1) 图(2)图1-2-9【解析】 设阴影部分面积为M ,则M =x 2-π·(x 2)2=(1-π4)x 2.【答案】 M ←(1-π4)x 28.图1-2-10如图1-2-10是一个算法的流程图,已知a 1=3,输出的结果为7,则a 2的值为________. 【解析】 由输出的结果为7易知a 1+a 2=14,又a 1=3,∴a 2=11. 【答案】 11。

高中数学 第一章 算法初步教案 (教师用) 新人教A版必修3

高中数学 第一章 算法初步教案 (教师用) 新人教A版必修3

新人教A版数学必修3全套教案第一章算法初步一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。

2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。

3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。

理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。

理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。

进一步体会算法的基本思想。

4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。

点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。

二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。

随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。

需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。

在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。

高中数学《算法初步》教案新人教A版必修

高中数学《算法初步》教案新人教A版必修

高中数学《算法初步》教案新人教A版必修一、教学目标1. 理解算法的基本概念,了解算法的特点和作用。

2. 掌握算法的基本步骤,能够正确写出简单的算法。

3. 学会分析算法的效率,提高解决问题的能力。

4. 培养逻辑思维能力和编程能力。

二、教学内容1. 算法的基本概念:算法、输入、输出、步骤。

2. 算法的基本步骤:顺序结构、条件结构、循环结构。

3. 算法分析:时间复杂度、空间复杂度。

4. 简单的算法实例:求和、求积、排序等。

三、教学重点与难点1. 重点:算法的基本概念、基本步骤、算法分析。

2. 难点:算法分析中的时间复杂度和空间复杂度的计算。

四、教学方法1. 采用问题驱动的教学方法,引导学生从实际问题中提出算法需求。

2. 使用案例教学法,通过具体的算法实例讲解算法的实现过程。

3. 利用编程工具,让学生动手实践,加深对算法的理解。

4. 采用小组讨论法,培养学生的合作能力和解决问题的能力。

五、教学过程1. 导入:通过一个实际问题引入算法概念,激发学生的兴趣。

2. 讲解:讲解算法的基本概念、基本步骤和算法分析的方法。

3. 实例演示:给出一个简单的算法实例,演示算法的实现过程。

4. 练习:让学生动手编写简单的算法,巩固所学知识。

5. 总结:对本节课的内容进行总结,布置课后作业。

六、教学评估1. 课堂练习:在学习过程中,穿插一些练习题,以检查学生对算法基本概念和步骤的理解。

2. 小组讨论:通过小组合作完成一个算法实例,评估学生在合作中的沟通能力和解决问题的能力。

3. 课后作业:布置相关的编程作业,要求学生独立完成,以检验学生对算法的掌握程度。

4. 期中期末考试:设置有关算法初步的试题,全面评估学生的学习效果。

七、教学资源1. 教材:新人教A版必修《高中数学》。

2. 多媒体课件:制作与教学内容相关的多媒体课件,增加课堂的趣味性。

3. 编程工具:为学生提供编程环境,如Python、C++等。

4. 网络资源:为学生提供相关的在线学习资源,如视频教程、练习题库等。

高中数学《算法初步》教案新人教A版必修

高中数学《算法初步》教案新人教A版必修

高中数学《算法初步》教案新人教A版必修一、教材分析本节课所使用的教材为新人教A版高中数学必修教材,内容涉及算法初步。

算法初步是高中数学的重要组成部分,主要让学生了解算法的基本概念、特点和应用。

通过学习算法初步,学生能够理解算法的本质,提高解决问题的能力。

二、教学目标1. 了解算法的概念、特点和表示方法。

2. 掌握算法的基本逻辑结构,如顺序结构、条件结构和循环结构。

3. 能够分析实际问题,设计简单的算法解决问题。

4. 培养学生的逻辑思维能力和创新能力。

三、教学重点与难点1. 教学重点:算法的概念、特点和表示方法。

算法的基本逻辑结构。

设计简单算法解决问题的方法。

2. 教学难点:算法的设计和分析。

循环结构在实际问题中的应用。

四、教学方法1. 采用问题驱动的教学方法,引导学生从实际问题中认识算法的重要性。

2. 通过案例分析,让学生理解算法的基本逻辑结构。

3. 利用编程实践,培养学生设计算法解决问题的能力。

4. 采用小组讨论、合作学习的方式,提高学生的参与度和积极性。

五、教学过程1. 导入新课:通过生活中的实例,引导学生了解算法在日常生活中的应用。

提问:什么是算法?算法有什么特点?2. 讲解算法的基本概念:解释算法的定义,强调算法是解决问题的一系列步骤。

阐述算法的特点,如确定性、有穷性和可行性。

3. 学习算法表示方法:介绍算法的图形表示和伪代码表示。

举例说明不同表示方法在解决问题中的应用。

4. 掌握算法的基本逻辑结构:顺序结构:按照一定的顺序执行步骤。

条件结构:根据条件选择不同的执行路径。

循环结构:重复执行某些步骤直到满足条件。

5. 设计简单算法解决问题:分析实际问题,如计算Fibonacci 数列的前n项和。

引导学生设计算法,并利用编程工具实现。

6. 课堂小结:强调算法在解决问题中的重要性。

7. 课后作业:完成课后练习,巩固所学内容。

设计一个简单的算法,解决实际问题。

8. 课后反思:教师对本节课的教学效果进行反思,分析学生的掌握情况。

高考新坐标(教师用书)届高考数学总复习第九章算法初步、统计与统计案例【含答案】

高考新坐标(教师用书)届高考数学总复习第九章算法初步、统计与统计案例【含答案】

第九章算法初步、统计与统计案例第一节算法与程序框图[考纲传真]1.了解算法的含义,了解算法的思想. 2.理解程序框图的三种基本逻辑结构:顺序、条件、循环. 3.理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.1.算法(1)算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.(2)应用:算法通常可以编成计算机程序,让计算机执行并解决问题.2.程序框图定义:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.3.三种基本逻辑结构及相应语句1.(夯基释疑)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)程序框图中的图形符号可以由个人来确定.( )(2)一个程序框图一定包含顺序结构,但不一定包含条件结构和循环结构.( ) (3)5=x 是赋值语句.( )(4)输入语句可以同时给多个变量赋值.( )[解析] 图形符号不能个人确定,(1)不正确;赋值语句只能给变量赋值,(3)不正确. [答案] (1)× (2)√ (3)× (4)√2.(教材改编)根据给出的程序框图,计算f(-1)+f(2)=( )图9­1­1A .0B .1C .2D .4[解析] 输入-1,满足x≤0,所以f(-1)=4×(-1)=-4;输入2,不满足x≤0,所以f(2)=22=4,即f(-1)+f(2)=0.[答案]A3.运行如图所示的程序,可得A的输出值为( )A=20A=A*2-30PRINT AENDA.30 B.20 C.10 D.-10[解析]A=20×2-30=10.[答案]C4.(2014·天津高考)阅读下边的框图,运行相应的程序,输出S的值为________.图9­1­2[解析]S=0,n=3,S=0+(-2)3=-8,n=3-1=2≤1不成立;故S=-8+(-2)2=-4,n=2-1=1≤1成立.故输出S的值为-4.[答案]-45.(2014·福建高考改编)阅读如图9­1­3所示的程序框图,运行相应的程序,输出的n的值为________.图9­1­3[解析]当n=1时,21>12;当n=2时,22>22不成立,结束循环.因此输出n=2.[答案] 2考向1程序框图的基本结构与应用【典例1】(1)执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( ) A.[-3,4] B.[-5,2]C.[-4,3] D.[-2,5]图9­1­4图9­1­5(2)(2014·浙江高考)若某程序框图如图9­1­5所示,当输入50时,则该程序运行后输出的结果是________.[解析] (1)由程序框图知s =⎩⎪⎨⎪⎧3t ,(t<1),4t -t 2,(t≥1),①当-1≤t<1时,-3≤s<3;②当1≤t≤3时,s =-(t -2)2+4.∴3≤s≤4. 由①②知,s 的取值范围属于[-3,4]. (2)第一次循环,S =1,i =2; 第二次循环,S =4,i =3;第三次循环,S =2×4+3=11,i =4; 第四次循环,S =2×11+4=26,i =5;第五次循环,S =2×26+5=57,i =6,此时S>50,退出循环. 所以输出的结果i =6. [答案] (1)A (2)6 【规律方法】1.对条件结构,无论判断框中的条件是否成立,都只能执行两个分支中的一个,不能同时执行两个分支.2.利用循环结构表示算法,第一要确定是利用当型还是直到型循环结构;第二准确表示累计变量;第三要注意从哪一步开始循环.弄清进入或终止的循环条件、循环次数是做题的关键.【变式训练1】 (1)如图9­1­6所示的程序框图,运行相应的程序.若输入x 的值为1,则输出S 的值为________.图9­1­6(2)(2014·陕西高考)根据下边框图,对大于2的整数N,输出的数列的通项公式是( )图9­1­7A.a n=2n B.a n=2(n-1) C.a n=2n D.a n=2n-1[解析](1)第1次运行:x=1,S=0+13=1<50;第2次运行:x=2,S=1+23=9<50;第3次运行:x=4,S=9+43=73>50,满足S≥50,跳出循环.输出S=73.(2)由程序框图可知第一次运行:i=1,a1=2,S=2;第二次运行:i=2,a2=4,S=4;第三次运行:i=3.a3=8,S=8;第四次运行:i=4,a4=16,S=16.故选C.[答案](1)73 (2)C考向2程序框图的识别与完善(高频考点)命题视角程序框图的识别与完善是高考命题的热点,主要以客观题的形式呈现.主要命题角度:(1)根据程序框图确定输出结果;(2)补充程序框图中判断框或执行框;(3)依据程序框图及运行结果求输入变量的初始值等.【典例2】 (1)如图9­1­8所示是计算某年级500名学生期末考试(满分为100分)及格率q 的程序框图,则图中空白框内应填入________.图9­1­8 图9­1­9(2)(2014·重庆高考)执行如图9­1­9所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A .s>12B .s>35C .s>710D .s>45[思路点拨] (1)根据程序框图的功能,应确定及格率q 与及格人数M 之间的关系;(2)依次执行程序框图,根据输出结果确定判断框内的控制条件.[解析] (1)由判断框输出可知,M 表示及格人数,N 表示不及格人数, ∴及格率q =M M +N ,因此执行框为“q=M M +N”.(2)第一次循环:s =1×910=910,k =8,s =910应满足条件;第二次循环:s =910×89=810,k =7,s =810应满足条件,排除选项D ;第三次循环:s =810×78=710,k =6,故这时程序不再满足条件,结束循环,因此判断框中的条件为s>710.[答案] (1)q =MM +N(2)C 【通关锦囊】1.(1)第1题的关键在于理解程序框图的功能;(2)第2题要明确何时进入或退出循环体,以及累乘变量的变化.2.解答此类题目:(1)要明确程序框图的顺序结构,条件结构和循环结构;(2)理解程序框图的功能;(3)要按框图中的条件运行程序,按照题目的要求完成解答.【变式训练2】 (2015·潍坊质检)执行如图9­1­10所示的程序框图,若输出的S 是2 047,则判断框内应填写()图9­1­10A .n ≤9?B .n ≤10?C .n ≥10?D .n ≥11?[解析] 由程序框图的功能知,题目的实质是数列{2n}(n∈N )求和. ∵{2n }的首项为20=1,公比为2.∴当n =9时,S =1+2+22+…+29=1-2101-2=1 023.当n =10时,S =1+2+22+…+210=1-2111-2=2 047.此时输出S =2 047,跳出循环,所以判断框的条件为n ≤9. [答案] A考向3 基本算法语句【典例3】 根据下列算法语句,当输入x 为60时,输出y 的值为( )A .25B .30C .31D .61[解析] 由题意,得y =⎩⎪⎨⎪⎧0.5x ,x ≤50,25+0.6(x -50),x>50.当x =60时,y =25+0.6×(60-50)=31. ∴输出y 的值为31. [答案] C ,【规律方法】1.本题主要考查条件语句,输入与输出语句,要注意赋值语句一般格式中的“=”不同于等式中的“=”,其实质是计算“=”右边表达式的值,并将该值赋给“=”左边的变量.2.解决此类问题关键要理解各语句的含义,以及基本算法语句与算法结构的对应关系. 【变式训练3】 运行下面的程序时,WHILE 循环语句的执行次数是( )A .3B .4C .18D .19[解析] 0<20,1<20,2×2<20,5×5>20,程序结束, 故WHILE 循环语句共执行了3次. [答案] A掌握1条规律 每个算法结构都含有顺序结构,循环结构中必定包含一个条件结构,用于确定何时终止循环体.循环结构和条件结构都含有顺序结构.注意1个区别 当型循环与直到型循环的区别:直到型循环是“先循环,后判断,条件满足时终止循环”;当型循环是“先判断,后循环,条件满足时执行循环”;两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.勿忘2点注意 1.赋值号左边只能是变量(不是表达式),在一个赋值语句中只能给一个变量赋值. 2.利用循环结构表示算法,要明确是利用当型循环结构,还是直到型循环结构.要注意:(1)选择好累计变量;(2)弄清在哪一步开始循环,满足什么条件不再执行循环体.易错辨析之10程序框图中“变量”的含义理解不清致误(2014·课标全国卷Ⅰ)执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )图9­1­11A .203 B .72 C .165 D .158[错解] n =1,M =1+12=32,a =2,b =32;n =2,M =2+23=83,a =32,b =83;n =3,M =32+38=158,a =83,b =158;n =4,M =83+815=4815=165,a =158,b =165,此时不满足条件,跳出循环,输出M =165.[答案] C 【智慧心语】错因分析:(1)循环变量n 与累加变量M 计算不对立,或混淆当型循环,误认为直到型循环结构,导致错解.(2)对循环体中各执行框的含义不清,错误赋值,错选A 或B .防范措施:(1)要分清是当型循环结构还是直到型循环结构;要理解循环结构中各变量的具体含义以及变化规律.具体求解时,把每次循环中各个变量的值对应起来,并要清楚的写下来,再根据条件判断是否结束循环.(2)在处理含有循环结构的算法问题时,关键是确定循环的次数,循环中有哪些变量,且每一次循环之后的变量S 、k 值都要被新的S 、k 值所替换.[正解] 第一次执行循环后:M =1+12=32,a =2,b =32,n =2;第二次执行循环后:M =2+23=83,a =32,b =83,n =3.第三次执行循环后:M =32+38=158,a =83,b =158,n =4.这时n =4,跳出循环.输出M 的值158.[答案] D【类题通关】 (2014·北京高考)当m =7,n =3时,执行如图9­1­12所示的程序框图,输出的S 值为( )图9­1­12A.7 B.42 C.210 D.840[解析]程序框图的执行过程如下:m=7,n=3时,m-n+1=5,k=m=7,S=1,S=1×7=7;k=k-1=6>5,S=6×7=42;k=k-1=5=5,S=5×42=210;k=k-1=4<5,输出S=210.故选C.[答案]C课后限时自测[A级基础达标练]一、选择题1.(2014·课标全国卷Ⅱ)执行如图9­1­13所示的程序框图,如果输入的x,t均为2,则输出的S=( )图9­1­13A .4B .5C .6D .7[解析] x =2,t =2,M =1,S =3,k =1. k ≤t ,M =11×2=2,S =2+3=5,k =2;k ≤t ,M =22×2=2,S =2+5=7,k =3;3>2,不满足条件,输出S =7. [答案] D2.(2014·湖南高考)执行如图9­1­14所示的程序框图,如果输入的t∈[-2,2],则输出的S 属于( )图9­1­14A .[-6,-2]B .[-5,-1]C .[-4,5]D .[-3,6][解析] 由程序框图知,当0≤t≤2时,输出S =t -3,此时S∈[-3,-1];当-2≤t<0时,执行t =2t 2+1后1<t≤9,执行1<t≤9时,输出S =t -3,此时S∈(-2,6].因此输出S 的值属于[-3,6].[答案] D3.某程序框图如图9­1­15所示,若输出的结果S=57,则判断框内应填入的条件是( )图9­1­15A.k>4? B.k>5? C.k>6? D.k>7?[解析]由程序框图可知,k=1时,S=1;k=2时,S=2×1+2=4;k=3时,S=2×4+3=11;k=4时,S=2×11+4=26;k=5时,S=2×26+5=57.[答案]A4.阅读如图9­1­16所示的程序框图,运行相应的程序,则输出S的值为( )图9­1­16A.8 B.18 C.26 D.80[解析]执行一次循环S=2,n=2;执行第二次循环:S=2+32-31=8,n=3;执行第3次循环:S=8+33-32=26,n=4;满足n≥4,故输出S=26.[答案]C5.(2014·安徽高考)如图9­1­17所示,程序框图(算法流程图)的输出结果是( )图9­1­17A.34 B.55 C.78 D.89[解析]当输入x=1,y=1,执行z=x+y及z≤50,x=y,y=z后,x,y,z的值依次对应如下:x=1,y=1,z=2;x=1,y=2,z=3;x=2,y=3,z=5;x=3,y=5,z=8;x=5,y=8,z=13;x=8,y=13,z=21;x=13,y=21,z=34;x=21,y=34,z=55.由于55≤50不成立,故输出55.故选B.[答案]B二、填空题6.运行下列的程序,当输入a,b分别为2,3时,最后输出的m的值为________.[解析]∵a=2,b=3,满足a<b,∴应把b值赋给m,∴m的值为3.[答案] 37.(2014·山东高考)执行如图9­1­18所示的程序框图,若输入的x的值为1,则输出的n的值为________.图9­1­18[解析]按照程序框图逐一执行.由x2-4x+3≤0,解得1≤x≤3.当x=1时,满足1≤x≤3,所以x=1+1=2,n=0+1=1;当x=2时,满足1≤x≤3,所以x=2+1=3,n=1+1=2;当x=3时,满足1≤x≤3, 所以x=3+1=4,n=2+1=3;当x=4时,不满足1≤x≤3,所以输出n=3.[答案] 38.(2015·临沂模拟)图9­1­19(1)是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为A1,A2,…,A14.图(2)是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是________.(1) (2)图9­1­19[解析]从算法流程图可知,该图表示统计成绩大于或等于90分的考试次数.由茎叶图可知输出的结果为10.[答案]10三、解答题9.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如表格所示:图9­1­20统计该6名队员在最近三场比赛中投进的三分球总数的程序框图如图9­1­20所示.(1)试在判断框内填上条件;(2)求输出的s的值.[解](1)依题意,程序框图是统计6名队员投进的三分球的总数.∴判断框内应填条件“i≤6?”.(2)6名队员投进的三分球数分别为a1,a2,a3,a4,a5,a6.故输出的s=a1+a2+…+a6.10.三月植树节,林业管理部门在植树前,为了保证树苗的质量,都会对树苗进行检测.现从甲,乙两种树苗中各抽测了10株树苗,量出它们的高度如下:(单位:厘米) 甲:37,21,31,20,29,19,32,23,25,33;乙:10,30,47,27,46,14,26,10,44,46.(1)画出两组数据的茎叶图,并根据茎叶图对甲,乙两种树苗的高度作比较,写出两个统计结论.(2)设抽测的10株甲种树苗高度平均值为x -,将这10株树苗的高度依次输入,按程序框图(如图9­1­21)进行运算,问输出的S 大小为多少?并说明S 的统计学意义.图9­1­21[解] (1)茎叶图如下:统计结论:①甲种树苗的平均高度小于乙种树苗的平均高度; ②甲种树苗比乙种树苗长得整齐;③甲种树苗的中位数为27,乙种树苗的中位数为28.5;④甲种树苗的高度基本上是对称的,而且大多数集中在均值附近.(任写两条即可) (2)x -=27,S =35;S 表示10株甲种树苗高度的方差,是描述树苗高度离散程度的量.S 值越小,表示长得越整齐,S 值越大,表示长得越参差不齐.[B 级 能力提升练]1.(2015·济南质检)已知函数f(x)=ax 3+12x 2在x =-1处取得极大值,记g(x)=1f ′(x ).程序框图如图9­1­22所示,若输出的结果S>2 0142 015,则判断框中可以填入的关于n 的判断条件是( )图9­1­22A .n ≤ 2 014?B .n ≤2 015?C .n>2 014?D .n>2 015?[解析] 由题意得f′(x)=3ax 2+x ,由f′(-1)=0得a =13,∴f ′(x)=x 2+x ,即g(x)=1x 2+x =1x (x +1)=1x -1x +1. 由程序框图可知S =0+g(1)+g(2)+…+g(n)=1-1n +1, 由1-1n +1>2 0142 015,得n>2 014. 因此条件应为n≤2 015? [答案] B2.执行如图9­1­23所示的程序框图,若输入n 的值为4,则输出s 的值为________.图9­1­23[解析] 第一步运算结果:s =1,i =2(i≤4成立);第二步运算结果:s =2,i =3(i≤4成立);第三步运算结果:s =4,i =4(i≤4成立);第四步运算结果:s =7,i =5(i≤4不成立),程序结束,故输出s 的值为7.[答案] 73.已知数列{a n }的各项均为正数,观察程序框图如图9­1­24所示,若k =5,k =10时,分别有S =511和S =1021,试求数列{a n }的通项公式.图9­1­24[解] 由程序框图可知,数列{a n }是等差数列,首项为a 1,公差为d. S i =1a 1a 2+1a 2a 3+…+1a i a i +1=1d (1a 1-1a 2+1a 2-1a 3+…+1a i -1a i +1) =1d ⎝ ⎛⎭⎪⎫1a 1-1a i +1. 当k =5时,S =⎝ ⎛⎭⎪⎫1a 1-1a 61d =5a 1a 6=511.∴a 1a 6=11,即a 1(a 1+5d)=11;①当k =10时,S =⎝ ⎛⎭⎪⎫1a 1-1a 111d =10a 1a 11=1021,∴a 1a 11=21,即a 1(a 1+10d)=21,② 由①②联立,得a 1=1,d =2, 因此a n =a 1+(n -1)d =2n -1.第二节 随机抽样[考纲传真]1.理解随机抽样的必要性和重要性. 2.会用简单随机抽样方法从总体中抽取样本. 3.了解分层抽样和系统抽样方法.1.简单随机抽样(1)设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)常用简单随机抽样的方法:抽签法和随机数表法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. (1)先将总体的N 个个体编号.(2)确定分段间隔k ,对编号进行分段,当N n 是整数时,取k =N n ,当Nn 不是整数时,随机从总体中剔除余数.(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k). (4)按照一定的规则抽取样本, 3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是分层抽样.(2)应用范围:总体是由差异明显的几个部分组成时.1.(夯基释疑)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)简单随机抽样是从总体中逐个不放回的抽取抽样.( ) (2)简单随机抽样每个个体被抽到的机会不一样,与先后有关.( ) (3)系统抽样在起始部分抽样时采用简单随机抽样.( )(4)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( )[解析] 由简单随机抽样,系统抽样,分层抽样的意义,知(1)与(3)正确,(2)与(4)不正确.[答案] (1)√ (2)× (3)√ (4)×2.(2014·广东高考)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .50B .40C .25D .20[解析] 根据系统抽样的特点可知分段间隔为1 00040=25,故选C .[答案] C3.(2015·青岛调研)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学,初中,高中三个学段学生的视力情况有较大差异,而男女视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样[解析] 由于三个学段学生的视力情况差别较大,故需按学段分层抽样. [答案] C4.(2014·湖南高考)对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3[解析] 由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p 1=p 2=p 3. [答案] D5.某学校高一,高二,高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.[解析] 设应从高二年级抽取x 名学生,则x∶50=3∶10.解得x =15. [答案] 15考向1简单随机抽样【典例1】(1)下列抽取样本的方式属于简单随机抽样的个数为( )①盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.②从20件玩具中一次性抽取3件进行质量检验.③某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.A.0 B.1 C.2 D.3(2)(2013·江西高考)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.08 B.07 C.02 D.01[解析](1)①②③中都不是简单随机抽样,这是因为:①是放回抽样,②中是“一次性”抽取,而不是“逐个”抽取,③中“指定个子最高的5名同学”,不存在随机性,不是等可能抽样.(2)由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.[答案](1)A(2)D【规律方法】1.简单随机抽样是从含有N(有限)个个体的总体中,逐个不放回地抽取样本,且每次抽取时总体内的各个个体被抽到的机会都相等.2.(1)一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是号签是否易搅匀,一般地,当总体容量和样本容量都较小时可用抽签法.(2)随机数表法适用于总体中个体数较多的情形:随机数表法的操作要点:编号,选起始数,读数,获取样本.【变式训练1】下列抽样试验中,适合用抽签法的有________.①从某厂生产的5 000件产品中抽取600件进行质量检测; ②从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验; ③从甲,乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检测; ④从某厂生产的5 000件产品中抽取10件进行质量检测. [解析] ①,④中总体的个体数较大,不适用抽签法.对于③中,甲,乙两厂的产品质量可能差别较大,不一定能够达到搅拌均匀的条件,不适宜用抽签法.②中为同厂的产品,且样本容量较小,可用抽签法. [答案] ②考向2 系统抽样及其应用【典例2】 (1)(2015·淄博调研)用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是________.(2)(2013·陕西高考)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A .11B .12C .13D .14[解析] (1)设第1组抽取的号码为b ,由系统抽样则第n 组抽取的号码为8(n -1)+b , ∴8×(16-1)+b =126,∴b =6, 故第1组抽取的号码为6.(2)抽样间隔为84042=20.设在1,2,…,20中抽取号码x 0(x 0∈[1,20]),在[481,720]之间抽取的号码记为20k +x 0,则481≤20k+x 0≤720,k ∈N *.∴24120≤k +x 020≤36.∵x 020∈⎣⎢⎡⎦⎥⎤120,1,∴k =24,25,26,…,35, ∴k 值共有35-24+1=12(个),即所求人数为12. [答案] (1)6 (2)B 【规律方法】1.如果总体容量N 能被样本容量n 整除,则抽样间隔为k =Nn,否则,可随机地从总体中剔除余数,然后按系统抽样的方法抽样.特别注意,每个个体被抽到的机会均是n N.2.系统抽样中依次抽取的样本对应的号码就是一个等差数列,首项就是第1组所抽取样本的号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码.【变式训练2】 (2015·威海质检)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .15[解析] 由系统抽样知:抽取号码的间隔为96032=30,∵第一组抽取的号码为9,∴抽取的第n 个号码为a n ,则a n =9+30(n -1), 由451≤a n ≤750,得151115≤n ≤25710,注意到n ∈N *,∴落入区间[451,750]的号码共10个, 因此做问卷B 的有10人. [答案] C考向3 分层抽样及应用(高频考点)命题视角 分层抽样是抽样方法考查的重点,主要以客观题的形式呈现,命题的主要角度:(1)求各层的个体容量;(2)根据某层的容量求总体容量;(3)分层抽样的简单应用.【典例3】 (1)(2015·日照联考)某工厂甲,乙,丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n =( )A .9B .10C .12D .13(2)(2014·湖北高考)甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.[思路点拨] (1)利用抽样比为定值,列方程求解;(2)利用分层抽样,先求出总体中甲设备生产的产品数量,再计算乙设备生产的产品数量.[解析] (1)依题意得360=n120+80+60,故n =13.(2)由题设,抽样比为804 800=160.设甲设备生产的产品为x 件, 则x60=50,∴x =3 000. 故乙设备生产的产品总数为4 800-3 000=1 800. [答案] (1)D (2)1 800 【通关锦囊】1.分层抽样中分多少层,如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠.2.为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n∶N.分层抽样的有关计算,转化为按比例列方程或算式求解.【变式训练3】 (1)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.(2)(2014·重庆高考)某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .250[解析] (1)抽样比为280560+420=280980=27,所以样本中男生人数为560×27=160.(2)法一:由题意可得70n -70=3 5001 500,解得n =100.法二:由题意,抽样比为703 500=150,总体容量为3 500+1 500=5 000,故n =5 000×150=100.[答案] (1)160 (2)A掌握2条规律 1.三种抽样方法的共同点都是等概率抽样,即抽样过程中每个个体被抽到的概率相等,体现了这三种抽样方法的客观性和公平性.若样本容量为n ,总体容量为N ,每个个体被抽到的概率是nN. 2.系统抽样抽取的个体编号从小到大成等差数列.熟记3个范围 1.简单随机抽样:总体容量较少,尤其是样本容量较少. 2.系统抽样:适用于元素个数很多且均衡的总体. 3.分层抽样:适用于总体由差异明显的几部分组成的情形.勿忘3点注意 1.简单随机抽样中,易忽视样本是从总体中逐个抽取,是不放回抽样,且每个个体被抽到的概率相等. 2.系统抽样中,易忽视抽取的样本数也就是分段的段数,当Nn 不是整数时,注意剔除,剔除的个体是随机的. 3.分层抽样中,易忽视每层抽取的个体的比例是相同的.易错辨析之11 图表信息求解的误区(2014·广东高考改编)已知某地区中小学生人数和近视情况分别如图9­2­1①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为________.图9­2­1[错解] 由图①知,样本容量为(2 000+3 500+4 500)×2%=200, 根据图②知,高中学生的近视人数为200×50%=100. 或根据图②知,高中近视人数为50人. 【智慧心语】错因分析:(1)误把样本容量200认为高中学生的样本数量,或将条形图中近视率误为近视人数.(2)不能从图表中提取有效信息,有的考生无从入手,或者未抓住分层抽样的特点:“各层抽取的个体数依各层个体之比来分配”而无法正确完成高中近视人数的计算求值.防范措施:(1)加强识图能力的培养,如本题中纵轴表示的近视率分别为10%,30%,50%.(2)理解分层抽样的概念,首先分层抽样是等概率抽样,因此,各层的抽样比应相等,可以利用这个等比关系计算求值.[正解] 易知,样本容量为(3 500+4 500+2 000)×2%=200.又样本中高中学生共有2 000×2%=40人.利用图②知,高中学生的近视率为50%.因此所抽样本中高中学生的近视人数为40×50%=20人.[答案]200 20【类题通关】从某小学随机抽样100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图9­2­2所示),由图中数据可知a=________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.图9­2­2[解析]∵0.005×10+0.035×10+a×10+0.020×10+0.010×10=1,∴a=0.030.设身高在[120,130),[130,140),[140,150]内的三组学生各有x,y,z人,则x100=0.030×10,y100=0.020×10,z100=0.01×10.∴x=30,y=20,z=10.由分层抽样的意义,抽样比为1830+20+10=30%.因此从身高在[140,150]内的学生中选取10×30%=3(人).[答案](1)0.030 (2)3课后限时自测[A 级 基础达标练]一、选择题1.(2014·四川高考)在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是( )A .总体B .个体C .样本的容量D .从总体中抽取的一个样本[解析] 调查的目的是“了解某地5 000名居民某天的阅读时间”,所以“5 000名居民的阅读时间的全体”是调查的总体.[答案] A2.从2 007名学生中选取50名学生参加全国数学联赛,若采用下面的方法选取:先用简单随机抽样从2 007人中剔除7人,剩下的2 000人再按系统抽样的方法抽取,则每人入选的概率( )A .不全相等B .均不相等C .都相等,且为502 007D .都相等,且为140[解析] 从N 个个体中抽取M 个个体,每个个体被抽到的概率均为MN .[答案] C3.某学校有男,女学生各500名,为了解男,女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法[解析] 由于是调查男,女学生在学习兴趣与业余爱好方面是否存在差异,因此用分层抽样法.[答案] D4.(2015·潍坊一模)高三某班有学生56人,现将所有同学随机编号,用系统抽样的方。

苏教版高中数学必修三-第一章-算法初步1.3.3ppt课件

苏教版高中数学必修三-第一章-算法初步1.3.3ppt课件

用基本算法语句描述如下:
1.本题中,由于分段函数有三个解析式,因此需要两次 判断,利用条件结构的嵌套,从而翻译为伪代码时,要利用 条件语句的嵌套.
2.条件语句的嵌套,其一般形式为:
x2, x<1, 函数 y=2x-10, 1≤x<10, 3x+11, x≥10, 的函数值,写出伪代码.
1. 条件语句的适用范围: 用于解决需分情况处理的问题. 2.注意问题:Then 部分和 Else 部分是可选的,语句中 的 End If 不能省略. 3.书写格式:“Then”分支和“Else”分支一般缩进书写.
试用伪代码写出任给一个实数,求它的算术平方根的一 个算法,并画出流程图.
【解】 伪代码如下:
输入的 x 值,计算 y 值的一个算法.
【错解】 伪代码如下: Read x If x>0 Then y←1 Print y Else y←0
【错因分析】 (1)伪代码中缺少“End If”语句; (2)“Print y”语句位置错误, 致使当 x>0 时正确输出, 但当 x=0 时,则无任何结果输出.
输入 x 的值, 输出相应
【解】 伪代码如下:
条件语句的实际应用
已知震级是用来表示地震强度的单位,根据震 级不同, 我们又把地震划分为微震(震级小于 3 级的)、 有感地 震(震级大于或等于 3 级而小于或等于 4.5 级的)、中强震(震 级大于 4.5 级而小于 6 级的)、强震(震级大于或等于 6 级的), 请用语句描述根据震级确定地震的划分层次的算法.
【思路探究】
在划分地震层次时,根据输入的震级范
围不同对应层次不同,这类似于一个分段函数,因此在描述 该算法时应用条件语句.
【自主解答】

更新高中数学-算法初步(十三)-----教师

更新高中数学-算法初步(十三)-----教师

例4.已知1
()21
x f x =
+,写出求(4)(3)(2)(4)f f f f -+-+-++L 的一个算法,并画出流程图.
解: 1S 0S ←;
2S 4I ←-;
3S 1
()21
I
f I ←
+; 4S ()S S f I ←+; 5S 1I I ←+; 6S 若4I ≤,转3S ,否则输出S .
例5.“鸡兔同笼”是我国隋朝时期的数学著作《孙子算经》中的一个有趣而具有深远影响的题目:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”
请你先列出解决这个问题的方程组,并设计一个解二元一次方程组的通用算法,并画出流程图,写出伪代码.
解:设有x 只鸡,y 只兔子,则35
2494x y x y +=⎧⎨+=⎩

设二元一次方程组为1111221222,(0),a x b y c a b a b a x b y c +=⎧-≠⎨+=⎩用消元法解得211212211221
1221b c b c x a b a b a c a c y a b a b -⎧
=⎪-⎪
⎨-⎪=⎪-⎩

因此,只要输入相应的未知数的系数和常数项,就能计算出方程组的解,即可输出,x y 的值.
N
4I >
输出S
Y 0S ← 4I ←- ()S S f I ←+
1I I ←+
开始
结束
1
()21
I
f I ←
+ 开始
结束。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法的引入想想你每天从起床到去学校中,必不可少要有三个环节,分别是起床、穿衣服、出门,比如说起床,甭管你是爬起来,跳起来,还是嗖的钻起来,总之你得起床,除非你希望你爸妈抬着你家的床到学校,然后你再穿衣服……考虑其中的两项,可以调换顺序么?比如说穿衣服和出门互换,先出门后穿衣服可不可以?当然可以,只要你不介意裸奔嘛,只是随后可爱的警察叔叔就会带你去一个美丽的地方。

那么,像这样的处理一类问题的步骤我们称之为算法。

事实上,算法的迅速发展是在1945年之后,1945年发生一件什么大事?除了日本投降之外,计算机诞生了.那么计算机的诞生就导致人们发现,如果一件事情,你能够规定出一个计算方法来,那么计算机就会比你执行的快.这个年头,大家都用计算机,而且用得非常遛了!但是,你知道有些事情计算机能替你做,有些事情计算机替你做不了.所以,这时我们就希望,越来越多的东西可以用计算机来替我们算,所以,我们需要给计算机提供一个算法.换句话说,一件事情该怎么计算的方法,要由我们来提供,然后由计算机去执行.提到算法这个概念,大家会觉得比较抽象,其实在数学里,有一些比较经典的东西,你要是仔细来说的话都是算法.比如说《九章算术》里介绍的“合分”就是一个很好的算法案例,所谓的合分就是两个分数相加,书中说的是:母互乘子,并以为实.母相乘为法.也就是两个分母相乘作为新的分母,分子分母互乘之后加起来得到分子.具体的如21?32+=,我们很快就可以得到答案,但它运算的实际过知识切片4.1算法基本概念与算法特性知识点睛看到这些算法,都惊呆了!程是先通分再加减,为什么这么算,小学的时候我们就学过,老师说以后看到这个式子你就这样算就行了,只不过,现在我们越来越熟悉,在脑海中这个过程唰一闪就出来了,式子都不用列,结果就出来了,那实际上这个过程就是算法.就是一个东西该怎么运算,你给规定了一个方法,你按照这个方法执行就行了.从这个角度来说,很多东西就都是算法了,比如说1324⨯,这个计算过程也是一个算法.那么稍微高级一点的东西,比如说中国古代劳动人民一个智慧的结晶:辗转相除法—求最大公约数,这个也是算法.还比如说“韩信点兵”,这都是算法.下面我们来看一下算法的概念.1.算法的概念:由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照一定规则解决某一类问题的明确的和有限的步骤,称为算法().2.算法的特性:⑴明确性:算法的每一个步骤必须有确定的含义;⑵有限性: 算法必须在有限的时间内执行完,即算法必须在执行有限个步骤之后终止⑶可执行性:①算法的每个步骤必须是能实现的;②算法的执行结果要达到预期的目的.【教师备案】因为各个参考书对算法的特性总结的都不一样,所以我们重点总结了三条,其它的老师可以根据班里学生的情况进行补充,下面是算法特性的一种讲解方法,老师可以借鉴.计算机执行算法不是无休止的,也不是没有结果的,设想一个计算机等输入了东西然后运行直到地球毁灭宇宙重生都没有而且永远都不会有结果的将是不可行的算法.根据计算机处理问题的特点,算法需要具备以下特性:⑴明确性(Definiteness)指下的指令必须是清晰明确的,比如:你跟计算机说,小计啊!一会你会收到一个数,不管你收到什么数,你遇见它以后,你就平方显示出来,那么计算机收到明确的指令,收到2给你返回4,收到3给你返回9,收到5-给你返回25,很明确的指令.或者你跟它说,不管一会你收到一个什么数,你把它减3给我显示出来,那现在收到一个4,显示一个43-就OK了.这叫明确性,你给算法的指令必须-,收到一个5,显示一个53是清晰明确的,你不能跟它商量,算法很晕的.你跟它商量说,一会你收到一个数,你愿意减3你就减3,你愿意平方你就平方,然后显示出来,那计算机拿到以后啪就晕了,它不会有思想,它只是执行,所以你必须给它明确的指令.⑵有限性(Finiteness)因为我们最终要解决一类问题,问题的解决要有限才可以,叫做解决.比如说,你告诉计算机,你把10万以下的质数给我输出来,当然根据你程序的快慢,早晚有那么一天,如果你程序编的好,一分钟就出来了;如果你程序编的不好,有可能下礼拜就出来了,但是,早晚有那么一天,你还可以算出来.如果你给计算机下这么一条指令,你听说过“哥德巴赫猜想”吗?计算机点点头说听说过,你要干嘛啊!我这慎得慌呢!你把“哥德巴赫猜想”给我证一下吧,从6开始,挨个往上你给我拆一遍.什么时候这个问题能够解决,不可能解决.所以,我们说有限性,要让计算机在有限的步骤内解决.当然了,对于计算机实用的角度来说,我们还希望有限步越少越好.有同学说,是有限步,100年以后就算出来了,这就太不切实际了,所以一般来讲,有限性如果说数字忒大,大到这个计算机虽然能算,但是要几年,几百年之后才能结束,那么往往也不认为是一个很好的算法.⑶可执行性(Effectiveness)执行性在计算机里有些事情是做不到的.比如说,数码相机、摄像头、计算机里的数码相片,都有一个概念叫像素,像素越高画面越清晰,像素代表什么意思呢,计算机里面对于图象所识别的最小单位每一个点是什么颜色,然后很多密密麻麻的点摆在一起,一个点是绿的,一个点是黄的,一个点在稍微黄点,这么多有颜色的点摆在一起,看起来可能就是一个从绿到黄的草坪,实际上它只是每一个点是一个单一的颜色.那么,对于计算机来说,有没有可能做出纯我们视觉看到的那种自然色,这不可能,它可以像素非常非常的细密,比如说iPhone像素很高就看不见点了,但仍然是数字化处理一格一格的,不是自然的.你返回1.732,但是反过来你告诉它小数,你问它这是根号几?注意,无限不循环小数,它会认不出来,因为它处理不了,他只能处理到你看起来好像已经几乎没有差别了而已,就是说计算机永远在做模拟,在很多程度上,计算机的工作不具有可执行性.【教师备案】算法虽然没有一个明确的定义,但其特点是鲜明的,不仅要注意算法的有限性、可执行性、明确性的特点,还应该充分理解算法问题的指向性,即算法往往指向解决某一类问题,泛泛地谈算法是没有意义的.以下是三个导入的题.【备选】写出下列算法1.12个小球,其中有一个小球超重,找出一个算法:只用天平称三次找出这个超重的小球【解析】S1:将12个小球分为2堆,一堆6个,用天平称重S2:将S1中重的那6个小球分成2堆,每堆3个,用天平称重S3:取S2中重的那3个小球中任意2个小球称重,若相等,则剩下的那个小球是重的,不等,则重的那个小球是超重的.【教师备案】本题在ICS中有具体演示的视频,老师可以放给学生看。

2.人鬼过河:河的一边有三个人和三个鬼,河中有一小船,每次最多能乘坐2个人或鬼,而且至少要有一个人或鬼船才能行驶。

请设计一种算法,把人和鬼都送到对岸。

注:不论是在河边、船上,如果人鬼数量相同,则鬼和人能和谐相处,鬼不吃人,否则,鬼吃掉人。

要求算法能给出整个运送过程,包括每次船行驶的方向(是驶向对岸还是返回),船上的人和鬼数量。

【解析】S1:鬼1人一过河S2:人一回S3:鬼2,3过河(这样三个鬼过河了,三个人在一起还没过河)S4:鬼1带船回到人的那一边S5:人一,人二,过河S6:人一,鬼2同时带船过河S7:人一,人三同时过河(这时,人全部过河了,和人一起的只有一个鬼3)S8:鬼3带船回(这时,三个人全过了河,而三个鬼和船在一边)S9:鬼1,2过河S10:人一回S11:人一,鬼3过河(完成)【教师备案】本题在ICS中有具体演示的视频,老师可以放给学生看。

经典精讲【铺垫】下列关于算法的说法正确的有( )①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后产生确定的结果;A.1个B.2个C.3个D.4个【解析】C对于①,解决某一类问题的算法可以有很多个.②③④都正确.故选C.【例1】算法的概念⑴下列结论正确的是()A.一个程序的算法步骤是可逆的B.一个算法可以无止境地运算下去C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则⑵算法的有限性是指()A.算法中每个操作步骤都是可执行的B.算法的步骤必须有限C.算法必须有确定的结果D.以上说法均不正确【解析】⑴D⑵ B【拓展】有一堆形状、大小相同的珠子,其中只有一粒重量比其它的轻,某同学经过思考,他说根据科学的算法,利用天平,三次肯定能找到这粒最轻的珠子,则这堆珠子最多有几粒( )A .21B . 24C . 27D . 30【解析】 C将27个9,9,9分堆找出有轻球的那9个,再将这9个3,3,3分堆,再称3个球中的任意两个即可找出最轻的球.30个球分成10,10,10;当10个球3,3,4分组的时候,若有3个球的2组平衡时,这时有轻球在4球的一堆中,但只有一次称量机会,故无法找出. 答案为C【例2】 体会算法【教师备案】让学生做一个感受算法的小例子,在真正的如何去找算法和描述算法之前,计算机上有一个经典的小问题.在讲这个问题之前先讲一个概念,计算机里数字是怎么处理存储的,比如3,计算机里一定要把3放到一个位置存储,你可以把计算机硬盘看成一个很大的空间,分成很多小格,每一个小格是计算机的一个存储单位,在每一个存储单位下存一个数时,它一定要放在一个位置上.现在你把3放在某一个位置上了,下次你想用的时候,你得把它调出来,因为你除了知道3以外,还要知道3被放在哪,这个“哪”在计算机里叫地址.所以每一个数对应一个存储地址,也叫存储空间.比如(如图):m 就是3所在的地址,我们可以写成“3m = ”,这里的“=”是“赋值号”,“赋值号”是将式子右边的数放在左边的空间.所以,我们不能将式子写成“3m =”,即不能一个数放到另一数里.但我们可以写成“n m =”(如图),即把一个数放到另一个空间里.那下面我们来看一下下面的题. 有实数a 、b ,试设计一个算法,将a 、b 的值互换.【解析】 法一: 法二:【教师备案】老师在讲这道题时,可以给学生提示,假如现在有两个杯子,一个杯子里装有半杯的红豆,另外一个杯子里装有半杯的绿豆,现在要求把红豆倒在装绿豆的杯子里,把绿豆倒在装红豆的杯子里,应该怎么弄?很多同学的第一反应就是再找一个空杯子,然后把红豆倒在空杯子里,把绿豆倒在装红豆的杯子里,最后将红豆再倒在装绿豆的杯子里,这样就可以将红豆和绿豆互换了.老师在讲完这时就可以讲例2中的法一了.讲完法一,老师可以接着再提问,说刚才很宽厚,给了你们一个空杯子,现在要求不用空杯子,那应该怎么将红豆和绿豆进行互换.这时候同学就会想到将半杯的红豆倒入半杯的绿豆里,然后再将绿豆数出来放在装红豆的杯子里.这时我们会发现,空间省了但会费好多的时间,这时老师就可以讲法二了.【点评】 可以以此题来讲计算机里空间与时间互换.解法一中采用了三次赋值操作,占用,,a b c 三个地址空间,而解法二采用了三次加减法,和三次赋值操作,而只用了二个地址空间,在本题中,法一的c 的一个地址空间相当于法二的三次加减法,所以我们设计算法的时候,要尽量降低 算法的时间和空间复杂度.n 33m ③ b=c ② a=b x x y x y y x y x ① c=a c b y x a ③ a=a b ② b=a b xy xy x+y x+y ① a=a+b b y x a1、算法的描述:⑴用自然语言; ⑵用数学语言;⑶用算法语言(程序设计语言); ⑷用程序框图(流程图). 【教师备案】算法可以用自然和数学语言来描述,比如,“x 的平方大于4”就是自然语言的描述,数学语言的描述则是“24x ”。

相关文档
最新文档