人教版七年级数学上册第四章角复习题五(含答案) (98)
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)一、选择题1.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒D解析:D【分析】 根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.4.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + C解析:C【分析】由条件可知EC+DF=m-n ,又因为E ,F 分别是AC ,BD 的中点,所以AE+BF=EC+DF=m-n ,利用线段和差AB=AE+BF+EF 求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E 是AC 的中点,F 是BD 的中点,∴AE=EC ,DF=BF ,∴AE+BF=EC+DF=m-n ,∵AB=AE+EF+FB ,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.5.已知∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A.60°B.20°C.40°D.20°或60°D解析:D【分析】考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°,故答案为20°或60°,故选D.【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 6.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q C解析:C【分析】根据点和圆的位置关系,知最好成绩在P点.【详解】P点与O点距离最长,且在有效范围内,所以最好成绩在P点.【点睛】考查了点和圆的位置关系.7.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.6A 解析:A【分析】由BC =83AB 可求出BC 的长,根据中点的定义可求出BD 的长,利用线段的和差关系求出AD 的长即可.【详解】∵BC =83AB ,AB=6cm , ∴BC=6×83=16cm , ∵D 是BC 的中点,∴BD=12BC=8cm , ∵反向延长线段AB 到C ,∴AD=BD-AB=8-6=2cm ,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.8.22°20′×8等于( ).A .178°20′B .178°40′C .176°16′D .178°30′B解析:B【分析】根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 9.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .10种B .20种C .21种D .626种C解析:C【分析】本题只需分别数出A 到B 、B 到C 、A 到C 的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.10.下列说法不正确的是()A.两条直线相交,只有一个交点B.两点之间,线段最短C.两点确定一条直线D.过平面上的任意三点,一定能作三条直线D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题11.如图,点C、D在线段AB上,D是线段AB的中点,AC=13AD ,CD=4cm ,则线段AB的长为_____cm【分析】根据AC=ADCD=4cm求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语解析:12【分析】根据AC=13AD ,CD=4cm ,求出AD,再根据D是线段AB的中点,即可求得答案.【详解】∵AC=13AD ,CD=4cm ,∴12433CD AD AC AD AD AD =-=-== ∴6AD =,∵D 是线段AB 的中点,∴212AB AD ==∴12AB cm =故答案为12【点睛】 本题考查了线段中点的几何意义以及求线段的长,根据题目中的几何语言列出等式,是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =AB+BC=4cm ,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________. 【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc 分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a 与4相对应b 与2相对应c 与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的解析:34- 【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a ,b ,c 分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.14.下午3:40时,时钟上分针与时针的夹角是_________度.130【分析】分别求出时针走过的度数和分针走过的度数用分针走过的度数减去时针走过的度数即可得出答案【详解】时针每小时走30°分针每分钟走6°∴下午3:40时时针走了3×30°+×30°=110°分针解析:130【分析】分别求出时针走过的度数和分针走过的度数,用分针走过的度数减去时针走过的度数,即可得出答案.【详解】时针每小时走30°,分针每分钟走6°∴下午3:40时,时针走了3×30°+4060×30°=110° 分针走了40×6°=240°∴夹角=240°-110°=130°【点睛】本题考查的是钟面角问题,易错点在于计算时针走过的度数时,往往大部分人只计算了前面3个小时时针走过的度数,容易忽略后面40分钟时针也在走.15.看图填空.(1)AC =AD -_______=AB +_______,(2)BC +CD =_______=_______-AB ,(3)AD =AC+___.CDBCBDADCD 【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC (2)BC+CD=BD=AD-AB (3)AD=AC+CD 故答案为:CD ;BC ;BD ;AD解析:CD BC BD AD CD【分析】根据线段之间的和差关系进行解答即可得答案.【详解】(1)AC=AD-CD=AB+BC ,(2)BC+CD=BD=AD-AB,(3)AD=AC+CD,故答案为:CD;BC;BD;AD;CD【点睛】本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.16.如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE=90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA共10个;它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.17.如图,点C是线段AB的中点,点D,E分别在线段AB上,且ADDB=23,AEEB=2,则CDCE的值为____.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE与AB的关系进而可得答案【详解】∵点C是线段AB的中点∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴解析:3 5【分析】由线段中点的定义可得AC=BC=12AB,根据线段的和差关系及ADDB=23,AEEB=2,可得出CD、CE与AB的关系,进而可得答案.【详解】∵点C是线段AB的中点,∴AC=BC=12AB,∵ADDB =23,AEEB=2,BD=AB-AD,AE=AB-BE,∴AD=25AB,BE=13AB,∵CD=AC-AD,CE=BC-BE,∴CD=12AB-25AB=110AB,CE=12AB-13AB=16AB,∴CDCE=11016ABAB=35,故答案为3 5【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.18.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a和b的大小,结果可能有种情况,它们是_______________.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.19.如图所示,能用一个字母表示的角有________个,以点A为顶点的角有________个,图中所有大于0°小于180°的角有________个.37【分析】根据角的概念和角的表示方法依题意求得答案【详解】能用一个字母表示的角有2个:∠B∠C;以A为顶点的角有3个:∠BAD∠BAC∠DAC;大于0°小于180°的角有7个:∠BAD∠BAC∠D解析:3 7【分析】根据角的概念和角的表示方法,依题意求得答案.【详解】能用一个字母表示的角有2个:∠B,∠C;以A为顶点的角有3个:∠BAD,∠BAC,∠DAC;大于0°小于180°的角有7个:∠BAD,∠BAC,∠DAC,∠B,∠C,∠ADB,∠ADC.故答案为2,3,7.【点睛】利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1.角+3个大写英文字母;2.角+1个大写英文字母;3.角+小写希腊字母;4.角+阿拉伯数字.20.已知∠A=67°,则∠A的余角等于______度.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.三、解答题21.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OE是射线OB的反向延长线.(1)求射线OC的方向角;(2)求∠COE的度数;(3)若射线OD平分∠COE,求∠AOD的度数.解析:(1)射线OC的方向是北偏东70°;(2)∠COE=70°;(3)∠AOD=90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC的度数,即可确定OC的方向;(2)根据∠AOC=55°,∠AOC=∠AOB,得出∠BOC=110°,进而求出∠COE的度数;(3)根据射线OD平分∠COE,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA的方向是北偏东15°,射线OB的方向是北偏西40°即∠NOA=15°,∠NOB=40°,∴∠AOB=∠NOA+∠NOB=55°,又∵∠AOB=∠AOC,∴∠AOC=55°,=°,∴∠NOC=∠NOA+∠AOC=15°+ 55°70∴射线OC的方向是北偏东70°.(2)∵∠AOB=55°,∠AOB=∠AOC,∴∠BOC=∠AOB+∠AOC=55°+55°=110°,又∵射线OD是OB的反向延长线,∴∠BOE=180°,∴∠COE=180°-110°=70°,(3)∵∠COE=70°,OD平分∠COE,∴∠COD=35°,∴∠AOD=∠AOC+∠COD=55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.24.如图,点C为线段AD上一点,点B为CD的中点,且6cmBD=.AC=,2cm(1)图中共有多少条线段?(2)求AD的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.25.如图,直线AB 与CD 相交于点O ,∠AOE=90°.(1)如图1,若OC 平分∠AOE,求∠AOD 的度数;(2)如图2,若∠BOC=4∠FOB ,且OE 平分∠FOC ,求∠EOF 的度数.解析:(1)135°;(2)54°【分析】(1)利用OC 平分∠AOE ,可得∠AOC =12∠AOE =12×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.(2)由∠BOC=4∠FOB ,设∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根据OE 平分∠COF ,可得∠COE=∠EOF=12∠COF=32x°,即可得出. 【详解】(1)∵∠AOE=90°,OC 平分∠AOE ,∴∠AOC =12∠AOE =12×90°=45°, ∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°,即∠AOD的度数为135°.(2)∵∠BOC=4∠FOB,∴设∠FOB=x°,∠BOC=4x°∴∠COF=∠COB-∠BOF=4x°-x°=3x°∵OE平分∠COF∴∠COE=∠EOF=12∠COF=32x°∵32x+x=90°∴x=36,∴∠EOF=32x°=32×36°=54°即∠EOF的度数为54°.【点睛】本题考查了角平分线的性质、方程思想方法、数形结合方法,考查了推理能力与计算能力.26.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
人教版 七年级数学 第4章 几何图形初步 复习题(含答案)
人教版七年级数学第4章几何图形初步复习题一、选择题(本大题共10道小题)1. [2018·河南]某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我2. 如图,水平的讲台上放置的是圆柱形笔筒和正方体形粉笔盒,从上面看到的是()3. 粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A.点动成线B.线动成面C.面动成体D.面与面相交得到线4. 如图是一座房子的平面示意图,组成这幅图的平面图形是 ()图A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形5. 如图所示,下列对图形描述不正确的是()A.直线ABB.直线BCC.射线ACD.射线AB6. 下列几何体是由4个相同的小正方体搭成的,其中从左面看和从上面看得到的平面图形相同的是()7. 如图,图中小于平角的角有()A.10个B.9个C.8个D.4个8. 如果一个棱柱有12个顶点,那么它的面的个数是 ()A.10B.9C.8D.79. 图(1)(2)中所有的正方形完全相同,将图(1)的正方形放在图(2)中①②③④的某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④10. 已知∠AOB=60°,∠AOC=∠AOB,射线OD平分∠BOC,则∠COD的度数为()A.20°B.40°C.20°或30°D.20°或40°二、填空题(本大题共8道小题)11. (1)将度化为度、分、秒的形式:1.45°=;(2)2700″=°.12. 如图所示的图形中,是棱柱的有______.(填序号)13. 如图,∠1可以用三个大写字母表示为.14. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.15. 建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是.16. 如图,点B,O,D在同一条直线上,若∠1=15°,∠2=105°,则∠AOC=°.17. 如图所示,AF=.(用含a,b,c的式子表示)18. 图中可用字母表示出的射线有条.三、解答题(本大题共4道小题)19. 请将图中的角用不同的方法表示出来,并填写下表:角的表示方法一∠ABE角的表示方法二∠1 ∠2用量角器量出∠2,∠A,∠ABE的度数,并写出它们之间的数量关系.20. 如图,下列各几何体的表面中包含哪些平面图形?21. 如图,有一个外观为圆柱形的物体,它的内部构造看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时,得到了如图所示的(1)(2)两组形状不同的截面,请你试着说出这个物体的内部构造.22. 实践与应用:一个西瓜放在桌子上,从上往下切,一刀可以切成2块,两刀最多可以切成4块,3刀最多可以切成7块,4刀最多可以切成11块(如图).上述实际问题可转化为数学问题:n条直线最多可以把平面分成几部分.请先进行操作,然后回答下列问题.(1)填表:直线条数 1 2 3 4 5 6 …最多可以把平面分成的2 4 7 11 …部分数(2)直接写出n条直线最多可以把平面分成几部分(用含n的式子表示).人教版七年级数学第4章几何图形初步复习题-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】D[解析] 从上面看,左边是一个圆,右边是一个正方形,故选D.3. 【答案】B4. 【答案】C5. 【答案】B6. 【答案】B7. 【答案】B[解析] 小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE,共9个.8. 【答案】C[解析] 一个棱柱有12个顶点,一定是六棱柱,所以它有6个侧面和2个底面,共8个面.9. 【答案】A10. 【答案】D[解析] 当OC在∠AOB内部时,如图①,则∠BOC=∠AOB-∠AOC=60°-×60°=40°,∴∠COD=∠BOC=20°;当OC在∠AOB外部时,如图②,则∠BOC=∠AOB+∠AOC=60°+×60°=80°,∴∠COD=∠BOC=40°.综上,∠COD的度数为20°或40°.故选D.二、填空题(本大题共8道小题)11. 【答案】(1)1°27'(2)0.7512. 【答案】②⑥13. 【答案】∠MCN或∠MCB14. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同15. 【答案】两点确定一条直线16. 【答案】90[解析] 因为∠2=105°,所以∠BOC=180°-∠2=75°,所以∠AOC=∠1+∠BOC=15°+75°=90°.17. 【答案】2a-2b-c18. 【答案】5[解析] 有OA,AB,BC,OP,PE,共5条射线.三、解答题(本大题共4道小题)19. 【答案】解:∠ABE还可以表示为∠3,∠1还可以表示为∠ABC或∠ABF,∠2还可以表示为∠ACB或∠ACE(填表略).∠2=40°,∠A=25°,∠ABE=65°,所以∠ABE=∠A+∠2.20. 【答案】(1)长方形(2)圆(3)三角形、平行四边形21. 【答案】解:这个物体的内部构造为:圆柱中间有一球形空洞.22. 【答案】解:(1)设n条直线最多可以把平面分成的部分数是S n.当n=5时,S5=1+1+2+3+4+5=16,当n=6时,S6=1+1+2+3+4+5+6=22.故表内从左到右依次填16,22.(2)S n=1+1+2+3+…+n=1+=.故n条直线最多可以把平面分成部分.。
人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)
人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A沿着正方体的棱长爬行到点B的长度为()A.0 B.1 C.2 D.3B解析:B【分析】将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB之间的距离.【详解】解:将图1折成正方体后点A和点B为同一条棱的两个端点,得出AB=1,则小虫从点A沿着正方体的棱长爬行到点B的长度为1.故选B.【点睛】本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置是解题的关键.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°A 解析:A【分析】根据题意各种角的关系直接可求出题目要求的角度.【详解】因为∠AOD =40°,∠BOC =50°,所以∠COD =90°,又因为OM ,ON 分别平分∠BOC 和∠AOD ,所以∠N OD+∠M OC =45°,则∠MON=∠N OD+∠M OC+∠COD=135°.【点睛】本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.4.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .16B 解析:B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.【详解】解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =.由题意可知:113632922ED EC CD BC AC =+=+=⨯+⨯=, 故选:B .【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口.5.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的( ).A.B.C.D. A解析:A【分析】根据正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.【详解】根据题意及图示只有A经过折叠后符合.故选:A.【点睛】此题考查几何体的展开图,解题关键在于空间想象力.6.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A.2 B.1C.0 D.-1A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4, ∴|6-E|=4, ∴点E 所表示的数是:6-4=2.∴离线段BD 的中点最近的整数是2.故选:A .【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.7.已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个B解析:B【分析】根据余角和补角的概念进行角度的计算即可得解.【详解】∵9090ββ︒-∠+∠=︒,∴①正确;∵α∠和β∠互补,∴180αβ∠+∠=︒,∴901809090αβ∠-︒+∠=︒-︒=︒,∴②正确,⑤错误; ∵()11180909022αββββ∠+∠+∠=⨯︒+∠=︒+∠≠︒, ∴③错误; ∵()()11118090222αββαβ∠-∠+∠=∠+∠=⨯︒=︒, ∴④正确;∴①②④正确,故选:B.【点睛】 本题主要考查了余角和补角的含义,熟练掌握相关角度的计算是解决本题的关键. 8.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A.8B.7C.6D.4C解析:C【分析】确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.9.由A站到G站的某次列车,运行途中停靠的车站依次是A站——B站—C站——D站——E站——F站——G站,那么要为这次列车制作的火车票有()A.6种B.12种C.21种D.42种C解析:C【解析】【分析】从A出发要经过6个车站,所以要制作6种车票,从B出发要经过5个车站,所以要制作5种车票,从C出发要经过4个车站,所以要制作4种车票,从D出发要经过3个车站,所以要制作3种车票,从E出发要经过2个车站,所以要制作2种车票,从F出发要经过1个车站,所以要制作1种车票,把车票数相加即可得解.【详解】共需制作的车票数为:6+5+4+3+2+1=21(种).故选C.【点睛】本题从A站出发,逐站求解即可得到所有可能的情况,不要遗漏.10.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB ,直线a .故选C .【点睛】本题考查了几何中直线的表示方法,是最基本的知识.二、填空题11.线段AB =12cm ,点C 在线段AB 上,且AC =13BC ,M 为BC 的中点,则AM 的长为_______cm.5【分析】可先作出简单的图形进而依据图形分析求解【详解】解:如图∵点C 在AB 上且AC=BC ∴AC=AB=3cm ∴BC=9cm 又M 为BC 的中点∴CM=BC=45cm ∴AM=AC+CM=75cm 故答案为解析:5【分析】可先作出简单的图形,进而依据图形分析求解.【详解】解:如图,∵点C 在AB 上,且AC=13BC , ∴AC=14AB=3cm ,∴BC=9cm ,又M 为BC 的中点, ∴CM=12BC=4.5cm ,∴AM=AC+CM=7.5cm . 故答案为7.5.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC AB+BC=4cm,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于________.142°【解析】【分析】根据对顶角相等求出∠AOC的度数再根据角平分线的定义求出∠AOM的度数然后根据平角等于180°列式计算即可得解【详解】解:∵∠BOD=76°∴∠AOC=∠BOD=76°∵射线解析:142°【解析】【分析】根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠BOD =76°,∴∠AOC=∠BOD =76°,∵射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°-∠AOM=180°-38°=142°.故答案为142°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.14.同一条直线上有三点A,B,C,且线段BC=3AB,点D是BC的中点,CD=3,则线段AC的长为______.4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D解析:4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC和AB,再利用线段的和差计算即可.【详解】解:(1)当点C在AB的延长线上时,如图1,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=AB+BC=2+6=8;(2)当点C在BA的延长线时,如图2,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=BC-AB=6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.15.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.16.某产品的形状是长方体,长为8cm,它的展开图如图所示,则长方体的体积为_____cm3.192【分析】根据已知图形得出长方体的高进而得出答案【详解】解:设长方体的高为xcm 则长方形的宽为(14-2x )cm 根据题意可得:14-2x+8+x+8=26解得:x=4所以长方体的高为4cm 宽为6解析:192【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm ,则长方形的宽为(14-2x )cm ,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm ,宽为6cm ,长为8cm ,长方形的体积为:8×6×4=192(cm 3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.如图,折一张长方形纸的一角,使角的顶点落在A′处,且使得∠ABA′=90°,BC 为折痕,若BD 为∠A′BE 的平分线,则∠CBD =________°.90【分析】根据折叠的性质及平角的定义求出根据BD 为∠A′BE 的平分线得到根据角的和差计算求出答案【详解】∵∠ABA′=90°∴∵BD 为∠A′BE 的平分线∴∴故答案为:90【点睛】此题考查折叠的性质解析:90【分析】根据折叠的性质及平角的定义求出45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,根据BD 为∠A′BE 的平分线,得到45A BD '∠=︒,根据角的和差计算求出答案.【详解】∵∠ABA′=90°,∴45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,∵BD 为∠A′BE 的平分线,∴45A BD '∠=︒,∴90CBD A BC A BD ∠∠∠=+=''︒故答案为:90.【点睛】此题考查折叠的性质:折叠前后的对应角角相等,利用平角求角的度数,角平分线的性质,掌握图形中各角的位置关系是解题的关键.18.如图,上午6:30时,时针和分针所夹锐角的度数是_____.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动 解析:15°【分析】计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.【详解】∵时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°,∴时针1小时转动30°,∴6:30时,分针指向刻度6,时针和分针所夹锐角的度数是30°×12=15°. 故答案是:15°.【点睛】考查了钟面角,解题时注意,分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.19.如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度. 180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【解析:180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB =∠COD+∠AOB=90°+90°=180°.故答案是:180.【点睛】本题考查了三角板中角度的计算,正确把∠AOD+∠COB转化成∠COD+∠AOB是解决本题的关键.20.如图,::2:3:4AB BC CD=,AB的中点M与CD的中点N的距离是3cm,则BC=______.5cm【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm求出MB=xcmCN=2xcm得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm∵M是解析:5cm【分析】运用方程的思想,设AB=2xcm,BC=3xcm,CD=4xcm,求出MB=xcm,CN=2xcm,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm,BC=3xcm,CD=4xcm,∵M是AB的中点,N是CD的中点,∴MB=xcm,CN=2xcm,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm.故答案为:1.5cm.【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x的方程.三、解答题21.如图,已知线段AB和CD的公共部分1134BD AB CD==,线段AB、CD的中点E、F之间的间距是10cm,求AB、CD的长.解析:AB=12cm,CD=16cm【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【详解】设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点睛】本题考查了线段中点的性质,设好未知数,用含x的式子表示出各线段的长度是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,是一个几何体的表面展开图.(1)该几何体是________;A .正方体B .长方体C .三棱柱D .四棱锥(2)求该几何体的体积.解析:(1)C ;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C .(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2; 故该几何体体积=底面积⨯高=22=4⨯.【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.24.已知线段10cm AB =,在直线AB 上取一点C ,使16cm AC =,求线段AB 的中点与AC 的中点的距离.解析:13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论.25.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.26.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点.(1)用1个单位长度表示1cm,请你在数轴上表示出A,B, C三点的位置;(2)把点C到点A的距离记为CA,则CA=______cm.(3)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA−AB的值是否会随着t的变化而改变?请说明理由.解析:(1)数轴见解析;(2)6;(3)CA−AB的值不会随着t的变化而改变,理由见解析;【分析】(1)在数轴上表示出A,B,C的位置即可;(2)求出CA的长即可;(3)不变,理由如下:当移动时间为t秒时,表示出A,B,C表示的数,求出CA-AB的值即可做出判断.【详解】(1)如图:(2)CA=4−(−2)=4+2=6cm,(3)不变,理由如下:当移动时间为t秒时,点A. B. C分别表示的数为−2+t、−5−2t、4+4t,则CA=(4+4t)−(−2+t)=6+3t,AB=(−2+t)−(−5−2t)=3+3t,∵CA−AB=(6+3t)−(3+3t)=3∴CA−AB的值不会随着t的变化而改变.【点睛】此题考查数轴,两点间的距离,整式的加减,列代数式,解题关键在于结合数轴进行解答. 27.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.28.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长.(2)若CE=5cm,求DB的长.解析:(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC,CE=12BC,根据线段的和差关系可得DE=12AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.。
人教版七年级数学上册第四章《角》课时练习题(含答案)
人教版七年级数学上册第四章《4.3角》课时练习题(含答案)一、单选题1.下列各度数的角,能借助一副三角尺画出的是( )A .55°B .65°C .75°D .85°2.如图所示,正方形网格中有α∠和∠β,如果每个小正方形的边长都为1,估测α∠与∠β的大小关系为( )A .αβ∠<∠B .αβ∠=∠C .αβ∠>∠D .无法估测3.下列换算中,正确的是( )A .23123623.48'''︒=︒B .22.252215'︒=︒C .18183018.183'''︒=︒D .47.1147736︒︒'=''4.已知6032α'∠=︒,则α∠的余角是( )A .2928'︒B .2968'︒C .11928'︒D .11968'︒5.已知∠A =38°,则∠A 的补角的度数是( )A .52°B .62°C .142°D .162° 6.如图,在同一平面内,90AOB COD ∠=∠=︒,AOF DOF ∠=∠,点E 为OF 反向延长线上一点(图中所有角均指小于180︒的角).下列结论:①COE BOE ∠=∠;②180AOD BOC ∠+∠=︒;③90BOC AOD ∠-∠=︒;④180COE BOF ∠+∠=︒.其中正确结论的个数有( )A .1个B .2个C .3个D .4个7.如图,68AOB ∠=︒,OC 平分AOD ∠且15COD ∠=︒,则BOD ∠的度数为( ).A .28︒B .38︒C .48︒D .53︒8.一个角的补角为138︒,则这个角的余角为( )A .38︒B .42︒C .48︒D .132︒二、填空题9.如图,过直线AB 上一点O 作射线OC ,∠BOC =29°18′,则∠AOC 的度数为_____.10.如图,直线,AB CD 相交于O ,OE 平分,∠⊥AOC OF OE ,若46BOD ∠=︒,则DOF ∠的度数为______︒.11.已知,如图,A 、O 、B 在同一直线上,OF 平分AOB ∠,12∠=∠,3=4∠∠.(1)射线OD 是_______的角平分线;(2)AOC ∠的补角是_______;(3)AOC ∠的余角是_______;(4)_______是2∠的余角;(5)DOB ∠的补角是_______;(6)_______是COF ∠的补角.12.如图,若OC 、OD 三等分AOB ∠,则AOB ∠=_______AOC ∠=_______AOD ∠,COD ∠=_______AOB ∠,BOC ∠=∠_______.13.如图,已知∠AOB =90°,射线OC 在∠AOB 内部,OD 平分∠AOC ,OE 平分∠BOC ,则∠DOE =_____°.14.如图,将一副三角尺的两个锐角(30°角和45°角)的顶点P 叠放在一起,没有重叠的部分分别记作∠1和∠2,若∠1与∠2的和为61°,则∠APC 的度数是 _____.三、解答题15.如图,点P 是直线l 外一点,过点P 画直线P A ,PB ,PC ,…,分别交直线l 于点A ,B ,C ,….用量角器量出1∠,2∠,3∠的度数,并量出P A ,PB ,PC 的长度,你发现了什么?16.如图,两个直角三角形的直角顶点重合,∠AOC =40°,求∠BOD 的度数.结合图形,完成填空:解:因为∠AOC+∠COB = °,∠COB+∠BOD = ①所以∠AOC = .②因为∠AOC =40°,所以∠BOD = °.在上面①到②的推导过程中,理由依据是: .17.如图①,已知线段AB=18cm,CD=2cm,线段CD在线段AB上运动,E,F分别是AC,BD的中点.(1)若AC=4cm,则EF=cm;(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由.(3)a.我们发现角的很多规律和线段一样,如图②,已知∠COD在∠AOB内部转动,OE,OF分别平分∠AOC和∠BOD,若∠AOB=140°,∠COD=40°,求∠EOF.b.由此,你猜想∠EOF,∠AOB和∠COD会有怎样的数量关系.(直接写出猜想即可)18.如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°.将一块直角三角板的直角顶点放在点O处,边OM与射线OB重合,另一边ON位于直线AB的下方.(1)将图1的三角板绕点O逆时针旋转至图2,使边OM在∠BOC的内部,且恰好平分∠BOC,问:此时ON所在直线是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,设旋转时间为t秒,在旋转的过程中,ON所在直线或OM所在直线何时会恰好平分∠AOC?请求所有满足条件的t值;(3)将图1中的三角板绕点O顺时针旋转至图3,使边ON在∠AOC的内部,试探索在旋转过程中,∠AOM和∠CON的差是否会发生变化?若不变,请求出这个定值;若变化,请求出变化范围.19.已知:160AOD ∠=︒,OB 、OM 、ON 是AOD ∠内的射线.(1)如图1,若OM 平分AOB ∠,ON 平分BOD ∠.当射线OB 绕点O 在AOD ∠内旋转时,求MON ∠的度数.(2)OC 也是AOD ∠内的射线,如图2,若20BOC ∠=︒,OM 平分AOC ∠,ON 平分BOD ∠,当射线OB 绕点O 在AOD ∠内旋转时,求MON ∠的大小.20.【阅读理解】定义:在一条直线同侧的三条具有公共端点的射线之间若满足以下关系,其中一条射线分别与另外两条射线组成的角恰好满足2倍的数量关系,则称该射线是另外两条射线的“双倍和谐线”.如图1,点P 在直线l 上,射线PR ,PS ,PT 位于直线l 同侧,若PS 平分∠RPT ,则有∠RPT =2∠RPS ,所以我们称射线PR 是射线PS ,PT 的“双倍和谐线”.【迁移运用】(1)如图1,射线PS(选填“是”或“不是”)射线PR,PT的“双倍和谐线”;射线PT(选填“是”或“不是”)射线PS,PR的“双倍和谐线”;(2)如图2,点O在直线MN上,OA MN,∠AOB=40°,射线OC从ON出发,绕点O以每秒4°的速度逆时针旋转,运动时间为t秒,当射线OC与射线OA重合时,运动停止.①当射线OA是射线OB,OC的“双倍和谐线”时,求t的值;②若在射线OC旋转的同时,∠AOB绕点O以每秒2°的速度逆时针旋转,且在旋转过程中,射线OD平分∠AOB.当射线OC位于射线OD左侧且射线OC是射线OM,OD的“双倍和谐线”时,求∠CON的度数。
新人教版七年级数学上册专题训练:角的计算(含答案)
新人教版七年级数学上册专题训练:角的计算(含答案)专题训练角的计算类型1 利用角度的和、差关系要求求解的角与已知角之间有和、差关系,可以利用角度和、差来计算。
1.如图,已知 $\angle AOC=\angle BOD=75°$,$\angle BOC=30°$,求 $\angle AOD$ 的度数。
解:因为 $\angle AOC=75°$,$\angle BOC=30°$,所以$\angle AOB=\angle AOC-\angle BOC=75°-30°=45°$。
又因为$\angle BOD=75°$,所以 $\angle AOD=\angle AOB+\angle BOD=45°+75°=120°$。
2.将一副三角板的两个顶点重叠放在一起(两个三角板中的锐角分别为45°、45°和30°、60°)。
1) 如图1所示,在此种情形下,当 $\angle DAC=4\angle BAD$ 时,求 $\angle CAE$ 的度数。
2) 如图2所示,在此种情形下,当 $\angle ACE=3\angle BCD$ 时,求 $\angle ACD$ 的度数。
解:(1) 因为 $\angle BAD+\angle DAC=90°$,$\angle DAC=4\angle BAD$,所以 $5\angle BAD=90°$,即 $\angle BAD=18°$。
所以 $\angle DAC=4\times18°=72°$。
因为 $\angle DAE=90°$,所以 $\angle CAE=\angle DAE-\angle DAC=18°$。
2) 因为 $\angle BCE=\angle DCE-\angle BCD=60°-\angle BCD$,$\angle ACE=3\angle BCD$,所以 $\angle ACB=\angle ACE+\angle BCE=3\angle BCD+60°-\angle BCD=90°$。
人教版数学七年级上册第4章4.1几何图形同步练习(解析版)(附模拟试卷含答案)
人教版数学七年级上册第4章4.1几何图形同步练习一、单选题(共10题;共20分)1、一个几何体的边面全部展开后铺在平面上,不可能是()A、一个三角形B、一个圆C、三个正方形D、一个小圆和半个大圆2、下列图形中,是棱锥展开图的是()A、B、C、D、3、下列图形是四棱柱的侧面展开图的是()A、B、C、D、4、将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是()A、B、C、D、5、如图是一个正方体的表面展开图,这个正方体可能是()A、B、C、D、6、一个几何体的展开图如图所示,这个几何体是()A、棱柱B、棱锥C、圆锥D、圆柱7、将一个正方体的表面沿某些棱剪开,展成一个平面图形,至少要剪开()条棱.A、3B、5C、7D、98、在下面的图形中,不可能是正方体的表面展开图的是()A、B、C、D、9、如图所示的正方体,如果把它展开,可以得到()A、B、C、D、10、下列四个图形中是如图展形图的立体图的是()A、B、C、D、二、填空题(共3题;共4分)11、一个棱锥的棱数是24,则这个棱锥的面数是________.12、如图中的几何体有________个面,面面相交成________线.13、如图是棱长为2cm的正方体,过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为________cm2.三、计算题(共4题;共20分)14、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.15、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?16、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?17、我们知道,将一个长方形绕它的一边旋转一周得到的几何体是圆柱,现有一个长是5cm,宽是3cm的长方形,分别绕它的长和宽所在的直线旋转一周,得到不同的圆柱几何体,分别求出它们的体积.四、解答题(共3题;共15分)18、请你用式子表示如图所示的长方体形无盖纸盒的容积(纸盒厚度忽略不计)和表面积.这些式子是整式吗?如果是,请你分别指出它们是单项式,还是多项式.19、将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?20、如图所示为一个正方体截去两个角后的立体图形,如果照这样截取正方体的八个角,则新的几何体的棱有多少条?请说明你的理由.答案解析部分一、单选题1、【答案】B【考点】几何体的展开图【解析】【解答】解:正四面体展开是个3角形;顶角为90度,底角为45度的两个正三棱锥对起来的那个6面体展开可以是3个正方形;一个圆锥展开可以是一个小圆+半个大圆.故选B.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.2、【答案】C【考点】几何体的展开图【解析】【解答】解:A、是三棱柱的展开图,故此选项错误; B、是一个平面图形,故此选项错误;C、是棱锥的展开图,故此选项正确;D、是圆柱的展开图,故此选项错误.故选:C.【分析】根据图形结合所学的几何体的形状得出即可.3、【答案】A【考点】几何体的展开图【解析】【解答】解:由分析知:四棱柱的侧面展开图是四个矩形组成的图形.故选:A.【分析】根据四棱柱的侧面展开图是矩形图进行解答即可.4、【答案】B【考点】几何体的展开图【解析】【解答】解:观察图形可知,将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的选项B.故选:B.【分析】立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.5、【答案】B【考点】几何体的展开图【解析】【解答】解:由题意,得四个小正方形组合成一个正方体的面,是阴影,是空白,故选:B.【分析】根据展开图折叠成几何体,四个小正方形组合成一个正方体的面,可得答案.6、【答案】B【考点】几何体的展开图【解析】【解答】解:圆锥的侧面展开图是扇形,底面是圆,故选:B.【分析】根据圆锥的展开图,可得答案.7、【答案】C【考点】几何体的展开图【解析】【解答】解:∵正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,∴至少要剪开12﹣5=7条棱,故选:C.【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着,即可得出答案.8、【答案】B【考点】几何体的展开图【解析】【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,C,D选项可以拼成一个正方体,而B选项,上底面不可能有两个,故不是正方体的展开图.故选:B.【分析】由平面图形的折叠及正方体的展开图解题.9、【答案】D【考点】几何体的展开图【解析】【解答】解:如图所示的正方体,如果把它展开,可以得到.故选:D.【分析】根据题干,3个黑色图形经过1个顶点,由此可以判断选项D是这个正方体的展开图.10、【答案】A【考点】几何体的展开图【解析】【解答】解:因为含小黑正方形的面不能与含大黑正方形的面相邻,两个小黑正方形不能在同一行,所以B,C不是左边展形图的立体图;两个小黑正方形在大黑正方形的对面”,那么A图中,正好是大黑正方形在上面,那么小黑正方形就在底面,A符合;故选:A.【分析】因为含小黑正方形的面不能与含大黑正方形的面相邻,两个小黑正方形不能在同一行,据此判断.二、填空题11、【答案】13【考点】认识立体图形【解析】【解答】解:由题意,得侧棱=底棱=12,棱锥是十二棱锥,十二棱锥有十二个侧面,一个底面,故答案为:13.【分析】根据棱锥的侧棱与底棱相等,可得棱锥,根据棱锥的特征,可得答案.12、【答案】3;曲【考点】认识立体图形【解析】【解答】解:图中的几何体叫做圆台,它是由3个面围成的,面与面相交所成的线是曲线.故答案为:3, 曲.【分析】由圆台的概念和特征即可解.图中的几何体叫做圆台,它是由3个面围成的,面与面相交所成的线是曲线.13、【答案】24【考点】几何体的表面积,截一个几何体【解析】【解答】解:过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为2×2×6=24cm2.故答案为:24.【分析】由于是在正方体的顶点上截取一个小正方体,去掉小正方形的三个面的面积,同时又多出小正方形的三个面的面积,表面积没变,由此求得答案即可.三、计算题14、【答案】解:这个长方形绕一边所在直线旋转一周后是圆柱.当2cm是底面半径时,圆柱的底面积是πr2=22π=4π(cm2),圆柱的侧面积是2πrh=2π×2×3=12π(cm2);当3cm是底面半径时,圆柱的底面积是πr2=32π=9π(cm2),圆柱的侧面积是2πrh=2π×3×2=12π(cm2).【考点】点、线、面、体,有理数的乘法【解析】【分析】根据长方形绕一边旋转一周,可得圆柱.分类讨论:2cm是底面半径,3cm是底面半径,根据圆的面积公式,可得圆柱的底面积,根据圆柱的侧面积公式,可得答案.15、【答案】几何体的表面积为48πcm2或80πcm2.【考点】认识立体图形,点、线、面、体,几何体的表面积【解析】【解答】当以5cm的边为轴旋转一周时,圆柱的表面积=2×π×32+2π×3×5=18π+30π=48πcm2;当以3cm的边为轴旋转一周时,圆柱的表面积=2×π×52+2π×5×3=50π+30π=80πcm2.所以答案为:几何体的表面积为48πcm2或80πcm2.【分析】以5cm的边为轴旋转一周得到的是一个底面半径为3cm,高为5cm的圆柱;以3cm边为轴旋转一周得到的是一个底面半径为5cm,高为3cm的圆柱.16、【答案】解:绕长所在的直线旋转一周得到圆柱体积为:π×52×6=150π(cm3);绕宽所在的直线旋转一周得到圆柱体积为:π×62×5=180π(cm3).答:它们的体积分别是150π(cm3)和180π(cm3).【考点】点、线、面、体,有理数的乘方【解析】【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.17、【答案】【解答】解:分两种情况:①绕长所在的直线旋转一周得到圆柱体积为:π×32×5=45π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×52×3=75π(cm3).故它们的体积分别为45πcm3或75πcm3.【考点】点、线、面、体【解析】【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.四、解答题18、【答案】解:根据题意得:长方体的体积为abc;表面积为ab+2(ac+bc),体积结果为单项式;表面积结果为多项式【考点】单项式,多项式,几何体的表面积【解析】【分析】根据长方体的体积=长×宽×高,表面积等于2(长×宽+长×高+宽×高),列出关系式即可做出判断.19、【答案】解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm3.绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48πcm3【考点】点、线、面、体【解析】【分析】圆柱体的体积=底面积×高,注意底面半径和高互换得圆柱体的两种情况.20、【答案】解:∵一个正方体有12条棱,一个角上裁出3条棱,即8个角共3×8条棱,∴12+3×8=36条.故新的几何体的棱有36条【考点】截一个几何体【解析】【分析】一个正方体有12条棱,一个角上裁出3条棱,即8个角共3×8条棱,相加即可.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图所示,已知∠AOC=∠BOD=80°,∠BOC=30°,则∠AOD的度数为( )A.160°B.110°C.130°D.140°2.如图,直线与相交于点,平分,且,则的度数为()A. B. C. D.3.如图,C,D,E是线段AB的四等分点,下列等式不正确的是()A.AB=4AC B.CE=12AB C.AE=34AB D.AD=12CB4.如图,电子蚂蚁P、Q在边长为1个单位长度的正方形ABCD的边上运动,电子蚂蚁P从点A出发,以个单位长度/秒的速度绕正方形作顺时针运动,电子蚂蚁Q从点A出发,以个单位长度/秒的速度绕正方形作逆时针运动,则它们第2017次相遇在()A.点AB.点BC.点CD.点D5.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(n>6),则a-b的值为()A.6B.8C.9D.126.下列计算正确的是( )A .x 2+x 2=x 4B .(x ﹣y)2=x 2﹣y 2C .(﹣x)2•x 3=x 5D .(x 2y)3=x 6y 7.请通过计算推测32018的个位数是( )A .1B .3C .7D .98.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( )A.x =-4B.x =-3C.x =-2D.x =-19.若x=-3是方程2(x-m )=6的解,则m 的值为( )A.6B.6-C.12D.12-10.一个有理数的平方等于它本身,那么这个有理数是( )A .0B .1C .±1 D.0或111.5的相反数是( ) A.15B.5C.15-D.﹣512.2322...233 (3)m n ⨯⨯⨯+++个个=( ) A.23n m B.m 23n C.32m n D.23m n二、填空题 13.已知△ABC 的高AD 于AB 、AC 的夹角分别是60°和20°,则∠BAC 的度数是_____________.14.在直角三角形中,一个锐角比另一个锐角的3倍还多10,则较小的锐角度数是_______.15.若代数式 4x 8- 与 3x 22+ 的值互为相反数,则x 的值是____.16.如图,数轴上点A 、B 、C 所对应的数分别为a 、b 、c ,化简|a|+|c ﹣b|﹣|a+b ﹣c|=__.17.将图1中的正方形剪开得到图2,图2中共有4个正方形,将图2中一个正方形剪开得到图3,图3中共有7个正方形,将图3中一个正方形剪开得到图4,图4中共有10个正方形⋯⋯如此下去,则图2019中共有正方形的个数为______.18.如图所示,有一个盛有水的圆柱体玻璃容器,它的底面半径为10cm,容器内水的高度为12cm,将一根半径为2cm的玻璃棒垂直插入水中后,容器里的水升高了_____cm.19.-24=________.20.若a和b是互为相反数,则a+b=_______三、解答题21.王老师到市场买菜,发现如果把10千克的菜放到秤上,指示盘上的指针转了180°,如图.第二天王老师就给同学们出了两个问题:(1)如果把0.6千克的菜放在秤上,指针转过多少角度?(2)如果指针转了7°12′,这些菜有多少千克?22.已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.(1)如图1,若∠COF=34°,则∠BOE=______;(2)如图1,若∠BOE=80°,则∠COF=______;(3)若∠COF=m°,则∠BOE=______度;∠BOE与∠COF的数量关系为______.(4)当∠COE绕点O逆时针旋转到如图2的位置时,(3)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.23.下面是马小哈同学做的一道题:解方程:212134 x x-+=-解:①去分母,得 4(2x﹣1)=1﹣3(x+2)②去括号,得 8x﹣4=1﹣3x﹣6③移项,得8x+3x=1﹣6+4④合并同类项,得 11x=﹣1⑤系数化为1,得x=-111, (1)上面的解题过程中最早出现错误的步骤是(填代号) (2)请在本题右边正确的解方程:x-12224x x -+=-. 24.解方程或计算:(1)30564x x --= (2)13142x xx ---=- (3)3425203+3542︒'⨯︒''' (4) 220161416(2)(1)2-+÷-⨯--25.已知多项式A 、B ,其中 ,某同学在计算A+B 时,由于粗心把A+B 看成了A-B 求得结果为,请你算出A+B 的正确结果。
人教版七年级上册数学 第四章 几何图形的初步 专题训练(含答案)
人教版七年级上册数学第四章几何图形的初步专题训练一、单选题1.用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是七边形;③可能是直角三角形;④可能是平行四边形.其中所有正确结论的序号是()A.①② B.①④C.①②④ D.①②③④2.如图,梯形绕虚线旋转一周所形成的图形是()A. B. C. D.3.下列几何体中,是棱锥的为()A. B. C. D.4.下列几何体的侧面展开图形状不是矩形的是()A.圆柱B.圆锥C.棱柱D.正方体5.下图中射线OA与OB表示同一条射线的是( )A. B.C.D.6.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A.两条直线相交,只有一个交点 B.两点确定一条直线 C.两点之间线段最短 D.直线比线段长7.如图,O 是直线AB 上一点,OD 平分∠BOC ,OE 平分∠AOC ,则下列说法错误的是( )A .∠DOE 为直角B .∠DOC 和∠AOE 互余 C .∠AOD 和∠DOC 互补 D .∠AOE 和∠BOC 互补8.如图,直线AB 与CD 相交于点,60O AOC ∠=,一直角三角尺EOF 的直角顶点与点O 重合,OE 平分AOC ∠,现将三角尺EOF 以每秒3的速度绕点O 顺时针旋转,同时直线CD 也以每秒9的速度绕点O 顺时针旋转,设运动时间为t 秒(040t ≤≤),当CD 平分EOF ∠时,t 的值为( ) A .2.5 B .2.5或30 C .30 D .2.5或32.59.如图所示,海岛B 在海岛A 的方向是( ).A .北偏西20°B .南偏东20°C .北偏西70°D .南偏东70°10.定义:△ABC 中,一个内角的度数为α,另一个内角的度数为β,若满足290αβ+=︒,则称这个三角形为“准直角三角形”.如图,在Rt △ABC 中,∠C=90°, AC=8,BC=6,D 是BC 上的一个动点,连接AD ,若△ABD 是“准直角三角形”,则CD 的长是( )A .127B .2413C .83D .135二、填空题11.如图,在线段AB 上有两点C 、D ,AB =28 cm ,AC =4 cm ,点D 是BC 的中点,则线段 AD =________cm .12.笔尖在纸上快速滑动写出一个又一个字,用数学知识可以理解为___________.13.桌面上有一个正六面体骰子,若将骰子沿如图所示的方向顺时针滚动,每滚动90°为1次,则滚动2020次后,骰子朝下一面的点数是___.14.将一副三角板如图摆放,若∠BAE=135°17′,则∠CAD 的度数是__________.三、解答题15.如图,长度为12cm 的线段AB 的中点为M ,C 点在线段MB 上,且2BC MC =,求线段AC 的长;16.已知如图是一个长方体无盖盒子的展开图,16,3,24AB cm CD cm IH cm ===.求:(1)求盒子的底面积.(2)求盒子的容积.17.如图,已知数轴上点A 表示的数为6,B 是数轴上一点,且AB =10,动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,(1)写出数轴上点B 所表示的数 ;(2)求线段AP 的中点所表示的数(用含t 的代数式表示);(3)M 是AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,说明理由;若不变,请你画出图形,并求出线段MN 的长.18.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数19.如图1,将一副直角三角尺的顶点叠一起放在点O 处,90BOA ∠=,60COD ∠=,OC 与OB 重合,在OD 外AOB ∠,射线OM 、ON 分别是AOC ∠、BOD ∠的角平分线(1)求MON ∠的度数;(2)如图2,若保持三角尺AOB 不动,三角尺COD 绕点逆时针旋转(060)n n <<时,其他条件不变,求MON ∠的度数(提示:旋转角BOC n ∠=)(3)在旋转的过程中,当120AOC BOD ∠+∠=时,直接写出BOC ∠的值答案一、选择1.B 2.D 3.D 4.B 5.B 6.B 7.D 8.D 9.D 10.C二、填空11.16 12.点动成线 13.4 14.三、解答15.8cm16.(1)2143()cm ;(2)3429()cm17.(1)-4;(2)63t - ;(3)不变,MN 的长度为5.18.∠BOE 的度数为60°19.(1)75;(2)75º;(3)15︒。
第四章 整式的加减 复习题 4(课件)人教版(2024)数学七年级上册
当x=-3时,原式=-3-1=-4.
(2)
2
a2b
1 2
ab2
3
a2b 1
2ab2 1,
其中a=-2,b=2.
(2)
2
a2b
1 2
ab2
3
a2b 1
2ab2 1
第四章 整式的加减
复习题 4
R ·七 年 级 数 学 上 册
复习巩固
1. 下列整式中哪些是单项式?哪些是多项式?是 单项式的指出系数和次数,是多项式的指出项和
次数:
1 a2b, m4n2 , x2 y2 1, x,3x2 y 3xy2 x4 1,32t 3,2x y. 27
解: 1 a2b是单项式,系数为 1 ,次数为3;
= 4a3b-3a2b2
(2) (4x2y-5xy2)-(3x2y-4xy2) 原式= 4x2y-5xy2-3x2y+4xy2
= x2y-xy2
(3) 3(2a2+4b)+3(-5a2-2b) 解:原式= 6a2+12b-15a2-6b
= -9a2+6b (4) 3(x2-2xy)-4(2x2-xy+1) 原式= 3x2-6xy-8x2+4xy-4
(2)列式表示比b的7倍小3的数与比b的6倍大5的数,并计 算这两个数的差.
(2)7b-3,6b+5;(7b-3)-(6b+5)=7b-3-6b-5=b-8.
7. 某轮船先顺水航行3 h,后逆水航行1.5 h, 已知轮船在静水中的速度是a km/h,水流速 度是b km/h,轮船共航行多少千米?
人教版 七年级数学上册 第四章同步测试题(含答案)
人教版七年级数学上册第四章同步测试题(含答案)4.1 几何图形一、选择题1. 如图所示的几何体是由形状、大小都完全相同的小正方体组合而成的,则图中的图形不是从正面、左面、上面看这个几何体得到的平面图形的是()2. 如图所示的几何体,从上面看得到的平面图形是()3. 下列四个图形中,是三棱锥的展开图的是()4. 如图,下列各组图形中全部属于柱体的是()5. 下列几何体是由4个相同的小正方体搭成的,其中从左面看和从上面看得到的平面图形相同的是( )6. 下列几何体中,含有曲面的有()A.1个B.2个C.3个D.4个7. 圆柱是由长方形绕着它的一边所在的直线旋转一周得到的,那么如图所示的几何体是图中的哪一个图形绕着直线旋转一周得到的()8. 将如图所示的长方体的表面展开,则得到的平面图形不可能是图中的 ()9. 如图,给定的是一个纸盒的外表面,图中的几何体能由它折叠而成的是()10. 如果一个棱柱有18条棱,那么它的底面一定是()A.十八边形B.八边形C.六边形D.四边形二、填空题11. 如图,观察生活中的物体,根据它们所呈现的形状,填出与它们类似的立体图形的名称:(1)______;(2)______;(3)__________;(4)________.12. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.13. 如图所示的图形中,是棱柱的有______.(填序号)14. 如图所示的8个立体图形中,是柱体的有,是锥体的有,是球的有.(填序号)15. 如图所示是某几何体的展开图,那么这个几何体是.16. 如图,把下列实物图和与其对应的立体图形连接起来.三、解答题17. 如图,有一个外观为圆柱形的物体,它的内部构造看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时,得到了如图所示的(1)(2)两组形状不同的截面,请你试着说出这个物体的内部构造.18. 如图,是长方体的展开图,将其折叠成一个长方体,那么:(1)与点N重合的点是哪几个?(2)若AG=CK=14 cm,FG=2 cm,LK=5 cm,则该长方体的表面积和体积分别是多少?图19. 如图①是三个直立于水平面上的形状完全相同的几何体(下底面为圆,单位:cm),将它们拼成如图②所示的新几何体,求新几何体的体积(结果保留π).人教版七年级数学上册 4.1 几何图形同步课时训练-答案一、选择题1. 【答案】A2. 【答案】C3. 【答案】A4. 【答案】B5. 【答案】B6. 【答案】B7. 【答案】A8. 【答案】C9. 【答案】B10. 【答案】C[解析] 一个棱柱有18条棱,则这个棱柱是六棱柱,六棱柱的底面是六边形.二、填空题11. 【答案】(1)圆柱(2)圆锥(3)圆柱、圆锥的组合体(4)球[解析] 立体图形实际上是由物体抽象得来的.12. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同13. 【答案】②⑥14. 【答案】①②⑤⑦⑧④⑥③15. 【答案】圆柱16. 【答案】①-C,②-B,③-D,④-E,⑤-A 连线略三、解答题17. 【答案】解:这个物体的内部构造为:圆柱中间有一球形空洞.18. 【答案】解:(1)与点N重合的点是点H,J.(2)由AG=CK=14 cm,LK=5 cm,可得CL=CK-LK=14-5=9(cm),所以长方体的表面积为2×(9×5+2×5+2×9)=146(cm2),体积为5×9×2=90(cm3).19. 【答案】解:π×22×(4+6)+[π×22×(4+6)]=40π+20π=60π(cm3).答:新几何体的体积为60π cm3.4.2直线、射线、线段同步练习试题(一)一.选择题1.平面上有三点A、B、C,如果AB=10,AC=7,BC=3,那么()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外2.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子可以把木条钉在墙上B.植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上C.打靶的时候,眼睛要与枪上的准星、靶心在同一直线上D.为了缩短航程把弯曲的河道改直3.有下列生活、生产现象:①从A地到B地架设电线,总是尽可能沿着线段AB架设.②用两个钉子就可以把木条固定在墙上.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①④B.②④C.①②D.③④4.已知点A,B,C在同一直线上,若AB=20cm,AC=30cm,点M、N分别是线段AB、AC中点,求线段MN的长是()A.5cm B.5cm或15cm C.25cm D.5cm或25cm 5.已知点A,B,C为平面内三点,给出下列条件:①AC=BC;②AB=2BC;③AC =BC=AB.选择其中一个条件就能得到“点C是线段AB中点”的是()A.①B.③C.①或③D.①或②或③6.如图,点C是AB的中点,点D是BC的中点,下列结论:①CD=AC﹣DB,②CD=AB,③CD=AD﹣BC,④BD=2AD﹣AB,正确的有()A.1个B.2个C.3个D.4个7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因()A.两点之间,线段最短B.过一点有无数条直线C.两点确定一条直线D.两点之间线段的长度,叫做这两点之间的距离8.如图,某工厂有三个住宅区,A、B、C各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A、B、C三点共线),已知AB=1500m,BC=1000m,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.A住宅区B.B住宅区C.C住宅区D.B、C住宅区中间D处9.老爷爷从家到超市有甲、乙、丙三条路可以选择,在不考虑其它因素的情况下,他选择了乙路前往,则其中蕴含着的数学道理是()A.两点确定一条直线B.两点之间线段最短C.连结直线外一点与直线上各点的所有线段中,垂线段最短D.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线10.如图所示,某公司员工住在A,B,C三个住宅区,已知A区有2人,B区有7人,C区有12人,三个住宅区在同一条直线上,且AB=150m,BC=300m,D 是AC的中点.为方便员工,公司计划开设通勤车免费接送员工上下班,但因为停车位紧张,在A,B,C,D四处只能设一个通勤车停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠站应设在()A.A处B.B处C.C处D.D处二.填空题11.如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.12.点A到原点的距离为4,且位于原点的左侧,若一个点从A处向右移动2个单位长度,再向左移动7个单位长度,此时终点所表示的数为.13.如图,AE⊥AB于A点,DB⊥AB于B点,点P为线段AB上任意一点,若AE =2,DB=4,AB=8,则PE+PD的最小值是.14.曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好的观赏风光,如图,A、B两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是.15.如图,建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条直的参照线,这样做的依据是.三.解答题16.如图所示,已知C、D是线段AB上的两个点,点M、N分别为AC、BD的中点.(1)若AB=16cm,CD=6cm,求AC+BD的长和M,N的距离;(2)如果AB=m,CD=n,用含m,n的式子表示MN的长.17.如图所示,把一根细线绳对折成两条重合的线段AB,点P在线段AB上,且AP:BP=2:3.(1)若细线绳的长度是100cm,求图中线段AP的长;(2)从点P处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为60cm,求原来细线绳的长.18.已知平面上点A,B,C,D(每三点都不在一条直线上).(1)经过这四点最多能确定条直线.(2)如图这四点表示公园四个地方,如果点B,C在公园里湖对岸两处,A,D在湖面上,要从B到C筑桥,从节省材料的角度考虑,应选择图中两条路中的哪一条?如果有人想在桥上较长时间观赏湖面风光,应选择哪一条?为什么?19.已知如图,A,B,C三点在同一直线上,AB=6,BC=2.(1)已知点C在直线AB上,根据条件,请补充完整图形,并求AC的长;(2)已知点C在直线AB上,M,N分别是AB,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AC的长存在的数量关系;(3)已知点C在直线AB上,M,N分别是AC,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AB的长存在的数量关系.参考答案与试题解析一.选择题1.【解答】解:如图,在平面内,AB=10,∵AC=7,BC=3,∴点C为以A为圆心,7为半径,与以B为圆心,3为半径的两个圆的交点,由于AB=10=7+3=AC+BC,所以,点C在线段AB上,故选:A.2.【解答】解:A、根据两点确定一条直线,故本选项不符合题意;B、确定树之间的距离,即得到相互的坐标关系,故本选项不符合题意;C、根据两点确定一条直线,故本选项不符合题意;D、根据两点之间,线段最短,故本选项符合题意.故选:D.3.【解答】解:根据两点之间,线段最短,得到的是:①④;②③的依据是两点确定一条直线.故选:A.4.【解答】解:(1)当点C位于点B的右边时,MN=(AC﹣AB)=5cm,(2)当点C位于点A的左边时,MN=(AC+AB)=25cm故线段MN的长为5cm或25cm.故选:D.5.【解答】解:①点C在线段AB上,且AC=BC,则C是线段AB中点故①不符合题意;②AB=2BC,C不一定是线段AB中点故②不符合题意;③AC=BC=AB,则C是线段AB中点,故③符合题意.故选:B.6.【解答】解:∵点C是AB的中点,点D是BC的中点,∴AC=BC=AB,CD=BD=BC=AC,∴①CD=BC﹣DB=AC﹣DB,正确;②CD=BC=AB,正确;③CD=AD﹣AC=AD﹣BC,正确;④BD=AB﹣AD≠2AD﹣AB,错误.所以正确的有①②③3个.故选:C.7.【解答】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因是两点之间,线段最短,故选:A.8.【解答】解:当停靠点在A区时,所有员工步行到停靠点路程和是:20×1500+45×2500=142500m;当停靠点在B区时,所有员工步行到停靠点路程和是:15×1500+45×1000=67500m;当停靠点在C区时,所有员工步行到停靠点路程和是:15×2500+20×1000=57500m;当停靠点在D区时,设距离B区x米,所有员工步行到停靠点路程和是:15×(1500+x)+20x+45(1000﹣x)=﹣10x+67500,由于k=﹣10,所以,x越大,路程之和越小,∴当停靠点在C区时,所有员工步行到停靠点路程和最小.故选:C.9.【解答】解:图中三条路线,甲和丙是曲线,乙是线段,由两点间线段最短,∴乙最短,故选:B.10.【解答】解:BD=(150+300)÷2﹣150=75(m),以点A为停靠点,则所有人的路程的和=7×150+12×(150+300)=6450m,以点B为停靠点,则所有人的路程的和=2×150+12×300=3900m,以点C为停靠点,则所有人的路程的和=2×(150+300)+7×300=3000m,以点D为停靠点,则所有人的路程的和=2×(150+300)÷2+7×75+12×(150+300)÷2=3675m.故停靠点的位置应设在点C.故选:C.二.填空题11.【解答】解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE 共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.12.【解答】解:∵点A到原点的距离为4,且位于原点的左侧,∴点A表示的数为﹣4,∵一个点从A处向右移动2个单位长度,再向左移动7个单位长度,∴﹣4+2﹣7=﹣9,故答案为:﹣9.13.【解答】解:过点D作DT⊥EA交EA的延长线于T,连接DE.∵AE⊥AB,DB⊥AB,DT⊥ET,∴∠B=∠T=∠BAT=90°,∴四边形ABDT是矩形,∴BD=AT=4,AB=DT=8,∴ET=AE+AT=2+4=6,∴DE===10,∵PE+PD≥DE,∴PE+PD≥10,∴PE+PD的最小值为10.故答案为10.14.【解答】解:其中蕴含的数学道理是两点之间线段最短,故答案为:两点之间线段最短.15.【解答】解:建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.三.解答题16.【解答】解:(1)∵AB=16cm,CD=6cm,∴AC+BD=AB﹣CD=10cm,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=16﹣5=11(cm);(2)∵AB=m,CD=n,∴AC+BD=AB﹣CD=m﹣n,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=m﹣(m﹣n)=.17.【解答】解:(1)∵AB=100=50,AP:BP=2:3,∴AP=20;(2)∵AP:BP=2:3,∴设AP=2x,BP=3x,若一根绳子沿B点对折成线段AB,则剪断后的三段绳子中分别为2x,2x,6x,∴6x=60,解得x=10,∴绳子的原长=2x+2x+6x=10x=100(cm);若一根绳子沿A点对折成线段AB,则剪断后的三段绳子中分别为4x,3x,3x,∴4x=60,解得x=15,∴绳子的原长=4x+3x+3x=10x=150(cm);综上所述,绳子的原长为100cm或150cm.故答案为100cm或150cm.18.【解答】解:(1)经过这四点最多能确定6条直线:直线AB,直线AD,直线BC,直线CD,直线AC,直线BD,故答案为:6;(2)从节省材料的角度考虑,应选择图中路线2;如果有人想在桥上较长时间观赏湖面风光,应选择路线1,因为两点之间,线段最短,路线2比路线1短,可以节省材料;而路线1较长,可以在桥上较长时间观赏湖面风光.19.【解答】解:(1)如图,如图1,∵AB=6,BC=2.∴AC=AB+BC=8;如备用图1,AC=AB﹣BC=4.答:AC的长为8或4;(2)如图,∵M,N分别是AB,BC的中点,∴BM=AB=3,BN=BC=1,∴MN=BM+BN=3+1=4,或MN=BM﹣BN=3﹣1=2.答:MN的长为4或2;(3)如图,∵M,N分别是AC,BC的中点,∴MC=AC=4,NC=BC=1,∴MN=MC﹣NC=4﹣1=34.3角同步练习试题(一)一.选择题1.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°2.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A.67°64′B.57°64′C.67°24′D.68°24′3.下列说法正确的是()A.射线比直线短B.从同一点引出的两条射线所组成的图形叫做角C.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离4.下列语句错误的个数是()①一个角的补角不是锐角就是钝角;②角是由两条射线组成的图形;③如果点C是线段AB的中点,那么AB=2AC=2BC;④连接两点之间的线段叫做两点的距离.A.4个B.3个C.2个D.1个5.按图1~图4的步骤作图,下列结论错误的是()A.∠AOB=∠AOP B.∠AOP=∠BOPC.2∠BOP=∠AOB D.∠BOP=2∠AOP6.如图,用量角器度量∠AOB,可以读出∠AOB的度数为()A.30°B.60°C.120°D.150°7.如图,小王从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东60°方向行走至C处,则∠ABC等于()A.90°B.100°C.110°D.120°8.如图,将一副三角板按不同位置摆放,其中α和β互为余角的是()A.B.C.D.9.如果∠1与∠2互补,∠2与∠3互余,那么∠1与∠3的关系是()A.∠1=90°+∠3 B.∠3=90°+∠1 C.∠1=∠3 D.∠1=180°﹣∠310.为防止森林火灾的发生,会在森林中设置多个观测点,如图,若起火点M 在观测台B的南偏东46°的方向上,点A表示另一处观测台,若AM⊥BM,那么起火点M在观测台A的()A.南偏东44°B.南偏西44°C.北偏东46°D.北偏西46°二.填空题11.若两个角互补,且度数之比为3:2,求较大角度数为.12.若∠A=59.6°,则它的余角为°′.13.将一副三角板按如图方式摆放在一起,且∠1比∠2大20°,则∠1的度数等于.14.如图,点C在点B的北偏西60°的方向上,点C在点A的北偏西30°的方向上,则∠C等于度.15.如图,点A在点O的北偏西60°的方向上,点B在点O的南偏东20°的方向上,那么∠AOB的大小为°.三.解答题16.如图所示,O为直线上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,∠BOC+∠FOD=117°,求∠BOE的度数.17.如图,已知∠AOB=128°,OC平分∠AOB,请你在∠COB内部画射线OD,使∠COD和∠AOC互余,并求∠COD的度数.18.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,OD,OE始终是∠AOC与∠BOC的平分线.则∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,OD,OE仍始终是∠AOC与∠BOC的平分线,直接写出∠DOE的度数(不必写过程).19.如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°).(1)若∠BOC=35°,求∠MOC的大小.(2)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由.(3)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=50°,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.参考答案与试题解析一.选择题1.【解答】解:射线OA表示的方向是南偏东65°,故选:C.2.【解答】解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.3.【解答】解:A.射线和直线不可以比较长短,原说法错误,故本选项不符合题意;B.从同一点引出的两条射线所组成的图形叫做角,原说法正确,故本选项符合题意;C.若点P在线段AB上,AP=BP,则P是线段AB的中点,原说法错误,故本选项不符合题意;D.两点之间的线段的长度叫做这两点之间的距离,原说法错误,故本选项不符合题意;故选:B.4.【解答】解:①直角的补角是直角,故原说法错误;②角是由有公共的端点的两条射线组成的图形,故原说法错误;③如果点C是线段AB的中点,那么AB=2AC=2BC,说法正确;④连接两点之间的线段的长度叫做两点的距离,故原说法错误.故错误的个数有①②④共3个.故选:B.5.【解答】解:∵OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.6.【解答】解:看内圈的数字可得:∠AOB=120°,故选:C.7.【解答】解:如图:∵小王从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东60°方向行走至点C处,∴∠DAB=40°,∠CBE=60°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+60°=100°.故选:B.8.【解答】解:A、α和β互余,故本选项正确;B、α和β不互余,故本选项错误;C、α和β不互余,故本选项错误;D、α和β不互余,故本选项错误.故选:A.9.【解答】解:∵∠1+∠2=180°∴∠1=180°﹣∠2又∵∠2+∠3=90°∴∠3=90°﹣∠2∴∠1﹣∠3=90°,即∠1=90°+∠3.故选:A.10.【解答】解:如图:因为AM⊥BM,所以∠2+∠3=90°,因为南北方向的直线平行,所以∠2=46°,∠1=∠3,所以∠3=90°﹣∠2=90°﹣46°=44°,所以∠1=44°,所以起火点M在观测台A的南偏西44°,故选:B.二.填空题11.【解答】解:因为两个角的度数之比为3:2,所以设这两个角的度数分别为(3x)°和(2x)°.根据题意,列方程,得3x+2x=180,解这个方程,得x=36,所以3x=108.即较大角度数为108°.故答案为108°.12.【解答】解:∵∠A=59.6°,∴∠A的余角为90°﹣59.6°=30.4°=30°24',故答案为30;24.13.【解答】解:设∠2为x,则∠1=x+20°;根据题意得:x+x+20°=90°,解得:x=35°,则∠1=35°+20°=55°;故答案为:55°.14.【解答】解:如图:根据题意可得:∠1=60°,∠2=30°,∵AE∥DB∥CF,∴∠BCF=∠1=60°,∠ACF=∠2=30°,∴∠ACB=30°.故答案为:30.15.【解答】解:如图,∵点A在点O北偏西60°的方向上,∴OA与西方的夹角为90°﹣60°=30°,又∵点B在点O的南偏东20°的方向上,∴∠AOB=30°+90°+20°=140°.故答案为:140.三.解答题16.【解答】解:设∠BOE=α°,∵OE平分∠BOD,∴∠BOD=2α°,∠EOD=α°.∵∠COD=∠BOD+∠BOC=90°,∴∠BOC=90°﹣2α°.∵OF平分∠AOE,∠AOE+∠BOE=180°,∴∠FOE=∠AOE=(180°﹣α°)=90°﹣α°,∴∠FOD=∠FOE﹣∠EOD=90°﹣α°﹣α°=90°﹣α°,∵∠BOC+∠FOD=117°,∴90°﹣2α°+90°﹣α°=117°,∴α=18,∴∠BOE=18°.17.【解答】解:作OD⊥OA,则∠COD和∠AOC互余,如图所示.∵∠AOB=128°,OC平分∠AOB,∴∠AOC=∠AOB=64°,∵∠COD和∠AOC互余,∴∠COD=90°﹣∠AOC=26°.18.【解答】解:(1)如图,∠AOC=90°﹣∠BOC=50°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=25°,∠COE=∠BOC=20°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=∠AOC+∠BOC=(∠AOC+∠BOC)∠AOB =45°;(3)∠DOE的大小分别为45°和135°,如图3,则∠DOE为45°;如图4,则∠DOE为135°.分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD﹣∠COE=(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=×270°=135°.19.【解答】解:(1)∵∠MON=90°,∠BOC=35°,∴∠MOC=∠MON+∠BOC=90°+35°=125°.(2)ON平分∠AOC.理由如下:∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°.又∵OM平分∠BOC,∴∠BOM=∠MOC.∴∠AON=∠NOC.∴ON平分∠AOC.(3)∠BOM=∠NOC+40°.理由如下:∵∠CON+∠NOB=50°。
人教版七年级数学上册第四章 几何图形的初步习题(含答案)
第四章几何图形的初步一、单选题1.下列图形不是立体图形的是()A.球B.圆柱C.圆锥D.圆2.如图是正方体的展开图,原正方体相对两个面上的数字和最大是()A.7B.8C.9D.103.下列几何中,属于棱柱的是()①①①①①①A.①①B.①C.①①①D.①①4.正方体的截面中,边数最多的多边形是()A.四边形B.五边形C.六边形D.七边形5.下面现象说明“线动成面”的是()A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上面画出的痕迹6.下列说法中,正确的是()A.画一条长3cm的射线B.直线、线段、射线中直线最长C.延长线段BA到C,使AC=BA D.延长射线OC到C7.若点P在线段AB上,PB=4,PA=12PB,则AB的长度是()A.3B.6C.12D.6或128.如图,点C、O、B在同一条直线上,①AOB=90°,①AOE=①DOB,则下列结论:①①EOD=90°;①①COE=①AOD;①①COE=①DOB;①①COE+①BOD=90°.其中正确的个数是()A.1B.2C.3D.49.如图,将一张长方形纸片的角A、E分别沿着BC、BD折叠,点A落在A'处,点E落在边BA'上的E'处,则①CBD的度数是()A.85°B.90°C.95°D.100°10.如图,已知①AOC=90°,①COB=α,OD平分①AOB,则①COD等于()A .2a B .45°-2a C .45°-α D .90°-α二、填空题11.一个角的余角比这个角的补角的13还小10°,则这个角的度数是______ . 12.用度、分、秒表示52.36°的补角为_____.13.下图是一个正方体的表面展开图,若将其折叠成原来的正方体,则与点A 重合的两点应该是点________.14.如图,长度为12cm 的选段AB 的中点为,M C 为线段MB 上一点,且:1:2MC MB ,则线段AC 的长度为___cm .三、解答题15.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF 。
人教版数学七年级上册第四章《几何图形初步》 综合复习题
第四章几何图形初步综合复习题一、单选题1.(2022·福建三明·七年级期末)如图,下列图形全部属于柱体的是()A.B.C.D.2.(2022·福建龙岩·七年级期末)下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是()A.B.C.D.3.(2022·福建泉州·七年级期末)在开会前,工作人员进行会场布置,如图为工作人员在主席台上由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线4.(2022·福建宁德·七年级期末)如图,已知线段a,b.按如下步骤完成尺规作图,则AC的长是()①作射线AM;①在射线AM 上截取2AB a =;①在线段AB 上截取BC b =.A .a b +B .b a -C .2a b +D .2a b -5.(2022·福建莆田·七年级期末)如图,点,C D 在线段AB 上.则下列表述或结论错误的是( )A .若AC BD =,则AD BC =B .AC AD DB BC =+- C .AD AB CD BC =+- D .图中共有线段12条6.(2022·福建南平·七年级期末)如图,线段6,4AB BC ==,点D 是AB 的中点,则线段CD 的长为( )A .3B .5C .7D .87.(2022·福建福州·七年级期末)在同一条直线上按顺序从左到右有P 、Q 、M 、N 四个点,若MN QM PQ -=,则下列结论正确是( )A .Q 是线段PM 的中点B .Q 是线段PN 的中点C .M 是线段QN 的中点D .M 是线段PN 的中点8.(2022·福建泉州·七年级期末)如图,下列说法中错误的是( )A .OA 方向是北偏东30°B .OB 方向是北偏西15°C .OC 方向是南偏西25°D .OD 方向是东南方向9.(2022·福建莆田·七年级期末)如图,按照上北下南,左西右东的规定画出方向十字线,①AOE =m °,①EOF =90°,OM ,ON 分别平分①AOE 和①BOF ,下面说法:①点E 位于点O 北偏西m °的方向上;①点F 位于点O 北偏东m °的方向上;①①MON =135°,其中正确的有( )A.3个B.2个C.1个D.0个∠的余角的度数为()10.(2022·福建泉州·七年级期末)如果52a∠=︒,则aA.38︒B.48︒C.52︒D.128︒二、填空题11.(2022·福建漳州·七年级期末)如图,是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x-y=_____.12.(2022·福建泉州·七年级期末)如图,是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面上,与“祝”相对的面上的汉字是______.13.(2022·福建福州·七年级期末)木工师傅用两根钉子就能将一根细木条固定在墙上了,这其中含有的数学知识是___.14.(2022·福建南平·七年级期末)植树时,只要定出两个树坑的位置,就能使同一行树坑在同一条直线上,这是根据___.(应用所学过的数学知识填空)15.(2022·福建漳州·七年级期末)已知,线段AB=6,点C在直线AB上,AB=3BC,则AC= ___.16.(2022·福建三明·七年级期末)如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分①COD,则①AOD的度数是____度.∠三等分,若图中所有小于平角的角的度17.(2022·福建龙岩·七年级期末)如图,射线OA,OB把POQ∠的度数为_____.数之和是300,则POQ18.(2022·福建泉州·七年级期末)把两块三角板按如图所示那样拼在一起,则①ABC等于___°.三、解答题19.(2022·福建宁德·七年级期末)在如图所示的正方形网格中,每个小正方形中都标有1个有理数,其中4个已经涂上阴影.现要在网格中选择2个空白的小正方形并涂上阴影,与图中的4个阴影正方形一起构成正方体的表面展开图.(1)图1是小明涂成的一个正方体表面展开图,求该表面展开图上6个有理数的和;(2)你能涂出一种与小明涂法不一样的正方体表面展开图吗?请在图2中涂出;(3)若要使涂成的正方体表面展开图上的6个有理数之和最大,应该如何选择?请在图3中涂出.20.(2022·福建龙岩·七年级期末)如图,已知四点A、B、C、D,用圆规和无刻度的直尺,按下列要求与步骤画出图形;(1)画直线AB;(2)画射线CB;(3)延长线段DA 至点E ,使AE=AD (保留作图痕迹).21.(2022·福建泉州·七年级期末)已知A ,B ,C ,D 四点在同一条直线上,点C 是线段AB 的中点.(1)点D 在线段AB 上,且AB =6,13BD BC =,求线段CD 的长度; (2)若点E 是线段AB 上一点,且AE =2BE ,当:2:3AD BD =时,线段CD 与CE 具有怎样的数量关系,请说明理由.22.(2022·福建福州·七年级期末)如图,已知线段10AB =,点C 是AB 的中点,点D 是线段上一点,3AD =.求线段CD 的长.23.(2022·福建厦门·七年级期末)如图,,B C 两点在射线AM 上,AC BC >,在射线BM 上作一点D 使得BD AC BC =-.(1)请用圆规作出点D 的位置;(2)若6cm AD =,求线段AC 的长.24.(2022·福建泉州·七年级期末)如图,在数轴上有A 、B 两点(点B 在点A 的右边),点C 是数轴上不与A 、B 两 点重合的一个动点,点M 、N 分别是线段AC 、BC 的中点.(1)如果点A 表示4-,点B 表示8,则线段AB = ;(2)如果点A 表示数a ,点B 表示数b ,①点C 在线段AB 上运动时,求线段MN 的长度(用含a 和b 的代数式表示);①点C 在点B 右侧运动时,请直接写出线段MN 的长度:___________________(用含a 和b 的代数式表示). 25.(2022·福建福州·七年级期末)如图,以直线AB 上一点O 为端点作射线OC ,使70AOC ∠=︒,在同一个平面内将一个直角三角板的直角顶点放在点O 处.(注:90DOE ∠=︒)(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,那么COE ∠的度数为______;(2)如图2,将直角三角板DOE 绕点O 按顺时针方向转动到某个位置,如果OC 恰好平分AOE ∠,求COD ∠的度数;(3)如图3,将直角三角板DOE 绕点O 任意转动,如果OD 始终在AOC ∠的内部,请直接用等式表示AOD ∠和COE ∠之间的数量关系.26.(2022·福建厦门·七年级期末)如图,对于线段AB 和A OB ''∠,点C 是线段AB 上的任意一点,射线OC '在A OB ''∠内部,如果AC A OC AB A OB ∠=∠'''',则称线段AC 是A OC ''∠的伴随线段,A OC ''∠是线段AC 的伴随角.例如:10,100AB A OB '='=∠︒,若3AC =,则线段AC 的伴随角30A OC ∠=''︒.(1)当8,130AB A OB '='=∠︒时,若65A OC ∠=''︒,试求A OC ''∠的伴随线段AC 的长;(2)如图,对于线段AB 和,6,120A OB AB A OB ''''∠=∠=︒.若点C 是线段AB 上任一点,E ,F 分别是线段,AC BC 的中点,,,A OE A OC A OF ''∠∠'∠'''分别是线段,,AE AC AF 的伴随角,则在点C 从A 运动到B 的过程中(不与A ,B 重合),E OF ''∠的大小是否会发生变化?如果会,请说明理由;如果不会,请求出E OF ''∠的大小.(3)如图,已知AOC ∠是任意锐角,点M ,N 分别是射线,OA OC 上的任意一点,连接MN ,AOC ∠的平分线OD 与线段MN 相交于点Q .对于线段MN 和AOC ∠,线段MP 是AOD ∠的伴随线段,点P 和点Q 能否重合?如果能,请举例并用数学工具作图,再通过测量加以说明;如果不能,请说明理由.27.(2022·福建三明·七年级期末)已知,O 为直线AB 上一点,①DOE =90°.(1)如图1,若①AOC =128°,OD 平分①AOC .①求的①BOD 度数;①请通过计算说明OE 是否平分①BOC .(2)如图2,若①AOD :①DOB =4:5,求①BOE 的度数.28.(2022·福建泉州·七年级期末)时钟上的分针和时针像两个运动员,绕着它们的跑道昼夜不停地运转.以下请你解答有关时钟的问题:(1)分针每分钟转了几度?(2)中午12时整后再经过几分钟,分针与时针所成的钝角会第一次等于121︒?(3)在(2)中所述分针与时针所成的钝角等于121︒后,再经过几分钟两针所成的钝角会第二次等于121︒?参考答案:1.C【解析】解:A 、有一个是三棱锥,故不符合题意;B 、有一个是不规则的多面体,故不符合题意;C 、分别是一个圆柱体、两个四棱柱;D 、有一个是圆台,故不符合题意.故选:C .2.A【解析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.解:A 、是直角梯形绕高旋转形成的圆台,故A 正确;B 、是直角梯形绕底边的腰旋转形成的圆柱加圆锥,故B 错误;C 、绕直径旋转形成球,故C 错误;D 、绕直角边旋转形成圆锥,故D 错误.故选A.本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.3.B由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是两点确定一条直线 故选B .4.D【解析】根据题意作出图形,根据线段的和差进行求解即可解:如图,根据作图可知,AC AB BC =-2a b =-故选D本题考查了尺规作图作线段,线段和差的计算,数形结合是解题的关键.5.D【解析】根据两点间的距离的含义和求法,以及直线、射线和线段的认识,逐项判断即可. 解: A. 因为AD=AC+CD,BC=CD+DB,若AC=BD ,所以可得AC=BD ,此选项说法正确;B. AC AD DB BC =+-,此选项说法正确;C. AD AB CD BC =+-,此选项说法正确;D.由图形可得图中共有线段6条所以,此选项说法错误,故选D.此题主要考查了两点间的距离的含义和求法,以及直线、射线和线段的认识,要熟练掌握.6.C【解析】根据点D是AB的中点,可得BD=3,再由CD=BD+BC,即可求解.解:①AB=6,点D是AB的中点,①BD=3,①BC=4,①CD=BD+BC=3+4=7.故选:C本题主要考查了有关中点的计算,明确题意,准确得到线段间的数量关系是解题的关键.7.D-=,得出线段之间的关系,逐项进行判断即【解析】根据题意画出图形,根据MN QM PQ可.①PQ不一定等于QM,①Q不一定是线段PM的中点,故A错误;-=,①MN QM PQ=+=,①MN PQ QM PM①PM MN PN+=,①M是线段PN的中点,故B错误,D正确;-=,①MN QM PQ>,①MN QM①M不是线段QN的中点,故C错误.故选:D.本题主要考查了线段之间的关系,根据题意画出图形是解题的关键.8.A试题分析:方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.根据定义就可以解决.解:A、OA方向是北偏东60°,此选项错误;B、OB方向是北偏西15°,此选项正确;C、OC方向是南偏西25°,此选项正确;D、OD方向是东南方向,此选项正确.错误的只有A.故选A.9.B【解析】观察方向图形,根据方向角解答即可.解:①点E位于点O北偏西(90﹣m)°的方向上,原结论错误;①①①AOE+①EOD=90°,①DOF+①EOD=90°,∴①DOF=①AOE=m°,∴点F位于点O北偏东m°的方向上,原结论正确;①①①AOE+①BOF=90°,OM,ON分别平分①AOE和①BOF,①①MOE+①NOF=45°,①∠MON=135°,原结论正确;其中正确的有2个.故选:B.此题考查的知识点是方向角,角平分线的性质,解题关键是明确方向角的意义,熟练运用角平分线和余角的性质推导角的关系.10.A【解析】根据余角的定义,利用90°减去52°即可.a∠的余角=90°-52°=38°.故选A.本题考查求一个数的余角,关键在于牢记余角的定义.11.5【解析】由正方体的表面展开图中的相对面中间一定隔着一个面的特点出发,确定相对面,再求解,x y的值,从而可得答案.解:由正方体的表面展开图可得:3和y相对,2-与x相对,而相对面上所标的两个数互为相反数,3,2,y xx y23235,故答案为:5本题考查的是正方体展开图中相对面上的数字,掌握正方体是立体图形,从相对面的特点进行分析是解本题的关键.12.功【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点,即可作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,① “你”与“试”相对,“考”与“成”相对,“祝”与“功”相对,①与“迎祝”相对的面上的汉字是“功”.故答案为:功本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题是解题的关键.13.两点确定一条直线【解析】细木条为一条线段,两根钉子相当于两个点,即可求解.解:细木条代表一条直线,两根钉子相当于两个点,两个点确定,细木条代表的直线就确定了,故答案为:两点确定一条直线此题考查了两点确定一条直线的应用,解题的关键是理解题意,掌握并运用两点确定一条直线的性质.14.两点确定一条直线【解析】根据两点确定一条直线,即可求解.解:根据题意得的:这是根据两点确定一条直线.故答案为:两点确定一条直线本题主要考查了直线的基本事实,熟练掌握两点确定一条直线是解题的关键.15.4或8【解析】先求出BC的长,根据点C的位置分别计算可得答案.解:①AB=6,AB=3BC,①BC=2,当点C在线段AB上时,AC=AB-BC=6-2=4;当点C在线段AB延长线上时,AC=AB+BC=6+2=8;故答案为:4或8.此题考查了线段的和差计算,掌握分类思想解决问题是解题的关键,避免漏解的现象.16.135°【解析】本题是有公共定点的两个直角三角形问题,通过图形可知①AOC+①BOC=90°,①BOD+①BOC=90°,同时①AOC+①BOC+①BOD+①BOC=180°,可以通过角平分线性质求解.①OB平分①COD,①①COB=①BOD=45°,①①AOB=90°,①①AOC=45°,①①AOD=135°.故答案为135.本题考查的知识点是角的平分线与对顶角的性质,解题关键是熟记角平分线的性质是将两个角分成相等的两个角.17.90°【解析】先找出所用的角,分别用含字母x的代数式将每个角的度数表示出来,再列方程即可求出x的值,进一步求出①POQ的度数.设①QOB=x,则①BOA=①AOP=x,则①QOA=①BOP=2x,①QOP=3x,①①QOB+①BOA+①AOP+①QOA+①BOP+①QOP=10x=300°,解得:x=30°,①①POQ=3x=90°.故答案为:90°.本题考查了确定角的个数及角的度数的计算,解答本题的关键是根据题意列出方程.18.120解:由图可知①ABC=30°+90°=120°.故答案为:12019.(1)-6(2)见解析(3)见解析【解析】(1)根据有理数加法法则计算即可得答案;(2)根据正方体表面展开图添加即可;(3)根据正方体表面展开图,选择两个数字的和最大的添加即可.(1)-4+2+6+1+(-3)+(-8)=-6,答:该表面展开图上6个有理数的和是-6.(2)根据正方体表面展开图添加如下:(3)根据正方体表面展开图可添加数字如下:-4+4=0,-6+(-8)=-14,-6+4=-2,-6+3=-3,-6+(-1)=-7,3+(-1)=2,①涂成的正方体表面展开图上的6个有理数之和最大,①添加3和-1,如图所示:本题考查有理数加法运算及正方体表面展开图,熟练掌握正方体11种展开图是解题关键.20.(1)见解析(2)见解析(3)见解析【解析】(1)画直线AB,直线向两方无限延伸;(2)画射线CB,C为端点,再沿CB方向延长;(3)画线段DA,延长线段DA,以A为圆心,AD为半径作弧交DA的延长线于E,则AE=AD.(1)画出直线AB;(2)画出射线CB;(3)延长线段DA,以A为圆心,AD为半径作弧交DA的延长线于E,则AE=AD(要求保留作图圆弧的痕迹,弧线和点E各画直线),所以,AE为所求作的线段(或表述E为所求作的点),如图所示:本题主要考查了直线、射线、线段,关键是掌握直线向两方无限延伸,射线向一方无限延伸,线段不能向两方无限延伸.21.(1)线段CD的长度为2;(2)5CD=3CE或CD=15CE.理由见解析【解析】(1)根据线段中点的性质求出BC,根据题意计算即可;(2)分两种情况讨论,当点D在线段AB上和点D在BA延长线上时,利用设元的方法,分别表示出AB以及CD、CE的长,即可得到CD与CE的数量关系.(1)解:如图1,①点C是线段AB的中点,AB=6,①BC=12AB=3,①BD=13 BC,①BD=1,①CD=BC-BD=2;(2)解:5CD=3CE或CD=15CE.理由如下:当点D在线段AB上,如图2,设AD =2x ,则BD =3x ,①AB =AD +BD =5x ,①点C 是线段AB 的中点,①AC =12AB =52x , ①CD =AC -AD =12x , ①AE =2BE ,①AE =23AB =103x , CE =AE -AC =56x , ①CD CE =1256x x ,即5CD =3CE ; 当点D 在BA 延长线上时,如图3,设AD =2a ,则BD =3a ,①AB =BD -AD =a ,①点C 是线段AB 的中点,①AC =12AB =12a , ①CD =AC +AD =52a , ①AE =2BE ,①AE =23AB =23a , CE =AE -AC =16a , ①CD CE =5216a a ,即CD =15CE . 综上,5CD =3CE 或CD =15CE .本题考查的是两点间的距离,正确理解线段中点的概念和性质是解题的关键.解第2问注意分类讨论.22.2CD =【解析】根据中点的性质可得AC 的长,再根据线段的和差计算出CD 的长即可. ①10AB =,点C 是AB 的中点 ①1110522AC AB ==⨯= ①5AC =,3AD =①532CD AC AD =-=-=本题考查了中点的定义和线段的和差,熟练掌握相关知识是解题的关键.23.(1)见解析(2)3cm【解析】(1)以C 为圆心,以AC 的长为半径画弧与射线CM 交于点D ,点D 即为所求; (2)根据BD AC BC =-,BD CD BC =-,得到AC CD =,由此即可得到答案.(1)解:如图所示,点D 即为所求;(2)解:①BD AC BC =-,BD CD BC =-,①AC CD =, ①13cm 2AC AD ==. 本题主要考查了尺规作图—作线段,线段的和差计算,熟知相关知识是解题的关键.24.(1)12 (2)①1()2b a -;①1()2MN b a =-【解析】(1)结合数轴根据两点距离求解即可;(2)①由点M 、N 分别是线段AC 、BC 的中点,得AC BC AB b a +==-,进而根据12MN CM CN AB =+=求解即可; ①同理可得12MN CM CN AB =-=. (1) 点A 表示4-,点B 表示8,()8412AB ∴=--=故答案为:12(2)如果点A 表示数a ,点B 表示数b , ①点C 在线段AB 上,点M 、N 分别是线段AC 、BC 的中点,12CM AC ∴=,12CN BC =,AC BC AB b a +==-, 11()22MN CM CN AB b a ∴=+==-; ①点C 在点B 右侧运动时,设C 点表示的数为c ,点M 、N 分别是线段AC 、BC 的中点,12CM AC ∴=,12CN BC =,()()AC BC c a c b b a -=---=-, ()11()22MN AC BC b a ∴=-=- 故答案为:1()2MN b a =-. 本题考查了数轴上两点距离,线段段中点的性质,线段和差的计算,数形结合是解题的关键. 25.(1)20︒;(2)20︒;(3)20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【解析】(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,则①COE =20°; (2)由角平分线可得70COE AOC ∠=∠=︒,再利用角的和差进行计算即可;(3)分别用①COE 及①AOD 的式子表达①COD ,进行列式即可.解:(1)①90DOE ∠=︒,70AOC ∠=︒①907020COE DOE AOC =∠-∠=︒-︒=︒∠故答案为:20︒(2)①OC 平分AOE ∠,70AOC ∠=︒,①70COE AOC ∠=∠=︒,①90DOE ∠=︒,①907020COD DOE COE ∠=∠-∠=︒-︒=︒.(3)①90COD DOE COE COE =∠-∠=︒-∠∠, 70COD AOC AOD AOD =∠-∠=︒-∠∠ ①9070COE AOD ︒-∠=︒-∠①20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.故答案为:20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.本题考查了角的和差关系,准确表达出角的和差关系是解题的关键.26.(1)AC =4;(2)不会,①E ′OF ′=60°.理由见解析(3)能,理由见解析【解析】(1)根据伴随角和伴随线段的定义定义列出等式即可求解;(2)由中点的定义可得EF =12AB ,再利用伴随角和伴随线段的定义列出等式,可得出结论; (3)由伴随角和伴随线段的定义可得,点P 和点Q 重合时,是MN 的中点,画出图形,测量即可.(1) 解:由伴随角和伴随线段的定义可知,AC A OC AB A OB ∠=∠'''',, ①65181302AC ︒==︒, ①AC =4;(2)解:不会,①E ′OF ′=60°.理由如下:①点E ,F 分别是线段AC ,BC 的中点,①EC =12AC ,CF =12BC , ①EF =12AB =3. ①①A ′OE ′,①A ′OC ′,①A ′OF ′分别是线段AE ,AC ,AF 的伴随角, ①AE A OE AB A OB ∠=∠'''',AC A OC AB A OB ∠=∠'''',AF A OF AB A OB ∠=∠'''', ①EF =AF -AE , ①12EF AF AE A OF A OE E OF AB AB AB A OB A OB A OB ∠∠'''''''''''∠'=-=-==∠∠∠, ①①A ′OB ′=120°,①①E ′OF ′=60°;(3)解:能,理由如下:①OD 是①AOC 的平分线,①①AOD =12①AOC ,①线段MP是①AOD的伴随线段,①12MP AODMN AOC∠==∠.即点P是MN的中点.若点P和点Q重合,则点Q为MN的中点.根据题意画出图形如下所示:测量得出当点P和点Q重合时,NP=MQ=1.25cm.本题属于线段和角度中新定义类问题,涉及中点的定义和角平分线的定义,关键是理解伴随角和伴随线段的定义.27.(1)①①BOD=116°;①OE平分①BOC,见解析(2)①BOE=10°.【解析】(1)①根据角平分线的定义求出①AOD的度数,再根据平角的定义求出①BOD的度数;①根据角的和差求出①COE=①DOE-①DOC=90°-64°=26°,①BOE=①BOD-①DOE=116°-90°=26°,根据角平分线的定义即可求解;(2)设①AOD=4x,则①DOB=5x,根据平角的定义列出方程求出x,进一步求出①BOE的度数.(1)解:①①OD平分①AOC,①AOC=128°,①①AOD=①DOC=12①AOC=12×128°=64°,①①BOD=180°-①AOD=180°-64°=116°;①①①DOE=90°,又①①DOC=64°,①①COE=①DOE-①DOC=90°-64°=26°,①①BOD=116°,①DOE=90°,①①BOE=①BOD-①DOE=115°-90°=26°,①①COE=①BOE,即OE平分①BOC;(2)解:若①AOD :①DOB =4:5,设①AOD =4x ,则①DOB =5x ,又①①AOD +①DOB =180°,①4x +5x =180°,①x =20°,①①AOD =4x =80°,①①DOE =90°,①①BOE =180°-80°-90°=10°.本题主要考查了角平分线的定义和角的运算.结合图形找到其中的等量关系是解题的关键. 28.(1)6︒(2)22 (3)23611【解析】(1)根据分针一小时转一圈即360°,用360°除以60计算即得;(2)根据分针每分钟转6°,时针每分钟转0.5°,时针与分针转过的角度差是121︒,列方程解答即可;(3)相对于12时整第二次所成的钝角第二次等于121︒时,时针与分针转过的角度差超过180°,这个差与121︒之和是360°.(1)解:①分针一小时转一圈即360°,①分针每分钟转过的角度是:360606︒÷=︒ ,答:分针每分钟转了6度;(2)设中午12时整后再经过x 分钟,分针与时针所成的钝角会第一次等于121°,①时针一小时转动角度为: 3601230︒÷=︒,时分针每分钟转过的角度是:30600.5÷︒=︒ ;①分针与时针所成的钝角会第一次等于121︒,①时针与分针转过的角度差是121︒,①60.5121x x -=,解得:22x =,答:中午12时整后再经过22分钟,分针与时针所成的钝角会第一次等于121°;(3)设经过y 分钟两针所成的钝角会第二次等于121︒,则从12时算起经过(y +22)分钟两针所成的钝角会第二次等于121︒,因为时针与分针转过的角度差超过180°,这个差与121︒之和是360°,故列得方程:6(22)0.5(22)121360y y +-++=,解得:6(22)0.5(22)121360y y +-++=, 解得:23611y =, 答:经过23611分钟两针所成的钝角会第二次等于121︒. 本题通过钟面角考查一元一次方程,掌握时针分针的转动情况,会根据已知条件列方程是解题的关键.选择合适的初始时刻会简化理解和运算难度,起到事半功倍的效果.。
人教版七年级数学上册第四章角复习试题一(含答案) (17)
人教版七年级数学上册第四章角复习试题一(含答案) 已知一个角的两边分别垂直于另一个角的两边,且这两个角的差是30°,则这两个角的度数分别是___________度.【答案】75°、105°【解析】【分析】由两角的两边互相垂直可得出两角相等或互补,然后再根据这两个角的差是30°可知,该这个角互补,从而可求得这两个角的度数.【详解】解:∵一个角的两边分别垂直于另一个角的两边,∴这两个角相等或互补.又∵这两个角的差是30°,∴这两个角互补.设一个角为x,则另一个角为x+30°,根据题意可知:x+x+30°=180°.解得:x=75°,x+30°=75°+30°=105°.故答案为:75°、105°.【点睛】本题主要考查的是垂线的定义,根据题意得到这两个角相等或互补是解题的关键.62.已知一个角的补角是它余角的3倍,则这个角的度数为_____.【答案】45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.63.如图,圆的四条半径分别是,,,O A B在同一条OA OB OC OD,其中点,,直线上,90,∠=︒3AOD∠=∠那么圆被四条半径分成的四个扇形AOC BOC①②③④的面积的比是____________.【答案】3:1:2:2【解析】【分析】先求出各角的度数,再得出其比值即可.【详解】∵点O,A,B在同一条直线上,∠AOD=90︒,∴∠BOD=90︒,∵∠AOC=3∠BOC,∴∠BOC=14×180︒=45︒,∠AOC=3×45︒=135︒,∴S扇形AOC:S扇形BOC:S扇形BOD:S扇形AOD=135:45:90:90=3:1:2:2.故答案为:3:1:2:2.【点睛】本题考查的是角的计算,熟知两角互补的性质是解答此题的关键.64.3627'3︒⨯=____________(结果用“︒”表示).【答案】109.35︒【解析】【分析】根据角度的运算法则即可求解.【详解】3627'3︒⨯=36.453109.35︒⨯=︒故答案为:109.35︒.【点睛】此题主要考查角度的运算,解题的关键是熟知角度的换算方法.三、解答题65.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一直角三角板MON的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)求∠CON的度数;(2)如图2是将图1中的三角板绕点O按每秒15°的速度沿逆时针方向旋转一周的情况,在旋转的过程中,第t秒时,三条射线OA、OC、OM构成两个相等的角,求此时的t值(3)将图1中的三角板绕点O顺时针旋转至图3(使ON在∠AOC的外部),图4(使ON在∠AOC的内部)请分别探究∠AOM与∠NOC之间的数量关系,并说明理由.【答案】(1)150°;(2)t为4,16,10或22秒;(3)ON在∠AOC的外部时,∠NOC -∠AOM=30°;ON在∠AOC的内部时,∠AOM-∠NOC=30°,理由见解析【解析】【分析】(1)根据角的和差即可得到结论;(2)在图2中,分四种情况讨论:①当∠COM为60°时,②当∠AOM为60°时,③当OM可平分∠AOC时,④当OM反向延长线平分∠AOC时,根据角的和差即可得到结论;(3)ON在∠AOC的外部时和当ON在∠AOC内部时,分别根据角的和差即可得到结论.【详解】(1)已知∠AOC=60°,MO⊥ON,∴∠AON=90°,∴∠CON=∠AON+∠AOC=150°;(2)∵∠AOC=60°,①当∠COM为60°时,旋转前∠COM为120°,故三角板MON逆时针旋转了60°,旋转了60=415秒;②当∠AOM为60°时,旋转前∠AOM为180°,OM不与OC重合,故三角板MON逆时针旋转了240°,旋转了240=16秒;15③当OM可平分∠AOC时,∠MOB=180°-30°=150°,故三角板MON逆时针旋转了150°,旋转了15015=10秒; ④当OM 反向延长线平分∠AOC 时,18030150COM AOM ∠=︒-︒=︒=∠'',故三角板MON 逆时针旋转了180150︒+︒=330°,旋转了33015=22秒, 综上t 为:4,16,10或22秒;(3) ∵∠MON=90°,∠AOC=60°,当旋转到如图,ON 在∠AOC 的外部时,∴∠AOM=60°+∠COM ,∠NOC=90°+∠COM ,∴∠NOC -∠AOM=30°;当旋转到如图,ON 在∠AOC 的内部时,∴∠AOM=90°-∠AON ,∠NOC=60°-∠AON ,∴∠AOM-∠NOC=30°.【点睛】本题主要考查了角的计算以及角平分线的定义的运用,应该认真审题并仔细观察图形,找到各个量之间的关系,是解题的关键.66.如图,已知50AOB ∠=︒,OD 是COB ∠的平分线.(1)如图1,当AOB ∠与COB ∠互补时,求COD ∠的度数;(2)如图2,当AOB ∠与COB ∠互余时,求COD ∠的度数.【答案】(1)65°;(2)20°【解析】【分析】(1)根据∠AOB 与∠COB 互补,可得∠COB 的度数,根据角平分线定义可得结论;(2)根据∠AOB 与∠COB 互余,可得∠COB 的度数,根据角平分线定义可得结论.【详解】(1)∵∠AOB 与∠COB 互补,∴∠COB=180°-∠AOB=180°-50°=130°,∵OD 是∠COB 的平分线∴∠COD=12∠COB=12×130°=65°; (2)∵∠AOB 与∠COB 互余,∴∠COB=90°-∠AOB=90°-50°=40°,∵OD 是∠COB 的平分线,∴∠COD=12∠COB=12×40°=20°. 【点睛】本题考查了角度的计算,理解角的平分线的定义以及余角补角的定义是解决本题的关键.67.(1)计算:()23121834⎛⎫⨯-+÷- ⎪⎝⎭(2)计算:()2117'42''1628''4︒-︒⨯【答案】(1)0;(2)21856'''︒【解析】【分析】(1)先乘方再乘除,除法运算转化成乘法运算,最后计算加减即可;(2)先计算括号内的,再进行乘法运算即可.【详解】 (1)()23121834⎛⎫⨯-+÷- ⎪⎝⎭ 181894⎛⎫=⨯-+÷ ⎪⎝⎭22=-+0=;(2)()2117'42''1628''4︒-︒⨯517'14''4=︒⨯2068'56''=︒218'56''=︒.【点睛】本题考查了有理数的混合运算和角度的混合运算,注意度分秒的换算.68.如图,直线AB ,CD 相交于点O ,OE 平分AOC ∠,OF CD ⊥于点O .(1)若6830BOF ∠=︒',求AOE ∠的度数;(2)若:1:4AOD AOE ∠∠=,求BOF ∠的度数.【答案】(1)7915︒';(2)70︒【解析】【分析】(1)先求出∠BOC 的度数,再求出∠AOC 的度数,根据OE 平分AOC ∠即可求出∠AOE 的度数;(2)设AOD x ∠=︒,则4AOE COE x ∠=∠︒=,根据180AOD AOE COE ∠+∠+∠=︒列出方程即可求出x ,从而求出∠BOF 即可.【详解】解:(1)∵OF CD ⊥,∴90COF ∠=︒,∴9068302130BOC COF BOF ∠=∠-∠=︒-︒'=︒',∴180180213015830AOC BOC ∠=︒-∠=︒-︒'=︒',∵OE 平分AOC ∠, ∴1115830791522AOE AOC ∠=∠=⨯︒'=︒'. (2)设AOD x ∠=︒,则4AOE COE x ∠=∠︒=,∵180AOD AOE COE ∠+∠+∠=︒,∴44180x x x ++=,解得20x ,∴20AOD ∠=︒,20BOC AOD ∠=∠=︒,∴9070BOF BOC ∠=︒-∠=︒.【点睛】本题考查了垂直、角平分线的定义以及角度的运算问题,解题的关键是理解角平分线的定义并熟练掌握角度的运算.69.如图,已知射线OB 平分∠AOC ,∠AOC 的余角比∠BOC 小42°.(1)求∠AOB 的度数:(2)过点O 作射线OD ,使得∠AOC =4∠AOD ,请你求出∠COD 的度数(3)在(2)的条件下,画∠AOD 的角平分线OE ,则∠BOE = .【答案】(1)44°;(2)66°或110°;(3)33°或55°【解析】【分析】(1)设∠BOC=x,则∠AOC=2x,根据∠AOC的余角比∠BOC小42°列方程求解即可;(2)分两种情况:①当射线OD在∠AOC内部,②当射线OD在∠AOC 外部,分别求出∠COD的度数即可;(3)根据(2)的结论以及角平分线的定义解答即可.【详解】解:(1)由射线OB平分∠AOC可得∠AOC =2∠BOC,∠AOB=∠BOC,设∠BOC=x,则∠AOC=2x,依题意列方程90°﹣2x=x﹣42°,解得:x=44°,即∠AOB=44°.(2)由(1)得,∠AOC=88°,∠当射线OD在∠AOC内部时,如图,∵∠AOC=4∠AOD,∴∠AOD=22°,∴∠COD=∠AOC﹣∠AOD=66°;∠当射线OD在∠AOC外部时,如图,由①可知∠AOD =22°,则∠COD =∠AOC +∠AOD =110°;故∠COD 的度数为66°或110°;(3)∵OE 平分∠AOD ,∴∠AOE =1112AOD ∠=︒, 当射线OD 在∠AOC 内部时,如图,∴∠BOE =∠AOB ﹣∠AOE =44°﹣11°=33°;当射线OD 在∠AOC 外部时,如图,∴∠BOE =∠AOB +∠AOE =44°+11°=55°.综上所述,∠BOE 度数为33°或55°.故答案为:33°或55°【点睛】本题考查了角度的和差运算,角平分线的定义以及余角的定义等知识,解答本题的关键是掌握基本概念以及运用分类讨论的思想求解.70.如图,90,60AOB COD AOC ∠=∠=︒∠=︒,射线ON 以10度/秒的速度从OD 出发绕点O 顺时针转动到OA 时停止,同时射线OM 以25度/秒的速度从OA 出发绕点O 逆时针转动到OD 时停止,设转动时间为t 秒.(1)当OM ON 、重合时,求t 的值;(2)当ON 平分BOD ∠时,试通过计算说明OM 平分AOD ∠;(3)当t 为何值时,MON ∠与AOD ∠互补?【答案】(1)307t =;(2)见解析;(3)247t =或367t = 【解析】【分析】 (1)根据题意10,25150DON t AOM t AOD ∠=∠=∠=︒, ,当OM ON 、重合时,+DON AOM AOD ∠∠=∠,计算即可;(2)根据题意可得=60BOD AOC ∠∠=︒,由ON 平分BOD ∠可计算出3t =,故25375AOM ∠=⨯=︒,即可说明OM 平分AOD ∠;(3)根据题意可得30MON ∠=︒分两种情况说明,当OM ON 、重合之前和OM ON 、重合之后分别计算即可.【详解】由题意:10,25DON t AOM t ∠=∠=()190,60COD AOC ∠=∠=150AOD COD AOC ∴∠=∠+∠=当,ON OM 重合时,DON AOM AOD ∠+∠=∠1025150t t ∴+= 解得:307t = ()290AOB COD ∠=∠=90AOC BOC BOD BOC ∴∠+∠=∠+∠=60BOD AOC ∴∠=∠= ON 平分BOD ∠1302DON BOD ∴∠=∠= ∠30103t =÷= ∠1253752AOM AOD ∠=⨯==∠ OM ∴平分AOD ∠()3150,180AOD AOD MON ∠=∠+∠=30MON ∴∠=当OM 与ON 重合前150DON MON AOM ∠+∠+∠=103025150t t ++=解得:247t = 当OM 与ON 重合后150DON AOM MON ∠+∠-∠=102530150t t +-= 解得:367t =∴当247t =或367t =时,MON ∠与AOD ∠互补 【点睛】本题考查的是角的综合题,一元一次方程的解法,旋转的性质,有一定的难度,分情况讨论是难点.。
人教版数学七年级上学期第四章单元练习题:几何图形初步(含答案)
第四章单元练习题:几何图形初步1.如图所示,已知∠AOB=90°,OM平分∠BOC,ON平分∠AOC,求∠MON的度数.2.如图,已知点A、B、C、D、E在同一直线上且AC=BD,E是线段BC的中点,AD=10,AB=3.(1)求线段BD的长度;(2)求线段BE的长度.3.点O为直线AB上一点,在直线AB同侧任作射线OC,OD,使得∠COD=90°.(1)如图1,过点O作射线OE,当OE恰好为∠AOC的角平分线时,另作射线OF,使得OF平分∠BOD,则∠EOF的度数是(度).(2)如图2,过点O作射线OE,当OE恰好为∠AOD的角平分线时,求出∠BOD与∠COE的数量关系;(3)过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF 平分∠COD,若∠EOC=3∠EOF,直接写出∠AOE的度数.4.如图所示,已知O是直线AB上一点,∠BOE=∠FOD=90°,OB平分∠COD.(1)图中与∠DOE互余的角是.(2)图中是否有与∠DOE互补的角?如果有,直接写出全部结果;如果没有,说明理由.(3)如果∠EOD:∠EOF=3:2,求长∠AOC的度数.5.若∠α的度数是∠β的度数的k倍,则规定∠α是∠β的k倍角.(1)若∠M=21°17',则∠M的5倍角的度数为;(2)如图①,OB是∠AOC的平分线,OD是∠COE的平分线,若∠AOC=∠COE,请直接写出图中∠AOB的所有3倍角;(3)如图②,若∠AOC是∠AOB的5倍角,∠COD是∠AOB的3倍角,且∠AOC和∠BOD互为补角,求∠AOD的度数.6.如图1,点O为直线AB上一点,过点O作射线OC,OD,使射线OC平分∠AOD.(1)当∠BOD=50°时,∠COD=°;(2)将一直角三角板的直角顶点放在点O处,当三角板MON的一边OM与射线OC重合时,如图2.①在(1)的条件下,∠AON=°;②若∠BOD=70°,求∠AON的度数;③若∠BOD=α,请直接写出∠AON的度数(用含α的式子表示).7.如图,线段BD=AB=CD,点E、F分别是线段AB、CD的中点,EF=14cm,求线段AB、CD的长.8.一个角的补角比它的余角的还多60°,求这个角的度数.9.已知线段AB=m(m为常数),点C为直线AB上一点(不与A、B重合),点P、Q分别在线段BC、AC上,且满足CQ=2AQ,CP=2BP.(1)如图,当点C恰好在线段AB中点时,则PQ=(用含m的代数式表示);(2)若点C为直线AB上任一点,则PQ长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C在点A左侧,同时点P在线段AB上(不与端点重合),请判断2AP+CQ﹣2PQ与1的大小关系,并说明理由.10.如图,OD平分∠BOC,OE平分∠AOC.(1)若∠BOC=60°,∠AOC=40°,求∠DOE的度数;(2)若∠DOE=n°,求∠AOB的度数;(3)若∠DOE+∠AOB=180°,求∠AOB与∠DOE的度数.11.如图1,点O为直线AB上一点,过点O作射线OC,使∠B OC=2∠AOC,将一直角三角板的直角顶点放在点O处,边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转45°至图2的位置,此时∠MOC =°;(2)将图1中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1逆时针旋转一周的过程中,若三角板绕点O按5°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.12.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.13.如图(a),将两块直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=35°,∠ACB=;若∠ACB=140°,则∠DCE=;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α,β都是锐角),如图(c),若把它们的顶点O重合在一起,请直接写出∠AOD与∠BOC的大小关系.14.阅读下面材料:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示﹣3和1两点之间的距离是,数轴上表示﹣2和3的两点之间的距离是;(2)数轴上表示x和﹣1的两点之间的距离表示为;(3)若x表示一个有理数,则|x﹣2|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.15.阅读:在用尺规作线段AB等于线段a时,小明的具体作法如下:已知:如图,线段a:求作:线段AB,使得线段AB=a.作法:①作射线AM;②在射线AM上截取AB=a.∴线段AB即为所求,如图.解决下列问题:已知:如图,线段b:(1)请你仿照小明的作法,在上图中的射线AM上求作点D,使得BD=b;(不要求写作法和结论,保留作图痕迹)(2)在(1)的条件下,取AD的中点E.若AB=10,BD=6,求线段BE的长.(要求:第(2)问重新画图解答)参考答案1.解:∵OM平分∠BOC,ON平分∠AOC,∴∠MOC=∠BOC,∠NOC=∠AOC,∴∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=∠BOA=45°.∴∠MON的度数为45°.2.解:(1)∵AD=10,AB=3,∴BD=AD﹣AB=10﹣3=7;(2)∵AD=10,AB=3,∴BC=AD﹣2AB=10﹣2×3=4,∴BE=BC=×4=2.即线段BE的长度为2.3.解:(1)∵∠COD=90°,∴∠AOC+∠BOD=90°,∵OE为∠AOC的角平分线,OF平分∠BOD,∴∠EOC=∠AOC,∠DOF=∠BOD,∴∠EOF=∠COD+∠EOC+∠DOF=90°+(∠AOC+∠BOD)=90°+×90°=135°,故答案为:135;(2)∵∠COD=90°,∴∠COE+∠EOD=90°,∴∠EOD=90°﹣∠COE,∵OE为∠AOD的角平分线,∴∠AOD=2∠EOD=2(90°﹣∠COE)=180°﹣2∠COE,∵∠BOD+∠AOD=180°,∴∠BOD=180°﹣∠AOD=180°﹣180°+2∠COE=2∠COE;(3)①如图3所示时,∵∠COD=90°,OF平分∠COD,∴∠COF=∠EOC+∠EOF=45°,∵∠EOC=3∠EOF,∴4∠EOF=45°,∴∠EOF=11.25°,∴∠EOC=33.75°,∵OC为∠AOE的角平分线,∴∠AOE=2∠EOC=67.5°;②如图4所示时,∵∠COD=90°,OF平分∠COD,∴∠COF=45°,∵∠EOC=3∠EOF,∴∠COF=2∠EOF=45°,∴∠EOF=22.5°,∴∠COE=45°+22.5°=67.5°,∵OC为∠AOE的角平分线,∴∠AOE=2∠COE=135°;综上所述,∠AOE的度数为67.5°或135°.4.解:(1)图中与∠DOE互余的角有:∠EOF,∠BOD,∠BOC,故答案为:∠EOF,∠BOD,∠BOC;(2)与∠DOE互补的角有∠BOF,∠COE;(3)∵∠EOD:∠EOF=3:2,∴∠EOD=3x,则∠EOF=2x,∵∠FOD=90°,∴3x+2x=90°,x=18°,∴∠EOF=36°,∵∠BOE=∠FOD=90°,∴∠DOE+∠EOF=90°,∠DOE+∠DOB=90°,∴∠EOF=∠DOB=36°,∵OB平分∠COD,∴∠DOB=∠COB=36°,∵∠AOC+∠COB=180°,∴∠AOC=180°﹣∠COB=144°.5.解:(1)21°17'×5=106°25';故答案为:106°25';(2)∵OB是∠AOC的平分线,OD是∠COE的平分线,∠AOC=∠COE,∴∠AOB=∠BOC=∠COD=∠DOE,∴∠AOD=∠BOE=3∠AOB.故∠AOB的3倍角有:∠AOD,∠BOE;(3)设∠AOB=x,则∠BOC=4x,∠COD=3x.由题意,得5x+7x=180°,解得x=15°,所以∠AOD=8x=120°.6.解:(1)∠AOD=180°﹣∠BOD=130°,∵OC平分∠AOD,∴∠COD==65°.故答案为:65°;(2)①由(1)可得∠AOC=∠COD=65°,∴∠AON=90°﹣∠AOC=25°,故答案为:25°;②∵∠BOD=70°,∴∠AOD=180°﹣∠BOD=110°,∵OC平分∠AOD,∴∠AOC=,∵∠MON=90°,∴∠AON=90°﹣∠AOC=35°;③.7.解:设BD=x,则CD=5x,AB=4x,∵点E,F分别是AB,CD的中点,∴EB=AB=2x,DF=CD=2.5x,∴ED=1x,∴EF=ED+DF=3.5x,又∵EF=14,∴3.5x=14,解得x=4,∴CD=5x=20,AB=4x=16.8.解:设这个角为x°,则其余角为(90﹣x)°,补角为(180﹣x)°,依题意有180﹣x=(90﹣x)+60,解得x=30.答:这个角的度数是30°.9.解:(1)∵CQ=2AQ,CP=2BP,∴CQ=AC,CP=BC,∵点C恰好在线段AB中点,∴AC=BC=AB,∵AB=m(m为常数),∴PQ=CQ+CP=AC+BC=×AB+×AB=AB=m;故答案为:m;(2)①点C在线段AB上:∵CQ=2AQ,CP=2BP,∴CQ=AC,CP=BC,∵AB=m(m为常数),∴PQ=CQ+CP=AC+BC=×(AC+BC)=AB=m;②点C在线段BA的延长线上:∵CQ=2AQ,CP=2BP,∴CQ=AC,CP=BC,∵AB=m(m为常数),∴PQ=CP﹣CQ=BC﹣AC=×(BC﹣AC)=AB=m;③点C在线段AB的延长线上:∵CQ=2AQ,CP=2BP,∴CQ=AC,CP=BC,∵AB=m(m为常数),∴PQ=CQ﹣CP=AC﹣BC=×(AC﹣BC)=AB=m;故PQ是一个常数,即是常数m;(3)如图:∵CQ=2AQ,∴2AP+CQ﹣2PQ=2AP+CQ﹣2(AP+AQ)=2AP+CQ﹣2AP﹣2AQ=CQ﹣2AQ=2AQ﹣2AQ=0,∴2AP+CQ﹣2PQ<1.10.解:(1)∵OD平分∠BOC,∠BOC=60°,∴∠COD=∠BOC=30°,同理∠COE=20°∴∠DOE=∠COD+∠COE=30°+20°=50°;(2)∵OD平分∠BOC,∴∠BOC=2∠DOC,同理∠AOC=2∠COE∵∠AOB=∠AOC+∠BOC∴∠AOB=2∠DOC+2∠COE=2(∠DOC+∠COE)=2∠DOE=2n°;(3)∵∠AOB=2∠DOE,∠DOE+∠AOB=180°∴∠DOE+2∠DOE=180°,∴∠DOE=60°,∴∠AOB=120°.11.解:(1)∵∠BOC+∠AOC=180°,∠BOC=2∠AOC,∴∠AOC=60°,∠BOC=120°,由旋转可知∠BOM=45°,∵OM恰好平分∠BOC,∴∠MOC=120°﹣45°=75°.故答案为:75.(2)由(1)得∠AOC=60°,∵∠MON=90°,∴∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°,∴∠AOM与∠NO C之间的数量关系为:∠AOM﹣∠NOC=30°.(3)由(1)得∠AOC=60°,①如左图,延长NO,当直线ON恰好平分锐角∠AOC,∴∠AOD=∠COD=30°,即逆时针旋转60°时NO延长线平分∠AOC,由题意得,5t=60,∴t=12;如右图,当NO平分∠AOC,∴∠AON=30°,即逆时针旋转240°时NO平分∠AOC,∴5t=240,∴t=48,∴三角板绕点O的运动时间为12秒或48秒.12.解:∵∠AOB=90°,OC平分∠AOB,∴∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.13.解:(1)若∠DCE=35°,∵∠ACD=90°,∠DCE=35°,∴∠ACE=90°﹣35°=55°,∵∠BCE=90°,∴∠ACB=∠ACE+∠BCE=55°+90°=145°;若∠ACB=140°,∵∠BCE=90°,∴∠ACE=140°﹣90°=50°,∵∠ACD=90°,∴∠DCE=90°﹣50°=40°,故答案为:145°;40°;(2)∠ACB+∠DCE=180°,理由如下:∵∠ACB=∠ACD+∠BCD,=90°+∠BCD,∴∠ACB+∠DCE,=90°+∠BCD+∠DCE,=90°+∠BCE,=180°;(3)∠DAB+∠CAE=120°,理由如下:∵∠DAB=∠DAC+∠CAB,=60°+∠CAB,∴∠DAB+∠CAE,=60°+∠CAB+∠CAE,=60°+∠EAB,=120°;(4)∠AOD+∠BOC=α+β,理由是:∵∠AOD=∠DOC+∠COA=β+∠COA,∴∠AOD+∠BOC=β+∠COA+∠BOC,=β+∠AOB,=α+β.14.解:(1)|1﹣(﹣3)|=4;|3﹣(﹣2)|=5;故答案为:4;5;(2)|x﹣(﹣1)|=|x+1|或|(﹣1)﹣x|=|x+1|,故答案为:|x+1|;(3)有最小值,当x<﹣3时,|x﹣2|+|x+3|=2﹣x﹣x﹣3=﹣2x﹣1,当﹣3≤x≤2时,|x﹣2|+|x+3|=2﹣x+x+3=5,当x>2时,|x﹣2|+|x+3|=x﹣2+x+3=2x+1,在数轴上|x﹣2|+|x+3|的几何意义是:表示有理数x的点到﹣3及到2的距离之和,所以当﹣3≤x≤2时,它的最小值为5.15.解:(1)如图所示:∴点D、点D'即为所求;(2)∵E为线段AD的中点,∴.如图1,点D在线段AB的延长线上.∵AB=10,BD=6,∴AD=AB+BD=16.∴AE=8.∴BE=AB﹣AE=2.如图2,点D在线段AB上.∵AB=10,BD=6,∴AD=AB﹣BD=4.∴AE=2.∴BE=AB﹣AE=8,综上所述,BE的长为2或8.。
解析卷人教版七年级数学上册第四章几何图形初步专项测试试题(含详解)
人教版七年级数学上册第四章几何图形初步专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,河道l 的同侧有,M N 两个村庄,计划铺设一条管道将河水引至,M N 两地,下面的四个方案中,管道长度最短的是( )A .B .C .D .2、下面图形中,以直线l 为轴旋转一周,可以得到圆柱体的是( )A .B .C .D .3、如图,如果把原来的弯曲河道改直,关于两地间河道长度的说法正确的是( )A.变长了B.变短了C.无变化D.是原来的2倍4、下列判断正确的有()(1)正方体是棱柱,长方体不是棱柱;(2)正方体是棱柱,长方体也是棱柱;(3)正方体是柱体,圆柱也是柱体;(4)正方体不是柱体,圆柱是柱体.A.1个B.2个C.3个D.4个5、一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A代表B.B代表C.C代表D.B代表6、①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择()A.①③B.②③C.③④D.①④7、如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D是AC的中点,M是AB的中点,那么MD=()cmA.4 B.3 C.2 D.18、下列展开图中,是正方体展开图的是()A.B.C.D.9、下列图形经过折叠不能围成棱柱的是()A.B.C.D.10、将如图所示的图形绕着给定的直线L旋转一周后形成的几何体是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,90AOC BOD∠=∠=︒,那么12∠=∠,理由是_____________.2、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图,若图中的“锦”表示正方体的右面,则“_______”表示正方体的左面.3、已知点M是线段AB上一点,且:2:3AM MB,MB比AM长2cm,则AB长为_______.=4、在朱自清的《春》中有描写春雨“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明_____________.︒,则这个角的补角是________.5、一个角的余角是2325'三、解答题(5小题,每小题10分,共计50分)1、(1)如图所示的长方体,长、宽、高分别为4,3,6.若将它的表面沿某些棱剪开,展成一个平面图形,则下列图形中,可能是该长方体表面展开图的有________(填序号).(2)图A,B分别是题(1)中长方体的两种表面展开图,求得图A的外围周长为52,请你求出图B 的外围周长.(3)第(1)题中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.2、已知一个角的余角比它的补角的14还多15 ,求这个角.3、如图,平面内有A、B、C、D四点.按下列语句画图.(1)画直线AB,射线BD,线段BC;(2)连接AC,交射线BD于点E.4、如图是一个正方体纸盒的表面展开图,纸盒中相对两个面上的数互为倒数.(1)填空:=a ______,b =_________;(2)先化简,再求值:()()2223252ab a b ab a ab ⎡⎤------⎣⎦.5、已知∠AOB 和∠COD 均为锐角,∠AOB >∠COD ,OP 平分∠AOC ,OQ 平分∠BOD ,将∠COD 绕着点O 逆时针旋转,使∠BOC =α(0≤α<180°)(1)若∠AOB =60°,∠COD =40°,①当α=0°时,如图1,则∠POQ = ;②当α=80°时,如图2,求∠POQ 的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ 的度数;(2)若∠AOB =m °,∠COD =n °,m >n ,则∠POQ = ,(请用含m 、n 的代数式表示).-参考答案-一、单选题1、A【解析】根据两点之间线段最短可判断方案A比方案C、D中的管道长度最短,根据垂线段最短可判断方案A 比方案B中的管道长度最短.【详解】解:四个方案中,管道长度最短的是A.故选:A.【考点】本题考查了垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.2、C【解析】【分析】直接根据旋转变换的性质即可解答.【详解】解:因为圆柱从正面看到的是一个长方形,所以以直线为轴旋转一周,可以形成圆柱的是长方形,故选:C.【考点】此题主要考查图形的旋转变换,发挥空间想象是解题关键.3、B【解析】【分析】根据两点之间线段最短解答.【详解】解:如果把原来的弯曲河道改直,根据两点之间线段最短可得到两地间河道长度变短了,【考点】此题考查线段的性质:两点之间线段最短.4、B【解析】【分析】根据棱柱的定义:有两个面平行,其余面都是四边形,并且相邻的两个四边形的公共边都互相平行;柱体的定义:一个多面体有两个面互相平行且相同,余下的每个相邻两个面的交线互相平行,进行判断即可.【详解】解:(1)正方体是棱柱,长方体是棱柱,故此说法错误;(2)正方体是棱柱,长方体也是棱柱,故此说法正确;(3)正方体是柱体,圆柱也是柱体,故此说法正确;(4)正方体是柱体,圆柱是柱体,故此说法错误.故选B.【考点】本题主要考查了棱柱和柱体的定义,解题的关键在于能够熟练掌握相关定义.5、A【解析】【分析】根据正方体展开图的对面,逐项判断即可.【详解】解:由正方体展开图可知,A的对面点数是1;B的对面点数是2;C的对面点数是4;∵骰子相对两面的点数之和为7,∴A代表,故选:A.【考点】本题考查了正方体展开图,解题关键是明确正方体展开图中相对面间隔一个正方形,判断哪两个面相对.6、D【解析】【分析】观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能构成长方体,①④组合符合题意【详解】解:观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能构成长方体,①④组合符合题意故选D【考点】本题考查了立体图形,应用空间想象能力是解题的关键.7、C【解析】【分析】由AB=10cm,BC=4cm.于是得到AC=AB+BC=14cm,根据线段中点的定义由D是AC的中点,得到AD,根据线段的和差得到MD=AD﹣AM,于是得到结论.【详解】解:∵AB=10cm,BC=4cm,∴AC=AB+BC=14cm,∵D是AC的中点,AC=7cm;∴AD=12∵M是AB的中点,AB=5cm,∴AM=12∴DM=AD﹣AM=2cm.故选:C.【考点】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.8、C【解析】【分析】根据正方体的表面展开图共有11种情况,A,D是“田”型,对折不能折成正方体,B是“凹”型,不能围成正方体,由此可进行选择.【详解】解:根据正方体展开图特点可得C答案可以围成正方体,故选:C.【考点】此题考查了正方体的平面展开图.关键是掌握正方体展开图特点.9、D【分析】根据题意由平面图形的折叠及棱柱的展开图逐项进行判断即可.【详解】解:A可以围成四棱柱,B可以围成三棱柱,C可以围成五棱柱,D选项侧面上多出一个长方形,故不能围成一个三棱柱.故选:D.【考点】本题考查立体图形的展开图,熟记常见立体图形的表面展开图的特征是解决此类问题的关键.10、B【解析】【分析】根据面动成体的原理以及空间想象力可直接选出答案.【详解】解:将如图所示的图形绕着给定的直线L旋转一周后形成的几何体是圆台,故选:B.【考点】此题主要考查了点、线、面、体,关键是同学们要注意观察,培养自己的空间想象能力.二、填空题1、同角的余角相等【分析】由∠AOC+∠BOC=∠BOD+∠BOC=90°可以判断同角的余角相等.【详解】∵∠AOB+∠BOC=∠COD+∠BOC=90°,∠AOB和∠COD都与∠BOC互余,故同角的余角相等,故答案为:同角的余角相等.【点睛】本题主要考查补角与余角的基本知识,比较简单.2、程.【解析】【分析】根据展开图得到“锦”的对面是“程”.【详解】由展开图得到“锦”的对面是“程”,故填:程.【点睛】此题考查正方体展开的平面图,需熟知正方体展开的形式,由此即可正确解答.3、10cm【解析】【分析】由:2:3=AM MB,可得MB比AM多1份,MB比AM长2cm,从而可得每一份为2cm,于是可得答案.【详解】解:2(32)10cm32AB=⨯+=-.故答案为:10.cm【点睛】本题考查的是部分与总体的关系,线段的和差关系,理解题意弄清楚部分与整体的比值是解题的关键.4、点动成线.【解析】【分析】根据点动成线可得答案.【详解】解:“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明点动成线.故答案为:点动成线.【点睛】本题主要考查了点、线、面、体,从运动的观点来看:点动成线,线动成面,面动成体.5、11325'︒【解析】【分析】先根据题意求出这个角的度数,再根据补角的定义求解即可.【详解】∵一个角的余角的度数是23°25′,∴这个角为90°-23°25′=66°35′,∴这个角的补角的度数是180°-66°35′=113°25′.故答案为:113°25′.【点睛】本题考查了余角和补角的定义,解答本题的关键是掌握互余两角之和为90°,互补两角之和为180°.三、解答题1、(1)①②③;(2)28;(3)能,70【解析】【分析】(1)根据长方体展开图的特征可得解;(2)给图B标上尺寸,然后根据周长意义可得解;(3)为了使外围周长最大,可以沿着长方体长度为6的4条棱和长度为4的2条棱剪开即可得到解答.【详解】解:(1)根据长方体展开图的特征可得答案为:①②③;(2)由已知可以给图B标上尺寸如下:∴图B的外围周长为6×3+4×4+4×6=58.(3)能.如图所示.外围周长为6×8+4×4+3×2=48+16+6=70.【考点】本题考查长方体的应用,熟练掌握长方体的各种展开图是解题关键.2、这个角是40°.【解析】【分析】设这个角为x,则它的余角为(90°-x),补角为(180°-x),再根据题中给出的等量关系列方程即可求解.【详解】设这个角的度数为x,则它的余角为(90°-x),补角为(180°-x),依题意,得:1(90)(180)154x x︒--︒-=︒,解得x=40︒.答:这个角是40°.【考点】本题主要考查了余角、补角的定义以及一元一次方程的应用.解题的关键是能准确地从题中找出各个量之间的数量关系,列出方程,从而计算出结果.互为余角的两角的和为90°,互为补角的两角的和为180°.3、(1)见解析;(2)见解析【解析】【分析】(1)根据直线、射线、线段定义画出即可;(2)根据要求画出线段标出交点即可.【详解】解:(1)如图所示,直线AB,射线BD,线段BC即为所求(2)连接AC,点E即为所求【考点】本题考查了对直线、射线、线段定义的应用,主要考查学生的理解能力和画图能力.4、(1)1-,13-;(2)22242a ab b+-,289【解析】【分析】(1)先根据正方体的平面展开图确定a、b、c所对的面的数字,再根据相对的两个面上的数互为倒数,确定a、b、c的值;(2)先去括号,再合并同类项化简代数式后代入求值即可.【详解】解:(1)由长方体纸盒的平面展开图知,a与-1、b与-3、c与2是相对的两个面上的数字或字母,因为相对的两个面上的数互为倒数,所以111,,32a b c=-=-=.故答案为:1-,13-. (2)()()2223252ab a b ab a ab ⎡⎤------⎣⎦22233252ab a b ab a ab =-+-+-+22242a ab b =+- 将11,,3a b =-=-代入, 原式()()22112141233⎛⎫⎛⎫=⨯-+⨯-⨯--⨯- ⎪ ⎪⎝⎭⎝⎭ 42239=+- 289=. 【考点】本题考查了正方体的平面展开图、倒数及整式的加减化简求值,解决本题的关键是根据平面展开图确定a 、b 、c 的值.5、(1)①50°;②50°;③130°;(2)12m °+12n °或180°-12m °-12n °【解析】【分析】(1)根据角的和差和角平分线的定义即可得到结论;(2)根据角的和差和角平分线的定义即可得到结论.【详解】解:(1)①∵∠AOB =60°,∠COD =40°,OP 平分∠AOC ,OQ 平分∠BOD ,∴∠BOP =12∠AOB =30°,∠BOQ =12∠COD =20°,∴∠POQ=50°,故答案为:50°;②解:∵∠AOB=60°,∠BOC=α=80°,∴∠AOC=140°,∵OP平分∠AOC,∴∠POC=1∠AOC=70°,2∵∠COD=40°,∠BOC=α=80°,且OQ平分∠BOD,同理可求∠DOQ=60°,∴∠COQ=∠DOQ-∠DOC=20°,∴∠POQ=∠POC-∠COQ=70°-20°=50°;③解:补全图形如图3所示,∵∠AOB=60°,∠BOC=α=130°,∴∠AOC=360°-60°-130°=170°,∵OP平分∠AOC,∴∠POC=1∠AOC=85°,2∵∠COD=40°,∠BOC=α=130°,且OQ平分∠BOD,同理可求∠DOQ=85°,∴∠COQ=∠DOQ-∠DOC=85°-40°=45°,∴∠POQ=∠POC+∠COQ=85°+45°=130°;(2)当∠AOB=m°,∠COD=n°时,如图2,∴∠AOC= m°+ α°,∵OP平分∠AOC,∴∠POC=12(m°+ α°),同理可求∠DOQ=12(n°+ α°),∴∠COQ=∠DOQ-∠DOC=12(n°+ α°)- n°=12(-n°+ α°),∴∠POQ=∠POC-∠COQ=12(m°+ α°)-12(-n°+ α°)=1 2m°+12n°,当∠AOB=m°,∠COD=n°时,如图3,∵∠AOB=m°,∠BOC=α,∴∠AOC=360°-m°-α°,∵OP平分∠AOC,∴∠POC=12∠AOC=180°12-(m°+ α°),∵∠COD=n°,∠BOC=α,且OQ平分∠BOD,同理可求∠DOQ=12(n°+ α°),∴∠COQ=∠DOQ-∠DOC=12(n°+ α°)-n°=12(-n°+ α°),∴∠POQ=∠POC+∠COQ=180°12-(m°+ α°)+12(-n°+ α°)=180°-12m°-12n°,综上所述,若∠AOB=m°,∠COD=n°,则∠POQ=12m°+12n°或180°-12m°-12n°.故答案为:12m°+12n°或180°-12m°-12n°.【考点】本题考查了角的计算,角平分线的定义,正确的识别图形是解题的关键.。
人教版)七年级数学上册第4章《几何图形初步》选择题专项训练(含答案)
第4章《几何图形初步》选择题专项训练1.(2019秋•南沙区期末)如图,某工厂有三个住宅区,A、B、C各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A、B、C三点共线),已知AB=1500m,BC=1000m,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.A住宅区B.B住宅区C.C住宅区D.B、C住宅区中间D处2.(2019秋•南山区期末)已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()∠∠AOC=∠BOC∠∠AOB=2∠AOC∠∠AOC+∠COB=∠AOB∠∠BOC=12∠AOBA.1个B.2个C.3个D.4个3.(2019秋•高明区期末)如图,已知∠AOB=90°,OC是∠AOB内任意一条射线,OB,OD分别平分∠COD,∠BOE,下列结论:∠∠COD=∠BOE;∠∠COE=3∠BOD;∠∠BOE=∠AOC;∠∠AOC+∠BOD=90°,其中正确的有()A.∠∠∠B.∠∠∠C.∠∠∠D.∠∠∠4.(2019秋•宝安区期末)利用一副三角尺不能画出的角的度数是()A.55°B.75°C.105°D.135°5.(2019秋•福田区期末)如图所示,下列说法正确的是()A.∠ADE就是∠DB.∠ABC可以用∠B表示C.∠ABC和∠ACB是同一个角D.∠BAC和∠DAE不是同一个角6.(2018秋•坪山区期末)如图,点D是线段AB的中点,点C在线段BD上,且BC=13AB,CD=1,则线段AB 的长为()A.4B.6C.9D.87.(2018秋•南海区期末)已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm或4cm C.2cm D.2cm或8cm8.(2019秋•越秀区期末)如图,从A地到B地有四条路线,由上到下依次记为路线∠、∠、∠、∠,则从A地到B 地的最短路线是路线()A .∠B .∠C .∠D .∠9.(2019秋•龙岗区校级期末)下列说法中,正确的个数有( )∠过两点有且只有一条直线;∠连接两点的线段叫做两点间的距离;∠两点之间,线段最短;∠若∠AOC =2∠BOC ,则OB 是∠AOC 的平分线.A .1个B .2个C .3个D .4个10.(2019秋•福田区校级期末)射线OC 在∠AOB 内部,下列条件不能说明OC 是∠AOB 的平分线的是( )A .∠AOC =12AOB B .∠BOC =12∠AOB C .∠AOC +∠BOC =∠AOBD .∠AOC =∠BOC11.(2019秋•沙坪坝区校级期末)用一个平面去截一个圆锥,截面的形状不可能是( )A .圆B .矩形C .椭圆D .三角形12.(2019秋•潮州期末)已知∠A =105°,则∠A 的补角等于( )A .105°B .75°C .115°D .95°13.(2019秋•黄埔区期末)已知点O 是直线AB 上一点,∠AOC =50°,OD 平分∠AOC ,∠BOE =90°,下列结果,不正确的是( )A .∠BOC =130°B .∠AOD =25°C .∠BOD =155°D .∠COE =45° 14.(2019秋•黄埔区期末)下列说法不正确的是( ) A .因为M 是线段AB 的中点,所以AM =MB =12ABB .在线段AM 延长线上取一点B ,如果AB =2AM ,那么点M 是线段AB 的中点C .因为A ,M ,B 在同一直线上,且AM =MB ,所以M 是线段AB 的中点D .因为AM =MB ,所以点M 是AB 的中点15.(2019秋•白云区期末)将左面的平面图形绕轴旋转一周,得到的立体图形是( )A .B .C .D . 16.(2019秋•潮阳区期末)下列说法:∠过两点有且只有一条直线;∠射线比直线少一半;∠单项式32πx 2y 的系数是32;∠绝对值不大于3的整数有7个;∠若a +b =1,且a ≠0,则x =1一定是方程ax +b =1的解.其中正确的个数为( )A .1B .2C .3D .417.(2019秋•五华县期末)如图,小刚将自己用的一副三角板摆成如图形状,如果∠AOC =∠BOD =90°,∠AOB =155°,那么∠COD 等于( )A .45°B .35°C .25°D .15°18.(2019秋•揭西县期末)把一副三角尺ABC 和BDE 按如图所示那样拼在一起,其中A 、D 、B 三点在同一直线上,BM 为∠ABC 的平分线,BN 为∠CBE 的平分线,则∠MBN 的度数为( )A .30°B .60°C .55°D .45°19.(2019秋•龙华区期末)用一个平面去截一个圆柱体,截面图形不可能是( )A .长方形B .梯形C .圆形D .椭圆形20.(2019秋•新会区期末)如图,点A 、B 、C 顺次在直线上,点M 是线段AC 的中点,点N 是线段BC 的中点,已知AB =16cm ,MN =( )A .6cmB .8cmC .9cmD .10cm 21.(2019秋•罗湖区期末)下列说法中,正确的是( )A .绝对值等于他本身的数必是正数B .若线段AC =BC ,则点C 是线段AB 的中点C .角的大小与角两边的长度有关,边越长,则角越大D .若单项式12x n y 与x 3y m﹣1是同类项,则这两个单项式次数均为422.(2019秋•罗湖区期末)1883年,康托尔构造的这个分形,称做康托尔集,从长度为1的线段开始,康托尔取走其中间三分之一而达到第一阶段;然后从每人个余下的三分之一线段中取走中间三分之一而达到第二阶段,无限地重复这一过程,余下的无穷点就称做康托尔集,下图是康托尔集的最初几个阶段,当达到第5个阶段时,取走的所有线段的长度之和为( )A .13B .242243C .211243D .3224323.(2019秋•宝安区期末)下列四个说法:∠角的两边越长,角就越大;∠两点之间的所有连线中,线段最短;∠如果AB =BC ,则点B 是线段AC 的中点;∠在平面内,经过两点有且只有一条直线.其中正确的是( )A .∠∠B .∠∠C .∠∠D .∠∠24.(2019秋•香洲区期末)如图,点A 在点O 的北偏西60°的方向上,点B 在点O 的南偏东20°的方向上,那么∠AOB 的大小为( )A .110°B .120°C .140°D .170°25.(2019秋•中山市期末)如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是()A.设B.和C.中D.山26.(2019秋•中山市期末)如图,将长方形ABCD绕CD边旋转一周,得到的几何体是()A.棱柱B.圆锥C.圆柱D.棱锥27.(2019秋•香洲区期末)如图,某同学家在A处,现在该同学要去位于D处的同学家,请帮助他选择一条最近的路线是()A.A→B→M→D B.A→B→F→D C.A→B→E→F→D D.A→B→C→D28.(2019秋•福田区期末)如图,D是AB中点,C是AD中点,若AC=1.5cm,则线段AB=()cm A.6B.8C.7.5D.9.529.(2019秋•盐田区期末)凌晨3点整,钟表的时针与分针的夹角是()A.30°B.45°C.60°D.90°30.(2019秋•东莞市期末)如图,是小明同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“善”字相对的面上的字是()A.文B.明C.诚D.信31.(2019秋•龙岗区期末)下列各图中,经过折叠能围成一个正方体的是()A.B.C.D.32.(2019秋•沈河区期末)下列说法:∠经过一点有无数条直线;∠两点之间线段最短;∠经过两点,有且只有一条直线;∠若线段AM等于线段BM,则点M是线段AB的中点;∠连接两点的线段叫做这两点之间的距离.其中正确的个数为()A.1个B.2个C.3个D.4个33.(2019秋•封开县期末)如图,点C是线段AB上一点,D为BC的中点,且AB=12cm,BD=5cm.若点E在直线AB上,且AE=3cm,则DE的长为()A.4cm B.15cm C.3cm或15cm D.4cm或10cm34.(2019秋•福田区校级期末)下列叙述:∠最小的正整数是0;∠6πx3的系数是6π;∠用一个平面去截正方体,截面不可能是六边形;∠若AC=BC,则点C是线段AB的中点;∠三角形是多边形;∠绝对值等于本身的数是正数,其中正确的个数有()A.2B.3C.4D.535.(2019秋•江都区期末)现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短36.(2019秋•福田区校级期末)已知线段AB=10cm,在直线AB上取一点C,使AC=16cm,则线段AB的中点与AC的中点的距离为()A.13cm B.6cm C.6cm或26cm D.3cm或13cm37.(2019秋•龙湖区期末)如图,某同学家在A处,现在该同学要去位于B处的同学家去玩,请帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B38.(2019秋•云浮期末)已知∠A=60°,则∠A的补角是()A.30°B.60°C.120°D.180°39.(2018秋•金平区期末)中国讲究五谷丰登,六畜兴旺.如图是一个正方体展开图,图中的六个正方形店内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是()A.猪B.马C.狗D.鸡40.(2018秋•福田区期末)已知射线OC是∠AOB的平分线,若∠AOC=30°,则∠AOB的度数为()A.15°B.30°C.45°D.60°41.(2018秋•罗湖区期末)如图,C、D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AB 的长等于()A.9cm B.10cm C.12cm D.14cm42.(2018秋•黄埔区期末)如图,点A在点O的北偏西60°的方向上,点B在点O的南偏东20°的方向上,那么∠AOB 的大小为()A.150°B.140°C.120°D.110°参考答案与试题解析一.选择题(共42小题)1.【解答】解:当停靠点在A区时,所有员工步行到停靠点路程和是:20×1500+45×2500=142500m;当停靠点在B区时,所有员工步行到停靠点路程和是:15×1500+45×1000=67500m;当停靠点在C区时,所有员工步行到停靠点路程和是:15×2500+20×1000=57500m;当停靠点在D区时,设距离B区x米,所有员工步行到停靠点路程和是:15×(1500+x)+20x+45(1000﹣x)=﹣10x+67500,由于k=﹣10,所以,x越大,路程之和越小,∠当停靠点在C区时,所有员工步行到停靠点路程和最小.故选:C.2.【解答】解:∠由∠AOC=∠BOC能确定OC平分∠AOB;∠如图1,∠AOB=2∠AOC所以不能确定OC平分∠AOB;∠∠AOC+∠COB=∠AOB不能确定OC平分∠AOB;∠如图2,∠BOC=12∠AOB,不能确定OC平分∠AOB;所以只有∠能确定OC平分∠AOB;故选:A.3.【解答】解:∠OB,OD分别平分∠COD,∠BOE,∠∠COB=∠BOD=∠DOE,∠∠COB+∠BOD=∠BOD+∠DOE,即:∠COD=∠BOE,因此∠正确;∠COE=∠COD+∠BOD+∠DOE=3∠BOD,因此∠正确;∠∠AOB=90°,∠∠AOC+∠BOC=90°=∠AOC+∠BOD,因此∠正确;∠∠AOC≠2∠BOC=∠BOE,因此∠不正确;故选:A.4.【解答】解:因为一副三角尺中角有:30°、45°、60°、90°,因此这些度数的和或差,均可以画出,如:75°=30°+45°,105°=60°+45°,135°=90°+45°,只有A不能写成上述角度的和或差,故选:A.5.【解答】解:A、错误.理由∠D在图中,不能明确表示哪一个角,必须由三个字母表示,本选项不符合题意.B、∠ABC可以用∠B表示,正确,本选项符合题意.C、∠ABC和∠ACB不是同一个角,本选项不符合题意.D、∠BAC和∠DAE是同一个角,本选项不符合题意,故选:B.6.【解答】解:设BC为x,那么AB为3x,∠D为AB中点,∠AD=BD=1.5x,CD=BD﹣BC=0.5x,又∠CD=0.5x=1,∠x=2,∠AB=3×2=6.故选:B.7.【解答】解:∠点A、B、C都是直线l上的点,∠有两种情况:∠当B在AC之间时,AC=AB+BC,而AB=5cm,BC=3cm,∠AC =AB +BC =8cm ;∠当C 在AB 之间时,此时AC =AB ﹣BC ,而AB =5cm ,BC =3cm ,∠AC =AB ﹣BC =2cm .点A 与点C 之间的距离是8或2cm .故选:D .8.【解答】解:根据两点之间线段最短可得,从A 地到B 地的最短路线是路线∠.故选:C .9.【解答】解:∠过两点有且只有一条直线,是直线的公理,故正确;∠连接两点的线段的长度叫两点的距离,故错误;∠两点之间,线段最短,是线段的性质,故正确;∠若OB 在∠AOC 内部,∠AOC =2∠BOC ,OB 是∠AOC 的平分线,若OB 在∠AOC 外部则不是,故错误. 故选:B .10.【解答】解:A 、射线OC 在∠AOB 内部,当∠AOC =12∠AOB 时,OC 是∠AOB 的平分线,故本选项不符合题意;B 、射线OC 在∠AOB 内部,当∠BOC =12∠AOB 时,OC 是∠AOB 的平分线,故本选项不符合题意;C 、如图所示,射线OC 在∠AOB 内部,∠AOC +∠BOC =∠AOB ,OC 不一定是∠AOB 的平分线,故本选项符合题意;D 、射线OC 在∠AOB 内部,当∠AOC =∠BOC 时,OC 是∠AOB 的平分线,故本选项不符合题意.故选:C .11.【解答】解:过圆锥的顶点的截面是三角形,平行于圆锥的底面的截面是圆,不平行于圆锥的底面的截面是椭圆,截面不可能是矩形,故B 符合题意;故选:B .12.【解答】解:∠A 的补角:180°﹣105°=75°,故选:B .13.【解答】解:∠∠AOC =50°,∠∠BOC =180°﹣∠AOC =130°,A 选项正确;∠OD 平分∠AOC ,∠∠AOD =12∠AOC =12×50°=25°,B 选项正确;∠∠BOD =180°﹣∠AOD =155°,C 选项正确;∠∠BOE =90°,∠AOC =50°,∠∠COE =180°﹣∠AOC ﹣∠BOE =40°,故D 选项错误;故选:D .14.【解答】解:A 、因为M 是线段AB 的中点,所以AM =MB =12AB ,故本选项正确;B 、如图,由AB =2AM ,得AM =MB ;故本选项正确;C 、根据线段中点的定义判断,故本选项正确;D 、如图,当点M 不在线段AB 时,因为AM =MB ,所以点M 不一定是AB 的中点,故本选项错误;故选:D .15.【解答】解:梯形绕上底边旋转是圆柱减圆锥,故C 正确;故选:C .16.【解答】解:∠过两点有且只有一条直线,正确;∠射线比直线少一半,两种图形都没有长度,故错误;∠单项式32πx 2y 的系数是32π,故此选项错误;∠绝对值不大于3的整数有7个,正确;∠若a +b =1,且a ≠0,则x =1一定是方程ax +b =1的解,正确.故选:C .17.【解答】解:∠∠BOD =90°,∠AOB =155°,∠∠AOD =∠AOB ﹣∠BOD =65°∠∠AOC =90°,∠∠COD =∠AOC ﹣∠AOD =25°那么∠COD 的度数为25°.故选:C .18.【解答】解:∠BM 为∠ABC 的平分线,∠∠CBM =12∠ABC =12×60°=30°, ∠BN 为∠CBE 的平分线, ∠∠CBN =12∠EBC =12×(60°+90°)=75°, ∠∠MBN =∠CBN ﹣∠CBM =75°﹣30°=45°.故选:D .19.【解答】解:用一个平面去截一个圆柱体,截面图形可能是:长方形、正方形,圆形,椭圆形,但不可能是梯形.故选:B .20.【解答】解:∠点M 是线段AC 的中点,点N 是线段BC 的中点,∠MN =MC ﹣NC =12AC −12BC =12(AC ﹣BC )=12AB ,∠AB =16cm ,∠MN =8cm .故选:B .21.【解答】解:A .绝对值等于他本身的数必是正数或0,故本选项错误;B .若线段AC =BC ,且点C 在线段AB 上,则点C 是线段AB 的中点,故本选项错误;C .角的大小与角两边的长度无关,故本选项错误;D .若单项式12x n y 与x 3y m﹣1是同类项,则这两个单项式次数均为1+3=4,故本选项正确;故选:D . 22.【解答】解:根据题意知:第一阶段时,余下的线段的长度之和为23,第二阶段时,余下的线段的长度之和为23×23=(23)2, 第三阶段时,余下的线段的长度之和为23×23×23=(23)3, …以此类推, 当达到第五个阶段时,余下的线段的长度之和为(23)5=32243,取走的线段的长度之和为1−32243=211243, 故选:C .23.【解答】解:∠角的大小与边的长短无关,故角的两边越长,角就越大是错误的;∠两点之间的所有连线中,线段最短,正确;∠若AB =BC ,点A 、B 、C 不一定在同一直线上,所以点B 不一定是线段AC 的中点,故错误.∠在平面内,经过两点有且只有一条直线,正确.故选:D .24.【解答】解:如图,∠点A 在点O 北偏西60°的方向上,∠OA 与西方的夹角为90°﹣60°=30°,又∠点B 在点O 的南偏东20°的方向上,∠∠AOB =30°+90°+20°=140°.故选:C .25.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“设”是相对面,“和”与“中”是相对面,“建”与“山”是相对面.故选:A.26.【解答】解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故选:C.27.【解答】解:根据两点之间的线段最短,可得D、B两点之间的最短距离是线段DB的长度,所以想尽快赶到同学家玩,一条最近的路线是:A→B→F→D.故选:B.28.【解答】解:∠点C是线段AD的中点,∠AD=2AC=3cm.∠点D是线段AB的中点,∠AB=2AD=6cm,故选:A.29.【解答】解:如图:凌晨3点整,时针指向3,分针指向12,每相邻两个数字之间的夹角为30°,则其夹角为30°×3=90°.故选:D.30.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,在正方体盒子上与“善”字相对的面上的字是“文”.故选:A.31.【解答】解:A、是“田”字格,故不能折叠成一个正方体;B、是“凹”字格,故不能折叠成一个正方体;C、折叠后有两个面重合,缺少一个面,所以也不能折叠成一个正方体;D、可以折叠成一个正方体.故选:D.32.【解答】解:∠经过一点有无数条直线,这个说法正确;∠两点之间线段最短,这个说法正确;∠经过两点,有且只有一条直线,这个说法正确;∠若线段AM等于线段BM,则点M不一定是线段AB的中点,因为A、M、B三点不一定在一条直线上,所以这个说法错误;∠连接两点的线段的长度叫做这两点之间的距离,所以这个说法错误.所以正确的说法有三个.故选:C.33.【解答】解:∠D为BC的中点,BD=5cm,∠BC=10cm,CD=BD=5cm,∠AB=12cm,∠AC=2cm,如图1,∠AE=3cm,∠CE=1cm,∠DE=4cm,如图2,∠AE=3cm,∠DE=AE+AC+CD=3+2+5=10cm,故DE的长为4cm或10cm,故选:D.34.【解答】解:∠最小的正整数是1,此结论错误;∠6πx3的系数是6π,此结论正确;∠用一个平面去截正方体,截面与六个面均相交即可得六边形,此结论错误;∠若AC =BC ,且点C 在线段AB 上,则点C 是线段AB 的中点,此结论错误; ∠三角形是多边形,此结论正确;∠绝对值等于本身的数是正数和0,此结论错误;故选:A .35.【解答】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”, 其原因是两点之间,线段最短,故选:D .36.【解答】解:∠如图,当C 在BA 延长线上时,∠AB =10cm ,AC =16cm ,D ,E 分别是AB ,AC 的中点,∠AD =12AB =5cm ,AE =12AC =8cm ,∠DE =AE +AD =8+5=13cm ;∠如图,当C 在AB 延长线上时,∠AB =10cm ,AC =16cm ,D ,E 分别是AB ,AC 的中点,∠AD =12AB =5cm ,AE =12AC =8cm ,∠DE =AE ﹣AD =8﹣5=3cm ;故选:D .37.【解答】解:根据两点之间的线段最短,可得C 、B 两点之间的最短距离是线段CB 的长度,所以想尽快赶到同学家玩,一条最近的路线是:A →C →F →B .故选:B .38.【解答】解:设∠A 的补角为∠β,则∠β=180°﹣∠A =120°.故选:C .39.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形, “猪”相对的字是“羊”;“马”相对的字是“狗”;“牛”相对的字是“鸡”.故选:D .40.【解答】解:∠射线OC 是∠AOB 的平分线,∠AOC =30°,∠∠AOB =60°.故选:D .41.【解答】解:∠BD =7cm ,BC =4cm ,∠CD =BD ﹣BC =3cm ,∠D 是AC 的中点,∠AC =2CD =6cm ,∠AB =AC +BC =10cm ,故选:B .42.【解答】解:如图,∠点A 在点O 北偏西60°的方向上,∠OA 与西方的夹角为90°﹣60°=30°,又∠点B 在点O 的南偏东20°的方向上,∠∠AOB =30°+90°+20°=140°.故选:B .。
人教版七年级数学上册第四章角复习题三(含答案) (55)
人教版七年级数学上册第四章角复习题三(含答案)如图,点D是∠AOB的角平分线OC上的任意一点.(1)按下列要求画出图形.①过点D画DE∥OA,DE与OB交于点E;②过点D画DF⊥OC,垂足为点D,DF与OB交于点F;③过点D画DG⊥OA,垂足为点G,量得点D到射线OA的距离等于_____mm(精确到1mm);(2)在(1)所画出的图形中,若∠AOB=nº,则∠EDF=____________度(用含n的代数式表示).【答案】(1)①详见解析;②详见解析;③20;(2)(90-12n) 【解析】【分析】(1)根据题中要求作出相应平行线和垂线,然后量出DG的长度;(2)根据角平分线可得∠AOD=∠COB=12n°,又因为平行可得∠ODE=∠AOD=12n°,即可得到∠EDF=(90-12n)°【详解】解:(1)①②③如图1所示;③ 20(允许误差范围20±3);(2)∵OC平分∠AOB∴∠AOD=∠COB=12 n°又∵OA∥DE∴∠ODE=∠AOD=12 n°∵DF⊥OC∴∠ODF=90°∴∠EDF=(90-12 n)°故答案为(90-12n) .【点睛】此题考查平行线和垂线的画法,熟练掌握作图方法是解题关键42.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.【解析】【分析】先根据图形结合互余的定义进行一一判断,然后综合即可得出符合题意的选项.【详解】解:A、∠α与∠β不一定互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.【点睛】本题考查的知识点是对顶角、余角和补角.解题关键是熟记“互余的两个角的和等于90°”.43.如图,已知O为直线AD上一点,∠AOC与∠AOB互补,OM和ON分别是∠AOC和∠AOB的平分线.(1) 试说明:∠AOB=∠COD;(2) 若∠COD=36°,求∠MON的度数.【答案】(1)证明过程见解析;(2)54°.【分析】(1)根据题目可知∠AOC与∠AOB互补,∠AOC与∠COD互补,再利用等量代换即可求证该结论.(2)根据∠COD=36°,可以求出∠AOC和∠AOB的度数,再由OM和ON分别是∠AOC和∠AOB的平分线,可以求出∠MOA和∠BON的度数,进而求出∠MON的度数.【详解】(1)∵O为直线AD上一点∴∠COD+∠AOC=180°又∵∠AOC与∠AOB互补∴∠AOC+∠AOB=180°∴∠AOB=∠COD(等量代换).(2)∵∠COD=36°由(1)可知∠AOB=∠COD=36°∠AOC=180°-∠COD=180°-36°=144°又∵OM和ON分别是∠AOC和∠AOB的平分线∴∠MOA=12∠AOC=72°,∠BON=12∠AOBA=18°∴∠MON=∠MOA-∠BON=72°-18°=54°.【点睛】解决相交线中角的问题,首先确定要求的未知角和已知角,借助其他角建立联系,再运用角平分线、垂直、对顶角、邻补角等相关知识进行运算.44.如图所示,∠AOB=90°,点C、D分别在射线OA、OB上,点E在∠AOB内部.(1)根据语句画图形:①画直线CE;②画射线OE;③画线段DE,(2)结合图形,完成下面的填空:①与∠ODE互补的角是;②若∠BOE =12∠AOE,则∠BOE的大小是 .【答案】(1)答案见解析;(2)①∠BDE;②30°. 【解析】【分析】(1)分别根据直线、射线和线段的定义即可得出答案;(2)①根据第一问画出的图像即可得到答案;②由图可知∠AOB=90°,又∠B0E+∠AOE=90°且∠BOE =12∠AOE,联立两式即可得到答案.【详解】(1)如图所示:(2)①由上图可知,∠ODE的补角为∠BDE.②∵∠AOB=90°∴∠BOE+∠AOE=90°又∠BOE =1∠AOE2∴∠BOE+2∠BOE=90°可得∠BOE=30°【点睛】本题考查了直线、射线、线段、邻补角的定义以及角的求法.注意线段有两个端点,射线有一个端点,直线没有端点.45.计算:(1)62.56°的余角等于°′″;(2)140°11′24″的补角等于°.【答案】(1)27°26′24″.(2)27、26、24;39.81.【解析】【分析】(1)根据余角的含义,用90°减去62.56°,求出62.56°的余角等于多少即可;(2)根据补角的含义,用180°减去140°11′24″,求出140°11′24″的补角等于多少即可.【详解】解:(1)∵90°﹣62.56°=27.44°=27° 26′24″,∴62.56°的余角等于27°26′24″.(2)∵180°﹣140°11′24″=180°﹣140.19°=39.81°,∴140°11′24″的补角等于39.81°.故答案为:27、26、24;39.81.【点睛】(1)本题考查了余角和补角的含义和运算,要熟练掌握,解题的关键是要明确:①余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.②补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.③性质:等角的补角相等.等角的余角相等.(2)本题还考查了度分秒的换算,要熟练掌握,解题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.46.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=1∠AOC.2因为OE是∠BOC的平分线,所以∠COE=12.所以∠DOE=∠COD+ =12(∠AOC+∠BOC)=12∠AOB= °.(2)由(1)可知∠BOE=∠COE= ﹣∠COD= °.所以∠AOE= ﹣∠BOE= °.【答案】(1)∠BOC,∠COE,90;(2)∠DOE,25,∠AOB,155 【解析】【分析】(1)首先根据角平分线定义可得∠COD=12∠AOC,∠COE=12∠BOC,然后再根据角的和差关系可得答案;(2)首先计算出∠BOE的度数,再利用180°减去∠BOE的度数可得答案.【详解】解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=12∠AOC.因为OE是∠BOC的平分线,所以∠COE=12∠BOC .所以∠DOE=∠COD+ ∠COE =12(∠AOC+∠BOC)=12∠AOB= 90 °.(2)由(1)可知∠BOE=∠COE= ∠DOE ﹣∠COD= 25 °.所以∠AOE= ∠AOB ﹣∠BOE= 155 °【点睛】此题主要考查了垂线和角平分线的定义,要注意领会由两角和为90°得互余这一要点.47.已知:O是直线AB上一点,∠COD是直角,OE平分∠BOC(1)如图1,若∠AOC=30°,求∠DOE的度数.(2)如图1,若∠AOC=α,直接写出∠DOE的度数.(用含的代数式表示)(3)将图1中的∠DOC绕顶点O顺时针旋转至图2的位置,其它条件不变,探究∠AOC和∠DOE的度数之间的关系,写出结论,并说明理由.(4)在图2中,若∠AOC内部有一条射线OF,且满足∠AOC-4∠AOF=2∠BOE,其它条件不变,试写出∠AOF与∠DOE度数的关系(不写过程);(3)证明见解析;(4)∠DOE=∠AOF+45°.【答案】(1)15°;(2)∠DOE=12【解析】【分析】(1)由已知可求出∠BOC=180°-∠AOC=150°,再由∠COD是直角,OE平分∠BOC求出∠DOE的度数;(2)由(1)可得出结论∠DOE=12∠AOC,从而用含a的代数式表示出∠DOE的度数;(3)由∠COD是直角,OE平分∠BOC可得出∠COE=∠BOE=90°-∠DOE,则得∠AOC=180°-∠BOC=180°-2∠COE=180°-2(90°-∠DOE),从而得出∠AOC和∠DOE的度数之间的关系;(4)设∠DOE=x,∠AOF=y,根据已知和:∠AOC-4∠AOF=2∠BOE,结合图形可得出∠DOE=∠AOF+45°.【详解】解:(1)∵∠AOC=30º∴∠COB=150º,又∵OE平分∠BOC,∴∠COE=75º,而∠COD=90º,∴∠DOE=15º;(2)∠DOE=12α;(3)设∠AOC=β,则∠BOC=180º-β,又∵OE平分∠BOC,∴∠COE=12(180°-β=90°-12β.又∵∠DOE=90º,∠∠DOE=90º-(90º-12β)=-12β,∠∠DOE=-12∠AOC ;(4)∠DOE=∠AOF+45°.【点睛】此题考查的知识点是角平分线的性质、旋转性质及角的计算,关键是正确运用好有关性质准确计算角的和差倍分.48.阅读并填空问题:在一条直线上有A,B,C,D 四个点,那么这条直线上总共有多少条线段?要解决这个问题,我们可以这样考虑,以A 为端点的线段有AB,AC,AD 3条,同样以B 为端点,以C 为端点,以D 为端点的线段也各有3条,这样共有4个3,即4×3=12(条),但AB 和BA 是同一条线段,即每一条线段重复一次,所以一共432⨯有条线段. 那么,如果在一条直线上有5个点,则这条直线上共有_____________条线段. 如果在一条直线线上有n 个点,那么这条直线上共有______________条线段.知识迁移:如果在一个锐角∠AOB 内部画2条射线OC,OD,那么这个图形中总共有____________个角,若在∠AOB 内画n 条射线,则总共有___________个角.学以致用:一段铁路上共有5个火车端,若一列客车往返过程中,必须停靠每个车站,则铁路局需为这段线路准备___________种不同的车票.【答案】10条,(1)2n n -条,6个角,2)(1)2n n ++( 个角,20种. 【解析】【分析】问题:根据一条直线上有4个点时,一共432⨯有条线段解答即可; 知识迁移:类比问题中的总结方法解答即可;学以致用:把车站看做点,根据问题中得到的结论求解即可.【详解】问题:∵一条直线上有4个点时,一共432⨯有条线段,∴一条直线上有5个点时,一共542有⨯=10条线段,一条直线上有n 个点时,一共()12n n -有条线段;知识迁移:∵一个锐角∠AOB 内部画2条射线,这个图形中总共有432⨯=6个角, ∴一个锐角∠AOB 内部画n 条射线,这个图形中总共有()2)12n n (++个角; 学以致用:把5n =代入()12n n -, ()()155122n n -⨯-==10,10×2=20(种).故答案为10,()12n n -,6,()2)12n n (++ ,20. 【点睛】本题考查了规律型---图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.49.如图,∠AOB =42゜,∠BOC =86゜,OD 为∠AOC 的平分线,求∠BOD 的度数.【答案】∠BOD 的度数是22゜.【解析】首先求得∠AOC的度数,根据角平分线的定义求得∠AOD,然后根据∠BOD=∠AOD﹣∠AOB求解.【详解】∵∠AOB=42°,∠BOC=86°,∴∠AOC=∠AOB+∠BOC=42°+86°=128゜,∵OD平分∠AOC,∴∠AOD=12∠AOC=12×128°=64°,∴∠BOD=∠AOD﹣∠AOB=64゜﹣42゜=22°.答:∠BOD的度数是22゜.【点睛】本题考查了角度的计算,正确理解角平分线的定义,求得∠AOD是关键.50.新定义:若∠α的度数是∠β的度数的n倍,则∠α叫做∠β的n倍角.(1)若∠M=10°21′,请直接写出∠M的3倍角的度数;(2)如图1,若∠AOB=∠BOC=∠COD,请直接写出图中∠AOB的所有2倍角;(3)如图2,若∠AOC是∠AOB的3倍角,∠COD是∠AOB的4倍角,且∠BOD=90°,求∠BOC的度数.【答案】(1)31°3′;(2)见解析;(3)∠BOC=30°.【分析】(1)根据题意列式计算即可;(2)根据题意列式计算即可;(3)设∠AOB=α,则∠AOC=3α,∠COD=4α,得到∠BOD=6α,根据∠BOD=90°,求得α=15°,于是得到∠BOC=90°﹣4×15°=30°.【详解】(1)∵∠M=10°21′,∴3∠M=3×10°21′=31°3′;(2)∵∠AOB=∠BOC=∠COD,∴∠AOC=2∠AOB,∠BOD=2∠AOB;(3)∵∠AOC是∠AOB的3倍角,∠COD是∠AOB的4倍角,∴设∠AOB=α,则∠AOC=3α,∠COD=4α,∴∠AOD=7α,∴∠BOD=6α,∵∠BOD=90°,∴α=15°,∴∠BOC=90°﹣4×15°=30°.【点睛】此题主要考查了角的计算以及余角定义,关键是理清图中角之间的关系,掌握两角和为90°为互余.。
人教版七年级数学上册第四章角复习题四(含答案) (90)
人教版七年级数学上册第四章角复习题四(含答案)已知两个分别含有30°,45°角的一副直角三角板.(1)如图1叠放在一起若OC恰好平分∠AOB,则∠AOD= 度;若∠AOC=40°,则∠BOD= 度;(2)如图2叠放在一起,∠AOD=4∠BOC,试计算∠AOC的度数.【答案】(1)135,40;(2)∠AOC的度数为110°.【解析】【分析】(1)①根据角平分线的定义求出∠AOC,再根据∠AOD=∠AOC+∠COD 代入数据进行计算即可得解;②由已知可求得∠BOC,再根据∠BOD=∠COD-∠BOC代入数据进行计算即可得解;(2)由已知可求得∠BOD,再根据∠AOC=∠AOB+∠COD-∠BOD代入数据进行计算即可得解.【详解】(1)①∵OC平分∠AOB,∠AOB=90°,∴∠AOC=12∠AOB=45°,∴∠AOD=∠AOC+∠COD=45°+90°=135°;②由已知∠BOC=90°-∠40°=50°,∴∠BOD=∠COD-∠BOC=90°-50°=40°,故答案为135,40(2)∵∠AOD=4∠BOC,∴∠AOB-∠BOD=4(∠COD-∠BOD),即90°-∠BOD=4(-30°∠BOD),解得:∠BOD=10°,∴∠AOC=∠AOB+∠COD-∠BOD=90°+30°-10°=110°即∠AOC的度数为110°.【点睛】本题考查了角的计算,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.92.将一三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图1,若∠BOD=35°,则∠AOC=______°;若∠AOC=135°,则∠BOD=_____°;(2)如图2,若∠AOC=140°,则∠BOD=_____°;(3)猜想∠AOC与∠BOD的大小关系,并结合图1说明理由;(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O 按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由.【答案】(1)145°,45°;(2)40°;(3)∠AOC 与∠BOD 互补,理由详见解析;(4)∠AOD 角度所有可能的值为:30°、45°、60°、75°.【解析】【分析】(1)由于是两直角三角形板重叠,根据∠AOC=∠AOB+∠COD-∠BOD可分别计算出∠AOC、∠BOD的度数;(2)根据∠BOD=360°-∠AOC-∠AOB-∠COD计算可得;(3)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知两角互补;(4)分别利用OD∠AB、CD∠OB、CD∠AB、OC∠AB分别求出即可.【详解】解:(1)若∠BOD=35°,∠∠AOB=∠COD=90°,∠∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;(2)如图2,若∠AOC=140°,则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=40°;(3)∠AOC 与∠BOD 互补.∠∠AOD+∠BOD+∠BOD+∠BOC=180°.∠∠AOD+∠BOD+∠BOC=∠AOC,∠∠AOC+∠BOD=180°,即∠AOC 与∠BOD 互补.(4)OD∠AB 时,∠AOD=30°,CD∠OB 时,∠AOD=45°,CD∠AB 时,∠AOD=75°,OC∠AB 时,∠AOD=60°,即∠AOD 角度所有可能的值为:30°、45°、60°、75°;故答案为(1)145°,45°;(2)40°.【点睛】本题题主要考查了互补、互余的定义等知识,解决本题的关键是理解重叠的部分实质是两个角的重叠.93.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.求∠DOE的度数.解:因为OD是∠AOC的平分线,所以∠COD=12∠AOC.因为OE是∠BOC 的平分线,所以=12∠BOC.所以∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12∠AOB= °.【答案】见解析.【解析】【分析】根据已知条件和角平分线的性质:一个角的平分线把这个角分成两个大小相同的角,据此逐项填空即可.【详解】解:因为OD是∠AOC的平分线,(已知)所以∠COD=12∠AOC.(角平分线定义)因为OE是∠BOC 的平分线,所以∠COE=12∠BOC.所以∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12∠AOB=90°.故答案为已知;角平分线定义;∠COE;90.【点睛】此题主要考查了角的计算,以及角平分线的含义和求法,要熟练掌握.94.如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC.(1)若∠AOC=20°,∠AOB=110°,则∠BOC= °,∠DOE= °;(2)若∠AOC=m°,∠AOB=n°(n>m),则∠BOC= °,∠DOE= °;(3)猜想:∠DOE与∠BOC有怎样的数量关系?并说明理由.【答案】(1)90,45;(2)(n﹣m),12(n﹣m);(3)∠DOE=12∠BOC.【解析】【分析】(1) 依据∠AOC=20°, ∠AOB=110°, 可得∠BOC=110° -20°=90°; 再根据OD、OE分别平分∠AOB, ∠AOC, 即可得到∠DOE的度数;(2) 依据∠AOC= m°, ∠AOB= n°,可得∠BOC= n°- m°= (n°- m°); 再根据OD、OE分别平分∠AOB、∠AOC, 可得∠AOD= 12n°, LAOE= 12m°,进而得出∠DOE的度数;(3) 依据OD、OE分别平分∠AOB、∠AOC, 即可得出∠AOD=12∠AOB,∠AOE=12∠AOC, 进而得到∠DOE=∠AOD-∠AOE=12(∠AOB-∠AOC) =12∠BOC.【详解】解:(1)∵∠AOC=20°,∠AOB=110°,∴∠BOC=110°﹣20°=90°;∵OD、OE分别平分∠AOB、∠AOC,∴∠AOD=55°,∠AOE=10°,∴∠DOE=55°﹣10°=45°;故答案为90,45;(2)∵∠AOC=m°,∠AOB=n°,∴∠BOC=n°﹣m°=(n﹣m)°;∵OD、OE分别平分∠AOB、∠AOC,∴∠AOD=n°,∠AOE=m°,∴∠DOE=∠AOD﹣∠AOE=(n﹣m)°;故答案为(n﹣m),(n﹣m);(3)∠DOE=∠BOC.证明:∵OD、OE分别平分∠AOB、∠AOC,∴∠AOD=∠AOB,∠AOE=∠AOC,∴∠DOE=∠AOD﹣∠AOE=(∠AOB﹣∠AOC)=∠BOC.【点睛】本题主要考查角平分线的性质定理和角的运算.95.如图,OB是∠AOC的角平分线,OC是∠AOD的角平分线,∠COD=76°,求∠BOD的度数.【答案】114°【解析】【分析】根据角平分线的性质即可求出答案.【详解】∵OC 是∠AOD 的角平分线∴76,COD AOC ∠=∠=∵OB 是∠AOC 的角平分线, ∴138,2BOC AOC ∠=∠= ∴114.BOD COD BOC ∠=∠+∠=【点睛】考查角平分线的定义,根据角平分线的定义得出所求角与已知角的关系是解决问题的关键.96.如图,已知∠AOB=90°,∠EOF=60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠COB 和∠AOC 的度数.【答案】∠COB=30°,∠AOC=120°【解析】【分析】先根据角平分线,求得BOE ∠的度数,再根据角的和差关系,求得BOF ∠的度数,最后根据角平分线,求得BOC ∠、AOC ∠的度数.【详解】AOB 90∠=,OE 平分AOB ∠ ,BOE 45∠∴= ,又EOF 60∠= ,FOB 604515∠∴=-= , OF 平分BOC ∠ ,COB 21530∠∴=⨯= ,AOC BOC AOB 3090120∠∠∠∴=+=+=.【点睛】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据AOC ∠的度数是EOF ∠度数的2倍进行求解.97.已知一个角的补角比这个角的余角的5倍大15°,求这个角的度数.(结果用度、分、秒表示)【答案】07115'【解析】【分析】设这个角为x 度,根据余角与补角的定义得出补角的度数为(180﹣x ),根据题中的等量关系列出方程求解即可.【详解】设这个角为x 度,则它的补角的度数为(180﹣x ),余角的度数为90﹣x . 由题意,得()18059015x x -=-+,解之得071.257115x =︒'=,故这个角为07115'.【点睛】本题主要考查了余角、补角的定义以及一元一次方程的应用,解题的关键是能准确地从题中找出各个量之间的数量关系,注意掌握互为余角的两角的和为90°,互为补角的两角的和为180°.98.已知如图,AO⊥BC,DO⊥OE.(1)不添加其他条件情况下,请尽可能多地写出图中有关角的等量关系(至少3个);(2)如果∠COE =350,求∠BOD的度数.【答案】(1)∠COE=∠AOD,∠AOE=∠BOD,∠AOB=∠DOE;(2)∠BOD=550【解析】【分析】(1)已知AO⊥BC,DO⊥OE,就是已知∠DOE=∠AOB=∠AOC=90°,利用同角或等角的余角相等,从而得到相等的角.(2)由(1)知,∠AOD=∠EOC,故可求解.【详解】(1)∵AO⊥BC,DO⊥OE,∴∠DOE=∠AOB=∠AOC=90°,∠BOD+∠AOD=90°,∠AOD+∠AOE=90°,∠AOE+∠COE=90°,∴∠DOA=∠EOC,∠DOB=∠AOE,∠AOB=∠AOC,∠AOB=∠DOE,∠AOC=∠DOE;(2)∵AO⊥BC,DO⊥OE∴∠BOD=1800-∠COE =900-350=550【点睛】考查角之间的关系,解题关键是运用了同角或等角的余角相等.99.已知一个角的补角比这个角的余角的4倍大15°,求这个角的度数。
人教版七年级数学上册第四章角复习题四(含答案) (89)
人教版七年级数学上册第四章角复习题四(含答案)已知:∠AOB= °,过点O作OB∠OC.请画图示意并求解.(1)若=30,则∠AOC=________.(2)若=40,射线OE平分∠AOC,射线OF平分∠BOC,求∠EOF 的度数;(3)若0<<180,射线OE平分∠AOC,射线OF平分∠BOC,则∠EOF=________°.(用的代数式表示).【答案】(1)120°或60°(2)示意图详见解析,20°;(3)1.2【解析】【分析】(1)由OB⊥OC可得出∠BOC=90°,分射线OA、OC在射线OB同侧和两侧讨论,结合图形即可得出结论;(2)分射线OA、OC在射线OB同侧和两侧讨论,根据角平分线定义即可得出∠COE和∠COF的大小,结合图形即可求出∠EOF的度数;(3)分射线OA、OC在射线OB同侧和两侧讨论,根据角平分线定义即可得出∠COE和∠COF的大小,结合图形即可求出∠EOF的度数.【详解】根据题意画出图形,如图所示.(1)∵OB⊥OC,∴∠BOC=90°.当射线OA 、OC 在射线OB 同侧时,∠AOC=∠BOC-∠AOB=60°; 当射线OA 、OC 在射线OB 两侧时,∠AOC=∠AOB+∠BOC=120°. 故答案为60°或120°.(2)当射线OA 、OC 在射线OB 同侧时,∵射线OE 平分∠AOC ,射线OF 平分∠BOC ,∴∠COE=12∠AOC=12(∠BOC-∠AOB )=12×(90°-40°)=25°,∠COF=12∠BOC=45°, ∴∠EOF=∠COF-∠COE=45°-25°=20°;当射线OA 、OC 在射线OB 两侧时,∵射线OE 平分∠AOC ,射线OF 平分∠BOC ,∴∠COE=12∠AOC=12(∠BOC+∠AOB )=12×(90°+40°)=65°,∠COF=12∠BOC=45°, ∴∠EOF=∠COE-∠COF=65°-45°=20°.综上可知:∠EOF 的度数为20°.(3)当射线OA 、OC 在射线OB 同侧时,∵射线OE 平分∠AOC ,射线OF 平分∠BOC ,∴∠COE=12∠AOC=12(∠BOC-∠AOB )=12×(90°-α°)=45°-2α°,∠COF=12∠BOC=45°, ∴∠EOF=∠COF-∠COE=45°-(45°-2α°)=2α°; 当射线OA 、OC 在射线OB 两侧时,∵射线OE 平分∠AOC ,射线OF 平分∠BOC ,∴∠COE=12∠AOC=12(∠BOC+∠AOB )=12×(90°+α°)=45°+2α°,∠COF=12∠BOC=45°, ∴∠EOF=∠COE-∠COF=(45°+2α°)-45°=2α. 故答案为2α. 【点睛】本题考查了垂直、角平分线的定义以及角的计算,依照题意画出图形利用数形结合解决问题是解题的关键.82.如图,先找到长方形纸的宽DC 的中点E ,将∠C 过E 点折起任意一个角,折痕是EF ,再将∠D 过E 点折起,使D ′E 和C ′E 重合,折痕是GE ,请探索下列问题:(1)∠FEC ′和∠GED ′互为余角吗?为什么?(2)∠GEF 是直角吗?为什么?(3)在上述折纸图形中,还有哪些互为余角?哪些互为补角?(各写出两对即可)【答案】(1)∠FEC ′和∠GED ′互为余角,理由见解析;(2)∠GEF 是直角,理由见解析;(3)见解析.【解析】【分析】(1)根据翻折的性质可得∠3=∠1,∠4=∠2,然后根据平角等于180°求出∠1+∠2=90°;(2)根据∠GEF=∠1+∠2计算即可得解;(3)根据互余的两个角的和等于90°,互补的两个角的和等于180°分别找出互余和互补的角即可.【详解】(1)如图,由折纸实验,知∠3=∠1,∠4=∠2,而∠1+∠2+∠3+∠4=180°,所以∠1+∠2=90°,即∠FEC′+∠GED′=90°,故∠FEC′和∠GED′互为余角.(2)因为∠GEF=∠1+∠2=90°,所以∠GEF是直角.(3)∠3和∠4,∠1和∠EFG互为余角,∠AGF和∠DGF,∠CEC′和∠DEC′互为补角(答案不唯一).【点睛】本题考查了余角和补角,翻折变换的性质,熟练掌握折叠的性质找出相等的角是解题的关键.83.一个角的余角比它的补角的1多16°,求这个角的补角.3【答案】这个角的补角是159°.【解析】【分析】根据互为余角的和等于90°表示出这个角的余角,然后列出方程求出这个角,再根据互为补角的和等于180°列式进行计算即可得解.【详解】设这个角为x°,则(180-x)+16,解得x=21.90-x=13180°-21°=159°.所以这个角的补角是159°.【点睛】本题考查了余角与补角的定义,熟记互为余角的和等于90°,互为补角的和等于180°是解题的关键.84.计算:(1)23°45′+24°20′;(2)34°5′-10°25′;(3)22°33′44″×6.【答案】(1) 48°5′;(2) 23°40′;(3) 135°22′24″.【解析】【分析】(1)根据度分秒的加法,相同单位相加,满60时向上一单位进1,可得答案;(2)两个度数相减,被减数可借1°转化为60′,借一分转化为60″,再计算即可;(3)计算乘法时,秒满60时转化为分,分满60时转化为度.两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度计算即可.【详解】(1)23°45′+24°20′=47°65′=48°5′.(2)34°5′-10°25′=33°65′-10°25′=23°40′.(3)22°33′44″×6=132°198′264″=135°22′24″.【点睛】本题考查度、分、秒的加法、减法及乘法计算,熟记以60为进制是解题关键.85.已知∠AOB=120°,∠COD=60°,OE平分∠BOC(1)如图①.当∠COD在∠AO B的内部时①若∠AOC=39°40′,求∠DOE的度数;②若∠AOC=α,求∠DOE的度数(用含α的代数式表示),(2)如图②,当∠COD在∠AOB的外部时,①请直接写出∠AOC与∠DOE的度数之间的关系;②在∠AOC内部有一条射线OF,满足∠AOC+2∠BOE=4∠AOF,写出∠AOF 与∠DOE的度数之间的关系.【答案】(1)①19°50′;②∠DOE=1;(2)①∠AOC=2∠DOE;2②∠DOE=∠AOF+30°.【解析】【分析】(1)①②根据角平分线的定义和角的和差即可得到结论;②根据角平分线的定义和角的和差即可得到结论;(2)①根据已知条件得到∠AOC=120°+∠BOC,∠DOE=60°+∠COE,根据角平分线的定义得到∠COE=12∠BOC,等量代换即可得到结论;②如图,由①知,∠AOC=2∠DOE,根据∠AOC+2∠BOE=4∠AOF,化简即可得到结论.【详解】(1)①∵∠AOB=120°,∠COD=60°,∠AOC=39°40′,∴∠BOC=∠AOB﹣∠AOC=120°﹣39°40′=80°20′,∵OE平分∠BOC,∴∠COE=12∠BOC=40°10′,∴∠DOE=∠COD﹣∠COE=19°50′;②∵∠AOB=120°,∠COD=60°,∠AOC=α,∴∠BOC=∠AOB﹣∠AOC=120°﹣α,∵OE平分∠BOC,∴∠COE=12∠BOC=60°﹣12α,∴∠DOE=12;(2)①∵∠AOC=120°+∠BOC,∠DOE=60°+∠COE,∵OE平分∠BOC,∴∠COE=12 BOC,∴∠AOC=2∠DOE;②如图,由①知,∠AOC=2∠DOE,∵∠AOC+2∠BOE=4∠AOF,∴∠AOC+∠BOC=∠AOC+∠AOC﹣120°=2∠AOC﹣120°=4∠DOE﹣120°=4∠AOF,∴∠DOE=∠AOF+30°.【点睛】本题考查了角平分线的定义,角的计算,正确的识别图形是解题的关键.86.如图,点O为直线CA上一点,∠BOC=46°,OD平分∠AOB,∠EOB=90°,求∠AOE和∠DOE的度数.【答案】23°【解析】【分析】利用角平分线性质即可解题.【详解】解:⊥点O为直线CA上一点,⊥BOC=46°⊥⊥AOB=180°﹣46°=134°,⊥⊥EOB=90°,⊥⊥AOE=134°﹣90°=44°, ⊥OD平分⊥AOB,⊥⊥AOD=12⊥AOB=67°,⊥⊥DOE=⊥AOD﹣⊥AOE=67°﹣44°=23°.【点睛】本题考查了角平分线的性质,属于简单题,熟悉角平分线的概念是解题关键.87.如图,在∠AOB的内部作射线OC,使∠AOC与∠AOB互补.将射线OA,OC同时绕点O分别以每秒12°,每秒8°的速度按逆时针方向旋转,旋转后的射线OA,OC分别记为OM,ON,设旋转时间为t秒.已知t<30,∠AOB=114°.(1)求∠AOC的度数;(2)在旋转的过程中,当射线OM,ON重合时,求t的值;(3)在旋转的过程中,当∠COM与∠BON互余时,求t的值.【答案】(1) 66°;(2)当t=16.5时,射线OM,ON重合;(3)当∠COM与∠BON互余时,t的值为1.2或10.2.【解析】【分析】(1)利用互补的定义列式计算;(2)根据∠AOM=∠AON,列方程12t=8t+66,得出结论;(3)分两种情况:利用∠COM+∠BON=90°,列方程解出即可.【详解】(1)因为∠AOC与∠AOB互补,所以∠AOC+∠AOB=180°.因为∠AOB=114°,所以∠AOC=180°-114°=66°.(2)由题意得12t=8t+66.解得t=16.5.所以当t=16.5时,射线OM,ON重合.(3)当t<5.5时,射线OM在∠AOC内部,射线ON在∠BOC内部,由题意得66-12t+114-66-8t=90,解得t=1.2;当t>6时,射线ON在∠BOC外部,射线OM在∠AOC外部,由题意得12t-66+8t-(114-66)=90,解得t=10.2.综上所述,当∠COM与∠BON互余时,t的值为1.2或10.2.【点睛】本题考查了补角的定义,角的和差,一元一次方程的应用及分类讨论的数学思想.熟记补角的定义是解(1)的关键,根据∠AOM=∠AON列方程是解(2)的关键,分类讨论是解(3)的关键.88.如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1.(1)若∠1=18°,求∠COE的度数;(2)若∠COE=70°,求∠2的度数.【答案】(1)72°.(2)60°.【解析】【分析】(1)根据∠1求出∠2,根据平角求出∠AOD, 再根据OC平分∠AOD求出∠3即可求出∠COE的度数;(2)所求角和∠1有关,∠1较小,应设∠1为未知量.根据∠COE的度数,可表示出∠3,也就表示出了∠4,而这4个角组成一个平角.【详解】(1)∵∠1=18°,∠2=3∠1,∴∠2=54°,∴∠AOD=180°-∠1-∠2=180°-18°-54°=108°,∵OC平分∠AOD,∴∠3=54°,∴∠COE=∠1+∠3=18°+54°=72°.(2)设∠1=x°,∵OC平分∠AOD,∠COE=∠1+∠3=70°,∴∠3=∠4=70°-x°.又∵∠1+∠2+∠3+∠4=180°,∴x°+∠2+2(70°-x°)=180°,∴∠2=40°+x°,∵∠2=3∠1,∴40°+x °=3x °,解得x=20,∴∠2=3∠1=3×20°=60°,即∠2的度数为60°.【点睛】本题隐含的知识点为:这4个角组成一个平角.应设出和所求角有关的较小的量为未知数.89.已知点O 是直线AB 上的一点,∠COE =90°,OF 是∠AOE 的平分线.(1)当点C ,E ,F 在直线AB 的同侧时(如图①所示),试说明∠BOE =2∠COF.(2)当点C 与点E ,F 在直线AB 的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.【答案】(1)∠BOE =2∠COF (2)∠BOE =2∠COF 仍成立【解析】【分析】(1)先设COF α∠=,得出90EOF α∠=︒-,再根据角平分线的定义得出∠BOE ,从而得出2BOE COF ∠=∠的数量关系;(2)设AOC β∠=,求出AOF ∠,推出COF ∠、∠BOE 即可得出答案.【详解】(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=+β=(90°+β).所以∠BOE=2∠COF.【点睛】此题考查了角平分线的定义和角的计算,关键是根据角平分线的定义求出各角之间的数量关系.90.计算:(1)90°23′﹣36°12′(2)﹣|﹣5|×(﹣12)﹣4÷(﹣1)22【答案】(1)54°11′(2)﹣11【解析】【分析】(1)直接利用度分秒转换法则计算得出答案;(2)直接利用化简各数,进而计算得出答案.【详解】(1)90°23′-36°12′=54°11′;(2)原式=-5×(-1)-4×4=-11.【点睛】此题主要考查了度分秒转化换以及有理数的混合运算,正确化简各数是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册第四章角复习题五(含答案)
如图,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在点C′、D′的位置上,EC交AD于G,已知∠EFG=56°,那么∠BEG=______.
【答案】68°
【解析】
试题分析:根据题意可得:AD∥BC,则∠FEC=∠EFG=56°,根据折叠图像的性质可得:∠GEF=∠FEC=56°,则
∠BEG=180°-∠GEF-∠FEC=180°-56°-56°=68°.
点睛:本题主要考查的就是折叠图形的性质及应用,平行线的性质,属于简单题型.在解决折叠问题的时候,我们一定要找准折叠之后所对应的线段和角,根据线段和角相等来进行解答问题.在求线段长度的时候,我们经常会将线段放到直角三角形中,然后根据勾股定理来进行求解.
72.2700″=______°.
【答案】0.75
【解析】试题分析:1°=60′,1′=60″,1°=3600″,2700÷3600=0.75,则2700″=0.75°.
︒,那么这个角的余角是___________︒.
73.如果一个角是2015'
【答案】69.75
【解析】
试题分析:根据互余两角的和为90°,可求解余角为
90°-20°15′=69°45′=69.75°.
故答案为:60.75
︒-︒=__________.
74.计算:501530'
【答案】34°30′
【解析】
︒
︒-︒=3430'
501530'
75.如图,∠CAE是△ABC的外角,且AD∥BC,AD平分∠EAC,若∠B=63°,则∠BAC=_____.
【答案】54°
【解析】
∵AD∥BC,∠B=63°,
∴∠EAD=∠B=63°,
∵AD是∠EAC的平分线,
∴∠EAC=2∠EAD=2×63°=126°,
∴∠BAC=54°,
故答案为54°.
76.已知∠A=80°,那么∠A补角为___度.
【答案】100°
【解析】180°-80°=100°.
77.一个角的余角比它的补角的13
还少20°,则这个角是_____________. 【答案】75°
【解析】
设这个角为x ,则这个角的余角是90x ︒-,这个角的补角是180,x ︒-根据题意可得: 9020x ︒+︒-=()11803
x ︒-,解得x =75°,故答案为: 75°. 78.89°25′48″=__°.
【答案】89.43
【解析】
将89°25′48″用度表示,应先将48″化成分,然后再将分化成度就可以了.将48″化成分,可以用
′乘以48. 解:把48″化成分,48″=
′×48=0.8′,25′+0.8′=25.8′,把25.8′化成度,25.8′=°×25.8=0.43°.
所以89°25′48″=89.43°.
“点睛”由度、分、秒化成度的形式(即从低位向高位化),1″=
′,1′=°,用除法.度及度、分、秒之间的转化必须逐级进行转化,“越级”转化容易出错.
79.钟表在12时15分时刻的时针与分针所成的角是_______°.
【答案】82.5
【解析】90°-30°÷4=82.5°.
80.若∠α=31°42′,则∠α的补角的度数为 .
【答案】148°18′
【解析】
∠α的补角度数为:180°-31°42′=148°18′.。