直流电动机直接起动仿真

合集下载

直流电动机起动实验

直流电动机起动实验

实验一直流电动机起动实验一、实验目的理解直流电机的工作原理,测试直流电动及直接起动的波形。

说明负载转矩、转速、电流、电磁转矩之间为何具有相应的对应关系。

二、实验的主要内容仿真一台直流并励电动机的起动过程。

电动机参数为: PN =17kW, U N = 220V, n0= 3000r/min,电枢回路电阻R a =0. 0870,电枢电感La =0. 0032H,励磁回路电阻RF=181.50,电机转动惯量J=0.76 kg ?m2。

三、实验的基本原理直流电动机刚与电源接通的瞬间,转子尚未转动起来时,他励和串励电动机的电枢电流以及并励和复励电动机的输入电流称为起动电流,这时的电磁转矩称为起动转矩。

一般情况下,在额定电压下直接起动时,起动电流可达电枢电流额定值的10~20倍,起动转矩也能达到额定转矩的10~20倍,这样的起动电流是换向所不允许的,而且过大的起动转矩会使电动机和它所拖动的生产机械遭受突然的巨大冲击,以致损坏传动机械和生产机械。

由此可见,除了额定功率在数百瓦以下的微型直流电动机,因电枢绕组导线细、枢电阻大以及转动惯量又比较小,可以直接起动以外,一般的直流电动机是不允许采用直接起动的。

四、实验步骤1) 建立并激电动机的仿真模型:直流电动机DCmotor 的电枢和励磁并联后由直流电源DC 供电,用Step 模块给定电动机的负载转矩,在DCmotor 的m 端连接了Demux 模块,将m 端输出的4 个信号分为4 路,以便通过示波器Scope 观察,m 端输出的转速单位为rad/s,这里使用了一个放大器(Gain), 将rad/s 转换为习惯的r/min,变换系数为:k=60/2 π =9.55。

2) 计算电动机参数:励磁电流励磁电感在恒定磁场控制时可取“ 0” 电枢电阻R a =0.0870电枢电感估算3)设置仿真参数:在Simulation 菜单栏下选择Simulation parameters, 设置仿真参数,仿真时间取ls,在0. 5s 时加额定负载,仿真算法取ode45,点击菜单栏中的“? ”按钮启动仿真。

直流电动机常用的启动方法

直流电动机常用的启动方法

直流电动机常用的启动方法直流电动机是一种常见的电动机类型,广泛用于各种工业生产与民用设备中。

对于直流电动机的启动方法,有很多种不同的选择,这些选择的依据包括电动机的型号、工作环境、驱动力矩的大小以及控制方式等因素。

下面是10种关于直流电动机常用的启动方法,并分别进行详细描述。

1. 电阻启动法电阻启动法是直流电动机最常见的启动方式,其原理是通过依次接入不同电阻来使电动机的起动电流随之逐渐减小。

当起动电流达到设定的安全范围之后,电阻便会逐渐减少,直到电机正常运行。

这种启动方式起动起来比较平稳,价格较为低廉。

电阻启动法需要使用大量的电阻器,造成能量的浪费。

2. 串联启动法串联启动法是一种将电动机的电源与电阻器串联连接在一起的启动方法。

与电阻启动法相似,它也是通过连续连接电阻器来降低电流的方法来启动电动机,与电阻启动不同的是,串联启动法每次只启动一个电阻器。

这种启动方式对电机来说更加低温,启动更加快速。

在起动阶段,会产生高电压,并且会造成能量的浪费。

3. 并联启动法并联启动法是一种将电动机的电源与电阻器并联连接在一起的启动方法。

并联启动法直接输入电机供电电压,通常需要通过控制继电器来控制电动机的启动。

这种启动方式比较经济实用,并且启动过程中对电机起动电流和电机结构的影响最小。

4. 自励磁通启动法自励磁通启动法是通过电机冷态下挂上外接的直流电源,使电机发生自励磁通,再接上负载进行启动。

这种启动方法具有启动电流小,启动时间短,启动前不需预充电等特点。

但是自励磁通启动方式不适用于需要一直处于低速转动状态的电机。

5. 逆励磁通启动法逆励磁通启动法是通过将直流电动机转子两端分别接上两个反向或相同的电极来实现启动的方法。

这种启动方式不需要任何外接电阻器和其他控制器等,启动过程非常快速。

在实际使用中,逆励磁通启动需要一定的起动电流,不利于电机的长时间运转。

6. 惯性位移启动法惯性位移启动法也称为惯性磁力启动法,是一种利用电机转子上的惯性力和轴承摩擦力产生的惯性磁力来实现启动的方法。

他励直流电动机的启动方法

他励直流电动机的启动方法

他励直流电动机的启动方法直流电动机是一种常用的电动机类型,其启动方法有多种,下面我将详细介绍几种常见的启动方法。

1. 直接启动法直接启动法是最简单和常见的直流电动机启动方法。

该方法的基本原理是将直流电源直接连接到电动机的电枢和电枢绕组中,从而使电动机产生转矩,实现启动。

该方法适用于小功率的电动机,特别是要求启动时间较短且转矩较小的场合。

2. 电阻启动法电阻启动法是在直接启动法的基础上增加起动电阻,通过起动电阻的调节来改变电动机的转矩和启动电流。

这样可以降低启动电流、减小对电源和电动机的冲击,同时延长电动机的寿命。

在启动时,起动电阻接入电枢回路,随着电动机转速的逐渐上升,逐渐减小起动电阻的接入量,直到全压法。

3. 电压变频启动法电压变频启动法是通过调节电压和频率来控制电动机启动的方法。

其主要原理是通过变频器将电源的固定电压和频率转换为可调的电压和频率,以实现电动机的平稳启动。

该方法适用于中小功率的电动机,并且可以实现起动转矩平稳调节,避免启动过程中的冲击和电动机的热保护。

4. 惰性启动法惰性启动法是一种通过改变电动机绕组接入方式,在启动时降低电枢电源电压减小电枢回路电阻,从而减小电动机启动时的起动电流和转矩。

该方法适用于对启动电流要求较小的场合,能够有效降低起动对电源和电动机的影响。

5. 自耦变压器启动法自耦变压器启动法是通过将变压器的辅助绕组与电动机连接,自耦变压器提供起动能时,使电动机实现先低压起动,再逐渐升压,从而保护电动机免受起动过程的冲击。

该方法适用于较大功率的电动机,能够提供较稳定的起动性能和较小的启动电流。

总的来说,直流电动机的启动方法有多种,根据实际需求和电动机的特性选择合适的启动方法非常重要。

不同的启动方法有各自的优缺点,需要根据具体情况进行选择。

在实际应用中,还可以根据需要采用多种启动方法的组合,以达到更好的启动效果和保护电动机的目的。

直流电动机起动实验

直流电动机起动实验

F 实验一直流电动机起动实验一、实验目的理解直流电机的工作原理,测试直流电动及直接起动的波形。

说明负载转矩、转速、电流、电磁转矩之间为何具有相应的对应关系。

二、实验的主要内容仿真一台直流并励电动机的起动过程。

电动机参数为: PN =17kW, UN=220V, n0= 3000r/min,电枢回路电阻Ra=0. 0870,电枢电感La =0. 0032H,励磁回路电阻R =181.50,电机转动惯量J=0.76 kg •m2。

三、实验的基本原理直流电动机刚与电源接通的瞬间,转子尚未转动起来时,他励和串励电动机的电枢电流以及并励和复励电动机的输入电流称为起动电流,这时的电磁转矩称为起动转矩。

一般情况下,在额定电压下直接起动时,起动电流可达电枢电流额定值的10~20倍,起动转矩也能达到额定转矩的10~20倍,这样的起动电流是换向所不允许的,而且过大的起动转矩会使电动机和它所拖动的生产机械遭受突然的巨大冲击,以致损坏传动机械和生产机械。

由此可见,除了额定功率在数百瓦以下的微型直流电动机,因电枢绕组导线细、枢电阻大以及转动惯量又比较小,可以直接起动以外,一般的直流电动机是不允许采用直接起动的。

四、实验步骤1)建立并激电动机的仿真模型:直流电动机DCmotor 的电枢和励磁并联后由直流电源DC 供电,用Step 模块给定电动机的负载转矩,在DCmotor 的m 端连接了Demux 模块,将m 端输出的4 个信号分为4 路,以便通过示波器Scope观察,m 端输出的转速单位为rad/s,这里使用了一个放大器(Gain), 将rad/s 转换为习惯的r/min,变换系数为:k=60/2π =9.55。

2)计算电动机参数:励磁电流励磁电感在恒定磁场控制时可取“0”电枢电阻电枢电感估算R a=0.08703)设置仿真参数:在Simulation 菜单栏下选择Simulation parameters, 设置仿真参数,仿真时间取ls,在0. 5s 时加额定负载,仿真算法取ode45,点击菜单栏中的“➢”按钮启动仿真。

直流电机的启动方法

直流电机的启动方法

直流电机的启动方法直流电机的启动方法有很多种,以下将详细介绍几种常见的启动方法。

1. 直流电机的直接启动:直接将直流电源连接到直流电机的绕组,使其获得足够的电压和电流来启动。

这种方法简单直接,适用于小功率的直流电机。

但是,直接启动会产生较大的启动电流冲击,可能造成电网压降和电机烧毁。

2. 利用电阻启动:在直流电机的电源回路中添加一个外部电阻,通过调节电阻的大小来控制启动电压和电流。

启动时,先将电阻接入电路,限制初始电流,待电机达到设定转速后,再逐渐减小电阻的值,使电机获得全额电压。

这种方法可以减小启动时的电流冲击,保护电网和电机。

3. 利用变压器启动:通过变压器来调整电源电压,控制启动电机的电流。

在启动时,通过变压器将电机所需的启动电流限制在可接受范围内,待电机转速达到一定值后,逐渐增加变压器输出的电压,使电机获得额定电压。

这种方法适用于大功率电机的启动,可以减小电网负荷和电机启动时的电流冲击。

4. 利用电容启动:在直流电机的电源回路中添加一个起动电容,通过起动电容的电势差产生的电流相位差,使电机启动。

起动电容可以改变电机线路的相位,相当于改变了电压和电流的相对位置,从而产生助力启动的效果。

这种方法适用于小功率的直流电机,可以减小启动电流和启动扭矩。

5. 利用外加转矩启动:当电机的起动扭矩较大,超过了电机自身的启动扭矩时,可以通过外加转矩的方式来启动电机。

常见的外加转矩启动方法有电动机激励、外驱励、机械传动等,通过这些方式施加外力或外磁场,使电机获得足够的启动扭矩。

这种方法适用于启动难度较大或启动时负载较大的直流电机。

需要注意的是,不同的启动方法适用于不同规格和功率的直流电机,选择合适的启动方法可以保障电机的正常启动运行。

在选择启动方法时,需要综合考虑电机额定功率、转速、负荷情况以及所在工作环境等因素,并遵循电机制造商提供的启动参数和指导。

此外,在启动过程中要注意避免过载和过电流现象的发生,及时检查电机的运行状态和工作温度,确保电机的安全运行。

直流电动机的起动仿真

直流电动机的起动仿真

实验五直流电动机的起动仿真实验目的:直流电机直接起动时,起动电流很大,可达到额定电流的10-20倍,由此产生很大的冲击转矩,实际运行时不允许直流电机直接起动。

通过直接起动和串电阻起动比较它们的区别,起动电流和起动转矩的变化。

实验设备及器件:计算机,一台(MATLAB)。

实验内容:建立仿真模型;通过图形验证。

实验要求:能够正确使用simulink建立仿真模型,并观察分析图形。

1.直流电动机直接起动仿真模型图图中的模块有直流电源(DC Voltage Source)、理想开关、直流电动机、开关、增益、电阻(RLC branch)、示波器(scope)、信号分离模块(Demux)。

仿真模型中通过理想开关模块控制直流电源的接通和断开,使用开关模块控制电机的转矩,使电机在起动过程中的转矩为空载起动,当转速达到设定值后,使电机工作再给定的负载转矩。

直流电机模块参数:直流电源模块参数:定时模块:0s时输出为0, 0.5s时输出为1理想开关:开关模块:增益模块常量模块:电阻设置:仿真时间为5s2.直流电动机电枢串电阻起动仿真与图1仿真模型相比较图中增加了电阻控制模块子模块的建立采用从Simulink中拖入子系统模块(Subsystem)的方法。

双击子模块打开在内部按下图增加所需要的模块,如增加输入、输出端口(connection port),子模块的原理图如下图所示。

子模块中有阶跃模块(Step)、断路器(Breaker)、阻抗分支(RLC branch)组成。

开关门限的设置:即转速到1400r/min时再投入负载转矩。

仿真时间为10s。

无刷直流电机控制系统的设计及仿真

无刷直流电机控制系统的设计及仿真

目录1 前言............................................................................................................... - 0 -1.1 无刷直流电机的开展......................................................................... - 0 -1.2 无刷直流电机的优越性..................................................................... - 0 -1.3 无刷直流电机的应用......................................................................... - 1 -1.4 无刷直流电机调速系统的研究现状和未来开展............................. - 1 -2 无刷直流电机的原理................................................................................... -3 -2.1 三相无刷直流电动机的根本组成..................................................... - 3 -2.2 无刷直流电机的根本工作过程......................................................... - 4 -2.3 无刷直流电动机本体......................................................................... - 5 -2.3.1 电动机定子............................................................................... - 5 -2.3.2 电动机转子............................................................................... - 6 -2.3.3 有关电机本体设计的问题....................................................... - 7 -3 转子位置检测............................................................................................... - 8 -3.1 位置传感器检测法............................................................................. - 8 -3.2 无位置传感器检测法......................................................................... - 9 -4 系统方案设计............................................................................................. - 11 -4.1 系统设计要求................................................................................... - 11 -4.1.1 系统总体框架......................................................................... - 11 -4.2 主电路供电方案选择....................................................................... - 11 -4.3 无刷直流电机电子换相器............................................................... - 13 -4.3.1 三相半控电路......................................................................... - 13 -4.3.2 三相全控电路......................................................................... - 14 -4.4 无刷直流电机的根本方程............................................................... - 15 -4.5 逆变电路的选择............................................................................... - 17 -4.6 基于MC33035的无刷直流电动机调速系统................................... - 18 -4.6.1 MC33035无刷直流电动机控制芯片...................................... - 18 -4.6.2 基于MC33035的无刷直流电动机调速系统设计 ................ - 19 -5 无刷直流电机调速系统的MATLAB仿真................................................... - 22 -5.1 电源、逆变桥和无刷直流电机模型............................................... - 23 -5.2 换相逻辑控制模块........................................................................... - 24 -5.3 PWM调制技术.................................................................................... - 29 -5.3.1 等脉宽PWM法......................................................................... - 31 -5.3.2 SPWM(Sinusoidal PWM)法..................................................... - 31 -5.4 控制器和控制电平转换及PWM发生环节设计............................... - 31 -5.5 系统的仿真、仿真结果的输出及结果分析................................... - 33 -5.5.1 起动,阶跃负载仿真............................................................. - 33 -5.5.2 可逆调速仿真......................................................................... - 35 -6 总结和体会................................................................................................. - 37 -无刷直流电机调速控制系统设计1前言直流无刷电机,无机械刷和换向器的直流电机,也被称为无换向器直流电动机。

单闭环直流调速系统的仿真研究【基于MATLAB软件的仿真】《论文》

单闭环直流调速系统的仿真研究【基于MATLAB软件的仿真】《论文》

单闭环直流调速系统的仿真研究【基于MATLAB软件的仿真】《论文》1引言调速方法通常有机械的、电气的、液压的、气动的几种,仅就机械与电气调速方法而言,也可采用电气与机械配合的方法来实现速度的调节。

电气调速有许多优点,如可简化机械变速机构,提高传动效率,操作简单,易于获得无极调速,便于实现远距离控制和自动控制,因此,在生产机械中广泛采用电气方法调速。

1.1直流调速系统的概述由于直流电动机具有极好的运动性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是长期以来,直流调速系统一直占据垄断地位。

就目前来看,直流调速系统仍然是自动调速系统的主要形式。

在我国许多工业部门,如海洋钻探、纺织、轧钢、矿山、采掘、金属加工、造纸以及高层建筑等需要高性能可控电力拖动的场合,仍然广泛采用直流调速系统。

而且,直流调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础。

随着GTO晶闸管、GTR、P-MOSFET、IGBT和MCT等全控型功率器件的问世,这些有自断能力的器件逐步取代了原来普通晶闸管系统所必须的换向电路,简化了电路的结构,提高了效率和工作频率,降低了噪声,缩小了电力电子装置的体积和重量。

谐波成分大、功率因素差的相控变流器逐步被斩波器或脉冲宽度调制器所代替,明显的扩大了电动机控制的调速范围,提高了调速精度,改善了快速性、效率和功率因素。

PWM电源终将取代晶闸管相控式可控功率电源,成为电源的主流。

随着信息、控制与系统学科以及电力电子的发展,电力拖动系统获得了迅猛发展,从旋转交流机组到水银整流器静止交流装置、晶闸管整流装置,再到众多集成电力模块。

目前完全数字化的控制装置已成功应用于生产,以微机作为控制系统的核心部件,并具有控制、检测、监视、故障诊断及故障处理等多功能电气传动系统正处在形成和不断完善之中。

1.2本章小结本章介绍了直流调速系统的研究前景及其优点。

直流电动机MATLAB仿真

直流电动机MATLAB仿真

第一章课程设计内容及要求1.直流电动机的机械特征仿真;2.直流电动机的直接起动仿真;3.直流电动机电枢串连电阻启动仿真;4.直流电动机能耗制动仿真;5.直流电动机反接制动仿真;6.直流电动机改变电枢电压调速仿真;7.直流电动机改变励磁电流调速仿真。

要求:编写 M文件,在 Simulink环境画仿真模型原理图,用二维绘图命令画仿真结果图或用示波器察看仿真结果,并加以剖析第二章直流电动机的电力拖动仿真绘制1)直流电动机的机械特征仿真clear;U_N=220;P_N=22;I_N=115;n_N=1500;R_a=0.18;R_f=628;Ia_N=I_N-U_N/R_f;C_EPhi_N=(U_N-R_a*Ia_N)/n_N;C_TPhi_N=9.55*C_EPhi_N;Ia=0;Ia_N;n=U_N/C_EPhi_N-R_a/(C_EPhi_N)*Ia;Te=C_TPhi_N*Ia;P1=U_N*Ia+U_N*U_N/R_f;T2_N=9550*P_N/n_N;figure(1);plot(Te,n,'.-');xlabel(' 电磁转矩Te/N.m');ylabel(' 转矩 n/rpm');ylim([0,1800]);figure(2);plot(Te,n,'rs');xlabel(' 电磁转矩Te/N.m');ylabel(' 转矩 n/rpm');hold on;R_c=0;for coef=1:-0.25;0.25;U=U_N*coef;n=U/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te;plot(Te,n,'k-');str=strcat('U=',num2str(U),'V');s_y=1650*coef;text(50,s_y,str);endfigure(3);n=U_N/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te;plot(Te,n,'rs');xlabel(' 电磁转矩Te/N.m');ylabel(' 转矩 n/rpm');hold on;U=U_N;R_c=0.02;for R_c=0:0.5:1.9;n=U/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te;plot(Te,n,'k-');str=strcat('R=',num2str(R_c+R_a),'\Omega');s_y=400*(4-R_c*1.8);text(120,s_y,str);endylim([0,1700]);figure(4);R_c=0;n=U_N/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'rs');xlabel(' 电磁转矩Te/N.m');ylabel(' 转矩 n/rpm');hold on;U=U_N;R_c=0.02;for R_c=0.5:0.25:1.3;C_EPhi=C_EPhi_N*coef;C_TPhi=C_TPhi_N*coef;n=U/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te;plot(Te,n,'k-');str=strcat('\phi=',num2str(coef),'*\phi_N');s_y=900*(4-coef*2.2);text(120,s_y,str);enda)固有机械特征b)降低电枢电压人为机械特征c) 增添电枢电阻人为机械特征d) 改变磁通人为机械特征2)直流电动机直接起动仿真直流电动机直接起动时,起动电流很大,能够达到额定电流的 10-20 倍,由此产生很大的冲击转矩。

并励直流电动机起动过程的仿真研究

并励直流电动机起动过程的仿真研究
A b t a t:n hi p p he s r c I t s a er t wa f ma rx t t bls t ys o ti o esa ih he
G[ : = 】 一
电磁 转 矩 方 程 为 :
M = IG = 一G f / t] fa / () 3
e t b ih n t ma h d l n h h i eo sp r mee si ・ sa l i g is t smo e d t e c o c fi a a t r sa s a t l
以上这些方程提供了决定并励直流电动机特性的所有条件。
根 据 并 励 直 流 电动 机 的特 性 , 其 起 动 过 程 中 , 磁 在 励
S n ls d, n t sa t O a ay e a d i t r —u r p ris i mi t d T e r s l o s p p o et s i t e . h e u t f e a
i tto o e he v ldi ft i t d. miai n pr v s t a i t o h s meho y Ke ywor ds: hu s t— e ct d DC t ; t x; tr 一 叩 x ie moor mar sa i t
( ¨ =




= + + ) 一 +, } 一 ( , + p= 日 日

G f. +。 a :警+ M f ,
da l
Ua


性进行系统 的分析 。由于电机的特性方程 的解 析解 的求 解较为困难 , 本文 用计算 机通过 四阶龙 格库塔 法求 出其 数值解并仿 真了并励直流电动机直接起动 时, 电枢 电流 、

2.4他励直流电动机的起动

2.4他励直流电动机的起动
随着转速的升高,电枢电流下降,这时可以逐 渐提高端电压直至额定值。
特点:起动过程平滑,起动过程中能量损耗少。 难点:如何控制端电压的提高,保持以最大允 许转矩起动。
3
§2-4 他励直流电动机的起动
2、电枢回路串电阻起动
起动时,U=UN,电枢回路中串入电阻RΩ,起动电
流Ist降低。
+ UN
-
I1
Ra
UN R1 R2
R3
UN R3
n
Ia
Ra
RΩ3
nnn0hf
RΩ2Hale Waihona Puke ndRΩ1nb
h
f
d
g e
Ra
R1= RΩ1 + Ra
b
c
R2=RΩ2+ RΩ1 + Ra
If
aT
0
TZ T2
T1 R3=RΩ3+ RΩ2+ RΩ1 + Ra
在起动过程中外串电阻RΩ逐段切除。
4
思考与计算题:P73
5
其他电气设备的正常运行;
起动转矩也达到额定值的 10~20 倍,对传动机构
造成机械冲击。
故直接起动仅用于小容量电动机。
2
§2-4 他励直流电动机的起动
1、降压起动
起动时降低端电压U,起动电流Ist 减小。
一般要求 Ist=(1.5~2.0) IN,且 Tst= (1.5~2.0) TN,故 在不大的起动电流下使电动机顺利起动。
§2-4 他励直流电动机的起动
一、他励直流电动机的起动方法
电动机接通电源后,转速从零
上升到稳态转速的过程,称为起动
过程。
起动初瞬,n = 0,Ea= 0,故此

直流电机特性仿真

直流电机特性仿真

直流电机运行特性实验实验目的:通过仿真,熟悉直流电动机的原理和运行特性;并同时达到熟练运用matlab 和提高自学能力的目的。

一直流电机起动仿真1 直流电机的直接起动仿真使用Simulink对直流电动机的直接启动建立仿真模型,通过仿真获得直流电动机的直接启动电流和电磁转矩的变化过程。

当然,实际过程中是不允许直流电动机直接启动。

图1:他励直流电动机直接起动仿真原理图图2:他励直流电动机直接启动仿真结果图3:电枢电流和转速关系图2给出了直流电动机在起动过程中的转速、电枢电流、励磁电流、电磁转矩的变化。

从仿真结果的波形中容易看出起动电流冲击很大,同时电磁转矩的冲击也较大,转速能够在较短的时间内达到稳定。

2 直流电动机电枢串联电阻起动仿真建立他励直流电动机电枢串联三级电阻的仿真模型,仿真分析其串联电阻过程,获得起动过程的电枢电流、转速和电磁转矩的变化曲线。

和直接起动仿真模型相比,主要增加了电阻控制子模块。

图4:直流电动机串三级电阻起动仿真原理图图4:串起动电阻控制子模块原理图图5:他励直流电动机串接三级电阻起动仿真结果图6:他励直流电动机串电阻转速-电流关系仿真结果从仿真结果的波形中可以看出通过设定合适的串联起动电阻的投入时间,起动电流可以控制在一定的范围内,同时电磁转矩的也能够得到有效降低。

转速需要在较长的时间内才能达到稳定。

二直流电机的制动仿真1 直流电动机的能耗制动仿真图7:能耗制动仿真原理图图8:子模块封装图图9:他励直流电动机仿真结果图(有问题,觉得不对)直流电动机的能耗制动仿真模型原理图如图所示,和直接启动仿真模型相比主要增加可经过封装的电路改变连接控制模块和仿真停止控制部分。

给出了直流电动机在制动过程中的转速、电枢电流、励磁电流、电磁转矩的变化。

直流电动机的转速能够在能耗制动开始停车的寺庙时间内达到完全停车,能够实现较快的停车速度。

在能耗制动开始的时刻,可以观察到存在较大的反向电磁转矩和反向的电枢电流,这是能够实现快速停车的根本原因。

直流电动机的启动方法

直流电动机的启动方法

直流电动机的启动方法一、直流电动机的启动方法1. 直接启动法直接启动法是最简单的直流电动机启动方法。

它的步骤很简单,只需要将直流电源的正极和负极依次连接到电动机的正、反极上即可实现启动。

这种方式的优点是简单、方便,缺点是启动过程冲击大、机械负载大,不能应对过大负载的启动。

2. 电阻启动法电阻启动法在直接启动法的基础上增加了电阻,使得电动机在启动初期可以经过一段时间的缓慢的逐渐加速,以减少启动时的机械冲击和电力冲击。

其步骤是在启动时先通过外接的电阻将电动机两端的电阻增加,然后再逐渐减小电阻的过程中逐渐加速电动机。

这种启动法可以有效保护电动机和减少启动冲击,但启动时间比较长,效率也比较低。

3. 自耦变压器启动法自耦变压器启动法是通过改变供电电压来实现电动机逐步加速的方式。

其步骤是在启动时,先将电动机连接到一个较低电压的电源上,逐渐加大电源电压,直到达到额定电压后,自耦变压器自动退出,电动机进入正常运行状态。

这种启动方式可以有效降低启动冲击和保护电动机,同时又可以缩短启动时间和提高启动效率。

4. 电子软启动器启动法电子软启动器启动法是一种较新的启动技术,它是通过控制电机电流的方式实现电动机的逐步加速。

其步骤是在启动时,先将电子软启动器控制电路内的电阻逐渐减小,同时逐渐增加输出电压,从而实现电动机的逐步加速。

这种方式具有启动平稳、启动时间短、机械冲击小、维护成本低等优点,已经逐渐普及应用于各种设备中。

二、各个环节详细描述1. 直接启动法的详细描述直接启动法是最简单的电动机启动方法之一,虽然简单,但缺点明显,首先启动冲击大,其次不能应对过大的负载启动。

因此在现实应用中,直接启动法很少用到,只有在特殊场合会用到。

在启动时,只需将直流电源的电极连接到电动机的正极和负极即可,电流通过电动机后,电动机自身的电刷与转子之间的电磁作用使得电动机旋转,从而实现启动。

2. 电阻启动法的详细描述电阻启动法是在直接启动法的基础上增加了电阻,通过改变电动机电阻的大小来控制电动机的加速度,以减小启动时的机械冲击和电力冲击。

直流电动机启动的原理

直流电动机启动的原理

直流电动机启动的原理
直流电动机的启动原理是基于法拉第电磁感应定律和右手定则。

当直流电机的绕组中通电时,产生的磁场与转子上的永磁体或电枢上的磁场相互作用,从而产生力矩,使转子开始转动。

具体来说,当给定一个启动电压,电流通过电枢绕组产生一个磁场。

根据法拉第电磁感应定律,转子中的永磁体被感应出一电动势。

根据右手定则,由电动势和电流的交叉方向确定的磁力产生的力矩作用于转子,促使转子开始转动。

同时,转子开始运动后,通过刷子与电枢绕组的摩擦作用,将电流源保持在电枢绕组中,使转子继续转动。

直流电动机的启动还可以通过外加的起动电阻来实现。

在启动时,通过起动电阻限制电枢绕组中的电流,减小电机的启动电磁力矩,使转子缓慢启动。

当转子加速到一定程度后,可以逐渐减小起动电阻或完全去除,使电枢绕组中的电流达到额定值,直流电动机正常运行。

需要注意的是,直流电动机的启动过程中可能会出现起动电流过大的问题,会对电网和电动机自身造成影响。

因此,在实际使用中,通常会采用软启动装置或变频器等控制设备来减小启动电流,提高启动稳定性。

无刷直流电动机起动方法及其仿真

无刷直流电动机起动方法及其仿真

p o e h tb l y a d r l b l y o i b u he s D tr s r p me h d T r e—p a e b e k u r vd d h g o q e r v d t e sa i t n e i i t ft s r s ls C mo o t t t o . h e i a i h a u h s r a p p o i e ih tr u o t u h w up tte t o—p a e b e k p.ie—fe u n y a d rs h s r a u rs rq e c n e—v l g y c r n z t n s le e p b e o ad d tc f i o t e s n h o iai ov d t r lm f r ee t a o h o h o EMF a h e i nn f r s ls trsa tp S r s l s tr c n b a i tru y u i g t i meh d wh n i tt e b gn i g o u h e sDC moo t r . o b h e s DC moo a e e sl s t p b sn h s b u u y a to e t
无传感器无刷直流电动机的起动一直是工程领
域 的难题 , 电动机 转子位 置信 息 的获取 方法 有 多种 ,
பைடு நூலகம்
而通过反 电动势 获取转子位置信息是最 简便 易行
的。但是 无刷 直 流 电动 机 在 起 动 时 , 因无 法 检 测 反
向, 可得合成转矩为
。其余各功率管换相导通
,只 是 方 向依 次 旋 转
me h d; i lt n t o smu ai o

实验四 转速、电流反馈控制直流调速系统的仿真

实验四  转速、电流反馈控制直流调速系统的仿真

实验四转速、电流反馈控制直流调速系统的仿真一、实验目的熟练使用MATLAB下的SIMULINK软件进行系统仿真。

学会用MATLAB下的SIMULINK软件建立转速、电流反馈控制的直流调速系统的仿真模型和进行仿真实验的方法。

二、实验器材PC机一台,MATLAB软件三、实验参数采用转速、电流反馈控制的直流调速系统,按照要求分别进行仿真实验,输出直流电动机的电枢电流I d和转速n的响应数据,绘制出它们的响应曲线,并对实验数据进行分析,给出相应的结论。

转速、电流反馈控制的直流调速系统中各环节的参数如下:直流电动机:额定电压U N = 220 V,额定电流I dN =136 A,额定转速n N = 1460r/min,电动机电势系数C e= 0.132 V·min/r,允许过载倍数λ=1.5。

晶闸管整流装置的放大系数K s = 40。

电枢回路总电阻R =0.5Ω,电枢回路电磁时间常数T l = 0.03s,电力拖动系统机电时间常数T m = 0.18 s,整流装置滞后时间常数T s=0.0017s,电流滤波时间常数T oi=0.002s。

电流反馈系数β=0.05V/A(≈10V/1.5I N)。

四、实验内容1、电流环的仿真。

参考教材P90中相关内容建立采用比例积分控制的带限幅的电流环仿真模型,设置好各环节的参数。

图1电流环的仿真模型2、按照表1中的数据分别改变电流环中比例积分控制器的比例系数K p 和积分系数K i ,观察电流环输出电枢电流I d 的响应曲线,记录电枢电流I d 的超调量、响应时间、稳态值等参数,是否存在静差?分析原因。

表1 比例积分系数t/sI d /A不同比例系数Kp 和积分系数Ki 时的电枢电流曲线表1不同比例系数K p 和积分系数K i 的电枢电流数据对比分析:由表1可知,不同的比例系数K p 和积分系数K i 会影响系统的电枢电流且系统存在静差,原因是电流调节系统受到电动机反电动势的扰动,电动机反电动势是一个线性渐增的扰动量,所以系统做不到无静差。

直流电动机的直接启动电流和电磁转矩的变化过程_概述及解释说明

直流电动机的直接启动电流和电磁转矩的变化过程_概述及解释说明

直流电动机的直接启动电流和电磁转矩的变化过程概述及解释说明1. 引言1.1 概述直流电动机在工业和日常生活中广泛应用,其直接启动电流和电磁转矩的变化过程是理解和控制直流电动机性能的关键。

直接启动电流是指在启动阶段,为了克服转子的惯性和机械负载而需提供的电流。

而电磁转矩则是指直流电动机在工作时产生的旋转力矩,它与启动电流紧密相关。

1.2 文章结构本文将有条不紊地介绍直流电动机的直接启动电流和电磁转矩的变化过程,并深入探讨影响这两个参数的因素。

然后,我们将介绍测量这些参数以及控制它们的实际方法。

最后,我们将总结重点观点,并展望未来对于这一领域发展方向的展望。

1.3 目的本文旨在为读者提供一个全面了解直流电动机直接启动电流和电磁转矩变化过程的框架,并介绍影响这些过程的重要因素。

通过了解测量和控制这些参数的实际方法,读者将能够更好地应用这些知识,并在实际应用中优化直流电动机的性能。

以上是“1. 引言”部分的内容,概述了本文的主要目标和结构。

2. 直流电动机的直接启动电流和电磁转矩的变化过程:2.1 直流电动机的基本原理:直流电动机是一种能够将直流电能转化为机械能的设备。

它由定子、转子以及永磁体或场极绕组等组成。

在运行时,定子中通过电流产生的磁场与转子中通过永磁体或场极绕组产生的磁场作用,从而产生一个旋转的力矩。

2.2 直接启动电流的变化过程:当直流电动机进行启动时,由于线路上存在较大的电阻和感抗,因此在刚开始通电瞬间会出现较高的启动电流。

随着时间推移,线路上阻抗逐渐减小,而导致直接启动电流逐渐减小。

此过程可以用数学模型进行仿真分析和计算。

2.3 电磁转矩的变化过程:直接启动后,由于起始时转子静止,在运行初期,由于惯性影响,输出力矩相对较小。

然而随着时间推移,转子逐渐加速并获得较高速度后,惯性引起的磁通变化减小,电磁转矩也逐渐增大。

此时电机的机械负载特性对电磁转矩的变化有一定影响,不同负载特性会导致转子加速过程中电磁转矩的变化曲线不同。

直流电机的启动

直流电机的启动
降压起动时,加于电动机电枢的端电压开始时调得很低, 随着转速的上升,逐步增高电枢电压,以使电枢电流限制 在一定范围以内。为使励磁电流不受电枢电压调节的影响, 电动机应采用他励。 采用降压起动时,需要一套专用的调压电源作为电动机的 电源。
仿真模型图:
升压电路波形:
降压起动波形:
不足
电枢电压 和转速未 能稳定
仿真模型图:
仿真波形:
电压U即加 到电机电枢上
电机 转速n作 阶跃响应上升
现象
电枢电流经启 动冲击后即回 到平稳状态
电磁转矩经启 动冲击后即回 到平稳状态
2.分级起动
电机励磁恒定,
电枢串联的电阻

分三级按三段时

间间隔切除,以
启动电机。
仿真模型图:
切除电阻电路:
仿真波形:
3.降压起动
电枢电流 和电磁转 矩未能下降
谢谢大家!
直流电动机的起动
一.直流电机启动的要求
•直流电动机接上电源以后,转速从零 达到稳态转速的过程称为起动过程。 •起动的基本要求:
起动转矩要大 起动电流要小 起动设备要简单、经济、可靠
二.直流电机启动原理
பைடு நூலகம்
n0
Ea Cen 0
I U / Ra
U Ea IR
这样电枢电流很大!!!
Te CT • • Ia
减小起动电流将使起动转矩随之减小, 这是相互矛盾的。通常采用保证足够的 起动转矩下尽量减小起动电流的办法, 使电动机起动。
三.起动方法
1.直接起动 2.分级起动 3.降压起动
1.直接起动
直接启动就是将额定直接加到直流电动机 电枢两端的启动。 此时,实际物理系统的 启动电流会很大,对设备有影响,而对仿 真系统无所谓影响,但可说明 其过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直流电动机直接起动仿真
直流电动机直接起动时,起动电流很大,可以达到额定电流的10-20倍,由此产生很大的冲击转矩。

适用Simulink对直流电动机的直接起动过程建立仿真模型,通过仿真获得直流电动机的直接起动电流和电磁转矩的变化过程。

设备及器件:
计算机,一台(MA TLAB)。

内容:
建立仿真模型;通过图形验证。

要求:
能够正确使用simulink建立仿真模型,并观察分析图形。

直流电动机直接起动仿真模型图
图中的模块有直流电源(DC Voltage Source)、理想开关、直流电动机、开关、增益、电阻(RLC branch)、示波器(scope)、信号分离模块(Demux)。

仿真模型中通过理想开关模块控制直流电源的接通和断开,使用开关模块控制电机的转矩,使电机在起动过程中的转矩为空载起动,当转速达到设定值后,使电机工作再给定的负载转矩。

直流电机模块参数:
直流电源模块参数:
定时模块:0s时输出为0, 0.5s时输出为1 理想开关:
开关模块:增益模块常量模块:
电阻设置:
仿真时间为5s
通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。

在设计的过程中遇到问题,可以说得是困难重重,这毕竟第一次做的,难免会遇到过各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固。

这次课程设计终于顺利完成了,在设计中遇到了很多专业知识问题,最后在老师的辛勤指导下,终于游逆而解。

同时,在老师的身上我们学也到很多实用的知识,在次我们表示感谢!
第六章参考文献.
[1] 张森,张正亮,MALTAB仿真技术主导实例运用教程,北京:机械工业出版,
2004.
[2] 胡小强计算机网络[M] 北京:北京邮电大学出版社2005年1月
[3] 范影乐,杨胜天,MALTAB仿真运用详解。

北京:人民邮电出版社,2001
[4] 王兆安,张明勋。

电力电子技术设计和运用手册,北京:机械出版社,2005
[5] 张乃国。

电源技术。

北京:中国电力出版社,1998.。

相关文档
最新文档