混联式混合动力系统的技术优势
混动技术原理
混动技术原理摘要:混动技术是一种结合了传统内燃发动机和电动动力的先进汽车动力系统。
它的出现不仅提高了汽车的燃油经济性和环保性,也为汽车行业带来了全新的发展方向。
本文将从混动技术的原理、种类和优势等方面进行详细介绍。
一、混动技术原理混动技术是指内燃发动机与电动机结合的一种汽车动力系统,它融合了传统燃油动力和电动动力的优势,旨在提高汽车的燃油经济性和环保性能。
混动技术的原理主要包括能量转化、能量储存和能量利用三个方面。
1. 能量转化:混动汽车通常搭载的是内燃发动机和电动机两种动力装置。
内燃发动机通过燃烧燃油产生机械能,然后传输到车轮上驱动汽车前进。
而电动机主要依靠电能转化为机械能,同样可以提供驱动力。
混动汽车将这两种动力装置有效地结合在一起,实现在不同工况下的灵活切换,从而有效提高了动力系统的效率和动力输出。
2. 能量储存:混动汽车通常在车辆底部设有电池组,用来储存电能。
在车辆行驶过程中,电动机可以通过能量转化将部分动能转化为电能,存储到电池组中。
这样既能利用制动过程中产生的动能,又能实现电能的储存,为后续驱动车辆提供能量来源。
3. 能量利用:混动汽车的控制系统可以根据行驶条件和车速、负荷等参数,实时调整内燃发动机和电动机的工作模式,实现最优的能量利用效果。
在起步、低速行驶或急加速时,电动机可以提供额外的动力输出,减少内燃机负荷,降低油耗;而在高速行驶或爬坡时,内燃发动机则可以充分发挥功率输出,实现高效驱动。
混动技术通过能量转化、储存和利用的方式,有效结合了内燃发动机和电动机的优势,最大限度地提高了汽车动力系统的效率和性能。
二、混动技术的种类混动技术主要有串联式混合动力(Series Hybrid)、并联式混合动力(Parallel Hybrid)和混合式混合动力(Power-Split Hybrid)三种类型。
1. 串联式混合动力:串联式混合动力系统是将内燃发动机单独用于发电机发电,由电动机提供全部或大部分的动力,而内燃发动机则只用于发电,不直接驱动车轮。
汽车串联式、并联式和混联式三种系统优势和区别对比
汽车串联式、并联式和混联式三种系统优势和区别对比就目前而言,新能源汽车主要分为两大块,一种是纯电动、一种是混合动力。
纯电动比较好理解,就是单独依靠电机来驱动车辆。
但混动嘛却不是那么简单,相信老铁们在看一些新车资讯时,经常会看到某某车采用了插电式混动或者油电混动。
看似是两种混动系统,实际上却有三种混动系统形式,分别是串联式、并联式和混联式。
它们之间的区别在哪儿?哪种更有优势?发动机只为电动机充电的串联式串联式混动系统是三种混动形式中结构最简单的,同时也是三种混动系统中油耗表现最差的。
例如采用这种混动形式的雪佛兰沃蓝达,在高速行驶时,油耗高达6.4L/100km。
而一台普通1.4L纯汽油车,高速行驶油耗也不过5.5L/100km。
造成这样的原因,就不得不说说串联式混动系统的结构了。
串联式混动系统与另外两种混动形式最大的不同,就在于发动机在任何情况下都不参与驱动汽车的工作,发动机只能通过带动发电机为电动机提供电能。
串联混动系统的动力来源于电动机,发动机只能驱动发动机发电,并不能直接驱动车辆行驶,因此,串联结构中电动机功率通常要大于发动机功率。
这种结构通俗点来说,就相当于一辆纯电动汽车里加了一台汽油发动机。
并且由于取消了汽油车上的变速箱,所以在结构的布置上要相对灵活许多。
同时,发动机总是工作在高效转区,因此在车辆中低速行驶时,串联式混合动力车要比普通汽油车的油耗低30%左右。
但问题也随之而来,由于串联式结构的混动汽车发动机动能要经过二次转换才能为电动机供电。
这样一来,转换过程中会使得大量能量流失,所以在高速行驶时串联式的混动车油耗甚至比普通汽油车还要高。
目前采用这种混动形式的车有:雪佛兰沃蓝达、宝马i3等增程式电动车。
更主流的并联式混动结构由于串联式混动系统存在较大的弊端,所以目前市面上大多混动车都采用了并联式混动结构。
并联式混动结构与串联式混动结构最大的不同,就在于发动机与电动机共同参与驱动车辆的工作。
串联、并联、混联汽车的比较表格
一、串联汽车1. 优点:a. 节能环保:串联汽车采用电动机和发动机混合动力,可以减少燃油消耗,降低尾气排放,减少对环境的影响。
b. 高效性能:串联汽车在低速行驶时由电动机驱动,提供了良好的加速性能和低速扭矩,而在高速行驶时发动机可以提供更大的动力输出。
c. 平顺舒适:由于电动机的特性,串联汽车在启动和低速行驶时运转更加平稳,行驶过程中噪音和振动也相对较小。
2. 缺点:a. 复杂系统:串联汽车的混合动力系统包含电动机、发动机以及电池组等部件,维护和修理成本较高。
b. 车辆重量加大:由于混合动力系统的加入,串联汽车的整车重量较大,影响了燃油经济性和操控性能。
二、并联汽车1. 优点:a. 技术成熟:并联汽车采用电动机和发动机并联工作的方式,油电分离,技术比较成熟,稳定性较高。
b. 续航能力:并联汽车可以通过发动机发电来辅助电动机供电,有效提升了车辆的续航能力。
c. 维护成本低:相比串联汽车,普通的并联汽车维护成本更低,因为并联汽车没有复杂的混合动力系统。
2. 缺点:a. 效率不高:并联汽车在电动和燃油两种动力形式切换时可能存在能量损失,整体燃油经济性不如串联汽车。
b. 系统复杂度:虽然相对串联汽车而言,并联汽车的维护成本较低,但其涉及的技术和部件仍然比普通燃油车要复杂,容易出现故障。
三、混联汽车1. 优点:a. 融合优势:混联汽车同时具备串联和并联汽车的优点,可以兼顾燃油经济性、动力性能和环保性能。
b. 高效能:混联汽车可以根据行驶状况智能调配电动机和发动机的工作方式,实现最佳的能量利用。
c. 环保节能:混联汽车在动力转换和能量回收方面比传统燃油车更加高效,减少了燃料的消耗及尾气排放。
2. 缺点:a. 制造成本高:与串联汽车和并联汽车相比,混联汽车的制造成本较高,导致售价较高。
b. 技术复杂度:混联汽车的动力系统相对复杂,需要更加精密的控制策略和精确的零部件,维护和修理成本相对较高。
结语:串联、并联和混联汽车各自具有独特的优点和缺点,用户选择适合自己需求和使用习惯的混合动力汽车时,需要综合考虑各方面的因素,并对不同型号的车辆进行充分比较,才能做出理性的决策。
毕业论文浅析混合动力汽车系统的结构与原理
题目: 浅析混合动力汽车系统的结构与原理学院: 工学院**: ***专业: 汽车服务工程学号:*************: ***提交日期: 2013年5月24日原创性声明本人郑重声明:本人所呈交的论文是在指导教师的指导下独立进行研究所取得的成果。
学位论文中凡是引用他人已经发表或未经发表的成果、数据、观点等均已明确注明出处。
除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果。
本声明的法律责任由本人承担。
论文作者签名:郭永强2013年5月24日论文指导教师签名:逯玉林摘要全球能源及环境问题日益突出,一方面传统的燃油发动机车辆所排放的废气对空气造成严重污染;另一方面石油资源作为不可再生能源日益紧缺。
地球上的石油资源总有一天会枯竭,若没有新能源或代替能源,到那时汽车将寸步难行,为此替代燃油发动机汽车已经成为现代汽车研发方向的重点,例如氢能源汽车、燃料电池汽车等。
但以目前的条件和实用性来看,适应社会发展需求的只有混合动力汽车(Hybrid Electric Vehicle,简称HEV)。
混合动力汽车(也称复合动力汽车,Hybrid Power Automobile)是指车上装有两个以上动力源:蓄电池、燃料电池、太阳能电池、内燃机的发电机组。
当前复合动力汽车一般是指内燃机车发电机,再加上蓄电池的汽车。
混合动力汽车的诞生给人类带来了很多好处,不仅减少了石油消耗,而且环境问题也得以改善,由于混合动力汽车在节能和降低排放污染方面的明显优势,因而受到很大的重视,研制开发和产业化的进程相当快。
本文重点阐述了混合动力汽车的结构性能特点、工作原理,并分析介绍了混合动力汽车的控制策略、其优缺点、技术难题。
关键词:混合动力汽车,结构,原理,控制策略ABSTRACTThe global energy and environmental issues have become increasingly prominent, waste gas emitted from a traditional fuel engine vehicle of the serious pollution of the air; on the other hand, oil as a non-renewable energy shortage. The oil resources on earth will be exhausted one day, if there is no new energy and alternative energy, then the car will can't do anything, this alternative fuel engine automobile has become the focus of modern automobile development direction, such as hydrogen energy, fuel cell vehicles. But in the present conditions and practical, to meet the needs of social development only hybrid electric vehicle (Hybrid Electric Vehicle, referred to as HEV). Hybrid electric vehicle (also known as hybrid car, Hybrid Power Automobile) refers to the vehicles equipped with more than two sources of power: power unit battery, fuel cell, solar battery, internal combustion engine. The composite power automobile generally refers to diesel generator, plus battery cars. The birth of hybrid cars have brought many benefits to human beings, not only to reduce the oil consumption, and environmental issues will also be improved, because hybrid vehicles to reduce pollution emissions has obvious advantage in energy saving and, thus greatly attention, research and development and industrialization process quite quickly. This paper describes the working principle, structure and performance characteristics of the hybrid electric vehicle, and analyses the control strategy of hybrid electric vehicle, the advantages and disadvantages, technical problemsKeywords: H ybrid electric vehicle, structure, principle, control strategy目录1 绪论 (1)2 混合动力汽车的简介与分类 (2)2.1 混合动力汽车的简介 (2)2.2 混合动力汽车系统的分类 (2)3 混合动力汽车的结构与原理 (7)3.1 混合动力汽车的节能机理 (7)3.2 串联式混合动力汽车(SHEV) (7)3.3 并联式混合动力汽车(PHEV) (8)3.4 混联式混合动力汽车(PSHE) (10)4 混合动力汽车的策略 (11)4.1 混合动力系统的控制策略 (11)4.2 混合动力能量管理策略 (11)5 混合动力汽车优缺点分析及技术难点 (13)5.1 串联式混合动力汽车的优却点分析 (13)5.2 并联式混合动力汽车的优缺点分析 (13)5.3 混联式混合动力汽车的优缺点分析 (13)5.4 混合动力汽车的关键技术 (14)结语 (16)参考文献 (17)1 绪论随着全球能源短缺,环境问题的日益突显,开发利用新能源无疑是长久发展的出路之一。
典型混合动力汽车构造
典型混合动力电动汽车构造一、串联式混合动力系统1、基本结构串联式混合动力系统利用发动机动力发电,从而带动电动机驱动车轮。
其基本结构是由电动机、发动机、发电机、动力蓄电池、变压器等组成。
由发动机进行准稳恒性运转来带动发电机,直接向电动机供应电力,或一边给动力蓄电池充电一边行驶。
由于发动机的动力是以串联的方式供应到电动机,所以称为“串联式混合动力系统”发动机和发电机构成辅助动力单元,发动机输出的驱动力(能)首先通过发电机转化为电能,转化后的电能一部分用来给动力蓄电池充电,另一部分经由电动机和传动装置驱动车轮。
在这种结构形式中,发动机的唯一功能就是用来发电,而驱动车轮的转矩全部来自电动机。
动力蓄电池实际上起平衡发电机输出功率和电动机输入功率的作用。
当发电机的发电功率大于电动机所需的功率时(例如汽车减速滑行、低速行驶或短时停车等工况),控制器控制发电机向动力蓄电池充电;当发电机发出的功率低于电动机所需的功率时(例如汽车起步、加速、高速行驶、爬坡等工况),动力蓄电池则向电动机提供额外的电能。
串联式结构可使发动机不受汽车行驶工况的影响,始终在其最佳的工作区稳定运行,因此可降低汽车的油耗和排放。
串联式混合动力系统的结构简单,控制容易,但是由于发动机的输出需全部转化为电能再变为驱动汽车的机械能,而机电能量转换和蓄电池的充放电的效率较低,因比使得串联式结构的能量利用效率较低。
2、串联式混合动力控制模式(1)当车辆处于启动、加速、爬坡工况时,发动机、发电机组和电池组共同向电动机提供电能。
启动、加速、爬坡工况(2)当车辆处于低速、滑行、怠速的工况时,则由电池组驱动电动机。
低速、滑行、怠速工况(3)当电池组缺电时则由发动机、发电机组向电池组充电。
电池组缺电工况3、串联式混合动力驱动系统的特点(1)串联式混合动力驱动系统的优点①由于发动机与驱动轮没有直接机械连接,因此发动机工作状态不受车辆行驶工况的影响,能运行在其转矩一转速特性图上的任何工作点,而且能始终在最佳的工作区域内稳定运行,因此,发动机具有良好的经济性和低的排放性能。
混合动力系统的三种联结模式
混合动力系统的三种联结模式
混合动力汽车的关键是混合动力系统,它的性能直接关系到混合动力汽车的整车性能。
根据混合动力驱动的联结方式,混合动力系统主要分为以下三类:串联式、并联式和混联式。
一是串联式混合动力系统。
串联式混合动力系统一般由内燃机直接带动发电机发电,产生的电能通过控制单元传到电池,再由电池传输给电机转化为动能,最后通过变速机构来驱动汽车。
在这种联结方式下,电池就像一个水库,只是调节的对象不是水量而是电能。
电池对发电机产生的能量和电动机需要的能量进行调节,从而保证车辆的正常工作。
在早期,很多客车企业都采用了这种系统。
二是并联式混合动力系统。
并联式混合动力系统有两套驱动系统:传统的内燃机系统和电机驱动系统。
两个系统既可以同时协调工作,也可以各自单独工作。
这种系统适用于多种不同的行驶工况,尤其适用于复杂的路况。
该联结方式结构简单、成本低,但是发动机排放效果不如串联模式。
江淮、东风扬子江、黄海、南车、海格、福田欧V、大金龙、青年、中通等采用并联模式。
三是混联式混合动力系统。
混联式混合动力系统的特点,在于内燃机系统和电机驱动系统各有一套机械变速机构,两套机构或通过齿轮系,或采用行星轮式结构结合在一起,从而综合调节内燃机与电动机之间的转速关系。
与并联式混合动力系统相比,混联式动力系统可以更加灵活地根据工况来调节内燃机的功率输出和电机的运转。
此联结方式系统复杂、成本高。
选用这种模式的客车企业有宇通、金旅、五洲龙等。
第四节 混联式混合动力汽车的主要组成及特点
图2-20 串并联混合式混合动力汽车组成示意图
第二章 混合动力汽车的构造与原理
第四节 混联式混合动力汽车的主要组成及特点
二、混联式混合动力系统结构 混联式混合动力系统是一种特殊的混合动力系统,也称为动力分流(Power Split)系统。其中丰田普锐斯(Prius)混合动力系统就是混联式混合动力系统
第四节 混联式混合动力汽车的主要组成及特点
第二章 混合动力汽车的构造与原理
第四节 混联式混合动力汽车的主要组成及特点
二、混联式混合动力系统结构
从图2-22可知,行星齿轮机构由一个太阳轮、若干个行星齿轮和一个齿轮 圈构成,其中行星齿轮由行星架的固定轴支承,允许行星轮在支承轴上转 动。行星齿轮和相邻的太阳轮、齿圈总是处于常啮合状态,通常都采用斜 齿轮以提高工作的平稳性。该机构在普锐斯(Prius)混合动力系统的作用 是实现两个电机、内燃机动力源之间的动力祸合,实现系统几种工作模式 的切换,根据系统效率实现传动比合理切换。 1.起步与小负荷时 2. 加速或爬坡时 3. 车辆在巡航时 4. 车辆在巡航时
混联式HEV也可称为串并联混合式混合动力汽车、串并联式混合动力汽车、
混联式混合动力汽车等。其特点是兼备串、并联混合式混合动力汽车的功能。 单桥驱动的混联式HEV的典型系统是丰田Prius的动力系统,Prius的显著特点 是装备了行星齿轮功率(动力)分配装置。因此常称为功率分配式混合动力 系统。Prius混合动力汽车在结构上综合了串联式和并联式的特点,与串联式
相比,它增加了机械动力的传动系统,与并联式相比,它增加了电力驱动传
动系统。尽管功率分配式混合动力汽车同时具有串联式和并联式的优点,但 其结构复杂,成本高。不过,随着控制技术和制造技术的发展,一些现代混
HEV
HEV(Hybrid-ElectricV ehicel)—混合动力装置。
混合动力就是指汽车使用汽油驱动和电力驱动两种驱动方式,优点在于车辆启动停止时,只靠发电机带动,不达到一定速度,发动机就不工作,因此,便能使发动机一直保持在最佳工况状态,动力性好,排放量很低,而且电能的来源都是发动机,只需加油即可。
混合动力汽车的关键是混合动力系统,它的性能直接关系到混合动力汽车整车性能。
经过十多年的发展,混合动力系统总成已从原来发动机与电机离散结构向发动机电机和变速箱一体化结构发展,即集成化混合动力总成系统。
混合动力总成以动力传输路线分类,可分为串联式、并联式和混联式等三种。
串联式动力:串联式动力由发动机、发电机和电动机三部分动力总成组成,它们之间用串联方式组成SHEV动力单元系统,发动机驱动发电机发电,电能通过控制器输送到电池或电动机,由电动机通过变速机构驱动汽车。
小负荷时由电池驱动电动机驱动车轮,大负荷时由发动机带动发电机发电驱动电动机。
当车辆处于启动、加速、爬坡工况况时,发动机、电动机组和电池组共同向电动机提供电能;当电动车处于低速、滑行、怠速的工况时,则由电池组驱动电动机,当电池组缺电时则由发动机-发电机组向电池组充电。
串联式结构适用于城市内频繁起步和低速运行工况,可以将发动机调整在最佳工况点附近稳定运转,通过调整电池和电动机的输出来达到调整车速的目的。
使发动机避免了怠速和低速运转的工况,从而提高了发动机的效率,减少了废气排放。
但是它的缺点是能量几经转换,机械效率较低。
并联式动力:并联式装置的发动机和电动机共同驱动汽车,发动机与电动机分属两套系统,可以分别独立地向汽车传动系提供扭矩,在不同的路面上既可以共同驱动又可以单独驱动。
当汽车加速爬坡时,电动机和发动机能够同时向传动机构提供动力,一旦汽车车速达到巡航速度,汽车将仅仅依靠发动机维持该速度。
电动机既可以作电动机又可以作发电机使用,又称为电动-发电机组。
请描述混联式混合动力汽车的工作原理
请描述混联式混合动力汽车的工作原理
混联式混合动力汽车是一种结合了串联式和并联式混合动力汽车特点的车型。
它同时具有内燃机和电动机,可以同时或单独使用这两种动力来源。
以下是混联式混合动力汽车的工作原理:
1. 起步和低速行驶:在起步和低速行驶时,混联式混合动力汽车主要依靠电动机提供动力。
由于电动机的高扭矩特性,车辆可以获得良好的加速性能,同时实现低噪音和低排放。
2. 中速行驶:在中等速度行驶时,内燃机开始介入,与电动机共同为车辆提供动力。
此时,车辆的加速性能和燃油经济性得到进一步提升。
3. 高速行驶:在高速行驶时,内燃机为主要动力来源,此时电动机可能停止工作,或者作为发电机使用,为电池组充电。
这样可以确保在高速行驶时仍能保持良好的燃油经济性。
4. 制动和减速:当车辆制动或减速时,混联式混合动力汽车的能量回收系统可以将制动能量转化为电能,并存储在电池组中。
这样可以减少能量的浪费,并提高燃油经济性。
总的来说,混联式混合动力汽车通过结合内燃机和电动机的优势,实现了在各种行驶条件下都能获得良好的动力性能和燃油经济性。
同时,由于电动机和内燃机的协同工作,车辆的排放性能也得到了显著改善。
1。
混动式混合动力汽车(PSHEV)
3.实例分析-----Prius
3.2 THS中电机如何驱动
.28.
3.实例分析-----Prius
3.3 THS各种工况模式及传动过程
电动机特性:扭矩大且低转速是功率输出高。 发动机特性:大功率输出出现在高转速区
.29.
3.实例分析-----Prius
.30.
3.实例分析-----Prius
(2)与串联式相比,增加了机械动力传递路线; (3)与并联式相比,增加了电能的传递路线
.6.
1.混联式介绍
1.2混联式分类
混联式结构中有两套动力系统,因此可分为两类: (1)发动机主动型混联混合动力汽车
车辆运行时主要是发动机驱动车辆,如尼桑Tino (2)电动机主动型混联混合动力汽车
车辆运行时主要是电动机驱动车辆,如丰田Prius
.7.
1.混联式介绍
1.3混联式混合动力系统类型
(1)开关式混联系统
.8.
1.混联式介绍
开关式混联结构可以通过离合器的接合与分离可以实现 串联分支与并联分支间的相互切换。离合器分离,切断了发 动机和电动机与驱动轮的机械连接系统以串联模式运行;离 合器接合,系统以并联模式运行。
.9.
1.混联式介绍
3.实例分析-----Prius
.39.
3.实例分析-----Prius
.40.
3.实例分析-----Prius
.41.
3.实例分析-----Prius
.42.
(2)功率分流式混联系统
.10.
1.混联式介绍
功率分流式混合动力系统采用行星齿轮机构分配 发动机动力,发动机转速可与车速解耦,实现EVT功 能。
.11.
1.混联式介绍
混动技术分类
混动技术分类混动技术分类混合动力(Hybrid)是指同时搭载了两个或两个以上能源的动力系统,通常是内燃机和电池驱动。
随着环保意识的不断提高,混合动力车型也越来越受到消费者的青睐。
本文将介绍几种主流的混合动力技术分类。
一、串联式混合动力系统串联式混合动力系统也称为全系列混合动力系统,是一种将发动机和电机串联在同一传输链上的混合动力技术。
在这种技术中,发动机仅用于驱动发电机,没有直接驱动车轮的功能。
而电机则既可以单独驱动车轮,也可以与发电机协同工作以提高燃油效率。
这种技术最大的优点是具有较高的燃油经济性和低排放。
二、并联式混合动力系统并联式混合动力系统也称为分离式混合动力系统,是一种将发动机和电机分别驱动车轮的混合动力技术。
在这种技术中,发动机和电机都可以单独或同时驱动车轮。
当需要更多功率时,发动机和电机可以同时工作以提高车辆性能。
这种技术最大的优点是具有较高的动力性和低排放。
三、混合式混合动力系统混合式混合动力系统也称为复合式混合动力系统,是将串联式和并联式混合动力系统相结合的一种新型技术。
在这种技术中,发动机和电机都可以单独或同时驱动车轮,并且发电机也可以通过回收制动能量来充电,从而提高燃油经济性。
这种技术最大的优点是具有更高的燃油经济性、更低的排放和更好的驾驶体验。
四、插电式混合动力系统插电式混合动力系统也称为可充电式混合动力系统,是一种将插电式充电设备与混合动力技术相结合的新型技术。
在这种技术中,车辆可以通过插座连接到家庭或公共充电站进行充电,并且在行驶过程中还可以利用发电机回收制动能量进行充电。
这种技术最大的优点是具有更长的纯电驾驶里程、更高的燃油经济性和更低的排放。
五、全电动式混合动力系统全电动式混合动力系统也称为纯电混合动力系统,是一种将纯电动技术与混合动力技术相结合的新型技术。
在这种技术中,车辆完全依靠电池进行驱动,而发动机只用于发电机充电。
这种技术最大的优点是具有零排放、零油耗和更高的燃油经济性。
混联式混合动力汽车结构原理
混联式混合动力汽车结构原理1、混联式混合动力汽车结构混联式驱动系统是串联式与并联式的综合系统,其系统结构如下图所示:▲混联式混合动力汽车系统机构它主要由发动机、发电机、电动机、行星齿轮机构和蓄电池组等部件组成。
发动机发出的功率一部分通过机械传动装置输送给驱动桥,另一部分则驱动发电机发电。
发电机输出的电能输送给电动机或蓄电池,电动机产生的驱动力矩通过动力复合装置传送给驱动桥。
2、混联式混合动力汽车结构原理混联式驱动系统的控制策略:汽车低速行驶时,驱动系统主要以串联方式工作,汽车高速稳定行驶时,驱动系统主要以并联方式工作。
它的综合性能优于串联式(电耦合)和并联式(单一转矩或转速耦合)混合动力驱动系统。
就转矩和转速的约束条件而言,在这一驱动系统中,转矩和转速耦合从驱动轮处解脱了发动机,使瞬时的发动机转矩和转速不受车辆负载转矩和车速制约。
因此,发动机能以类似于串联式(电耦合)混合动力驱动系统的方式,运行在高效率区。
此外,部分发动机功率直接传递到驱动轮,未经多形式转换,这与并联式(转矩或转速耦合)混合动力驱动系统相似。
目前,混联式混合动力结构一般采用行星齿轮机构作为动力分配装置。
有一种最佳的混联式结构是将发动机、发电机和电动机通过一个行星齿轮装置连接起来,动力从发动机输出到与其相连的行星架,行星架将一部分转矩传送到发电机,另一部分传送到传动轴,同时,发电机也可通过向电动机供电来驱动传动轴。
这种机构有两个自由度,可自由地控制两个不同的速度。
此时车辆并不是串联式或并联式,而是两种驱动形式同时存在,充分利用两种驱动形式的优点,其动力流程如下图所示。
▲混联式混合动力汽车动力流程图混联式驱动系统充分发挥了串联式和并联式驱动系统的优点,能使发动机、发电机、电动机等部件进行更多的优化匹配,从而在结构上保证了在更复杂的工况下使系统在最优状态下工作,因此更容易实现排放和油耗的控制目标,是最具影响力的混合动力驱动系统。
与并联式相比,混联式的动力复合形式更复杂,因此对动力复合装置的要求更高。
混联式混合动力汽车的优点
混联式混合动力汽车的优点
混联式混合动力汽车因其优良特性而深受人们喜爱。
不仅环保还舒适。
但人们并不是都很了解混联式混合动力汽车。
今天
混联式混合动力汽车是一种同时具有串联式、并联式驱动方式的混合动力汽车。
动力系统包括发动机、发电机和电动机。
其主要优点有以下几个方面:
1.采用混合动力后可按平均需用的功率来确定内燃机的最大功率,此时处于油耗低、污染少的最优工况下工作。
需要大功率内燃机功率不足时,由电池来补充;负荷少时,富余的功率可发电给电池充电,由于内燃机可持续工作,电池又可以不断得到充电,故其行程和普通汽车一样。
2.因为有了电池,可以十分方便地回收制动时、下坡时、怠速时的能量。
3.在繁华市区,可关停内燃机,由电池单独驱动,实现“零”
排放。
4.有了内燃机可以十分方便地解决耗能大的空调、取暖、除霜等纯电动汽车遇到的难题。
5.可以利用现有的加油站加油,不必再投资。
6.可让电池保持在良好的工作状态,不发生过充、过放,延长其使用寿命,降低成本。
上述就是由为您介绍的有关混联式混合动力汽车的优点的相
关知识。
如果您想了解更多有关安全驾驶知识的内容。
请您多多关注。
更多安全驾驶知识在这里与您共享。
混合动力车的三种常见动力系统
混合动力车的三种常见动力系统(图)
浏览:1315来源:网摘发布:36汽车日期:2007-10-03
现在市面上销售的混合动力车所采用的系统,主要大致分为以下3种:
1.串联式混合动力系统
发动机驱动发电机发电,电动机用发电机发出来的电能驱动车轮。
串联式混合动力是一边通过发动机发电,一边通过电动机驱动车轮,发动机和电动机几乎发挥同等地作用。
2.并联式混合动力系统
发动机和电动机共同驱动车轮,可以根据不同驾驶状态使用两种动力。
动力的传输方向为并列,因此被称为并联式混合动力。
发动机为主动力,电动机为辅助动力,只在加速时使用,发动机的使用比例更大。
3. 混联式混合动力(PRIUS普锐斯使用的THS)
更有效地组合了串联式和并联式,使两者的优势发挥到极致。
发动机的动力由动力分割机构分割,一部分直接驱动车轮,另一部分被用于发电,其使用比例可自由控制。
由所产生的电能驱动电动机,电动机的使用比例比并联式更大。
THS优先考虑降低环境负荷,TOYOTA在THS成果的基础之上,以「Hybrid Synergy Drive」为理念,使电动机输出功率增长了1.5倍,同时实现了电源系统的高电压化 , 控制系统也得到大幅改进。
由此发挥电动机和发动机工效的相辅相成之协同效果,开发出了降低环境负荷与动力性能两者兼备的新一代TOYOTA油电混合动力系统[THS II] 。
混合动力汽车的基本知识
2、正常行驶模式
车辆正常行驶时,电动机关闭,仅由发动机工作提供
车辆行驶所需动力。
3、减速/制动模式
车辆减速行驶或制动时,电动机工作于发电机模式进
行再生制动,通过功率转换器给蓄电池充电
4、行驶中给蓄电池充电模式
燃气汽车特点:
优点:燃气成分单一、纯度较高、能与空气均匀混合
并燃烧完全,CO 和微粒的排放量较低,发动机在低温 时的启动和运转性能较好。
缺点:运输性能比液体燃料差、发动机的容积效率低、
着火延迟较长及动力性有所降低。
这类汽车多采用双燃料系统,即一个压缩天然气或液
化石油气系统和一个汽油或柴油燃烧系统,能容易地 从一个系统过渡到另一个系统,此种汽车主要用于城 市公交汽车。
下燃烧而不会爆震。这正适合高压缩比、高性能的发 动机。充分发挥其高辛烷值的作用,输出更大的功率。
优点:燃烧彻底、挥发性低,所排放的碳氢化合物、
氧化氮和一氧化碳等有害气体少。
弱点:能量较低、行驶同一距离的消耗几乎比汽油多
一倍,因而需要大的油箱。
空气动力汽车
利用空气作为能量载体,使用空气压缩机将空气压缩
这种系统适用于多种不同的行驶工况,尤其适用于复
杂的路况。该联结方式结构简单,成本低。
3、混联式混合动力系统
混联式混合动力系统的特点:
内燃机系统和电机驱动系统各有一套机械变速机构
两套机构或通过齿轮ቤተ መጻሕፍቲ ባይዱ,或采用行星轮式结构结合 在一起,从而综合调节内燃机与电动机之间的转速 关系。
与并联式混合动力系统相比,混联式动力系统可以更
序号 1 2
3
简述混合动力汽车的分类及特点
简述混合动力汽车的分类及特点随着能源危机和环境污染问题日益突出,混合动力汽车作为一种高效的节能减排交通工具,受到越来越多的关注。
本文将简述混合动力汽车的分类及特点。
下面是本店铺为大家精心编写的3篇《简述混合动力汽车的分类及特点》,供大家借鉴与参考,希望对大家有所帮助。
《简述混合动力汽车的分类及特点》篇1一、混合动力汽车的分类混合动力汽车根据不同的分类标准可以分为以下几种:1. 根据混合度不同分类微混合动力系统:这种混合动力系统主要用于改善车辆的起步和加速性能,电机的功率通常较小,不能支持车辆在纯电模式下行驶。
中度混合动力系统:这种混合动力系统可以在制动时回收更多的动能,并以电能的形式储存在高压蓄电池中。
高压蓄电池及电气组件的额定电压和额定功率更高,可以支持车辆在纯电模式下行驶。
全混合动力系统:这种混合动力系统采用较大的电机和电池组,可以支持车辆在纯电模式下行驶较长距离,同时具有更高的燃油经济性和排放性能。
2. 根据结构特点分类串联式混合动力(又叫增程式电动):这种混合动力系统将电机和发动机串联在一起,电机在车辆行驶过程中主要负责驱动车轮,而发动机则主要用于为电机提供能量。
并联式混合动力:这种混合动力系统将电机和发动机并联在一起,两者都可以单独驱动车轮,可以实现更为灵活的驱动方式。
混联式混合动力:这种混合动力系统将串联式和并联式混合动力系统结合起来,既具有串联式混合动力系统的高效能,又具有并联式混合动力系统的灵活性。
3. 根据有无外接充电电源分类普通混合动力汽车:这种混合动力汽车采用燃油发动机和电机两种动力组合,但不支持外接充电。
插电式混合动力汽车:这种混合动力汽车除了采用燃油发动机和电机两种动力组合外,还可以通过外接充电电源进行充电,可以支持车辆在纯电模式下行驶。
二、混合动力汽车的特点1. 高燃油经济性混合动力汽车采用双动力源,可以实现能量的互补和浪费,提高了燃油利用率,降低了油耗,具有较高的燃油经济性。
海格公交客车混联式气电混合动力系统
海格公交客车混联式气电混合动力系统海格公交客车混联式气电混合动力系统,是由海格客车集团自主研发的一种新型环保动力系统。
该系统基于混合动力技术,将传统的燃油动力与电力混合,使用压缩天然气作为燃料,通过电动机和发电机的相互作用,使得能量的转换更加高效,从而减少了车辆的污染排放和油耗。
该系统具有以下优点:1.环保节能混合动力系统的燃料是天然气,它能够使得排放的废气更为纯净,能够有效地减少环境污染。
此外,混合动力系统采用了电能辅助,当汽车在制动或者减速的时候,能量就可以被回收和存储,从而能够减少能源的浪费,提高燃油的使用效率。
2.动力强劲混合动力系统中的发动机和电动机可以实现更高效的能量转换,从而使得车辆的动力更为强劲。
同时,发动机和电动机的配合可以平衡二者的输出功率,使得行驶过程更加稳定。
这样能够提高车辆的性能,降低燃油的消耗率。
3.操作简单混合动力系统的控制电路相对于传统发动机的机械部分,更加先进,能够自动控制发动机的启停、气门和燃料喷射等工作,具有智能化的特点。
这样,驾驶员操作起来更加容易和方便,可以减少对车辆的损害和故障。
海格公交客车混联式气电混合动力系统,是海格客车集团自主研发的动力系统,集中了当前的高科技环保动力技术,在市场上的表现非常优异,已被众多公交公司所采用。
海格公交客车混联式气电混合动力系统的智能化控制系统海格公交客车混联式气电混合动力系统的控制系统是一套先进的智能化系统,为车辆的运行提供了可靠的保障。
该系统使用先进的电子设备和软件控制器,可以自动判断车辆的状态和控制发动机的启停,从而使得车辆在运行时更加平稳、高效,同时还可以实现预测性维护和故障预警等功能。
海格公交客车混联式气电混合动力系统的动力转换机制海格公交客车混联式气电混合动力系统是一种先进的动力技术,其动力转换机制不仅能够提高车辆的动力性能,而且能够降低车辆的油耗,同时还能减少污染的排放。
该系统通过发动机和电动机的相互协作,实现了能量的高效转换。
并联式混合动力汽车名词解释
并联式混合动力汽车名词解释
一、定义
并联式混合动力汽车是指一种采用内燃机和电动机共同驱动的
汽车,其内燃机和电动机分属两套系统,可以分别独立地向汽车传动系提供扭矩。
当汽车加速爬坡时,电动机和发动机能够同时向传动机构提供动力,一旦汽车车速达到巡航速度,汽车将仅仅依靠发动机维持该速度。
这种混合动力汽车的特点是既有内燃机的高效率,又有电动机的低污染和低油耗,可以有效地减少汽车的污染,提高纯电动汽车的行驶里程。
二、特点
1. 高效节能:并联式混合动力汽车采用内燃机和电动机共同驱动,可以在不同的行驶情况下选择不同的驱动方式,从而达到最佳的节能效果。
2. 减少污染:并联式混合动力汽车采用电动机作为辅助动力源,可以在启动、加速和低速巡航时减少尾气排放,降低对环境的污染。
3. 提高行驶里程:由于并联式混合动力汽车采用了电动机,可以在纯电模式下行驶,从而提高了行驶里程。
三、优缺点
1. 优点:并联式混合动力汽车具有高效节能、减少污染和提高行驶里程等优点,可以有效地降低汽车对环境的影响,是一种较为理想的环保型汽车。
2. 缺点:并联式混合动力汽车的结构比较复杂,需要安装内燃
机和电动机两套系统,因此成本较高。
另外,由于电动机和内燃机之间的耦合关系,其控制系统也较为复杂,需要对控制系统进行精确的调校和优化,才能达到最佳的行驶效果。
四、应用范围
并联式混合动力汽车广泛应用于轿车、客车、卡车等各类汽车中,尤其是在城市公交车、出租车和物流配送车辆等方面应用广泛。
混联的特性与计算公式
混联的特性与计算公式混联(Hybrid)是指将内燃机和电动机相结合的动力系统,以达到节能环保的目的。
混联车辆可以根据不同的驾驶条件自动切换内燃机和电动机的工作模式,从而最大限度地提高燃油利用率,减少尾气排放。
混联车辆的特性和计算公式是混联技术的核心内容,对于了解混联车辆的工作原理和性能优势非常重要。
混联车辆的特性。
1. 节能环保,混联车辆可以通过电动机和内燃机的协同工作,最大限度地提高燃油利用率,减少对环境的污染。
特别是在城市交通拥堵的情况下,电动机可以独立提供动力,减少内燃机的运转,从而减少尾气排放。
2. 驾驶舒适性,混联车辆在启动、加速和低速行驶时可以完全依靠电动机,减少了内燃机的噪音和振动,提高了驾驶的舒适性。
3. 车辆动力性能,混联车辆可以根据驾驶条件自动切换电动模式和混合模式,从而在提供足够动力的同时,保持较低的燃油消耗。
4. 能源回收,混联车辆可以通过制动和惯性驱动等方式将动能转换为电能,存储在电池中,以备后续使用,提高了能源的利用效率。
混联车辆的计算公式。
1. 燃油消耗率:混联车辆的燃油消耗率可以通过以下公式计算:燃油消耗率 = 汽车行驶的里程 / 燃油消耗量。
2. 动力系统效率:混联车辆的动力系统效率可以通过以下公式计算:动力系统效率 = 实际行驶里程 / 燃料消耗量。
3. 电动模式下的能量消耗:混联车辆在电动模式下的能量消耗可以通过以下公式计算:能量消耗 = 电动机输出功率×行驶时间。
4. 内燃机工作模式下的能量消耗:混联车辆在内燃机工作模式下的能量消耗可以通过以下公式计算:能量消耗 = 内燃机输出功率×行驶时间。
5. 能量回收效率:混联车辆的能量回收效率可以通过以下公式计算:能量回收效率 = 回收的能量 / 消耗的能量。
混联车辆的计算公式可以帮助人们更好地了解混联车辆的能源利用情况和性能表现,从而更好地选择和使用混联车辆。
总结。
混联车辆以其节能环保、驾驶舒适性和良好的动力性能而受到广泛关注。
双电机混联拓扑结构
双电机混联拓扑结构
双电机混联拓扑结构是一种在电动车辆中常见的设计方案。
它通过将两个电动
机连接在一起,实现更高效的动力输出和更好的驾驶性能。
该拓扑结构的设计思路是将两个电动机分别安装在汽车的前后轴上,通过电池
或电力系统提供的直流电能来驱动它们。
双电机系统可以采用串联或并联方式连接,也可以使用电子控制系统调整两个电机的工作状态。
与单电机系统相比,双电机混联拓扑结构具有几个显著的优势。
首先,双电机
系统能够提供更大的扭矩输出,从而实现更快的加速和更高的速度。
其次,通过将电机安装在不同的轴上,可以实现前后轮驱动,提高车辆的稳定性和操控性能。
此外,双电机系统还提供了更好的能源利用效率,减少了能量损耗,并延长了电池的续航里程。
在实际应用中,双电机混联拓扑结构被广泛应用于混合动力车辆和纯电动车辆。
通过合理设计电机的工作参数和控制策略,可以使车辆在不同工况下获得最佳性能和效率。
例如,在低速行驶时,可以选择只使用一个电机,以提高能源利用率。
而在高速行驶或爬坡时,可以同时使用两个电机来实现更大的输出功率。
综上所述,双电机混联拓扑结构是一种能够提供更高效、更强力驱动和更好操
控性能的电动车设计方案。
随着电动车辆技术的不断进步和市场需求的增加,这种拓扑结构将在未来得到更广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混联式混合动力系统的技术优势
一、混合动力系统分类:
1.混动系统主要分“串联,并联,混联”三种:
(1)串联式混合动力系统:
串联式混合动力系统一般由内燃机直接带动发电机发电,产生的电能通过控制单元传到电池,再由电池传输给电机转化为动能,最后通过变速机构来驱动汽车;
(2)并联式混合动力系统:
并联式混合动力系统:并联式混合动力系统有两套驱动系统:传统的内燃机系统和电机驱系统。
两个系统既可以同时协调工作,也可以各自单独工作驱动汽车。
这种系统适用于多种不同的行驶工况,尤其适用于复杂的路况;
(3)混联式混合动力系统:
混联式混合动力系统:混联式混合动力系统的特点在于内燃机系统和电机驱动系统各有一套机械变速机构,两套机构或通过齿轮系,或采用行星轮式结构结合在一起,从而综合调节内燃机与电动机之间的转速关系。
二、混联式混合动力系统优势:
起步和低速段采用纯电动和串联模式,充分利用串联式的优点,可以充分利用车辆对电能输出要求低的时间段,比如等红绿灯、堵车等发动机怠速时段高效率补充储能器电能,发动机在满足相关条件情况下也可以熄火;在经济时速段采用发动机直接驱动模式,没有电能转换损失和传动损失,发动机工作在最佳工作区,效率高;在急加速、爬坡等特殊工况下,采用混合驱动模式,在保证动力性的同时兼顾系统效率。
相比串联式混合动力只能依靠电机驱动车辆行驶,混联式可以通过优化控制策略,使发动机和驱动电机辅助车辆驱动,充分发挥驱动电机低速时大扭矩输出和高速时发动机高效率低油耗工作,动力性佳
相比并联式混合动力两套驱动系统,混联式混合动力系统结构更优化;可以更加灵活地根据工况来调节内燃机的功率输出和电机的运转。
混联式混合动力系统控制策略更灵活,可以实现发动机怠速启停,大大消除城市路况中发动机怠速的排放、噪音及油耗。
混联式混合动力可以高效回收减速和制动时的能量,减少传统制动元器件的损耗。
节油率比串并联混合动力系统高。
三、福工具有怠速熄火功能的混联式混合动力:
(1)当车速低于22Km/h时,此时车辆的主离合器与主电动机分离,整车控制器判断储能元件电量是否充足以及其它影响因素,当条件满足怠速熄火逻辑时候,关闭内燃机,达到消除怠速油耗、减少排放和降低噪声;当储能元件电量不够时候以及影响发动机熄火因素存在,发动机处于发电状态,转速提高,带动辅助发电机给储能元件充电,补充能量,超级电容器为驱动电机供电,提供车辆的动力;
(2)当车速超过22Km/h时,整车控制器控制发电机不充电,同时控制车辆的主离合器与驱动电动机结合,由发动机与驱动电机联合驱动客车行驶;
(3)当车速达到40Km/h发动机进入高效运行区间,驱动电机停止输出,完全由发动机驱动车辆行驶;此时储能元件能量不足时,驱动电机也可做为发电机给储能元件进行充电;
(3) 当超负荷或加速时,超级电容提供能量给驱动电机为整车驱动提供额外的功率,辅助发动机驱动车辆行驶,客车加速和爬坡的辅助能源来自超级电容组;
(4) 当客车减速时,驱动电机回收制动能量给超级电容,由于超级电容能大电流充放电,在短时间内能够回收大量能量,所以能量的回收率很高。
同时车辆的主离合器与驱动电机断开,发动机熄火,当超级电容还需充电,整车控制器就控制发动机怠速提升带动发电机充电。
四、超级电容与电池组合模式:
这种组合方式在纯电动和混合动力上都有所应用。
将超级电容和电池结合使用,可以通过各自的控制电路来实现两者的充电、放电介入时刻。
这种结构结合了超级电容和电池各自的优点,改善了车辆的性能,但是系统结构、控制方式则更为复杂。
福工动力基于多年研发应用经验,综合国内多个城市公交运营路况的适应性研究,对于道路较平坦的路,主推典型的纯超级电容混联式HEV系统;而针对路况复杂的公交线路,如坡度较大、坡道较长、红绿灯濒繁、高峰期坡道拥堵严重等情况,因地制宜,在国内率主推出超级电容为主、动力电池为辅的无外充电混联式HEV系统,并在杭州、昆明、厦门、唐山、海口等城市的特定线路批量推广。
这种模式下,以超级电容为主储能,利用超级电容使用寿命长、安全可靠、充放电快速、充放电效率高的点,在系统工作的大多数时间,仅使用超级电容,有效保证混合动力系统充放电效率。
利用锂电池储存的特点,在特殊工况下短时间协助驱动整车,满足行驶要求。
锂电池作为备用储能元件,用量少、质量小、使用时间短、降低风险并大幅度提高使用年限。
锂电池不参与制动能量回收而是利用异步发电机补电,解决回收电量大电流冲击问题,提高锂电池使用寿命。
此外,此方案基于福工特有的纯超级电容储能模式进行优化升级,匹配小容量的动力锂电池组,在无需要加外接充电设施的情况下即可保障正常营运,实现特定城市工况最佳的道路适应性,又无需额外增加配套充电设施投入,可为客户最大化地节约采购和使用成本。
与其他储能方式相比,超级电容为主、动力电池的储能模式继承了超级电容作为核心储能元件的所有优势,又避免了锂电池充电时间、频繁工作带来的负面影响,同时还解决了复杂城市公交路况的适应性问题,延长了储能系统整体的使用寿命。
在现阶段是实用效率好的储能模式应用方案。
五、各项技术的节能贡献率:
六、各个部件优势:
福工动力插电式系统包括整车控制器、驱动电机控制器、驱动电机、发电机、超级电容、锂电池组、气泵总成、转向助力电机、充电接口以及附属的按钮、开关等部件:
1、整车控制器:
混合动力控制器是车辆核心部件,具有控制车辆正常行驶、控制发动机怠速熄火、驱动力矩控制、制动能量的优化控制、整车的能量管理、CAN网络的维护和管理、故障的诊断和处理、车辆状态监视。
2、驱动电机控制器:
控制驱动电机有序高效运行,采用大功率智能模块、优良的冷却散热系统、可靠的电源控制系统、转矩矢量控制系统优化组成;控制器具有过电流、过电压、过热及欠电压、误操作的保护功能,能有效确保人员和设备的安全。
3、驱动电机:
三相交流异步电机是整车的核心驱动单元和能量回收单元,主要用于整车驱动和发电,加速时处于驱动,减速时处于发电状态;
电机轴的材料使用的是42CrMo,加强扭力,增大电机花键轴,抗弯扭力从3332N.m提高到7592N.m。
4、助力转向系统:
(1)高性能的车用电机及液压泵,可连续提供液压动力,保证车辆转向系统更高的可靠性;(2)电机控制器可通过压力负载反馈,实时调节液路流量与压力,节能效果更佳;
(3)通过电机控制器的逆变性,把直流电转换成交流电,适用更宽的直流电压范围;(4)电机与液压泵之间适用弹性连接结构,有效缓解电机加减速过程中的冲击感,延长适用寿命;
(5)电机端盖轴承端自带注油孔,定期注油保养,电机的使用寿命更长。
(6)
(7)
(8)
(9)
(10)
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)
(11)
(12)。