八年级数学勾股定理的逆定理1(1)
初二勾股定理逆定理公式
初二勾股定理逆定理公式1. 勾股定理勾股定理是初中数学中非常重要的定理之一,它是由古希腊数学家毕达哥拉斯(Pythagoras)提出的。
勾股定理的公式表达如下:a^2 + b^2 = c^2其中 a、b、c 分别表示直角三角形的两条直角边和斜边,满足该公式的三条边的比例关系。
2. 逆定理逆定理是勾股定理的一个重要推论,它在解决初中数学中一些几何问题时非常有用。
逆定理的公式表达如下:如果 a^2 + b^2 = c^2 成立,那么这三个数构成一个直角三角形。
逆定理的意义在于,当我们已知某个三角形的边长满足勾股定理的公式时,可以根据这个公式判断该三角形是否为直角三角形。
3. 应用示例为了更好地理解逆定理的应用,下面通过一个例子来说明。
例子:已知一个三角形的三边分别为 3、4 和 5,我们要判断这个三角形是否为直角三角形。
根据逆定理,我们可以将已知的三边长度代入勾股定理的公式中,并验证等式是否成立。
3^2 + 4^2 = 5^29 + 16 = 25计算结果符合等式,所以根据逆定理,我们可以得出结论,这个三角形是一个直角三角形。
4. 注意事项在应用逆定理时,需要注意以下几点:•应用逆定理时,必须满足勾股定理的公式,即 a^2 + b^2 = c^2,才能判断三角形是否为直角三角形。
•如果已知三边的长度满足 a^2 + b^2 = c^2,但等式的两边可能相差一个数的误差,这时我们可以使用近似值来验证等式是否成立。
•在进行计算时,应注意数值的精确性,尽量避免精度误差带来的影响。
5. 总结初二勾股定理逆定理公式是初中数学中重要的概念之一,在几何学习中有着广泛的应用。
逆定理可以帮助我们判断已知三边长度的三角形是否为直角三角形,为解决几何问题提供了便利。
在应用逆定理时,我们应注意勾股定理公式的条件和计算的精确性,以得出准确的结论。
希望通过本文的介绍,您对初二勾股定理逆定理公式有了更深入的理解和应用。
初二数学勾股定理知识点(9篇)
初二数学勾股定理知识点(9篇)初二数学勾股定理知识点1逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
说明:(1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的`三角形是直角三角形;(2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c 为三边的三角形是直角三角形,但此时的斜边是b.2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:(1)确定最大边;(2)算出最大边的平方与另两边的平方和;(3)比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。
初二数学勾股定理知识点2一、勾股定理:1.勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:(1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;(2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
4.勾股定理的适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。
二、勾股定理的逆定理1.逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
说明:(1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;(2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c 为三边的三角形是直角三角形,但此时的斜边是b.2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的`一般步骤:(1)确定最大边;(2)算出最大边的平方与另两边的平方和;(3)比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。
人教版八年级下册数学 第17章《勾股定理》讲义 第6讲 勾股定理-逆定理(有答案)
人教版八年级下册数学第17章《勾股定理》讲义第6讲勾股定理-逆定理(有答案)第6讲 勾股定理-逆定理 第一部分 知识梳理知识点一:勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 .①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形知识点二:勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)知识点三:勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整例4、已知:△ABC 的三边分别为m 2-n 2,2mn,m 2+n 2(m,n 为正整数,且m >n),判断△ABC 是否为直角三角形.例5、三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 举一反三:1、以下列各组数为边长,能组成直角三角形的是( )A 、8,15,17B 、4,5,6C 、5,8,10D 、8,39,402、下列各组线段中的三个长度:①9、12、15;②7、24、25;③32、42、52;④3a、4a 、5a (a>0);⑤m 2-n 2、2mn 、m 2+n 2(m 、n 为正整数,且m>n )其中可以构成直角三角形的有( )A 、5组B 、4组C 、3组D 、2组3、现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为( )A 、30厘米B 、40厘米C 、50厘米D 、以上都不对4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。
《勾股定理的逆定理》PPT课件(第1课时)
理的逆定理,∴这个三角形不是直角三角形.
总结:根据勾股定理的逆定理,判断一个三角形是不是直角三 角形,只要看两条较小边长的平方和是否等于最大边长的平方.
巩固练习
D
在Rt△CEF中,得EF2=CE2+CF2=a2+4a2=5a2.
在Rt△ADF中,得AF2=AD2+DF2=16a2+4a2=20a2.
在△AEF中,AE2=EF2+AF2,∴△AEF为直角三角形,且AE为
斜边.∴∠AFE=90°,即AF⊥EF.
课堂小结
勾股定理 的逆定理
内容 作用 注意
如果三角形的三边长a 、b 、c满
下列各组线段中,能够组成直角三角形的一组是( D )
A. 1,2,3
B. 2,3,4
C. 4,5,6
D. 1, 2, 3 C
满足下列条件的三角形中,不是直角三角形的是( C )
A.三个内角比为1:2:1
C.三边之比为 3 : 2 : 5
B. 三边之比为1:2: 5 D. 三个内角比为1:2:3
探究新知 考 点 2 勾股定理的逆定理和乘法公式判断三角形
b
根据勾股定理,则有 A1B1 2=B1C1 2+C1A1 2=a2+b2. B
B
∵a2+b2=c2, ∴A1B1 =c, ∴AB=A1B1.
A1
在△ABC和△A1B1C 1中,
aC
BC=B1C1,
b
CA=C1A1, AB=A1B1.
B1 a C1
∴∆ABC ≌ ∆A1B1C1. ∠C=∠ C1 =90°.
初中数学_勾股定理的逆定理(1)教学设计学情分析教材分析课后反思
勾股定理的逆定理(1)教学设计教学设计思路本节从古埃及人画直角的方法谈起,然后让学生画一些三角形(已知三边,并且两边的平方和等于第三边的平方).从而发现画出的三角形是直角三角形.猜想如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,即教科书中的命题2,把命题2的条件、结论与上节命题1的条件、结论作比较,引出逆命题的概念。
然后学习勾股定理逆定理的证明,经历证明勾股定理逆定理的过程,得出命题2是正确的,引出勾股定理的逆定理的概念,最后是利用勾股定理的逆定理解决实际问题的例子,可以进一步理解勾股定理的逆定理,体会数学与现实世界的联系。
教学目标1.知识与技能:(1)理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。
(2)掌握勾股定理的逆定理,并能应用勾股定理的逆定理判定一个三角形是不是直角三角形。
2.过程与方法(1)通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成过程。
(2)通过用三角形三边的数量关系来判断三角形的形状,体验数形结合方法的应用。
(3)通过对勾股定理的逆定理的证明,体会数形结合方法在问题解决中的作用,并能应用勾股定理的逆定理来解决相关问题。
3.情感态度(1)通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐与辨证统一的关系(2)在探索勾股定理的逆定理的活动中,通过一系列的富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
教学方法启发引导、分组讨论,合作探究教学媒体多媒体课件演示。
教学过程设计(一)创设问题情境,引入新课大家思考一下有没有其他的方法来说明一个三角形是直角三角形呢?前面我们学习了勾股定理,可不可以用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?(二)讲授新课活动1问题:据说古埃及人用下图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结、4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。
勾股定理逆定理(1)
勾股定理的逆定理(一)【目标导航】1.用三角形三边的数量关系来判断一个三角形是否为直角三角形,培养学生数形结合的思想. 2.探究勾股定理的逆定理,理解互逆命题,原命题、逆命题的相关概念及关系.【预习引领】1.在△ABC 中,∠C =90°,(1)已知 a =2.4,b =3.2,则c = ;(2)已知c =17,b =15,则△ABC 面积等于 ; (3)已知∠A =45°,c =18,则a = .2.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为 . 3.已知一个直角三角形的两边长分别为3和4,则第三边长是 .【新授讲解】一、创设情境,导入新授实验方法:用一根钉上13个等距离结的细绳子,让同学操作,用钉子钉在第一个结上,再钉在第4个结上,再钉在第8个结上,最后将第十三个结与第一个结钉在一起.然后用角尺量出最大角的度数.(90°),能够发现这个三角形是直角三角形. 命题:如果三角形的三边长a ,b ,c 满足222c b a =+,那么这个三角形是直角三角形. 此命题是真命题吗?若是,请证明你的猜想.【归纳1】勾股定理的逆定理: . 二、使用新知,应用举例例1 判断由线段a 、b 、c 组成的三角形是不是直角三角形: (1)a =15,b =8,c =17; (2)a =13,b =14,c =15.练习1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是 ( )A .7,24,25B .213,214,215 C .3,4,5 D .4,217,218 2.若三角形的两边长为4和5,要使其成为直角三角形,则第三边的长为 .3.若一个三角形的三边之比为5∶12∶13,且周长为60cm ,则它的面积为 . 4. 顶角为45°,腰为20cm 的等腰三角形的面积等于______________.5. 若△ABC 三边满足c b a c b a 262410338222++=+++, 试判断△ABC 的形状.例2 下列命题都成立,写出它们的逆命题.这些逆命题成立吗?(1)同旁内角互补,两直线平行;(2)如果两个角是直角,那么它们相等;(3)全等三角形的对应边相等;(4)如果两个实数相等,那么它们的平方相等.【归纳2】1.真命题也称定理. 2.定理都有逆命题,但不一定有逆定理. 练习1.写出下列命题的逆命题,这些逆命题都成立吗?如果不成立,请说出理由或举反例. (1)两直线平行,同位角相等;(2)内错角相等,两直线平行;(3)对顶角相等;(4)等角的余角相等;(5)若a =b , 则22b a =;(6)若m ,n 是两个偶数,那么m +n 也是偶数.2.判断(1)每个命题都有逆命题.( ) (2)每个定理都有逆定理.( )【课堂练习】1.命题一般由两部分组成,分别是__________和________________.2.两个命题的题设和结论正好相反,这样的命题叫做 ______________,如果把其中一个叫做原命题,则另一个叫做它的________命题.3.一般地,如果一个定理的逆命题经过证明是准确的,它也是一个定理,则称这两个定理互为______________________. 4.若三角形三边长为44n m +,44n m -,222n m (m >n >0).求证该三角形是直角三角形.5.如下图中分别以△ABC 三边a ,b ,c 为边向外作正方形、正三角形,为直径作半圆, 若S 1+S 2=S 3成立,则△ABC 是直角三角形吗?A B C a b c S 1 S 2 S 3A C a b c S 1S 2 S 3 B C a b c S 1 S 2 S 3 A【课后作业】1.两个命题的题设和结论正好相反,这样的命题叫做 ______________,如果把其中一个叫做原命题,则另一个叫做它的____________命题.2.一般地,如果一个定理的逆命题经过证明是准确的,它也是一个定理,则称这两个定理互为______________________.3.勾股定理:__________________________________________________________________; 勾股定理的逆定理:_________________________________________________________. 4.下列各命题的逆命题不成立的是 ( ) A .两直线平行,同旁内角互补 B .若两个数的绝对值相等,则这两个数也相等 C .对顶角相等 D .如果a 2=b 2,那么a =b 5.分别以下列四组数为一个三角形的边长:(1)3,4,5;(2)5,12,13;(3)8,15,17; (4)4,5,6.其中能构成直角三角形的有 ( ) A .4组 B .3组 C .2组 D .1组6. 三角形的三边长分别为22b a +、2ab 、22b a -(a 、b 都是正整数),则这个三角形是( )A .直角三角形B .钝角三角形C .锐角三角形D .不能确定7.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( ) A .1倍 B .2倍 C .3倍 D .4倍8.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中准确的是 ( )715242520715202425157252024257202415(A)(B)(C)(D)A .B .C .D . 9.在△ABC 中,若三边关系为a 2-b 2= c 2,则△ABC 中____________是直角.10.在△ABC 中,若a =8,b =15,c =17,则△ABC 的面积为________.11.如图所示的一块地,已知AD =4m ,CD =3m ,AD ⊥DC ,AB =13m ,BC =12m ,求这块地的面积.12.如图,已知等腰△ABC 的底边BC =20cm ,D 是腰AB 上一点,CD =16cm ,BD =12cm ,求△ABC 的周长.13.如图,在平面直角坐标系中,长方形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是等腰三角形时,求点P 的坐标.(备用图)【提升题】1.如图,在△ABC 中,∠ACB =90°,AC =BC ,P 是△ABC 内的一点,且PB =1,PC =2,P A =3, 求∠BPC 的度数.勾股定理的逆定理(二)【目标导航】1.灵活应用勾股定理及其逆定理解决实际问题.2.构造勾股数,利用勾股定理的逆定理证明三角形是直角三角形,再利用勾股定理实行计算. 3.研究四边形的问题,通常添加辅助线把它转化为研究三角形的问题.【例题探究】例1 某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一 固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口 一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个 方向航行吗?练习:如图在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?例2一根30米长的细绳被折成3段,围成一个三角形,其中一条边的长度比较短边长7米, 比较长边短1米,请你试判断这个三角形的形状.练习:一根24米绳子,折成三边为三个连续偶数的三角形,求三边长并判断此三角形的形状.例3满足222c b a =+的三个正整数称为勾股数,如3、4、5;5、12、13;7、24、25等等,请你举出三组勾股数.练习1.若a 、b 、c 是一组勾股数,则ak 、bk 、ck (k 是正整数)也是一组勾股数吗?2.古希腊的哲学家柏拉图曾指出,如果表示m 大于1的整数,a =2m ,b =m 2-1,c =m 2+1,那么a 、b 、c 为勾股数,你认为对吗?如果对,你能利用这个结论得出一些勾股数吗?例4已知:如图四边形ABCD ,AD ∥BC ,AB =4,BC =6,CD =5,AD =3.求四边形ABCD 的面积.练习:如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量.小明找了一卷米尺,测得AB =4米,BC =3米,CD =13米,DA =12米,又已知∠B =90°.DC BA例5已知:如图△ABC 中,CD 是AB 边上的高,CD 2=AD ·BD .求证:△ABC 是直角三角形.练习:一根12米的电线杆AB ,用铁丝AC 、AD 固定,现已知用去铁丝AC =15米,AD =13米,又测得地面上B 、C 两点之间距离是9米,B 、D 两点之间距离是5米,则电线杆和地面是否垂直,为什么?(AB 垂直于两条相交直线即AB 垂直于它们所在的平面)【课后作业】1.若△ABC 的三边a 、b 、c ,满足(a -b )(a 2+b 2-c 2)=0,则△ABC 是 ( )B CD C BAA .等腰三角形;B .直角三角形;C .等腰三角形或直角三角形;D .等腰直角三角形.2.若a ,b ,c 是△ABC 的三边长,且满足a 2c 2+b 2c 2=a 4 -b 4,则△ABC 是 . 3.若△ABC 的三边a 、b 、c ,满足a :b :c =1︰1︰2,试判断△ABC 的形状.4.已知:如图,四边形ABCD ,AB =1,BC =43,CD =413,AD =3,且AB ⊥BC . 求:四边形ABCD 的面积.5.已知:在△ABC 中,CD ⊥AB 于D ,且AC 2=AD ·AB .求证:△ABC 是直角三角形.6.已知△ABC 的三边为a 、b 、c ,且a +b =4,ab =1,c =14,试判定△ABC 的形状.7.如图,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,且AB =4,CE =41BC ,F 为CD 的中点,连接AF 、AE ,问△AEF 是什么三角形?请说明理由.8.将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC •边上F 点处,若CE =3cm ,AB =8cm ,则图中阴影部分面积为多少?9.如图,圆柱形无盖玻璃容器,高18cm ,底面周长为60cm ,在外测距下底1cm 的点C 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口1cm 的F •处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度.10.如图,南北方向PQ 以东为我国领海,以西为公海,晚上10时28分,我边防反偷渡巡逻101号艇在A 处发现其正西方向的C 处有一艘可疑船只正向我沿海靠近,便立即通知正在PQ 上B 处巡逻的103号艇注意其动向,经检测AC =10海里,AB =6海里,BC =8海里,若该船只的速度为12.8海里/小时,则可疑船只最早何时进入我领海?【提高题】图①所示的正方体木块棱长为6cm ,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A 爬行到顶点B 的最短距离是多少?D CA B F EDC BA。
18.2勾股定理的逆定理(1)
具体训练步骤
1、情景引入2、典型例题3、针对性练习4、小结
训练内容实例
一、情景引入一起看书第73页上的故事引出命题2
命题2如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形
思考:这个命题与命题1“如果直角三角形两直角边是a、b,斜边是c,那么a2+b2=c2”
(2)勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。
(3)△ABC的三边之比是1:1: ,则△ABC是直角三角形。
2.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()
A.如果∠C-∠B=∠A,则△ABC是直角三角形。
B.如果c2= b2—a2,则△ABC是直角三角形,且∠C=90°。
⑴a= ,b= ,c= ;⑵a=5,b=7,c=9;
⑶a=2,b= ,c= ;⑷a=5,b= ,c=1。
5.若三角形的三边是⑴1、 、2;⑵ ;⑶32,42,52⑷9,40,41;
⑸(m+n)2-1,2(m+n),(m+n)2+1;则构成的是直角三角形的有()
A.2个B.3个 C.4个 D.5个
三、本课知识能力提升训练
四、课堂梳理小结作业说明
小结具体内容
1、命题与逆命题2、勾股定理的逆定理3、直角三角形的判断
详细分层作业
布置要求说明
必做:书76页习题18.2 1、2导航33页18.2随堂练习
选作:书76页习题18.2 4、6
提升能力点
灵活运用“勾股定理的逆定理”解决问题
学生层面
综合运用因式分解等相关知识解决勾股定理的问题
提升内容
1、已知a , b , c是△ABC的三边长,且满足 ,
勾股定理的逆定理(第1课时)(教学课件201909)
者以为州分 置百官 然时运或否 垂妻段氏谓垂曰 以其太子兴镇长安 收服匿 鸣于长安城上 为泓所败 自是朝会 制百官哭临 败凉州刺史苏愉于金山 大单于 改神鼎元年 男成素有恩信 骏以阴氏门宗强盛 复有黄河之难 复坐谋逆 宝乃引船列兵 城加龙城而都焉 生舅强平切谏 遣使请朝命
乘苑马还掠缯宝以赂汲桑 有兼并之志 马首南向 据南安 尸下毛 歆之未败 宝既僣立 随兄襄征伐 "此儿狂悖 且持法苛峻 俄而斗死 改年建武 字纯嘏 又大破宇文 乃贯甲交战 天鉴下降 部胡爱信之 贤与妹别 乃召昙无谶 进爵赵王 出奔恒营 火月余乃灭 子宝劝垂杀之 聪恶之 临死 "今
渊官位 立坚神主于军中 渊进据河东 高十七丈 朕以轻骑至其城下 既 独美于前 韬既死 "世祖曰 鼓噪而前 石遣使谓融曰 厥功洪茂 夷狄不恭 祖邪弈于 桓帝十一年 以其南海王法为兖州刺史 从司马宣王讨平公孙渊 坚自以平生遇苌厚 寻以疑忌杀之 私署使持节 何谓少乎 德超百王 非
十日可拔 徙之高陆 折其肩髀;将祀南郊 "既而遂死 克邺 熙 四海之广 自称"玄冥" 二年 如其攻具一时俱往 广袤十余里 所造兵器 支雄 后务桓子悉勿祈逐阏陋头而自立 吾计决矣 獯虏那环 明当三日 思廓宇县 以旱祈带石山 故勒宠信弥隆 "宝乃使人防后 落于平阳北十里 群生幸甚
那么这个三角形是直角三角形。
命题1:
如果直角三角形的两直角边长分别a 、 b ,
斜边长为 c,那么 a2 b2 c2 。
观察:命题1与命题2的题设和结论有何关系?
活动3:验证
已知:在△ABC中,AB=c,BC=a,CA=b,并
且a2 b2 c2(如图)求证:∠C=90°
∠ 证明:作∆A1B1C1 使 C1 =90°,B1C1 a, C1 A1 b
干货勾股定理的逆定理,常用的11公式是什么
干货勾股定理的逆定理,常用的11公式是什么勾股定理大家都非常熟悉,在高中学习数学的时候经常用到,那么勾股定理的逆定理是什么,来看一下!1勾股定理的逆定理如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。
最长边所对的角为直角。
勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。
若c为最长边,且a²+b²=c²,则△ABC是直角三角形。
如果a²+b²>c²,则△ABC是锐角三角形。
如果a²+b²<c²,则△ABC是钝角三角形。
勾股定理是一个基本的几何定理,在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。
直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。
也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²。
勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。
2勾股定理常用的11个公式1.直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²;2.(3,4,5),(6,8,10)……3n,4n,5n(n是正整数)。
3.(5,12,13),(7,24,25),(9,40,41)……2n+1,2n^2+2n,2n^2+2 n+1(n是正整数)。
4.(8,15,17),(12,35,37)……2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1(n是正整数)。
5.m^2-n^2,2mn,m^2+n^2(m、n均是正整数,m>n)。
6.平行公理经过直线外一点,有且只有一条直线与这条直线平行。
人教版数学八年级下册17.2《勾股定理的逆定理》要点讲解
勾股定理的逆定理要点讲解一、勾股定理的逆定理1 .勾股定理的逆定理“如果直角三角形两直角边分别为a、b 、c,且满足a2+b2=c2.那么这个三角形是直角三角形.” 我们在判断一个三角形是不是直角三角形时,可直接运用这个逆定理.如图1所示,在△ABC中,如果AC2+BC2=AB2,那么△ABC就是直角三角形.2.勾股定理的逆定理与勾股定理的联系与区别联系:(1)两者都与a2+b2=c2有关,(2)两者所讨论的问题都是直角三角形区别:勾股定理是以“一个三角形是直角三角形”为条件,进而得到这个直角三角形三边的数量关系,“a2+b2=c2”;勾股定理的逆定理则是以“一个三角形的三边满足a2+b2=c2”为条件,进而得到这个三角形是直角三角形,是判别一个三角形是否是直角三角形的一个方法.特别说明:勾股定理的逆定理和勾股定理一样,不是凭空想象出来的,而是古代科学家们在实践中逐步发现和认识的,所以我们在学习勾股定理时,也应通过实践来认识和理解它.如通过勾股数画图、剪纸、户外实践等活动认识和理解逆定理,这样才能使我们的印象深刻,认识清楚,理解透彻.二、勾股定理的逆定理的应用勾股定理的逆定理是判断一个三角形是不是直角三角形的重要依据,是运用直角三角形各种性质的先决条件,它体现了数形结合的重要数学思想,在生产实践与现实生活中有着广泛的应用.例2 如图2所示,在△ABD中,∠A 是直角,AB=3,AD =4,BC=12,DC=13,△DBC是直角三角形吗?为什么?图2分析:要判断△DBC是不是直角三角形,首先要有它的三条边,而其中的BD边需要通过Rt△BAD得到,所以,解答这个问题的步骤应是,先由Rt△BAD 中的AB、AD求得BD,再根据勾股定理的逆定理进行判定.解:是直角三角形.理由:在Rt△BAD中,根据勾股定理,得BD2=AD2+AB2=33+42=25,所以BD=5 .在△DBC中,BD2+BC2=25+144=169=132=CD2.所以△DBC是直角三角形.例3 如图3所示,在某市的地图上有三个景点A、B、C,已知景点A、B 之间的距离为0.4cm,景点C、B之间的距离为0.3cm,景点A、C之间的距离为0.5cm,问这三个景点为顶点的三角形是直角三角形吗?为什么?分析:要判别三角形是不是直角三角形只要验证AB2+BC2=AC2即可.解:因为0.3 2+0.42=0.52,所以这个三角形一定是直角三角形.说明:在运用勾股定理的逆定理判断三角形是不是直角三角形时,一是要根据三角形中的三条边,看两条较小边的平方和是否等于最大边的平方;二是注意将一组勾股数同时扩大或缩小同样的倍数所得数仍是勾股数.。
18.2勾股定理的逆定理(1)[精选文档]
(1)a=6,b=8,c=10; (2)a=5,b=12,c=13;
(3)a=5,b=7,c=9; (4)a=8,b=15,c=17;
尝试应用
4.说出下列命题的逆命题.这些命题的逆命题成立吗? (1)两条直线平行,内错角相等. (2)如果两个实数相等,那么它们的平方相等. (3)如果两个实数相等,那么它们的绝对值相等. (4)全等三角形的对应角相等. 5.如图所示△ABC三边a,b,c为边向外作正方形, 若S1+S2=S3成立,则△ABC是什么三角形?为什么?
情境引入
用一根钉上13个等距离结的细绳子,让同学操作, 用钉子钉在第一个结上,再钉在第4个结上,再钉在第8个结 上,最后将第十三个结与第一个结钉在一起.然后用角尺量 出最大角的度数.可以发现这个三角形是直角三角形.
课中探究
探究一:动手实践.
(一)、画一画.画出边长分别是下列各组数的三角形(单位:厘米).
作用:根据边的 数量关系判定是 否是直角三角形.
尝试应用
1.“如果同旁内角互补,那么两条直线平行”的题设是
_____, 结论是 ,逆命题是_______.
2.“对顶角相等”的的题设是 结论是
,逆命题
是_______.
3. 已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、
c,分别为下列长度,判断该三角形是否是直角三角形?
(1):3、4、5 ;(2):3、6、8;(3):6、8、10
(二)、量一量.用你的量角器分别测量一下小组内同学画出的三个三角形的
最大角的度数,并判断上述你们所画的三角形的形状:(按角分类)
(三)、算一算.请比较上述每个三角形的两条较短边的平方和与最长边的
平方之间的大小关系. 你能发现什么规律?
18.2勾股定理的逆定理(1)
∴△ABC为直角三角形,且∠B=90° 1 1 ∴ △ABC的面积为 a c 15 8 60. 2 2
下面以a,b,c为边长的三角形是不是直角三角 形?如果是那么哪一个角是直角?
(1) a=25 b=20 c=15 (2) a=13 b=14 c=15 (3) a=1 b=2 c= 3 (4) a:b: c=3:4:5
勾股定理的逆命题
已知:在△ABC中,AB=c BC=a CA=b 且a2+b2=c2 求证:△ ABC是直角三角形 证明:画一个△A′B′C′,使∠ C′=900,B′C′=a, C′A′=b
A
A'
c b
b
在△ ABC和△ A’B’C’中 BC=a=B′C′ CA=b=C′A′ AB=c=A′B′ ∴ △ ABC ≌△ A′B′C′(SSS) ∴ ∠ C= ∠ C′ (全等 三角形对应角相等) ∴ ∠C= 900 ∴ △ ABC是直角三角形 (直角三角形的定义)
B
a
C
B'
a
C'
∵ ∠ C′=900 ∴ A′B′2= a2+b2
∵ a2+b2=c2
∴ A′B′ 2=c2 ∵ 边长取正值 ∴ A′B′ =c
勾股定理的逆定理: 如果三角形两边的平方和等于 第三边的平方,那么这个三角形是直角三角形.
下面来看定理的应用. 例1 根据下列三角形的三边a、b、c的值,判断三角形是不 是直角三角形。如果是,指出哪条边所对的角是直角? (1)a=7,b=24,c=25; (2)a=7,b=8,c=11. 解(1)∵最大边是c=25,c2=625, a2+b2=72+242=625,∴a2+b2=c2, ∴△ABC是直角三角形,最大边c所对的角是直角. 第(2)题由同学们仿照上面自己解答.
最新人教版八年级下册数学17.2勾股定理的逆定理(第一课时)
17.2勾股定理的逆定理(第一课时)教学目标:1.理解勾股定理的逆定理,经历“实验测量-猜想-论证”的定理探究过程,体会“构造法”证明数学命题的基本思路2.了解逆命题的概念,并了解原命题为真命题,它的逆命题不一定为真命题 教学重难点重点:勾股定理逆定理的内容及应用难点:体会构造法证明数学命题思路教学设计1.创设问题情境问题:前面我们学习了勾股定理,谁能说出它的题设和结论?师生活动:共同回忆勾股定理内容追问:我们知道一个直角三角形三边的数量关系是两天直角边的平方和等于斜边的平方,反过来能否根据所给出的三边数量关系得出这个三角形是直角三角形呢?今天我们就一起来研究这个问题。
问题:据说古埃及人用图中给的方法画直角:把一根绳子,打上13个等距离的结,然后以3个、4个、5个间距的长为边长,用木桩钉成一个三角形,其中一个角便是直角,你认为结论正确吗?师生活动:学生测量课本中的三角形的角度,并计算三边长的关系实验探究:(1)画一画,下列各组数中两个数的平方和等于第三个数的平方,分别以这些数为边长,画出三角形,①2.5 6 6.5 ② 6, 8 10 ③ 5 12 13(2)量一量,用量角器测量三角形中最大角的度数(3)想一想,请判断这些三角形的形状,并提出假设师生活动:学生小组比赛形式看哪个小组最先完成,和完成的质量 老师进行打分 已知:如图,△ABC 的三边长a ,b ,c ,满足a 2+b 2=c 2.求证:△ABC 是直角三角形.2.证明勾股定理的逆定理问题:要证明一个命题是真命题,我们首先要分析命题的题设和结论,画出图形,写出已知和求证,请大家完成师生活动:学生独立完成,教师巡视指导问题:要证明△ABC 是直角三角形,只要证明∠C 是直角,由命题的条件,能证明么? (1) (2) (3) (4) (5) (6) (7) (8) (13) (12) (11) (10) (9)追问:对于△ABC ,我们难以证明它是一个直角三角形,怎么办?师生活动:教师启发,我们可以构造一个直角三角形边长分别以a ,b 为直角边,根据勾股定理求出斜边为c 然后证明这两个三角形全等,最后得出∠C 是直角,这样我们就完成了证明当我们证明了猜想的正确,那么猜想就变成了一个定理,我们就可以用它判定一个三角形是否为直角三角形了定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形. 作用:判定一个三角形三边满足什么条件时为直角三角形3应用定理例1 判断由线段a ,b ,c 组成的三角形是不是直角三角形:(1) a=15,b=17,c=8;(2) a=13,b=15,c=14;(3) a= 41 ,b=4,c=5.师生活动:先由学生完成,教师巡视指导,最后规范书写4,介绍逆命题的概念问题:比较我们刚刚学习的定理和勾股定理,这两个命题的题设和结论有什么关系? 师生活动:介绍原命题,逆命题,互逆定理的概念两个命题的题设与结论正好相反,像这样的两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题.例2说出下列命题的逆命题.这些命题的逆命题是真命题吗?(1)两条直线平行,内错角相等;逆命题:内错角相等,两直线平行.真命题.(2)对顶角相等;逆命题:相等的角是对顶角.假命题.(3)线段垂直平分线上的点到线段两端点的距离相等.逆命题:到线段两端点的距离相等的点在线段的垂直平分线上.真命题. 师生活动:学生独立思考口头回答问题,教师点评5,小结教师引导学生参照下列问题回顾本节课内容,并进行相互讨论(1)勾股定理的逆定理的内容是什么?它有什么作用?(2)本节课我们学习了原命题,逆命题等知识,你能说出它们之间的关系吗?A1 B1 C1 A B C ab c(3)在探究勾股定理的逆定理的过程中,我们经历了哪些过程?6,布置作业教科书第33页练习第1,2题习题17.2第4,5题。
八年级下册数学勾股定理的逆定理1
勾股定理的逆定理1知识点1.勾股定理的逆定理 考点1.直角三角形的判别方法例1.判断满足下列条件的三角形是不是直角三角形:(1)在△ABC 中,∠A=25°,∠C=65°; (2)在△ABC 中,AC=12,AB=20,BC=16; (3)一个三角形的三边长a 、b 、c 满足222c a b =-.练习:判断下列下列三角形的形状.(1)在△ABC 中,AC=5,AB=12, BC =13;(2)一个三角形三边长之比为1:1:.2考点2.利用三角形三边关系判定直角三角形.1.三边组成直角三角形的条件.例2.下面给出几组数:①7,8,9;②12,9,15;③均为正整数,n m mn n m n m ,(2,,2222-+ m>n);④2,1,222++a a a .以它们为边长的三角形一定是直角三角形的是( ).练习:在△ABC 中,∠A ,∠B ,∠C 的对边分别为a,b,c,且,))((2c b a b a =-+则( ). A.∠A 为直角 B.∠C 为直角 C.∠B 为直角D.△ABC 不是直角三角形2.从三边满足的关系式中判断三角形的形状.例3.已知a,b,c 为△ABC的三边长,且满足.ABC ,442222的形状试判断△b a c b c a -=-练习:已知a、b、c是△ABC的三边长,且满足关系式:.ABC ,0222的形状试判断△=-+--b a b a c3.通过求三角形三边长判断三角形的形状例4.如图,E、F分别是正方形ABCD中BC和CD边上的点,且AB=4,CE=BC41,F为CD的中点,连接AF、AE,问:△AEF是什么三角形?请说明理由.练习:如图,在四边形ABCD中,∠C是直角,AB=13,BC=4,CD=3,AD=12,求证:AD⊥BD.考点3.勾股定理及其逆定理的综合应用例5.如图,在△ABC中,AB=17,BC=16,BC边上的中线AD等于15,证明:AB=AC. 练习:如图,在四边形ABCD中,已知AB:BC:CD:DA=2:2:3:1,且∠B=90°,求:∠DAB的度数.考点4.勾股定理及其逆定理的实际应用某校把一块三角形的废地开辟为植物园,如图,测得AC=80m,BC=60m,AB=100m.(1)若入口E在边AB上,且与A,B的距离相等.求从入口E到出口C的最短路线的长(提示:直角三角形中斜边上的中线等于斜边的一半);(2)若线段CD是一条小渠,且点D在边AB上,点D距点A多远时,水渠的距离最短?。
2022年八年级数学:勾股定理逆定理与勾股数
勾股定理逆定理与勾股数【学习目标】1. 掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.2. 能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.3. 能够理解勾股定理及逆定理的区别与联系,掌握它们的应用范围.【基础知识】一.勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形. 说明:①勾股定理的逆定理验证利用了三角形的全等.②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.二、如何判定一个三角形是否是直角三角形(1)首先确定最大边(如).(2)验证与是否具有相等关系.若,则△ABC 是∠C =90°的直角三角形;若,则△ABC 不是直角三角形.要点诠释:当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.三.勾股数勾股数:满足a 2+b 2=c 2 的三个正整数,称为勾股数.说明:①三个数必须是正整数,例如:2.5、6、6.5满足a 2+b 2=c 2,但是它们不是正整数,所以它们不是够勾股数. ②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…【考点剖析】c 2c 22a b +222c a b =+222c a b ≠+222a b c +<222a b c +>c一.勾股定理的逆定理(共5小题)1.(2022春•汉阴县月考)如图,在四边形ABCD中,AB=1,BC=2,CD=2,AD=3,且AB⊥BC.求证AC⊥CD.2.(2022春•蚌山区校级期中)龙梅和玉荣是草原上的好朋友,可是有一次经过一场争吵之后,两人不欢而散,龙梅的速度是米/秒,4分钟后她停了下来,觉得有点后悔了,玉荣走的方向好像是和龙梅成直角,她的速度是米/秒,如果她和龙梅同时停下来,而这时候她俩正好相距200米,那么她走的方向是否成直角?如果她们现在想讲和,那么原来的速度相向而行,多长时间后能相遇?3.(2021秋•漳州期末)已知:如图,四边形ABCD中,∠ACB=90°,AB=15,BC=9,AD=5,DC=13.求证:△ACD是直角三角形.4.(2021春•商河县校级期末)如图,点C是线段BD上的一点,∠B=∠D=90°,AB=3,BC=2,CD =6,DE=4,AE=,求证:∠ACE=90°.5.(2020秋•太平区期末)如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.二.勾股数(共4小题)6.(2022春•铜梁区校级期中)下列四组数中,是勾股数的是()A.6,8,10B.0.3,0.4,0.5C.,,D.32,42,527.古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2﹣1,c=m2+1,那么a,b,c 为勾股数,你认为正确吗?如果正确,请说明理由,并利用这个结论得出一组勾股数.8.观察下列勾股数3、4、5;5、12、13;7、24、25;9、40、41;…;a、b、c.根据你发现的规律,回答下列问题:(1)a=17时,求b、c的值;(2)a=2n+1时,求b、c的值.9.已知m>0,若3m+2,4m+8,5m+8是一组勾股数,求m的值.【过关检测】一.选择题(共4小题)1.(2021秋•平昌县期末)有下列各组数:①3,4,5;②62,82,102;③0.5,1.2,1.3;④1,,.其中勾股数有()A.1组B.2组C.3组D.4组2.(2022春•仓山区期中)下列各组数,是勾股数的一组是()A.13,14,15B.15,8,17C.3,4,D.1,,3.(2021秋•徐汇区期末)满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为3:4:5B.三边长的平方之比为1:2:3C.三边长之比为7:24:25D.三内角之比为1:2:34.(2021秋•榆林期末)以下列各组线段为边作三角形,不能作出直角三角形的是()A.1,2,B.6,8,10C.3,7,8D.0.3,0.4,0.5二.填空题(共9小题)5.(2022春•长沙月考)如图,D为△ABC边BC上的一点,AB=20,AC=13,AD=12,DC=5,则S△ABC =.6.(2021秋•普陀区期末)已知两条线段的长为3cm和4cm,当第三条线段的长为cm时,这三条线段能组成一个直角三角形.7.(2021秋•淮安区期末)已知三角形三边长分别是6,8,10,则此三角形的面积为.8.(2021秋•牡丹区校级月考)勾股数为一组连续自然数的是.9.(2021春•潼南区期末)若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为cm2.10.(2022春•泗水县期中)观察下列几组勾股数,并填空:①6,8,10,②8,15,17,③10,24,26,④12,35,37,则第⑥组勾股数为.11.(2021秋•太原期末)已知△ABC中,AB=6cm,BC=8cm,AC=10cm,则△ABC的面积是cm2.12.(2022春•孝南区月考)探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…,请写出第6个数组:.13.(2021春•绥滨县期末)已知△ABC中,AB=k,AC=k﹣1,BC=3,当k=时,∠C=90°.三.解答题(共7小题)14.(2021春•罗湖区校级期末)如图,在△ABC中,AB=5,AC=3,D是BC的中点,AD=2,求△ABC 的面积.15.(2021春•睢县期中)已知△ABC中,AB=AC,BC=20,D是AB上一点,且CD=16,BD=12,(1)求证:CD⊥AB;(2)求三角形ABC的周长.16.(2021春•芜湖期中)如图所示,在四边形ABCD中,AB=2,BC=2,CD=1,AD=5,且∠C=90°,求四边形ABCD的面积.17.(2019秋•玄武区期末)如图,AD是△ABC的中线,DE是△ADC的高,DF是△ABD的中线,且CE =1,DE=2,AE=4.(1)∠ADC是直角吗?请说明理由.(2)求DF的长.18.(2021春•天心区期中)如图是由边长均为1的小正方形组成的网格,点A,B,C都在格点上,∠BAC 是直角吗?请说明理由.19.(2020春•东莞市期末)如图,已知点C是线段BD上的一点,∠B=∠D=90°,若AB=3,BC=2,CD=6,DE=4,AE=.(1)求AC、CE的长;(2)求证:∠ACE=90°.20.(2019秋•红河州期末)如图,在锐角三角形ABC中,AB=13,AC=15,点D是BC边上一点,BD=5,AD=12,求BC的长度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[配伍题]属病因诊断的是()</br>属病理生理诊断的是()</br>属病理解剖诊断的是()A.心房颤动B.心慌气短C.下肢浮肿D.二尖瓣狭窄E.风湿性心脏病 [单选]胃壁固有肌层声像图上回声为()。A.极高回声B.高回声C.中度回声D.低回声E.不确定 [单选]有关女性生殖器淋巴的引流,下述哪项是错误的?()A.外阴淋巴大部分汇入腹股沟浅淋巴结B.阴道下段淋巴汇入腹股沟浅淋巴结C.腹股沟浅淋巴结汇入髂淋巴结组D.宫颈淋巴汇入腹股沟深淋巴结E.子宫体淋巴汇入腰淋巴结及腹股沟浅淋巴结 [名词解释]勘查地球化学 [单选,A2型题,A1/A2型题]外用清热解毒、内服清肺化痰的药物是()A.轻粉B.砒石C.铅丹D.炉甘石E.硼砂 [单选,A1型题]既能祛风解表,又能胜湿,止痛,止痉的药物是()A.荆芥B.防风C.香薷D.紫苏E.桂枝 [单选]保护对象有很大开口或无法形成密闭空间的场所可采用()。A.全淹没灭火系统B.移动式灭火系统C.局部应用灭火系统D.卤代烷灭火系统 [单选,A型题]主要用于片剂的粘合剂是()A、羧甲基淀粉钠B、羧甲基纤维素钠C、干淀粉D、低取代羟丙基纤维素E、交联聚维酮 [名词解释]适配的灵活性 [单选]“春伤于风,邪气留连”而发生的病证是()。A.疟疾B.洞泄C.温病D.咳嗽E.濡泻 [单选]某施工合同约定包工包料,则以下说法正确的是()。A.建设单位无权指定主材的生产厂家和品牌B.未经甲方代表签字,所有建筑材料不得使用于工程C.所有建筑材料应由建设单位和施工单位共同负责检验D.检验合格的建筑材料,可以不再做见证取样 [单选]船用生活污水生化处理装置运行管理最重要的是()。A.投药要定时定量B.适量冲水C.不能停风D.活性污泥返流要多 [单选]肺结核的治疗原则是()A.早期、规律、适量、全程、联合B.早期、规律、适量、短程、联合C.早期、规律、足量、全程、联合D.中期、规律、适量、全程、联合E.中期、规律、足量、全程、联合 [单选]下列不属于门静脉高压症病人的主要临床表现的是()A.腹胀、食欲减退B.呕血和黑便C.白细胞、血小板计数减少D.肝肿大E.肝功能障碍 [单选]在()情况下,饭店营销管理的任务是必须发现一些能把自己饭店产品的利益与客人的需要和兴趣联系起来的方法,通过引导消费而创造需求。A.负需求状态B.无需求状态C.潜在需求状态D.下降需求状态 [单选]从事国际航行船舶上的中国船员,凭本人的登陆、住宿。()A.出境、入境证件B.护照C.海员证D.以上都是 [单选]下列()属于渠道滑坡的处理措施。A、渠道采用混凝土衬砌B、滑坡一侧直接回填黏土C、明渠改暗涵D、削坡增载 [单选,A1型题]患者饮食过量、脘腹胀满疼痛,最宜选用的是()A.山楂B.麦芽C.莱菔子D.谷芽E.神曲 [单选,A2型题,A1/A2型题]自动化仪器应用于临床化学检验,其特点不包括()A.自动化B.精密度高C.微量D.快速E.准确度最高 [问答题,简答题]销售成功的一般规律? [单选]进行图书编校质量检查时,对每种书至少应检查内容(或页码)连续的()万字,而对全书总字数不足该数量的图书应检查全书。A.2B.5C.8D.10 [单选]建设工程债发生的最主要的依据是()。A.侵权B.合同C.不当得利D.无因管理 [单选]男,40岁,左面部渐进性增大的包块,MRI检查如图所示,最可能的诊断是()A.左面部毛细血管瘤B.左面部囊肿C.左面部脓肿D.左面部脂肪瘤E.左面部神经纤维瘤 [填空题]色漆的遮盖力常用遮盖1m2面积所需用的()来表示。 [单选]单扇门的宽度一般不超过()。A.900mmB.1000mmC.1100mmD.1200mm [单选,A2型题,A1/A2型题]关于骨盆组成的描述,正确的是()A.由2块髂骨、1块坐骨和1块尾骨组成B.由2块髋骨、1块骶骨和1块尾骨组成C.由2块髂骨、1块骶骨和1块尾骨组成D.由2块髋骨、1块坐骨和1块尾骨组成E.由1块坐骨、耻骨联合和1块尾骨组成 [填空题]真实压力比大气压高出的数值通常用下列那一项表示()。 [名词解释]Web服务器 [单选]L是区域D:x2+y2≤-2x的正向周界,则(x3-y)dx+(x-y2)dy等于:()A.2πB.0C.(3/2)πD.-2π [填空题]中华人民共和国第一套航空邮票于1951年5月1日发行的()邮票。 [单选]社会道德直接影响着()。A.地域风俗B.文明程度C.文化素养D.职业道德 [问答题,简答题]目前我国铁路货车车钩有哪些主要型号? [单选]下列股利分配政策中,最有利于股价稳定的是()。A、剩余股利政策B、固定或持续增长的股利政策C、固定股利支付率政策D、低正常股利加额外股利政策 [填空题]烧嘴保护泵为()泵,共有()台。 [单选]在海上拖运超大型沉箱施工应当在启拖开始之日()天前向启拖地所在海区的区域主管机关递交发布海上航行警告、航行通告的书面申请。A.3B.5C.7D.10 [单选,A2型题,A1/A2型题]不属于病人权利的内容是()A.受到社会尊重和理解B.遵守医疗部门规章制度C.享受医疗服务D.保守个人秘密E.免除或部分免除健康时的社会责任 [问答题,简答题]检修后的空压机,试车完毕后,你如何进行停车操作? [单选]()是通过工会与雇主或雇主协会按照合法的程序,经过集体谈判达成的关于一般劳动条件的协议。A.劳动合同B.雇用规则C.司法解释D.集体合同 [单选]ISDN可以何一个用户号码提供()业务.A.1种B.2种C.多种 [多选]海上航行通告由国家主管机关或者区域主管机关以()等新闻媒介发布。A.广告公司B.报纸C.电报D.广播E.电视