空间向量的数量积运算一
空间向量的数量积运算公式

空间向量的数量积运算公式
空间向量的数量积公式是λa·b=a·λb,空间中具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模。
规定长度为0的向量叫做零向量,记为0,模为1的向量称为单位向量。
与向量a长度相等而方向相反的向量,称为a的相反向量。
记为-a方向相等且模相等的向量称为相等向量。
三个坐标面把空间分成八个部分,每个部分叫做一个卦限。
含有x轴正半轴、y 轴正半轴、Z轴正半轴的卦限称为第一卦限,其他第二、三、四卦限,在xoy 面的上方,按逆时针方向确定。
在第一、二、三、四卦限下面的部分分别称为第五、六、七、八卦限。
基本定理
1、共线向量定理
两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb。
2、共面向量定理
如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by。
3、空间向量分解定理
如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。
任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。
数学《空间向量的数量积运算》

向量在三维空间中的方向
总结词
向量方向对数量积运算结果具有重要影响。
详细描述
在三维空间中,两个向量的数量积不仅与它们的长度和夹角有关,还与它们之间的方向关系有关。如 果两个向量方向相同或相反,它们的数量积将有不同的结果。
04 空间向量数量积运算的应 用
在物理中的应用
力的合成与分解
通过空间向量的数量积运算,可以方便地计算出力的合成与分解 结果,从而解决力学问题。
对未来研究的展望
• 展望:随着数学和物理学的发展,空间向量的数量积运算将继续发挥重要的作用。未来研究可以进一步探讨数量积运算的 性质和规律,例如探索数量积与其他向量运算之间的关系、数量积运算的几何意义等。此外,随着科技的发展,新的应用 领域将不断涌现,需要进一步拓展空间向量数量积运算的应用范围,例如在人工智能、数据分析和图像处理等领域的应用。 同时,随着数学教育的发展,如何更好地教授空间向量的数量积运算,提高学生对这一概念的理解和应用能力,也是未来 研究的一个重要方向。
速度和加速度的计算
在运动学中,空间向量的数量积运算可以用于计算速度和加速度, 帮助我们理解物体运动规律。
电磁学中的场强计算
在电磁学中,通过空间向量的数量积运算可以计算出电场强度和磁 场强度,进一步研究电磁场性质。
在工程中的应用
结构分析
在土木工程和机械工程中,空间 向量的数量积运算可以用于结构
分析,如计算应力和应变等。
数学《空间向量的数量积运算》
contents
目录
• 引言 • 空间向量的数量积运算性质 • 空间向量数量积运算的几何意义 • 空间向量数量积运算的应用 • 总结与展望
01 引言
空间向量的数量积运算的定义
定义
1.1.2 空间向量的数量积运算(教学课件)——高中数学人教A版(2019)选择性必修一

2
2
2
4
(2) EF · BD = 1 BD · BD = 1 | BD || BD |cos 〈 BD , BD 〉= 1 ×1×1×cos 0°= 1 .
2
2
2
2
(3) EF · DC = 1 BD · DC = 1 | BD || DC |cos 〈 BD , DC 〉= 1 ×1×1×cos 120°=- 1 .
最后确定〈a,b〉.
四、利用数量积计算长度与距离问题
例1. 如图 所示,在平行四边形ABCD中,AB=AC=1,∠ACD=90°,沿着它的对角 线AC将△ACD折起,使AB与CD成60°角,求此时B,D间的距离.
【解】 因为∠ACD=90°,所以 AC ·CD =0. 同理可得 AC · BA =0. 因为AB与CD成60°角,
A1F
)·(
AB
AA1
)=
c
a
1 2
b
·(a+c)
=a·c-a2+ 1 b·a+c2-a·c+ 1 b·c
2
2
=|c|2-|a|2=22-22=0.
(3)
EF
·
FC1
=(
EA1
A1F
)·(
FD1
D1C1
)=
1 2
(c
a)
1 2
b
·
1 2
b
a
=
1 2
(-a+b+c)·
1 2
b
a
1 2
|a|2+
2
已知两个非零向量a,b,则|a||b|cos〈a,b〉叫做a,b的数量积(inner product), 记作a·b,即a·b=|a||b|cos〈a,b〉.
高中数学空间向量的数量积运算

三垂线定理的逆定理 在平面内的一条直线,如果和这个平面的一条斜线 垂直,那么它也和这条斜线在平面内的射影垂直.
例2. 如图,m, n 是平面 内的两条相交直线, 如果l m, l n,求证:l .
分析:根据直线和平面垂直的定义可知, 要证明l ,只需证明l 垂直平面
的任意一条直线.
例1 在平面内的一条直线,如果和这个平面的一 条斜线的射影垂直,那么它也和这条斜线垂直.
已知:PO, PA分别是平面 的垂线 和斜线,AO是PA在平面 内 的射影,l , 且 l OA , 求证:l PA .
分析:设直线l 的方向向量为a,
只需证明 a PA=0,
PA=PO OA,
解:由题设可得AC AB,
D b b a D'
CA , BD 120,
CD CA AB BD,
A
B
| CD |2 | CA |2 | AB |2 | BD |2 2CA AB 2CA BD 2 AB BD
b2 a2 b2 2b2 cos120 a2 b2
性质3)是求向量的长度(模)的依据.
空间向量的数量积满足如下运算律
1) ( a) b (a b)
2) a b b a (交换律)
3) a (b c) a b a c (分配律)
思考题:课本第90页 注意:
数量积不满足结合律
(a b) c a (b c)
②零向量与任意向量的数量积等于零.
2
空间向量的数量积性质 对非零向量a , b 有:
1) a e a cos a, e (e为单位向量)
2) a b a b 0
3.1.3 空间向量的数量积运算(一)

a、 b a b cos a , b 叫做 a 、 b 的数量积,记作 a b 即 a的数量积 已 知 空 间 两 个 非 零 向 量
, 则 .
注:①两个向量的数量积是数量,而不是向量. ②规定:零向量与任意向量的数量积等于零.
课堂练习
1. 已 知 a 2 2 , b 2 2 ,a b
2
,
则a 与b
135 的夹角大小为_____.
0, b 0
2.判断真假: 1)若 a b 0 , 则 a
2) (a b ) c a (b c ) 2 2 2 3) p q ( p q) 2 2 4) p q p q p q
(4)空间向量的数量积满足的运算律
⑴、⑵是显然成立的 思考:你能证明分配律成立吗?
另外 a b a 及a b 0 ¿ c ¿ b c a 0或 b 0
练习运算
数量积不满足结合律即 (a b ) c a ( b c ) 注意:
A'
B'
D C
4 3 5 2 ( 0 1 0 7 .5 )
2 2 2
A B
85 | A C |
85
空间向量的数量积运算(一)
引 入 数量积运 算定义 课堂练习
思考1数量 积的性质
思考2数量 积的运算律
空间向量的数量积运算(一)
F
S
W= |F| |s| cos
根据功的计算,我们定义了平面两向量的 数量积运算.一旦定义出来,我们发现这种运 算非常有用,它能解决有关长度和角度问题.
第02讲 空间向量的数量积运算(4种类型)(答案与解析)

2023暑假新高二第02讲空间向量的数量积运算(4种类型)【知识梳理】一、空间向量的数量积1.两个向量的数量积.已知两个非零向量a、b,则|a|·|b|cos 〈a,b〉叫做向量a 与b 的数量积,记作a·b,即a·b=|a|·|b|cos 〈a,b〉.要点诠释:(1)由于空间任意两个向量都可以转化为共面向量,所以空间两个向量的夹角的定义和取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同.(2)两向量的数量积,其结果是数而非向量,它的值为两向量的模与两向量夹角的余弦的乘积,其符号由夹角的余弦值决定.(3)两个向量的数量积是两向量的点乘,与以前学过的向量之间的乘法是有区别的,在书写时一定要将它们区别开来,不可混淆.2.空间向量数量积的性质设,a b 是非零向量,e 是单位向量,则①||cos ,a e e a a a e ⋅=⋅=<>;②0a b a b ⊥⇔⋅= ;③2||a a a =⋅ 或||a = ④cos ,||||a b a b a b ⋅<>=⋅ ;⑤||||||a b a b ⋅≤⋅ 3.空间向量的数量积满足如下运算律:(1)(λa)·b=λ(a·b);(2)a·b=b·a(交换律);1.定义:已知两个非零向量a、b,在空间任取一点D,作OA a =,OB b =,则∠AOB 叫做向量a 与b 的夹角,记作〈a,b〉,如下图。
根据空间两个向量数量积的定义:a·b=|a|·|b|·cos〈a,b〉,那么空间两个向量a、b 的夹角的余弦cos ,||||a b a b a b ⋅〈〉=⋅。
要点诠释:1.规定:π>≤≤<b a ,02.特别地,如果0,>=<b a ,那么a 与b 同向;如果π>=<b a ,,那么a 与b 反向;如果090,>=<b a ,那么a 与b 垂直,记作b a ⊥。
空间向量的数量积

空间向量的数量积,也称为内积或点积,是数学中的一种操作,用来衡量两个向量之间的相似性和夹角关系。
在几何学和物理学中,空间向量的数量积有着广泛的应用。
空间向量的数量积定义为:A·B = |A||B|cosθ其中,A和B分别是两个空间向量,|A|和|B|是它们的模长,θ是它们之间的夹角。
从这个定义可以看出,数量积的结果是一个实数。
数量积的计算方法为:将两个向量的对应分量相乘,并将结果相加。
设A=(x1, y1, z1)和B=(x2, y2, z2)为两个向量,则它们的数量积为:A·B = x1x2 + y1y2 + z1z2数量积具有以下几个重要性质:1.交换律:A·B = B·A2.分配律:A·(B+C) = A·B + A·C3.数量积为0的条件是两个向量垂直,即A·B = 0,则A和B垂直。
4.对于非零向量A,有A·A > 0,即一个向量的数量积不为0,除非它本身是零向量。
数量积可以用来判断两个向量之间的夹角关系。
具体来说,根据数量积的定义,当夹角θ为锐角时,cosθ大于0;当夹角θ为直角时,cosθ等于0;当夹角θ为钝角时,cosθ小于0。
因此,通过计算两个向量的数量积,可以判断它们之间的夹角是锐角、直角还是钝角。
空间向量的数量积在物理学中有着广泛的应用。
例如,在力学中,我们知道力可以用向量表示。
当两个力作用在同一物体上时,它们的数量积可以告诉我们它们之间的相似性和夹角关系。
如果两个力的数量积为正值,则表示它们的方向相同,具有相似的作用;如果数量积为负值,则表示它们的方向相反,具有相抵消的作用;如果数量积为零,则表示它们垂直,没有相互作用。
此外,在几何学中,空间向量的数量积能够帮助我们求解平面和立体几何中的问题。
例如,我们可以利用数量积来求解点、直线和平面的关系,求解三角形的面积等。
数量积的计算方法简单直观,极大地方便了我们进行空间几何的计算和分析。
3.1.3空间向量的数量积运算

在四面体ABCD中,AB⊥CD,AC⊥BD,求证:AD⊥BC. 中 在四面体 ⊥ , ⊥ ,求证: ⊥ .
3.1.3空间向量的数量积运算 空间向量的数量积运算
一、两个向量的夹角
两条相交直线的夹角是指这两条直线所成的锐角或直角, 两条相交直线的夹角是指这两条直线所成的锐角或直角,即取值范 而向量的夹角可以是钝角,其取值范围是 围是(0° ° 而向量的夹角可以是钝角 其取值范围是[0° ° 围是 °,90°],而向量的夹角可以是钝角 其取值范围是 °,180°]
(1)三垂线定理及其逆定理中都出 三垂线定理及其逆定理中都出 现了四条线AB, , , , 现了四条线 ,AC,BC,l, 定理中所描述的是AC(斜线 、 斜线)、 定理中所描述的是 斜线 BC(射影 、l(面内的直线 之间的 射影)、 面内的直线 面内的直线)之间的 射影 关系. 关系. 在三垂线定理及其逆定理中, 在三垂线定理及其逆定理中, 涉及上面四条线, 涉及上面四条线,三个垂直 关系 垂线AB和平面 垂直; 和平面α ①垂线 和平面α垂直; 射影BC和直线 垂直; 和直线l垂直 ②射影 和直线 垂直; 斜线AC和直线 垂直, 和直线l垂直 ③斜线 和直线 垂直, 所以定理称为“ 所以定理称为“三垂线定 理”. (2)两个定理的区别 两个定理的区别 ①从两个定理的条件和结论上区分,三垂线定理是“线与射影垂直 从两个定理的条件和结论上区分,三垂线定理是“ 线与斜线垂直” 逆定理相反. 推出 线与斜线垂直”,逆定理相反. 从两个定理的作用上区分,三垂线定理解决已知“ ②从两个定理的作用上区分,三垂线定理解决已知“共面直线垂直 异面直线垂直” 逆定理相反. 推出 异面直线垂直”,逆定理相反.
四、空间向量数量积的运算律
与平面向量一样,空间向量的数量积满足如下运算律: 与平面向量一样,空间向量的数量积满足如下运算律:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引入
数量积运 算定义
课堂练习
思考1数量 积的性质
思考2数量 积的运算律
空间向量的数量积运算(一)
F
S
W= |F| |s| cos
根据功的计算,我们定义了平面两向量的 数量积运算.一旦定义出来,我们发现这种运 算非常有用,它能解决有关长度和角度问题.
空间向量数量积
类似地,我们可以定义空间向量的数量积运算: 1)两个向量的夹角的定义:
2
a
.
注:
性质② 是证明两向量垂直的依据;
性质③是求向量的长度(模)的依据;
运算律是否成立
(4)空间向量的数量积满足的运算律
⑴(a) b (a b)
这些运算律
⑵ a b b a (交换律)
成立,说明数量积 不仅有用,而且运
⑶ a (b c) a b a c (分配律) 算 起 来 还 极 为 方
AC
D' B'
C B
C'
解: AC AB AD AA
| AC |2 ( AB AD AA)2 | AB |2 | AD |2 | AA |2 2( AB AD AB AA AD AA) 42 32 52 2(0 10 7.5) 85
| AC | 85
A
a
A1
B1
b
B
类比平面向量,你能说 出 a b 的几何意义吗?
如 图 A1B1 是 b 在 a 方 向上的射影向量.
(3)空间两个向量的数量积性质 显然,对于非零向量 a 、b , e 是单位向
量有下列性质:
① a e a cos a, e ;
②a b ab 0;
2
③ a a a 也就是说 a
如图,已知两个非零向量 a 、b ,在空间任取
一点 O ,作 OA a , OB b ,则角 AOB 叫做向
量 a 与 b 的夹角,记作: a, b .
⑴范围: 0 ≤ a, b ≤ a a, b =0 时, a 与 b 同向;
b
a, b =π 时, a 与 b 反向
A
a
B O
b
⑵ a, b=b, a
⑶如果 a, b ,则称 a 与 b 垂直,记为 a b
2
2)两个向量的数量积 已 知 空 间 两 个 非 零 向 量 a 、b , 则
a b cosa, b 叫做 a 、b 的数量积,记作 a b .
即 a b a b cosa, b .
注:①两个向量的数量积是数量,而不是向量. ②规定:零向量与任意向量的数量积等于零.
1)若 a b 0,则 a 0,c)
()
3)
2
p
2
q
(
p q)2
( )
2
2
4) p q p q p q
( )
ABCD ABCD AB 4
AD 3 , AA 5 , BAD 90 , BAA DAA 60
A' D A
便
⑴、⑵是显然成立的
思考:你能证明分配律成立吗?
注意:数量积不满足结合律即 (a b) c a (b c)
另外 a b a c b c 及ab 0 a 0或b 0
练习运算
课堂练习
1.已知 a 2 2 , b
2 ,ab
2,
2
则 a 与b 的夹角大小为_1_3__5_.
2.判断真假: