广西北海市2021版中考数学一模试卷D卷

合集下载

广西北海市2021版中考数学试卷D卷

广西北海市2021版中考数学试卷D卷

广西北海市2021版中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·宁波期中) 下列说法正确的是()① 的相反数是;②0的倒数是0 ;③最大的负整数-1;④绝对值等于本身的数只有0A . ③④B . ①②③C . ①③D . ①②④2. (2分)下列图形中既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分) (2016八上·长春期中) 下列式子从左到右的变形中,属于因式分解的是()A . (x+1)(x﹣1)=x2﹣1B . x2﹣2x+1=x(x﹣2)+1C . a2﹣b2=(a+b)(a﹣b)D . (m﹣n)m=m2﹣mn4. (2分)(2020·温州模拟) 如右图所示,该几何体由两个圆柱分别从纵横两个方向嵌入一个正方体形成的,它的主视图是()A .B .C .D .5. (2分)下列说法错误的是()A . “伊利”纯牛奶消费者服务热线是4008169999,该十个数的中位数为7B . 服装店老板最关心的是卖出服装的众数C . 要了解全市初三近4万名学生2015年中考数学成绩情况,适宜采用全面调查D . 条形统计图能够显示每组中的具体数据,易于比较数据之间的差别6. (2分)已知m为整数,则解集可以为﹣1<x<1的不等式组是()A .B .C .D .7. (2分)在一次体育达标测试中,九年级(3)班15名男同学的引体向上成绩如下表所示:成绩(个)8911121315人数123432这15名男同学引体向上成绩的中位数众数分别是()A . 12,13B . 12,12C . 11,12D . 3,48. (2分)(2017·深圳模拟) 初三学生周末去距离学校120km的某地游玩,一部分学生乘慢车先行1小时候,另一部分学生乘快车前往,结果他们同时到达目的地,已知快车的速度是慢车的2倍,求慢车的速度,设慢车的速度是xkm/h,根据题意列方程为()A . ﹣ =1B . ﹣ =1C . + =1D . =19. (2分)(2014·河池) 平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A . AB=BCB . AC=BDC . AC⊥BDD . AB⊥BD10. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2 .其中正确的结论是()A . ①②B . ①③C . ①③④D . ①②③④二、填空题 (共8题;共9分)11. (1分)(2017·江都模拟) 2016年,扬州泰州机场升级为国际机场,全年旅客吞吐量143.7万人次.将143.7万用科学记数法表示为________.12. (1分)(2017·青浦模拟) 方程 =2的根是________.13. (1分)一个长方形的面积为a2﹣2ab+a,宽为a,则长方形的长为________14. (1分)(2017·抚州模拟) 一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为________.15. (1分) (2020九上·鼓楼期末) 一个扇形的面积为6π,半径为4,则此扇形的圆心角为________°.16. (2分)(2017·长安模拟) 如图,在边长均为1的正方形ABCD和ABEF中,顶点A,B在双曲线y1= (k1≠0)上,顶点E,F在双曲线y2= (k2≠0)上,顶点C,D分别在x轴和y轴上,则k1=________,k2=________.17. (1分)(2016·兴化模拟) 若某个圆锥的侧面积为8πcm2 ,其侧面展开图的圆心角为45°,则该圆锥的底面半径为________ cm.18. (1分) (2020七上·渭滨期末) 如图所示,第1幅图中黑点的个数为a1 ,第2幅图中黑点的个数为a2 ,第3幅图中黑点的个数为a3 ,…,以此类推,则a10=________.三、解答题 (共8题;共68分)19. (5分)(2015·金华) 计算:.20. (5分)如图,在一个长方形的木块上截下一个三角形ABC,使AB=6cm,BC=8cm,截线AC的长是多少?21. (15分)(2017·淅川模拟) 为实施“农村留守儿童关爱计划”,某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成了如下两幅不完整的统计图:(1)将该条形统计图补充完整;(2)求该校平均每班有多少名留守儿童?(3)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.22. (10分)如图,在▱ABCD中,E,F分别是AB,CD的中点,G,H分别是AF,CE的中点,连结EG,FH.(1)四边形EHFG是不是平行四边形?如果是,请给出证明;如果不是,请说明理由;(2)求四边形EHFG的面积与平行四边形ABCD的面积之比.23. (5分)某商场销售一种成本为每件20元的商品,销售过程中发现,每月销售量y(件)与销售单价x (元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设商场销售该种商品每月获得利润为w(元),写出w与x之间的函数关系式;(2)如果商场想要销售该种商品每月获得2000元的利润,那么每月成本至少多少元?(3)为了保护环境,政府部门要求用更加环保的新产品替代该种商品,商场若销售新产品,每月销售量与销售价格之间的关系与原产品的销售情况相同,新产品为每件22元,同时对商场的销售量每月不小于150件的商场,政府部门给予每件3元的补贴,试求定价多少时,新产品每月可获得销售利润最大?并求最大利润.24. (3分)(2017·天津模拟) 如图①,在矩形纸片ABCD中,AB= +1,AD= .(1)如图②,将矩形纸片向上方翻折,使点D恰好落在AB边上的D′处,压平折痕交CD于点E,则折痕AE 的长为________.(2)如图③,再将四边形BCED′沿D′E向左翻折,压平后得四边形B′C′ED′,B′C′交AE于点F,则四边形B′FED′的面积为________.(3)如图④,将图②中的△AED′绕点E顺时针旋转α角,得△A′ED″,使得EA′恰好经过顶点B,求弧D′D″的长________.(结果保留π)25. (10分) (2017八上·西湖期中) 如图,将边长为的正三角形纸片按如下顺序进行两次折叠,展开后,得折痕,(如图①),点为其交点.(1)探求到与的数量关系,并说明理由.(2)如图②,若,分别为,上的动点.①当的长度取得最小值时,求的长度.26. (15分) (2018八上·临安期末) 如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C ,以OA、OC为边在第一象限内作长方形OABC .(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2、答案:略3-1、4-1、5-1、6-1、7-1、8、答案:略9-1、10-1、二、填空题 (共8题;共9分)11、答案:略12-1、13-1、14-1、15-1、16-1、17、答案:略18-1、三、解答题 (共8题;共68分)19-1、20-1、21-1、21-2、21-3、22-1、22-2、23-1、24-1、24-2、24-3、25-1、25-2、26、答案:略第11 页共11 页。

2021年广西北海市中考数学一模试卷(含解析)

2021年广西北海市中考数学一模试卷(含解析)

2021年广西北海市中考数学一模试卷一、选择题(共12小题).1.﹣2021的相反数是()A.﹣2021B.﹣C.D.20212.下列图形是中心对称图形的是()A.B.C.D.3.据测算,我国每年因沙漠造成的直接经济损失超过5400000万元,将数据5400000用科学记数法表示为()A.0.54×107B.54×105C.5.4×106D.5.4×1084.下列运算正确的是()A.x5÷x3=x2B.(a+b)2=a2+b2C.(﹣2a2)3=6a6D.(b+a)(a﹣b)=b2﹣a25.如图,现将一块三角板含有60°角的顶点放在直尺的一边上,若∠1=85°,那么∠2的度数为()A.25°B.35°C.45°D.55°6.下列说法正确的是()A.打开电视,正在播放新闻联播是必然事件B.了解中央电视台《开学第一课》的收视率适合采用全面调查C.北海气象局预报说“明天的降水概率为95%”,意味着北海明天一定下雨D.若甲、乙两组数据中各有20个数据,两组数据的平均数相等,方差S甲2=1.25,S乙2=0.96,则说明乙组数数据比甲组数据稳定7.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=2,DB=4,则的值为()A.B.C.D.8.如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,适当长度(大于BC长的一半)为半径作圆弧,两弧相交于点M和N;②作直线MN交AB于点D,连接CD.若AB=9,AC=4,则△ACD的周长是()A.12B.13C.17D.189.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.10.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三;问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为()A.B.C.D.11.如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为()A.24﹣3+3πB.24﹣3﹣3πC.24﹣9﹣3πD.24﹣9+3π12.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.8C.10D.二、填空题(本大题共6小题,每小题3分,共18分)13.因式分解:3x2﹣12=.14.若代数式在实数范围内有意义,则x的取值范围是.15.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=5,则菱形ABCD的周长为.16.一组数据共50个,分为6组,第1﹣4组的频数分别是5,7,8,10,第5组的频率是0.20,那么第6组的频数是.17.古希腊数学家把数1,3,6,10,15,21…叫做三角数,它有一定的规律性,若把第一个三角数记为a1,第二个三角数记为a2,…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…,由此推算a2020+a2021=.18.如图,在Rt△ABC中,∠BAC=90°,∠ACB=45°,AB=2,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或演算步骤)19.计算:()﹣1﹣2cos30°+|﹣|﹣(4﹣π)0.20.先化简,再求值:﹣,其中a=﹣5.21.如图,在平面直角坐标系中,每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1,并写出C1点的坐标;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,并写出B2点的坐标.22.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:△AEF≌△DEB;(2)若∠BAC=90°,求证:四边形ADCF是菱形.23.为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级平均数众数中位数8分及以上人数所占百分比七年级7.5a745%八年级7.58b c 根据以上信息,解答下列问题:(1)直接写出上述表中的a,b,c的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?24.在抗击“新冠肺炎”战役中,某公司接到转产生产1440万个医用防护口罩补充防疫一线需要的任务,临时改造了甲、乙两条流水生产线.试产时甲生产线每天的产能(每天的生产的数量)是乙生产线的2倍,各生产80万个,甲比乙少用了2天.(1)求甲、乙两条生产线每天的产能各是多少?(2)若甲、乙两条生产线每天的运行成本分别是1.2万元和0.5万元,要使完成这批任务总运行成本不超过40万元,则至少应安排乙生产线生产多少天?(3)正式开工满负荷生产3天后,通过技术革新,甲生产线的日产能提高了50%,乙生产线的日产能翻了一番.再满负荷生产13天能否完成任务?25.筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋》中写道:“水能利物,轮乃曲成”.如图,半径为3m的筒车⊙O按逆时针方向每分钟转圈,筒车与水面分别交于点A、B,筒车的轴心O距离水面的高度OC长为2.2m,筒车上均匀分布着若干个盛水筒.若以某个盛水筒P刚浮出水面时开始计算时间.(1)经过多长时间,盛水筒P首次到达最高点?(2)浮出水面3.4秒后,盛水筒P距离水面多高?(3)若接水槽MN所在直线是⊙O的切线,且与直线AB交于点M,MO=8m.求盛水筒P从最高点开始,至少经过多长时间恰好在直线MN上.(参考数据:cos43°=sin47°≈,sin16°=cos74°≈,sin22°=cos68°≈)26.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12小题,每小题3分,共36分。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广西北海市2021版中考数学一模试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) 2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中“450亿”用科学记数法表示为()元A . 4.5×1010B . 4.5×109C . 4.5×108D . 0.45×1082. (2分)(2019·南山模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分) (2016八上·思茅期中) 如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A . 360°B . 250°C . 180°D . 140°4. (2分)一元二次方程x2-2x-1=0,经过配方可变形为()A . (x+1)2=0B . (x-1)2=0C . (x+1)2=2D . (x-1)2=25. (2分) (2020七上·德城期末) 如果有一个正方体,它的展开图可能是下列四个展开图中的A .B .C .D .6. (2分)(2017·安徽模拟) 设△ABC的一边长为x,这条边上的高为y,y与x满足的反比例函数关系如图所示.当△ABC为等腰直角三角形时,x+y的值为()A . 4B . 5C . 5或3D . 4或37. (2分)(2011·衢州) 一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角∠ACB=45°,则这个人工湖的直径AD为()A .B .C .D .8. (2分)-5的倒数是A .B . 5C .D . -59. (2分)如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A . ﹣3≤y≤3B . 0≤y≤2C . 1≤y≤3D . 0≤y≤310. (2分)已知样本数据1、2、4、3、5,下列说法错误的是()A . 平均数是3B . 中位数是4C . 极差是4D . 方差是2二、填空题 (共6题;共7分)11. (1分)因式分解:3x2﹣12x+12=________12. (1分)已知△ABC与△DEF相似且面积的比为4:9,则△ABC与△DEF的周长比为________ .13. (1分)计算(a+b)(a2﹣ab+b2)=________14. (1分)在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是________.15. (1分)(2017·汉阳模拟) 如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y=(k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为________.16. (2分) (2017九上·西城期中) 阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作图的切线。

已知:P为圆O外一点。

求作:经过点P的圆O的切线。

小敏的作法如下:①连接OP,作线段OP的垂直平分线MN交OP于点C;②以点C为圆心,CO的长为半径作圆交圆O于A、B两点;③作直线PA、PB,所以直线PA、PB就是所求作的切线。

老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是________;由此可证明直线PA,PB都是⊙O的切线,其依据是________三、解答题 (共13题;共136分)17. (10分)计算。

(1)计算:•cos30°﹣2×()﹣1+|﹣2|+(﹣1)0(2)化简:﹣.18. (10分) (2020八下·西安月考) 解下列不等式(组),并把解集表示在数轴上。

(1)(2)19. (5分) (2015八上·宜昌期中) 如图,已知BE=CF,AB∥CD,AB=CD.求证:AF∥DE.20. (5分)已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1 , x2 .⑴求k的取值范围;⑵若|x1+x2|=x1x2-1,求k的值.21. (10分) (2017七下·博兴期末) 已知y=kx+b,当x=1时,y=-2;当x=-1时,y=4.(1)求k、b的值;(2)当x取何值时,y的值小于10?22. (5分)生物专家们想了解一下某种鸟类在该区的数量,首先他们捕捉了60只鸟,作上标记,放回大自然,过了几天,他们又随意捕捉了80只,发现有4只带标记的鸟,你能估计一下该地区有多少只鸟吗?23. (10分) (2017八下·江都期中) 已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=4,∠BCD=120°,求四边形AODE的面积.24. (10分)(2017·天门) 近几年,随着电子商务的快速发展,“电商包裹件”占“快递件”总量的比例逐年增长,根据企业财报,某网站得到如下统计表:年份2014201520162017(预计)快递件总量(亿件)140207310450电商包裹件(亿件)98153235351(1)请选择适当的统计图,描述2014﹣2017年“电商包裹件”占当年“快递件”总量的百分比(精确到1%);(2)若2018年“快递件”总量将达到675亿件,请估计其中“电商包裹件”约为多少亿件?25. (15分)(2018·潜江模拟) 如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.(1)求证:AC平分∠DAB;(2)过点O作线段AC的垂线OE,垂足为E(要求:尺规作图,保留作图痕迹,不写作法);(3)若CD=4,AC=4 ,求垂线段OE的长.26. (10分)李老师为锻炼身体一直坚持步行上下班.已知学校到李老师家总路程2000米.一天,李老师下班后,以45米/分的速度从学校往家走,走到离学校900米时,正好遇到一个朋友,停下来聊了半小时,之后以110米/分的速度走回了家.李老师回家过程中,离家的路程S(米)与所用时间t(分)之间的关系如图所示.(1)求a、b、c的值;(2)求李老师从学校到家的总时间.27. (15分) (2016七下·罗山期中) 如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣4,2)、(1,﹣4),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发,以个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的?若存在,求t的值并求此时点P的坐标;若不存在说明理由.28. (11分)(2017·润州模拟) 已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:________.(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA•PB=k•AB.29. (20分) (2017九上·鄞州竞赛) 如图1,BA⊥MN,垂足为A,BA=4,点P是射线AN上的一个动点(不与点A重合),∠BPC=∠BPA,BC⊥BP,过点C作CD⊥MN,垂足为D,设AP=x(1) CD的长度是否随着x的变化而变化?若变化,用含x的代数式表示CD的长度;若不变化,求出线段CD 的长度;(2)△PBC的面积是否存在最小值?若存在,请求出这个最小值,并求出此时的x的值;若不存在,请说明理由;(3)当x取何值时,△ABP和△CDP相似;(4)如图2,当以C为圆心,以CP为半径的圆与线段AB有公共点时,求x的值。

参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共13题;共136分)17-1、17-2、18-1、18-2、19-1、20-1、21-1、21-2、22-1、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、27-1、27-2、27-3、28-1、28-2、28-3、29-1、29-2、29-3、29-4、。

相关文档
最新文档