MAX1792EUA50-T中文资料
MAX1600中文资料
MAX157AMJA -55°C to +125°C MAX157BMJA -55°C to +125°C MAX159ACUA 0°C to +70°C MAX159BCUA 0°C to +70°C MAX159ACPA 0°C to +70°C MAX159BCPA 0°C to +70°C MAX159AEUA -40°C to +85°C MAX159BEUA -40°C to +85°C MAX159AEPA MAX159BEPA MAX159AMJA MAX159BMJA -40°C to +85°C -40°C to +85°C -55°C to +125°C -55°C to +125°C
Mቤተ መጻሕፍቲ ባይዱX157/MAX159
Ordering Information
PART TEMP. RANGE 0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C PINPACKAGE 8 µMAX 8 µMAX 8 Plastic DIP 8 Plastic DIP 8 µMAX 8 µMAX 8 Plastic DIP 8 Plastic DIP 8 CERDIP* 8 CERDIP* 8 µMAX 8 µMAX 8 Plastic DIP 8 Plastic DIP 8 µMAX 8 µMAX 8 Plastic DIP 8 Plastic DIP 8 CERDIP* 8 CERDIP* INL (LSB) ±0.5 ±1 ±0.5 ±1 ±0.5 ±1 ±0.5 ±1 ±0.5 ±1 ±0.5 ±1 ±0.5 ±1 ±0.5 ±1 ±0.5 ±1 ±0.5 ±1
S-817A50中文资料
2
Seiko Instruments Inc.
元器件交易网
Rev.1.1
ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series
n Electrical Characteristics
1. S-817AXXANB Item
Table 4 Electrical Characteristics
元器件交易网
Contents
Features......................................................... 1 Applications ...................................................1 Block Diagram ...............................................1 Selection Guide..............................................2 Pin Assignment ..............................................2 Absolute Maximum Ratings............................2 Electrical Characteristics ................................3 Test Circuits...................................................4 Standard Circuit .............................................4 Technical Terms ............................................4 Operation .......................................................6 Selection of Output Capacitor (CL).................6 Applied circuit ................................................7 Design Considerations ...................................9 Typical Performance Curves ........................ 10 Transient Response Characteristics ............. 14 Dimensions, Taping ..................................... 19 Frequently Asked Questions........................22
天微UCC28950-Q1维度同步 Comparator Datasheet说明书
-+-V UCC28950-Q1ZHCS225A –APRIL 2011–REVISED JULY 2012支持同步整流的相移全桥控制器查询样品:UCC28950-Q1特性•V DD 欠压闭锁•宽温度范围,-40°C 至125°C•符合汽车应用要求•具有符合AEC-Q100的下列结果:应用范围–器件温度1级:-40°C 至125°C 的环境运行温•相移全桥转换器度范围•工业电源系统–器件人体模型(HBM)静电放电(ESD)分类等级H2•高密度电源架构–器件充电器件模型(CDM)ESD 分类等级C3B •太阳能逆变器和电动车辆•增强型宽范围谐振零电压开关(ZVS)功能说明•直接同步整流器(SR)控制UCC28950-Q1增强型相移控制器基于德州仪器(TI)•轻负载效率管理包括:的改进型工业标准UCCx895相移控制器系列产品,所–突发模式运行做出的改进提供了当前高效电源系统中同类产品中最佳–断续导通模式(DCM),支持可编程阈值的动态效率。
UCC28950-Q1在对同步整流器输出级进行有SR 开关控制效控制的同时执行对全桥的高级控制。
–可编程自适应延迟•支持可编程斜坡补偿和电压模式控制的平均或者峰初级侧信号允许可编程延迟以确保宽负载电流和输入电值电流模式控制压范围内的ZVS 运行,而负载电流自然调整同步整流•闭环路软启动和使能功能器的次级侧开关延迟,从而大大提升了整体系统效率。
•支持双向同步的高达1MHz 的可编程开关频率•(±3%)支持断续模式的逐周期电流限制保护•150µA 启动电流UCC28950-Q1典型应用Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.UCC28950-Q1ZHCS225A–APRIL2011–REVISED These devices have limited built-in ESD protection.The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.说明(续)UCC28950-Q1还提供多重轻负载管理特性,其中包括进入和退出断续电流模式(DCM)运行时的突发模式模式和动态SR开/关控制,从而确保将ZVS运行扩展至更轻的负载。
MEMORY存储芯片MAX823TEUK+T中文规格书
Manual Reset Input Many μP-based products require manual reset capabil -ity, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic low on MR asserts reset. Reset remains asserted while MR is low, and for the Reset Active Timeout Period (t RP ) after MR returns high. This input has an internal 20kΩ pull-up resistor, so it can be left open if it is not used. MR can be driven with TTL or CMOS-logic levels, or with open-drain/collector outputs. Connect a normally open momentary switch from MR to GND to create a manual-reset function; external debounce circuitry is not required. If MR is driven from long cables or if the device is used in a noisy environment, connecting a 0.1μF capacitor from MR to ground provides additional noise immunity.Reset Threshold Accuracy The MAX811/MAX812 are ideal for systems using a 5V ±5% or 3V ±5% power supply with ICs specified for 5V ±10% or 3V ±10%, respectively. They are designed to meet worst-case specifications over temperature. The reset is guaranteed to assert after the power supplyfalls out of regulation, but before power drops below theminimum specified operating voltage range for the systemICs. The thresholds are pre-trimmed and exhibit tight dis -tribution, reducing the range over which an undesirable reset may occur.PINNAME FUNCTION MAX811MAX81211GND Ground 2—RESET Active-Low Reset Output. RESET remains low while V CC is below the reset threshold or while MR is held low. RESET remains low for the Reset Active Timeout Period (t RP ) after the reset conditions are terminated.—2RESET Active-High Reset Output. RESET remains high while V CC is below the reset threshold or while MR is held low. RESET remains high for Reset Active Timeout Period (t RP ) after the reset conditions are terminated.33MR Manual Reset Input. A logic low on MR asserts reset. Reset remains asserted as long as MR is low and for 180ms after MR returns high. This active-low input has an internal 20kΩ pull-up resistor. It can be driven from a TTL or CMOS-logic line, or shorted to ground with a switch. Leave open if unused.44V CC +5V, +3.3V, or +3V Supply Voltage Detailed DescriptionReset OutputA microprocessor’s (μP’s) reset input starts the μP in aknown state. These μP supervisory circuits assert resetto prevent code execution errors during power-up, power-down, or brownout conditions.RESET is guaranteed to be a logic low for V CC > 1V.Once V CC exceeds the reset threshold, an internal timerkeeps RESET low for the reset timeout period; after thisinterval, RESET goes high.If a brownout condition occurs (V CC dips below the resetthreshold), RESET goes low. Any time V CC goes belowthe reset threshold, the internal timer resets to zero, andRESET goes low. The internal timer starts after V CC returns above the reset threshold, and RESET remainslow for the reset timeout period.The manual reset input (MR ) can also initiate a reset. See the Manual Reset Input section.The MAX812 has an active-high RESET output that is theinverse of the MAX811’s RESET output.MAX811/MAX8124-Pin μP Voltage Monitorswith Manual Reset InputPin DescriptionTerminal Voltage (with respect to GND)V CC.....................................................................-0.3V to 6.0V All Other Inputs .....................................-0.3V to (V CC + 0.3V) Input Current, V CC, MR......................................................20mA Output Current, RESET or RESET ....................................20mA Continuous Power Dissipation (T A = +70°C)SOT143 (derate 4mW/°C above +70°C) .....................320mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range ............................-65°C to +160°C Lead Temperature (soldering, 10sec) .............................+300°C(V CC = 5V for L/M versions, V CC = 3.3V for T/S versions, V CC = 3V for R version, T A = -40°C to +85°C, unless otherwise noted. Typical values are at T A = +25°C.) (Note 1)PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITSOperating Voltage Range V CC T A = 0°C to +70°C 1.0 5.5V T A = -40°C to +85°C 1.2Supply Current I CC MAX81_L/M, V CC = 5.5V, I OUT = 0615µA MAX81_R/S/T, V CC = 3.6V, I OUT = 0 2.710Reset Threshold V TH MAX81_LT A = +25°C 4.54 4.63 4.72V T A = -40°C to +85°C 4.50 4.75MAX81_MT A = +25°C 4.30 4.38 4.46T A = -40°C to +85°C 4.25 4.50MAX81_TT A = +25°C 3.03 3.08 3.14T A = -40°C to +85°C 3.00 3.15MAX81_ST A = +25°C 2.88 2.93 2.98T A = -40°C to +85°C 2.85 3.00MAX81_RT A = +25°C 2.58 2.63 2.68T A = -40°C to +85°C 2.55 2.70Reset Threshold Tempco30ppm/°CV CC to Reset Delay (Note 2)V OD = 125mV, MAX81_L/M40µs V OD = 125mV, MAX81_R/S/T20Reset Active Timeout Period t RP V CC = V TH(MAX)140560ms MR Minimum Pulse Width t MR10µs MR Glitch Immunity (Note 3)100ns MR to Reset PropagationDelay (Note 2)t MD0.5µsMR Input Threshold V IHV CC > V TH(MAX), MAX81_L/M2.3V V IL0.8V IHV CC > V TH(MAX), MAX81_R/S/T0.7 x V CCV IL0.25 x V CCMR Pull-Up Resistance102030kΩRESET Output Voltage (MAX812)V OH I SOURCE = 150µA, 1.8V < V CC < V TH(MIN)0.8 x V CCV V OLMAX812R/S/T only, I SINK = 1.2mA,V CC = V TH(MAX)0.3MAX812L/M only, I SINK = 3.2mA,V CC = V TH(MAX)0.4MAX811/MAX8124-Pin μP Voltage Monitorswith Manual Reset Input Absolute Maximum RatingsStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Electrical Characteristics。
MEMORY存储芯片MAX490EESA+T中文规格书
Cs 100pF
STORAGE CAPACITOR
Figure 4. Human Body ESD Test Model
RC 50M to 100M RD 330Ω
CHARGE CURRENT LIMIT RESISTOR
DISCHARGE RESISTANCE
HIGHVOLTAGE
4
3
5
DI
put Z high. Similarly, a high on DI forces output Y high
and output Z low.
5
4
6, 7
GND
Ground
—
5
9
Y
Noninverting Driver Output
—
6
10
Z
Inverting Driver Output
______________________________________________________________Pin Description
PIN
MAX481E/MAX483E MAX485E/MAX487E
MAX1487E
MAX488E MAX490E
MAX489E MAX491E
NAME
TIME
tDL CURRENT WAVEFORM
Figure 5. Human Body Model Current Waveform
I 100% 90%
IPEAK
DEVICE UNDER TEST
10%
tr = 0.7ns to 1ns
t
30ns
60ns
Figure 7. IEC1000-4-2 ESD Generator Current Waveform
MAX999EUK-T中文资料
TOP VIEW
Q1 GND 2
MAX999
5 VCC
IN+ 3
4 IN-
SOT23-5 Pin Configurations continued at end of data sheet.
________________________________________________________________ Maxim Integrated Products 1
— — — — — — — — ACAB
PART NO. OF COMPARATORS COMPLEMENTARY OUTPUT SHUTDOWN LATCH ENABLE PACKAGE
__________________Pin Configurations
MAX961
1
MAX962
2
MAX963
PART
TEMP RANGE
PINPACKAGE
SOT TOP MARK
MAX961ESA -40°C to +85°C 8 SO
—
MAX961EUA MAX962ESA MAX962EUA MAX963ESD MAX964ESE MAX964EEE MAX997ESA MAX997EUA MAX999EUK-T
2
MAX964
4
MAX997
1
MAX999
1
Yes Yes Yes 8 SO/µMAX
No
No
No 8 SO/µMAX
Yes Yes Yes 14 SO
No
Yes
No 16 SO/QSOP
No
Yes
No 8 SO/µMAX
No
XC8111AA010R Evaluation Board User Manual
XC8111AA010R Evaluation Board
6Vmax, 1A Load switch IC with ideal diode function
Evaluation Board Picture
Evaluation Board SPEC
PARAMETER
SYMBOL
・ Input Voltage Range
・・・・・・・・・・・・・・・・・・
・ Max Output Current
・・・・・・・・・・・・・・・・・・
1.5V ~ 6.0V 1000mA
・ Ideal Diode function Forward Voltage Quiescent Current Stand-by Current
Iin Vin
A
Multimeter
V
Multimeter
Active Stand-by
: CE="H" (1.2V~6.0V) : CE="L" (0V~0.3V)
Vout
A Iout
Multimeter
V
Multimeter
Rout
XC8111AA010-EVB-01
2/5
www.torex.co.jp
VOUT
1.5V ~ 6.0V
Output Current
1.5V ≦ VIN ≦ 1.7V
(Ta =25℃ )
1.7V < VIN ≦ 6.0V
IOUT
MIN. 1.5
0.0
1.5
0.0 -
TYP. -
-
-
-
MAX. 6.0 6.0
MAX1978中文数据手册
用于Peltier模块的集成温度控制器概论MAX1978 / MAX1979是用于Peltier热电冷却器(TEC)模块的最小, 最安全, 最精确完整的单芯片温度控制器。
片上功率FET和热控制环路电路可最大限度地减少外部元件, 同时保持高效率。
可选择的500kHz / 1MHz开关频率和独特的纹波消除方案可优化元件尺寸和效率, 同时降低噪声。
内部MOSFET的开关速度经过优化, 可降低噪声和EMI。
超低漂移斩波放大器可保持±0.001°C的温度稳定性。
直接控制输出电流而不是电压, 以消除电流浪涌。
独立的加热和冷却电流和电压限制提供最高水平的TEC保护。
MAX1978采用单电源供电, 通过在两个同步降压调节器的输出之间偏置TEC, 提供双极性±3A输出。
真正的双极性操作控制温度, 在低负载电流下没有“死区”或其他非线性。
当设定点非常接近自然操作点时, 控制系统不会捕获, 其中仅需要少量的加热或冷却。
模拟控制信号精确设置TEC 电流。
MAX1979提供高达6A的单极性输出。
提供斩波稳定的仪表放大器和高精度积分放大器, 以创建比例积分(PI)或比例积分微分(PID)控制器。
仪表放大器可以连接外部NTC或PTC热敏电阻, 热电偶或半导体温度传感器。
提供模拟输出以监控TEC温度和电流。
此外, 单独的过热和欠温输出表明当TEC温度超出范围时。
片上电压基准为热敏电阻桥提供偏置。
MAX1978 / MAX1979采用薄型48引脚薄型QFN-EP 封装, 工作在-40°C至+ 85°C温度范围。
采用外露金属焊盘的耐热增强型QFN-EP封装可最大限度地降低工作结温。
评估套件可用于加速设计。
应用光纤激光模块典型工作电路出现在数据手册的最后。
WDM, DWDM激光二极管温度控制光纤网络设备EDFA光放大器电信光纤接口ATE特征♦尺寸最小, 最安全, 最精确完整的单芯片控制器♦片上功率MOSFET-无外部FET♦电路占用面积<0.93in2♦回路高度<3mm♦温度稳定性为0.001°C♦集成精密积分器和斩波稳定运算放大器♦精确, 独立的加热和冷却电流限制♦通过直接控制TEC电流消除浪涌♦可调节差分TEC电压限制♦低纹波和低噪声设计♦TEC电流监视器♦温度监控器♦过温和欠温警报♦双极性±3A输出电流(MAX1978)♦单极性+ 6A输出电流(MAX1979)订购信息* EP =裸焊盘。
德州仪器DS21458DK评估板用户手册说明书
GENERAL DESCRIPTIONThe DS21458DK is an easy-to-use evaluation board for the DS21458 quad T1/E1/J1 transceiver. The DS21458DK is intended to be used as a daughter card with the DK101 motherboard or the DK2000 motherboard. The DS21458DK comes complete with a DS21458 quad SCT, transformers, termination resistors, configuration switches, line-protection circuitry, network connectors, and motherboard connectors. The DK101/DK2000 motherboard and Dallas’ ChipView software give point-and-click access to configuration and status registers from a Windows -based PC. On-board LEDs indicate receive loss-of-signal and interrupt status. An on-board FPGA contains mux logic to connect framer ports to one another or to the DK2000 in a variety of configurations.Each DS21458DK is shipped with a free DK101 motherboard. For complex applications, the DK2000 high-performance demo kit motherboard can be purchased separately.Windows is a registered trademark of Microsoft Corp.DESIGN KIT CONTENTSDS21458DK Design Kit Daughter CardDK101 Low-Cost MotherboardCD ROMChipView SoftwareDS21458DK Data SheetDK101 Data SheetDS21458 Data Sheet FEATURESDemonstrates Key Functions of DS21458 Quad T1/E1/J1 TransceiverIncludes DS21458 Quad LIU, Transformers, BNC and RJ45 Network Connectors, andTermination PassivesCompatible with DK101 and DK2000 Demo Kit MotherboardsDK101/DK2000 and ChipView Software Provide Point-and-Click Access to the DS21458 RegisterSetAll Equipment-Side Framer Pins are Easily Accessible for External Data Source/SinkMemory-Mapped FPGA Provides Flexible Clock/Data/Sync Connections Among FramerPorts and DK2000 MotherboardLEDs for Loss-of-Signal and Interrupt StatusEasy-to-Read Silk Screen Labels Identify the Signals Associated with all Connectors, Jumpers,and LEDsNetwork Interface Protection for Overvoltage and Overcurrent EventsORDERING INFORMATIONPART DESCRIPTION DS21458DKDS21458 Design Kit Daughter Card(with included DK101 Motherboard)DS21458DK Quad T1/E1/J1 TransceiverCOMPONENT LISTDESIGNATION QTYDESCRIPTIONSUPPLIERPARTC1–C8 8 0.22µF, 50V ceramic capacitors Panasonic PCF1152CT-ND C9, C10, C12, C18, C22–C33, C35, C38–C43 23 0.1µF 10%, 16V ceramic capacitors (0603) Phycomp 06032R104K7B20D C11, C13–C15 4 0.1µF 10%, 25V ceramic capacitors (1206) Panasonic ECJ-3VB1E104K C16, C17, C19–C21, C34, C36, C45, C46 9 1µF 10%, 16V ceramic capacitors (1206) Panasonic ECJ-3YB1C105K C37, C44 2 10µF 20%, 10V ceramic capacitors (1206)Panasonic ECJ-3YB1A106MCH1 1 Quad-port choke PulseEngineering T8132DS1 1 LED, red, SMD Panasonic LN1251C DS2–DS6 5 LED, green, SMD Panasonic LN1351C F1–F16 16 1.25A, 250V fuses, SMTTeccor F1250T J1 1 10-pin connectors, dual row, vertical Digi-Key S2012-05-ND J2–J985-pin BNC connectors, verticalCambridgeCP-BNCPC-004J10 18-pin, 4-port jackRight-angle RJ45 Molex 43223-8140 J11, J12250-pin sockets, SMD, dual row, verticalSamtecTFM-125-02-S-D-LCJ13 112-pin connector, dual row, verticalNot populated Digi-Key S2012-06-ND J1411Mbit flash-based configuration memoryXilinx XCF01SV020C PRT1–PRT4 4 6-pin through-hole slide switches DPDT TycoSSA22R1, R2, R4, R26,R39, R41, R45 7 10k Ω 5%, 1/10W resistors (0805)Panasonic ERJ-6GEYJ103V R3, R27 2 1.0k Ω 5%, 1/10W resistors (0805) Panasonic ERJ-6GEYJ102V R5–R12, R14–R21, R48 17 0Ω 5%, 1/8W resistors (1206)Panasonic ERJ-8GEYJ0R00V R13, R47 2 Not populated Panasonic Not populatedR22–R25 4 51.1Ω 5%, 1/10W resistors (0805) Panasonic ERJ-6GEY51R1V R29–R36 8 61.9Ω 1%, 1/8W resistors (1206) Panasonic ERJ-8ENF61R9V R40, R42–R44,R46, R496 330Ω 5%, 1/10W MF resistors (0805)Panasonic ERA-6GEY331V T1 1SMT 32-pin octal T1/E1 transformer,transmit/receive, 1:2PulseEngineeringTX1473U1 12.5V FPGA Spartan (Xilinx)144-pin TQFPXilinx XC2S50-5TQ144C U2 13.3V T1/E1/J1 quad transceiver0°C to +70°C, 256-pin BGA DallasSemiconductorDS21458U3 11M PROM for FPGA44-pin TQFP Xilinx Not populated U4 18-pin µMAX, SO2.5V or AdjMaxim MAX1792EUA25 Z1–Z8 850A, 6V SidactorDO214 SMDTeccor P0080SAMC Z9–Z16 8500A, 25V SidactorDO214 SMDTeccor P0300SCMC Z17–Z32 16500A, 170V SidactorDO214 SMDTeccor P1800SCMCBOARD FLOORPLANBASIC CONFIGURATIONThis design kit relies upon several supporting files, which are available for downloading on our website at /telecom. See the DS21458DK QuickView data sheet for these files.Hardware ConfigurationUsing the DK101 Processor Board:· Connect the daughter card to the DK101 processor board.· Supply 3.3V to the banana-plug receptacles marked GND and VCC_3.3V. (The external 5V connector is unused. Additionally, the TIM 5V supply headers are unused.)· All processor board DIP switch settings should be in the ON position with exception of the flash programming switch, which should be OFF.· From the Programs menu, launch the host application named ChipView.EXE. Run the ChipView application. If the default installation options were used, click the Start button on the Windows toolbar and select Programs ®ChipView ® ChipView.Using the DK2000 Processor Board:· Connect the daughter card to the DK2000 processor board.· Connect J1 to the power supply that is delivered with the kit. Alternately, a PC power supply may be connected to connector J2.· From the Programs menu, launch the host application named ChipView.EXE. Run the ChipView application. If the default installation options were used, click the Start button on the Windows toolbar and select Programs ®ChipView ® ChipView.General· Upon power-up, the RLOS LEDs (green) will not be lit, the INT LED (red) will not be lit, but the FPGA Status LED (green) will be lit.· When operating in E1 mode, slide SW1–SW4 to E1 Mode (grounding the BNC shell). When operating in T1 mode, slide SW1–SW4 to T1 Mode.Miscellaneous· Clock frequencies and certain pin bias levels are provided by a register-mapped FPGA that is on the DS21458 daughter card.· The definition file for this FPGA is named DS21458DC_FPGA.def. See Table 2 for the FPGA Register Map definitions. A drop-down menu on the top of the screen allows for switching between definition files.· All files referenced above are available for download as described in the Basic Configuration section.Quick Setup (Demo Mode)· The PC will load ChipView offering a choice among DEMO MODE, REGISTER VIEW, and TERMINAL MODE.Select Demo Mode.· The program will request a configuration file. Select among the displayed files, which are DS2155_E1_DSNCOM_DRVR.cfg or DS2155_T1_DSNCOM_DRVR.cfg.· The Demo Mode screen will appear. Upon external loopback the RLOS indicators will turn green.· Note: Demo Mode interacts with the device driver, which resides in the DK101/DK2000 firmware. The current implementation of this driver is for one device. As such, the demo mode will only interact with Port 1. With minor changes, the device driver is extendible to N devices.Quick Setup (Register View)· The PC will load ChipView offering a choice among DEMO MODE, REGISTER VIEW, and TERMINAL MODE.Select Register View.· The program will request a definition file. Select DS21458DC_FPGA.def through the Links section. This will also load DS21458DC.def.· The Register View Screen will appear, showing the register names, acronyms, and values for the DS21458. · Predefined Register settings for several functions are available as initialization files.- INI files are loaded by selecting the menu File®Reg Ini File®Load Ini File.- Load the INI file DS21458_T1_BERT_ESF.ini.- After loading the INI file, the following may be observed:o The RLOS LEDs turns green upon external loopback.o All four ports of the DS21458 begin transmitting a Daly pattern. When external loopback is applied, the BERT bit count registers BBC1 to BBC3 and BEC1 to BEC3 may be updated by clearing and settingBC1.LC and clicking the ‘Read All’ button.ADDRESS MAPDK101 daughter card address space begins at 0x81000000DK2000 daughter card address space begins at:0x30000000 for slot 00x40000000 for slot 10x50000000 for slot 20x60000000 for slot 3All offsets given below are relative to the beginning of the daughter card address space (shown above).Table 1. Daughter Card Address MapOFFSET DEVICE DESCRIPTION0X0000to0X0015FPGA Board identification and clock/signal routing0X1000to 0X10ffT1/E1/J1Transceiver #1DS21458 T1/E1/J1 transceiver, port 10X1100to 0X11ffT1/E1/J1Transceiver #2DS21458 T1/E1/J1 transceiver, port 20X1200to 0X12ffT1/E1/J1Transceiver #3DS21458 T1/E1/J1 transceiver, port 30X1300to0X13ffT1/E1/J1Transceiver #4DS21458 T1/E1/J1 transceiver, port 4Registers in the FPGA can be easily modified using the ChipView host-based user-interface software along with the definition file named “DS21458DC_FPGA.def.”FPGA REGISTER MAPTable 2. FPGA Register MapOFFSET NAME TYPE DESCRIPTION0X0000 BID Read Only BOARD ID0X0002 XBIDH Read Only HIGH NIBBLE EXTENDED BOARD ID0X0003 XBIDM Read Only MIDDLE NIBBLE EXTENDED BOARD ID0X0004 XBIDL Read Only LOW NIBBLE EXTENDED BOARD ID0X0005 BREV Read Only BOARD FAB REVISION0X0006 AREV Read Only BOARD ASSEMBLY REVISION0X0007 PREV Read Only PLD REVISION0X0011 MCSR Control DS21458 MCLK Pin Source0X0012 TCSR Control DS21458 TCLK Pin Source0X0013 SYSCLKT Control DS21458 TSYSCLK Pin Setting0X0014 SYSCLKR Control DS21458 RSYSCLK Pin Setting0X0015 SYNC1 Control DS21458 TSYNC Source0X0016 SYNC2 Control DS21458 TSSYNC Source0X0017 SYNC3 Control DS21458 RSYNC SourceSource0X0018 TSERS Control TSER0X0019 PRSER Control PCM RSER SourceSourceRSYNC/TSYNC0X001A PSYNC Control PCM0X001B PCLK Control PCM RCLK/TCLK SourceID REGISTERSBID: BOARD ID (Offset = 0X0000)BID is read only with a value of 0xD.XBIDH: HIGH NIBBLE EXTENDED BOARD ID (Offset = 0X0002)XBIDH is read only with a value of 0x0.XBIDM: MIDDLE NIBBLE EXTENDED BOARD ID (Offset = 0X0003)XBIDM is read only with a value of 0x1.XBIDL: LOW NIBBLE EXTENDED BOARD ID (Offset = 0X0004)XBIDL is read only with a value of 0x6.BREV: BOARD FAB REVISION (Offset = 0X0005)BREV is read only and displays the current fab revision.AREV: BOARD ASSEMBLY REVISION (Offset = 0X0006)AREV is read only and displays the current assembly revision. PREV: PLD REVISION (Offset = 0X0007)PREV is read only and displays the current PLD firmware revision.CONTROL REGISTERSRegister Name: MCSRRegister Description: DS21458 MCLK Pin SourceRegister Offset: 0x0011# 7 6 5 4 3 2 1 0 BitMSRCAMSRCBName — — — — — —Default — — — — — — 1 1Bit 0: DS21458 Port 1 and 3 MCLK Source (MSRCA)0 = Connect MCLK 1 (controls port 1 and 3) to the 1.544MHz clock1 = Connect MCLK 1 (controls port 1 and 3) to the 2.048MHz clockBit 1: DS21458 Port 2 and 4 MCLK Source (MSRCA)0 = Connect MCLK 2 (controls port 2 and 4) to the 1.544MHz clock1 = Connect MCLK2 (controls port 2 and 4) to the 2.048MHz clockRegister Name: TCSRRegister Description: DS21458 TCLK Pin SourceRegister Offset: 0x0012# 7 6 5 4 3 2 1 0 BitName T4S1 T4S0 T3S1 T3S0 T2S1 T2S0 T1S1 T1S0 Default 0 0 0 0 0 0 0 0 Bit 0 to 1: DS21458 Port 1 TCLK Source (T1S0, T1S1)The source for TCLK 1 is Defined as shown in Table 3.Bit 2 to 3: DS21458 Port 2 TCLK Source (T2S0, T2S1)The source for TCLK 2 is Defined as shown in Table 3.Bit 4 to 5: DS21458 Port 3 TCLK Source (T3S0, T3S1)The source for TCLK 3 is Defined as shown in Table 3.Bit 6 to 7: DS21458 Port 4 TCLK Source (T4S0, T4S1)The source for TCLK 3 is Defined as shown in Table 3.Table 3. TCLKx Source DefinitionTxS1, TxS0 TCLK CONNECTIONTCLK X with the 1.544MHz clock00 DriveTCLK X with the 2.048MHz clock01 Drive10 DriveTCLK X with RCLK X11 N/ARegister Offset: 0x0013# 7 6 5 4 3 2 1 0 BitName R4S1 R4S0 R3S1 R3S0 R2S1 R2S0 R1S1 R1S0 Default 0 0 0 0 0 0 0 0 Bit 0 to 1: DS21458 Port 1 TSYSCLK Source (R1S0, R1S1)The source for TSYSCLK 1 is Defined as shown in Table 4.Bit 2 to 3: DS21458 Port 2 TSYSCLK Source (R2S0, R2S1)The source for TSYSCLK 2 is Defined as shown in Table 4.Bit 4 to 5: DS21458 Port 3 TSYSCLK Source (R3S0, R3S1)The source for TSYSCLK 3 is Defined as shown in Table 4.Bit 6 to 7: DS21458 Port 4 TSYSCLK Source (R4S0, R4S1)The source for TSYSCLK 4 is Defined as shown in Table 4.Table 4. TSYSCLKx Source DefinitionRxS1, RxS0 TSYSCLK X CONNECTIONTSYSCLK X with the 1.544MHz clock00 DriveTSYSCLK X with the 2.048MHz clock01 DriveTSYSCLK10 Drivewith 8.192MHz clockXTSYSCLK X with DS21458 Port X BPCLK11 DriveRegister Offset: 0x0014# 7 6 5 4 3 2 1 0 BitName T4S1 T4S0 T3S1 T3S0 T2S1 T2S0 T1S1 T1S0 Default 0 0 0 0 0 0 0 0 Bit 0 to 1: DS21458 Port 1 RSYSCLK Source (T1S0, T1S1)The source for RSYSCLK 1 is Defined as shown in Table 5.Bit 2 to 3: DS21458 Port 2 RSYSCLK Source (T2S0, T2S1)The source for RSYSCLK 2 is Defined as shown in Table 5.Bit 4 to 5: DS21458 Port 3 RSYSCLK Source (T3S0, T3S1)The source for RSYSCLK 3 is Defined as shown in Table 5.Bit 6 to 7: DS21458 Port 4 RSYSCLK Source (T4S0, T4S1)The source for RSYSCLK 4 is Defined as shown in Table 5.Table 5. RSYSCLKx Source DefinitionTxS1, TxS0 RSYSCLK X CONNECTION00 DriveRSYSCLK X with the 1.544MHz clockRSYSCLK X with the 2.048MHz clock01 Drivewith 8.192MHz clockRSYSCLK10 DriveXRSYSCLK X with DS21458 Port X BPCLK11 DriveRegister Name: SYNC1Register Description: DS21458 TSYNC Pin SourceRegister Offset: 0x0015# 7 6 5 4 3 2 1 0 BitT2SRCT1SRCT3SRCT4SRCName — — — —Default — — — — 0 0 0 0Bit 0: DS21458 Port 1 TSYNC Source (T1SRC)0 = TSYNC 1 is an output, tri-state corresponding FPGA driver pin (weak pulldown)1 = Drive TSYNC 1 with RSYNC 1Bit 1: DS21458 Port 2 TSYNC Source (T2SRC)0 = TSYNC 2 is an output, tri-state corresponding FPGA driver pin (weak pulldown)1 = Drive TSYNC2 with RSYNC 2Bit 2: DS21458 Port 3 TSYNC Source (T3SRC)0 = TSYNC 3 is an output, tri-state corresponding FPGA driver pin (weak pulldown)1 = Drive TSYNC 3 with RSYNC 3Bit 3: DS21458 Port 4 TSYNC Source (T4SRC)0 = TSYNC 4 is an output, tri-state corresponding FPGA driver pin (weak pulldown)1 = Drive TSYNC 4 with RSYNC 4Note: When driving TSYNCx with RSYNCx the corresponding DS21458 port should be configured such thatTSYNCx is an input (IOCR1.1 = 0) and RSYNCx is an output (IOCR1.4 = 0).Register Offset: 0x0016# 7 6 5 4 3 2 1 0 BitT2SRCT1SRCT3SRCName — — — —T4SRCDefault — — — — 0 0 0 0Bit 0: DS21458 Port 1 TSSYNC Source (T1SRC)0 = Not using transmit-side elastic store, tri-state corresponding FPGA driver pin (weak pulldown)1 = Drive TSSYNC 1 with RSYNC 1Bit 1: DS21458 Port 2 TSSYNC Source (T2SRC)0 = Not using transmit-side elastic store, tri-state corresponding FPGA driver pin (weak pulldown)1 = Drive TSSYNC2 with RSYNC 2Bit 2: DS21458 Port 3 TSSYNC Source (T3SRC)0 = Not using transmit-side elastic store, tri-state corresponding FPGA driver pin (weak pulldown)1 = Drive TSSYNC 3 with RSYNC 3Bit 3: DS21458 Port 4 TSSYNC Source (T4Source)0 = Not using transmit-side elastic store, tri-state corresponding FPGA driver pin (weak pulldown)1 = Drive TSSYNC 4 with RSYNC 4Note: When driving TSSYNCx with RSYNCx the corresponding DS21458 port should be configured such thatRSYNCx is an output (IOCR1.4 = 0).Register Offset: 0x0017# 7 6 5 4 3 2 1 0 BitRSOR0 — — R4IO R3IO R2IO R1IO Name RSOR1Default 0 0 — — 0 0 0 0Bit 0: DS21458 Port 1 RSYNC Setting (R1IO)0 = RSYNC 1 is an output, tri-state corresponding FPGA driver pin (weak pulldown)1 = Drive RSYNC 1 with RSYNC X as shown in Table 6Bit 1: DS21458 Port 2 RSYNC Setting (R2IO)0 = RSYNC 2 is an output, tri-state corresponding FPGA driver pin (weak pulldown)1 = Drive RSYNC2 with RSYNC X as shown in Table 6Bit 2: DS21458 Port 3 RSYNC Setting (R3IO)0 = RSYNC 3 is an output, tri-state corresponding FPGA driver pin (weak pulldown)1 = Drive RSYNC 4 with RSYNC X as shown in Table 6Bit 3: DS21458 Port 4 RSYNC Setting (R4IO)0 = RSYNC 4 is an output, tri-state corresponding FPGA driver pin (weak pulldown)1 = Drive RSYNC 4 with RSYNC X as shown in Table 6Note: When driving RSYNCy with RSYNCx the corresponding DS21458 port should be configured such thatRSYNCx is an output (IOCR1.4 = 0) and RSYNCy is an input (IOCR1.4 = 1).Table 6. RSYNCx Function DefinitionRSOR1, RSOR0 MASTER RSYNC DESIGNATION00 RSYNC1 is used to drive other RSYNC pins (providing R X IO = 1)01 RSYNC2 is used to drive other RSYNC pins (providing R X IO = 1)10 RSYNC3 is used to drive other RSYNC pins (providing R X IO = 1)11 RSYNC4 is used to drive other RSYNC pins (providing R X IO = 1)Register Offset: 0x0018# 7 6 5 4 3 2 1 0 BitName T4S1 T4S0 T3S1 T3S0 T2S1 T2S0 T1S1 T1S0 Default 0 0 0 0 0 0 0 0 Bit 0 to 1: DS21458 Port 1 TSER Source (T1S0, T1S1)The source for TSER 1 is Defined as shown in Table 7.Bit 2 to 3: DS21458 Port 2 TSER Source (T2S0, T2S1)The source for TSER 2 is Defined as shown in Table 7.Bit 4 to 5: DS21458 Port 3 TSER Source (T3S0, T3S1)The source for TSER 3 is Defined as shown in Table 7.Bit 6 to 7: DS21458 Port 4 TSER Source (T4S0, T4S1)The source for TSER 4 is Defined as shown in Table 7.Table 7. TSERx Source DefinitionTxS1, TxS0 TSER X CONNECTIONTSER X (weak pulldown)00 Tri-stateTSER X with RSER X01 DriveTSER X with PCM_TXD bus (DK2000 only)10 Drive11 N/ARegister Name: PRSERRegister Description: PCM RSER SourceRegister Offset: 0x0019# 7 6 5 4 3 2 1 0 BitR1ENR1ENName — — — — R1ENR1ENDefault — — — — 0 0 0 0Bit 0 to 1: PCM RSER Source (R1EN)0 = Do not drive DS21458 Port 1 RSER onto PCM_RSER1 = Logically OR DS21458 Port 1 RSER with selected other RSER pins and drive onto PCM_RSERBit 2 to 3: DS21458 Port 2 TSER Source (T2S0, T2S1)0 = Do not drive DS21458 Port 2 RSER onto PCM_RSER1 = Logically OR DS21458 Port2 RSER with selected other RSER pins and drive onto PCM_RSERBit 4 to 5: DS21458 Port 3 TSER Source (T3S0, T3S1)0 = Do not drive DS21458 Port 3 RSER onto PCM_RSER1 = Logically OR DS21458 Port 3 RSER with selected other RSER pins and drive onto PCM_RSERBit 6 to 7: DS21458 Port 4 TSER Source (T4S0, T4S1)0 = Do not drive DS21458 Port 4 RSER onto PCM_RSER1 = Logically OR DS21458 Port 4 RSER with selected other RSER pins and drive onto PCM_RSERNote: PRSER register is for use with the DK2000 only.Register Offset: 0x001A# 7 6 5 4 3 2 1 0 BitName — — T2SR T1SR — — R2SR R1SR Default — — 0 0 — — 0 0 Bit 0 to 1: PCM_RSYNC SourceR2SR, R1SR PCM_RSYNC SOURCE00 PCM_RSYNC is driven by DS21458 port 1 RSYNC01 PCM_RSYNC is driven by DS21458 port 2 RSYNC10 PCM_RSYNC is driven by DS21458 port 3 RSYNC11 PCM_RSYNC is driven by DS21458 port 4 RSYNCBit 4 to 5: PCM_TSYNC SourceT2SR, T1SR PCM_TSYNC SOURCE00 PCM_TSYNC is driven by DS21458 port 1 TSYNC01 PCM_TSYNC is driven by DS21458 port 2 TSYNC10 PCM_TSYNC is driven by DS21458 port 3 TSYNC11 PCM_TSYNC is driven by DS21458 port 4 TSYNCNote: PSYNC register is for use with the DK2000 only.Register Offset: 0x001B# 7 6 5 4 3 2 1 0 BitR1SRT1SR — RCMR2SRT2SRName — TCMDefault —- 0 0 0 — 0 0 0 Bit 0 to 2: PCM_RCLK SourceRCM,R2SR, R1SR PCM_RCLK SOURCE000 PCM_RCLK is driven by DS21458 port 1 RCLK001 PCM_RCLK is driven by DS21458 port 2 RCLK010 PCM_RCLK is driven by DS21458 port 3 RCLK011 PCM_RCLK is driven by DS21458 port 4 RCLK100 PCM_RCLK is driven by DS21458 port 1 BPCLK101 PCM_RCLK is driven by DS21458 port 2 BPCLK110 PCM_RCLK is driven by DS21458 port 3 BPCLK111 PCM_RCLK is driven by DS21458 port 4 BPCLKBit 4 to 5: PCM_TCLK SourceTCM,T2SR, T1SR PCM_TCLK SOURCE000 PCM_TCLK is driven by source used for DS21458 port 1 TCLK001 PCM_TCLK is driven by source used for DS21458 port 2 TCLK010 PCM_TCLK is driven by source used for DS21458 port 3 TCLK011 PCM_TCLK is driven by source used for DS21458 port 4 TCLK100 PCM_TCLK is driven by DS21458 port 1 BPCLK101 PCM_TCLK is driven by DS21458 port 2 BPCLK110 PCM_TCLK is driven by DS21458 port 3 BPCLK111 PCM_TCLK is driven by DS21458 port 4 BPCLKNote: PCLK register is for use with the DK2000 only.FPGA CONTROL EXAMPLESTable 8. FPGA Configuration for Scenario #1 (Port 1, T1 Mode)REGISTER SETTING COMMENTMCSR 0X01 Drive DS21458 ports 1 and 3 MCLK with 2.048MHz TCSR 0X00 Drive TCLK with 1.544MHz SYSCLKT 0X00Drive TSYSCLK with 1.544MHz SYSCLKR 0X00 Drive RSYSCLK with 1.544MHzSYNC1 0X00 Tri-state FPGA driver pin for DS21458 TSYNC1 SYNC2 0X01 Drive TSSYNC1 with RSYNC1SYNC3 0X00 Tri-state FPGA driver pin for DS21458 RSYNC TSERS 0X02 Drive DS21458 TSER1 with data from PCM bus PRSER0X01Drive DS21458 RSER1 onto PCM busPSYNC 0X00PCM RSYNC and PCM TSYNC are provided by DS21458 port 1 RSYNCand TSYNC (respectively) PCLK0X44PCM RCLK and TCLK are driven by port 1 BPCLKFPGA CONTROL EXAMPLES (continued)Table 9. FPGA Configuration for Scenario #2 (Port 1, T1 Mode)REGISTER SETTINGCOMMENTMCSR 0X01 Drive DS21458 ports 1 and 3 MCLK with 2.048MHz TCSR 0X02 Drive TCLK1 with RCLK1 SYSCLKT 0X00 Drive TSYSCLK with 1.544MHz SYSCLKR 0X00 Drive RSYSCLK with 1.544MHz SYNC1 0X01 Drive TSYNC1 with RSYNC1 SYNC2 0X01 Drive TSSYNC1 with RSYNC1 SYNC3 0X00Tri-state FPGA driver pin for DS21458 RSYNC TSERS 0X01 Drive DS21458 TSER1 with data from RSER1 PRSER N/A Unused PSYNC N/A Unused PCLK N/A UnusedTable 10. DS21458 Partial Configuration for Scenario #2 (Port 1, T1 Mode)REGISTER SETTING COMMENTIOCR1 TSIO = 0; RSIO = 0 TSYNC is an input, RSYNC is an output ESCR TESE = 0; RESE = 0 Bypass Rx and Tx elastic stores CCR1 TCSS1 = 0; TCSS2 = 0TCLK is driven by TCLK pinDS21458 INFORMATIONFor more information about the DS21458, please consult the DS21458 data sheet available on our website at /DS21458. Software downloads are also available for this design kit.DS21458DK INFORMATIONFor more information about the DS21458DK, including software downloads, please consult the DS21458DK data sheet available on our website at /DS21458DK.TECHNICAL SUPPORTFor additional technical support, please e-mail your questions to ***************************. SCHEMATICSThe DS21458DK schematics are featured at the end of this document.17 of 32Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product. No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time. Maxim In tegrated P roducts, 120 S an Gabriel D rive, Sun nyvale, CA94086 408-737-7600© 2006 Maxim Integrated Products • Printed USAThe Maxim logo is a registered trademark of Maxim Integrated Products, Inc. The Dallas logo is a registered trademark of Dallas Semiconductor.。
艾特顿模50插座双路滤篮的中文名字说明书
T rouble-free design, easy operationThe Eaton Model 50 plug type duplex strainer's design is simple and economical. This high-quality strainer is, in fact, a pressure rated plug valve with integral straining baskets.To switch the flow from one basket to the other, the oper-ating handle moves through a 90-degree arc. Because of the unique port design in the diverter plug, it is impossible for this operation to stop the flow. The entire switching operation takes fewer than 30 seconds, no toolsrequired. Positioning the plug each time in exactly the right spot happens automatically by integral stops.Before operating the handle, a specially designed, manual lifting jack built into thestrainer, lifts the diverter plugoff its seat. After theswitching operation, the jack easily reseats the plug, even under high pressures.Because a built-in stop limits the distance the diverter plug rises, it minimizes the possi-bility of material bypassing the plug while rotated to divert flow. It also prevents debris from building up under the plug and making it diffi-cult to reseat.Other features• A quick, easy to open, swing-away yoke design cover goes back on just as fast as it came off • Standard NPT drain taps simplify the draining of the basket chamber • All sizes come withmounting legs for bolting the strainer to the floor for a rock solid installationFeatures• Continuous flow, no shutdown for basket cleaning • Rugged tapered plug design • Lift jack prevents galling of the plug • Quick open cover—no tools needed • Large capacity baskets • Threaded drain • Machined basket seat• Perforated or mesh 316 stainless steel basketOptions• Ductile iron construction• Basket perforations from 1/32" to 1/2"• Basket mesh from 20 to 400• MONEL ® baskets • Vent valves • Drain valves• Gauge/vent taps - 1/4" NPT • Magnetic basket inserts• Pressure differential gauge and switch connections • Viton ®, PTFE encapsulated or EPDM seals • Cast iron and stainless steel diverter plug• Sizes 5", 6", 8"• I ron, bronze, carbon steel or stainless steel• FlangedMONEL ® is a registered trademark of Special Metals Corporation group of Companies. Viton ® is a registered trademark of The Chemours Company FC, LLC.C a s t C o n s t r u c t i o nP e r m a n e M e d i aPlug T ype Duplex Basket StrainerSelection chart 5", 6", 8" Iron Bronze Flanged 125# Buna-N ®Flow rate (water) [GPM]P r e s s u r e d r o p [k P a ]5"Bronze 457229********* 8451,04110437132481876"Carbon steel 559327298502470 8891,0671052716318263Stainless steel 559327298502470 8891,0671052716318279Cast iron 559327298502495 9211,0671052716318227Bronze 546273298502384 8701,06710540162862648"Carbon steel 635356–711570 1,2701,4221578122432730Stainless steel 635356–711570 1,2701,4221578122432757Cast iron 635356–711586 1,2861,4221578124432682Bronze635356–7115861,2861,4221578124432782For more information, please email us at ********************or visit /filtration© 2023 Eaton. All rights reserved. All trademarks and registered trademarks are the property of their respective owners. All information and recommenda-tions appearing in this brochure concerning the use of products described herein are based on tests believed to be reliable. However, it is the user’s responsibility to determine the suitability for his own use of such products. Since the actual use by others is beyond our control, no guarantee, expressed or implied, is made by Eaton as to the effects of such use or the results to be obtained. Eaton assumes no liability arising out of the use by others of such products. Nor is the infor-mation herein to be construed as absolutely complete, since additional information may be necessary or desirable when particular or exceptional conditions or circumstances exist or because of applicable laws or government regulations.North America 44 Apple StreetTinton Falls, NJ 07724Toll Free: 800 656-3344 (North America only)Tel: +1 732 212-4700Europe/Africa/Middle East Auf der Heide 253947 Nettersheim, Germany Tel: +49 2486 809-0Friedensstraße 4168804 Altlußheim, Germany Tel: +49 6205 2094-0An den Nahewiesen 2455450 Langenlonsheim, Germany Tel: +49 6704 204-0Greater China No. 7, Lane 280, Linhong RoadChangning District, 200335 Shanghai, P .R. China Tel: +86 21 2899-3687Asia-Pacific100G Pasir Panjang Road #07-08 Interlocal Centre Singapore 118523Tel: +65 6825-1620ENEF -SSEA-1210-2023Partial cutaway of Model 50 duplex strainer clearly illustrates all major parts—and gives a clear indication of the simplicity of design and ease of maintenance.plugJack。
PCM1792A中文资料
Copyright 2006, Texas Instruments Incorporated
元器件交易网
PCM1792A
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006
ORDERING INFORMATION
D Dual Supply Operation:
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
D D
− 5-V Analog, 3.3-V Digital 5-V Tolerant Digital Inputs Small 28-Lead SSOP Package
D Differential Current Output: 7.8 mA p-p D 8× Oversampling Digital Filter:
AUMA 说明手册 中英文对照文稿-world版可编辑
操作说明手册的封面内容翻译(中英文对照):Multi-turnactuators万向驱动装置SA07.1-SA48.1(产品型号)SAR07.1-SAR30.1(产品型号)AUMANORM(AUMA是这个阀门生产厂的品牌名称)AUMA标准Operationinstructions(操作手册)目录内容:Scopeoftheseinstructions:本手册内容介绍的范围包括:Theseinstructionsarevalidformulti-turnactuatorsforOpen-closeduty,SA07.1-SA48.1,andmul ti-turnactuatorsformodulatingduty,SA07.1-SA30.1.本手册的说明适应型号为SA07.1-SA48.1、具有开启-关闭功能系列的万向驱动装置和型号为SA07.1-SA30.1、具有调节功能系列的万向驱动装置有效。
Theseoperationsinstructionsareonlyvalidfor“clockwiseclosing”,i.e.drivenshaftturnsclockwisetoclosethevalve.这些操作说明只对"顺时针关闭"有效,即:驱动轴顺时针转动关闭阀门。
.Safetyinstructions(安全说明)1.1Rangeofapplication(应用的范围)AUMQmulti-turnactuatorsaredesignedfortheoperationofindustrialvalves,e.g,globevalve s,butterflyvalvesandballvalves.Forotherapplications,pleaseconsultus.AUMAisnotliablefo ranyapplications.Suchriskliesentirelywiththeuser.AUMQ万向驱动装置是为工业用阀所设计的,例如:工业生产常用球瓣阀,蝶阀和球阀。
依玛冠军50说明书
1.14 冷凝水虹吸管 ........................................................................................................................................................19
1.15 启动燃气系统 ........................................................................................................................................................19
VICTRIX 50 (冠军 50)
GB
指示及说明手册
安装人员 用户 技术人员
尊敬的客户: 祝贺您选择了意大利依玛股份有限公司 (IMMERGAS S.P.A.) 的产品,意大利依玛股份有限公司 (IMMERGAS S.P.A.) 高质量的产品能够为您带来长期的生活便利和安全。作为意大利依玛股份有限 公司 (IMMERGAS S.P.A.) 的顾客,您可以依赖我们授权的售后服务,这个服务体系专业,训练有素, 能够为您的锅炉持续高效运转提供有力的保障。 仔细阅读本手册的内容,您就能从中获取正确使用所购设备的有用建议,遵守这些建议就能使您从意 大利依玛股份有限公司 (IMMERGAS S.P.A.) 的产品中获得满足感。 请及时同我们的区域售后服务中心联系,提出对初期运转情况进行检查的要求。我们的技术员将会证 实运行状况是否良好,对设备进行必要的调整,向您表述锅炉的正确的使用方法。 如有必要,可要求经意大利依玛股份有限公司 (IMMERGAS S.P.A.) 授权的售后服务中心进行日常维 护,这些这些配备原厂备件,并直接由制造厂商进行过专门的培训。
MAX1796EUA中文资料
________________________Applications
Portable Digital Audio Players PDAs/Palmtops Wireless Handsets Portable Terminals
True-Shutdown is a trademark of Maxim Integrated Products.
2
_______________________________________________________________________________________
元器件交易网
Low Supply Current, Step-Up DC-DC Converters with True-Shutdown
元器件交易网
Low Supply Current, Step-Up DC-DC Converters with True-Shutdown MAX1795/MAX1796/MAX1797
ABSOLUTE MAXIMUM RATINGS
OUT, LX, SHDN, LBI, LBO, BATT to GND................-0.3V to +6V FB .............................................................-0.3V to (VOUT + 0.3V) ILX, IOUT ..............................................................................±1.5A Output Short-Circuit Duration ...................................................5s Continuous Power Dissipation 8-Pin µMAX (derate 4.1mW/°C above +70°C) .............330mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C
MAX1642EUA中文资料
_________________Pin Configurations
TOP VIEW
BATT 1 8 OUT LX GND FB
__________Typical Operating Circuit
PFI 2 PFO 3 SHDN 4
MAX1642
7 6 5
INPUT 0.88V TO 1.65V 22µF
Note 1: The reverse battery current is measured from the Typical Operating Circuit’s input terminal to GND when the battery is connected backward. A reverse current of 220mA will not exceed package dissipation limits but, if left for an extended time (more than 10 minutes), may degrade performance.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
1792032中文资料
Extract from the onlinecatalogMVSTBR 2,5/ 4-STOrder No.: 1792032The figure shows a 10-position version of the producthttp://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=1792032Plug component, nominal current: 12 A, rated voltage: 250 V, pitch: 5.0 mm, no. of positions: 4, type of connection: Screw connectionhttp://Please note that the data givenhere has been taken from theonline catalog. For comprehensiveinformation and data, please referto the user documentation. TheGeneral Terms and Conditions ofUse apply to Internet downloads. Technical dataDimensions / positionsPitch 5 mmDimension a15 mmNumber of positions4Screw thread M 3Tightening torque, min0.5 NmTechnical dataInsulating material group IRated surge voltage (III/3) 4 kVRated surge voltage (III/2) 4 kVRated surge voltage (II/2) 4 kVRated voltage (III/2)320 VRated voltage (II/2)630 VConnection in acc. with standard EN-VDENominal current I N12 ANominal voltage U N250 VNominal cross section 2.5 mm2Maximum load current12 A (with 2.5 mm2 conductor cross section) Insulating material PAInflammability class acc. to UL 94V0Internal cylindrical gage A3Stripping length7 mmConnection dataConductor cross section solid min.0.2 mm2Conductor cross section solid max. 2.5 mm2Conductor cross section stranded min.0.2 mm2Conductor cross section stranded max. 2.5 mm2Conductor cross section stranded, with ferrule0.25 mm2without plastic sleeve min.Conductor cross section stranded, with ferrule2.5 mm2without plastic sleeve max.Conductor cross section stranded, with ferrule0.25 mm2with plastic sleeve min.Conductor cross section stranded, with ferrule2.5 mm2with plastic sleeve max.Conductor cross section AWG/kcmil min.24Conductor cross section AWG/kcmil max122 conductors with same cross section, solid min.0.2 mm22 conductors with same cross section, solid max. 1 mm22 conductors with same cross section, stranded0.2 mm2min.2 conductors with same cross section, stranded1.5 mm2max.2 conductors with same cross section, stranded,0.25 mm2ferrules without plastic sleeve, min.2 conductors with same cross section, stranded,1 mm2ferrules without plastic sleeve, max.2 conductors with same cross section, stranded,0.5 mm2TWIN ferrules with plastic sleeve, min.2 conductors with same cross section, stranded,1.5 mm2TWIN ferrules with plastic sleeve, max.Certificates / ApprovalsCSANominal voltage U N300 VNominal current I N10 AAWG/kcmil28-12CULNominal voltage U N300 VNominal current I N10 AAWG/kcmil30-12ULNominal voltage U N300 VNominal current I N10 AAWG/kcmil30-12Certification CB, CSA, CUL, GOST, UL, VDE-PZIAdditional productsItem Designation DescriptionGeneral0707125DFK-MSTB 2,5/ 4-G Header, nominal current: 12 A, rated voltage: 320 V, pitch: 5.0mm, no. of positions: 4, mounting: Direct mounting1899867EMSTBA 2,5/ 4-G Header, nominal current: 12 A, rated voltage: 250 V, pitch: 5.0mm, no. of positions: 4, mounting: Press in1914878EMSTBVA 2,5/ 4-G Header, nominal current: 12 A, rated voltage: 200 V, pitch: 5.0mm, no. of positions: 4, mounting: press in1736690MDSTB 2,5/ 4-G1Header, nominal current: 10 A, rated voltage: 250 V, pitch: 5.0mm, no. of positions: 4, mounting: Soldering1846535MDSTBA 2,5/ 4-G Header, nominal current: 10 A, rated voltage: 250 V, pitch: 5.0mm, no. of positions: 4, mounting: Soldering1736739MDSTBV 2,5/ 4-G1Header, nominal current: 10 A, rated voltage: 250 V, pitch: 5.0mm, no. of positions: 4, mounting: Soldering1845808MDSTBVA 2,5/ 4-G Header, nominal current: 10 A, rated voltage: 250 V, pitch: 5.0mm, no. of positions: 4, mounting: Soldering1754478MSTB 2,5/ 4-G Header, nominal current: 12 A, rated voltage: 250 V, pitch: 5.0mm, no. of positions: 4, mounting: Soldering1768202MSTB 2,5/ 4-G-LA Header, nominal current: 12 A, rated voltage: 250 V, pitch: 5.0mm, no. of positions: 4, mounting: Soldering1757491MSTBA 2,5/ 4-G Header, nominal current: 12 A, rated voltage: 250 V, pitch: 5.0mm, no. of positions: 4, mounting: Soldering1770504MSTBA 2,5/ 4-G-LA Header, nominal current: 12 A, rated voltage: 250 V, pitch: 5.0mm, no. of positions: 4, mounting: Soldering1753479MSTBV 2,5/ 4-G Header, nominal current: 12 A, rated voltage: 250 V, pitch: 5.0mm, no. of positions: 4, mounting: Soldering1755532MSTBVA 2,5/ 4-G Header, nominal current: 12 A, rated voltage: 250 V, pitch: 5.0mm, no. of positions: 4, mounting: Soldering1736098MSTBW 2,5/ 4-G Header, nominal current: 12 A, rated voltage: 250 V, pitch: 5.0mm, no. of positions: 4, mounting: Soldering1769256SMSTB 2,5/ 4-G Header, nominal current: 12 A, rated voltage: 250 V, pitch: 5.0mm, no. of positions: 4, mounting: Soldering1769829SMSTBA 2,5/ 4-G Header, nominal current: 12 A, rated voltage: 250 V, pitch: 5.0mm, no. of positions: 4, mounting: SolderingDrawingsDimensioned drawingAddressPHOENIX CONTACT GmbH & Co. KGFlachsmarktstr. 832825 Blomberg,GermanyPhone +49 5235 3 00Fax +49 5235 3 41200http://www.phoenixcontact.de© 2008 Phoenix ContactTechnical modifications reserved;。
MAX490EESA+资料
Supply Control
Voltage (VCC) Input Voltage
.(.–R—..E.–..,..D..E..)........................................-.0....5..V...t.o...(.V..C...C...+...0...152VV)
♦ For Low-Voltage Applications: MAX3483E/MAX3485E/MAX3486E/MAX3488E/ MAX3490E/MAX3491E: +3.3V Powered, ±15kV ESD-Protected, 12Mbps, Slew-Rate-Limited, True RS-485/RS-422 Transceivers
General Description
The MAX481E, MAX483E, MAX485E, MAX487E– MAX491E, and MAX1487E are low-power transceivers for RS-485 and RS-422 communications in harsh environments. Each driver output and receiver input is protected against ±15kV electro-static discharge (ESD) shocks, without latchup. These parts contain one driver and one receiver. The MAX483E, MAX487E, MAX488E, and MAX489E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, thus allowing error-free data transmission up to 250kbps. The driver slew rates of the MAX481E, MAX485E, MAX490E, MAX491E, and MAX1487E are not limited, allowing them to transmit up to 2.5Mbps.
MAX1237EUA+T资料
19-2333; Rev 4; 9/06
2.7V to 3.6V and 4.5V to 5.5V, Low-Power, 4-/12-Channel, 2-Wire Serial, 12-Bit ADCs
General Description
The MAX1236–MAX1239 low-power, 12-bit, multichannel analog-to-digital converters (ADCs) feature internal track/hold (T/H), voltage reference, clock, and an I2C-compatible 2-wire serial interface. These devices operate from a single supply of 2.7V to 3.6V (MAX1237/ MAX1239) or 4.5V to 5.5V (MAX1236/MAX1238) and require only 670µA at the maximum sampling rate of 94.4ksps. Supply current falls below 230µA for sampling rates under 46ksps. AutoShutdown™ powers down the devices between conversions, reducing supply current to less than 1µA at low throughput rates. The MAX1236/MAX1237 have four analog input channels each, while the MAX1238/MAX1239 have 12 analog input channels each. The fully differential analog inputs are software configurable for unipolar or bipolar, and single-ended or differential operation. The full-scale analog input range is determined by the internal reference or by an externally applied reference voltage ranging from 1V to V DD . The MAX1237/ MAX1239 feature a 2.048V internal reference and the MAX1236/MAX1238 feature a 4.096V internal reference. The MAX1236/MAX1237 are available in an 8-pin µMAX® package. The MAX1238/MAX1239 are available in a 16pin QSOP package. The MAX1236–MAX1239 are guaranteed over the extended temperature range (-40°C to +85°C). For pin-compatible 10-bit parts, refer to the MAX1136–MAX1139 data sheet. For pin-compatible 8-bit parts, refer to the MAX1036–MAX1039 data sheet.
芯片替代方案
芯片替代方案特瑞仕以激光修整法及0.1V台的电压设定±1%的高精度技术为基础,提供优良的封装产品。
特瑞仕的产品不光能对应封装形式的小型化,轻量化和薄型化的要求,而且可使客户更加自由地进行电路设计。
这些小型封装产品因为可减少外接部品,所以应用领域正不断扩大。
同时输出电流达到数安培的DC/DC转换器及产业用的中高电压领域的产品也正不断得到充实。
特瑞仕一直以市场分析能力和智力预测市场的需求,专业生产对应时代要求的电源IC。
长年从事并精通数码机器必不可少的模拟设计的工程师,正在进行其他公司所没有的独特的企划,开发和设计。
深圳市泰德兰电子有限公司是日本TOREX(特瑞仕)半导体在中国的授权一级代理商。
品牌TOREX芯片XC6221直接替代MAX8510EXKTOREX-XC6221带ON/OFF开关兼容低ESR电容的高速电压调整器TOREX-XC6221详细说明:XC6221系列是具有高精度, 低噪音, 高速度, 兼容低ESR电容, 采用CMOS工艺生产的低压差LDO电压调整器,内部包括参考电压源电路,误差放大器电路,过流保护电路和相位补偿电路。
XC6221系列可通过在使能端端子输入低电平信号使芯片工作于待机状态。
在该状态下,XC6221B/D系列可通过芯片内部电路实现输出端电容自动放电的功能,使得输出端电压VOUT迅速恢复到Vss。
XC6221系列的输出电压可在0.80~5.00V范围内,利用激光微调技术,可实现以0.05V为间隔自由选择。
XC6221系列内部的Fold Back 电路可提供过流和短路保护。
该系列还具有低功耗(TYP.25uA)和低压差的优点(80mV@100mA,VOUT(T)=3.0V),兼容低ESR的陶瓷电容。
当选用超小型的USP-4,USPN-4封装时,可进一步减少在电路板上面所需要的面积尺寸。
TOREX-XC6221特点:最大输出电流200mA 限流250mA TYP.输入输出电压差80mV@ IOUT=100mA VOUT=3.0V工作电压范围1.6V~6.0V输出电压范围0.80V~5.00V(0.05V间隔)精度±2% (VOUT≧1.50V)(标准),±30mV (VOUT≦1.45V)(标准),±1% (VOUT≧2.00V)(高精度),±20mV (VOUT≦1.95V)(高精度)低功耗25uA (TYP.)电源抑制比70db @ 1kHz封装SOT-25, SSOT-24, USP-4, USPN-4以下是TOREX型号可完全替代其他品牌的产品:TOREX品牌TOREX品牌XC9206 替代LT1616ES6 XC6204 替代TPS79318DBVRG4 XC9206 替代LTC1701 XC6210 替代TPS796XC9207 替代LTC1701 XC6221 替代TPS799XC9213B103VR 替代LT1776 XC6210 替代TVL1117XC9213B103VR 替代LT1976 XC6202 替代UA78L05AIPKXC9221 替代LTC1772 XC6202 替代UA78LXC9223B082AR 替代LTC1773 XC6202 替代UA78LXC9223B082AR 替代LTC3411 XC6202 替代UA78LXC9301A333MR 替代LTC3531 XC6202 替代UA78LXC9302 替代LTC3531 XB1117 替代TLV1117XC9236 替代MAX1733 XC6201 替代UA78LXC9237 替代MAX1733 XC6211 替代TPS731XC9103 替代MAX1722 XC62E 替代TPS799XC9105 替代MAX1722 XC6419 替代TPS71936XC9129 替代MAX1947 XC6406 替代TPS71936XC9201 替代MAX1652 XC6411 替代TPS71936XC9502 替代MAX1672 XC6412 替代TPS71936XC6367C503MR 替代MAX608 XC6415 替代TPS71936XC6368C 替代MAX608 XC6601 替代TPS721XC9104B095 替代MAX1722 XC6501 替代TPS732XC6365A303ER 替代MAX1920 XC6203 替代REG1117AXC6366C 替代MAX1920 XC6202 替代TL750LXC9213B103VR 替代MAX1684 XC6221 替代TPS721XC9301 替代MAX711 XC6215 替代TPS72118XC9302 替代MAX711 XC62KN 替代TPS723XC9128 替代MAX1947 XC6210 替代TPS731XC9235 替代MAX1733 XC6204 替代TPS760XC9221 替代MIC2193 XC6202 替代TK711XC9221A09AMR 替代MIC4690 XC6202 替代TK715XC9223B082AR 替代MIC3838 XC6501 替代TK637XC9220 替代MIC2193 XC6211 替代TK111XC9224 替代MIC3838 XC6206 替代TK116XC6368 替代TC110 XC6204 替代TK716XC9201 替代TC105 XC6221 替代SiP21110XC6372 替代TC115 XC6204 替代Si9183DTXC6366 替代TC105 XC6204 替代Si9184DTXC9235 替代LM3674 XC6202 替代ZMRXCM517 替代LM2717 XC6202 替代ZMRXC9208 替代LM3677 XC6202 替代ZMRXC9210 替代LM2650 XC6202 替代ZMRXC6371 替代LM2703 XC6204B 替代ZXCLXC9119D10AMR 替代LM2703 XC6202 替代S-813XC6365A303ER 替代LM3677 XC6209 替代S-814AXC9206A18MR 替代LM3677 XC6209 替代S-814AXC9207A18MR 替代LM3677 XC6209 替代S-814BXC9213B103VR 替代LM2594 XC6204B182MR 替代S-817B18AMC-CWH-T2 XC9213B103VR 替代LM2676 XC6215P152GR 替代S-817A15APFXC9213B103VR 替代LM2737 XC6206 替代S-817BXC9301 替代LM2716 XC6206 替代S-817BXC9302 替代LM2716 XC6209 替代S-818AXC9235 替代NCP1522 XC6221 替代S-1112BXC9236 替代NCP1522 XC6403 替代S-8750XC9237 替代NCP1522 XC6204 替代S-L2980AXC9103 替代NCP1406 XC6402 替代S-1701AXC9105 替代NCP1406 XC6402 替代S-1701AXC9106 替代NCP1403 XC6403/04 替代S-1701AXC9107 替代NCP1403 XC6403/04 替代S-1701AXC9201 替代NCP1550 XC6405 替代S-1701AXC9210 替代NCP1508 XC6405 替代S-1701AXC9111 替代NCP1400 XC6201 替代S-812CXC9104 替代NCP1406 XC6404 替代S-1701AXC911950AMR 替代NCP1402 XC6404 替代S-1701AXC9303 替代BD9300 XC6212 替代S-814AXC9103 替代R1210N XC6213 替代S-814AXC9105 替代R1210N XC6203/XC6206 替代S-1206XC9106 替代RH5RH XC6218 替代S-1206XC9107 替代RH5RH XC6203P332FR 替代SPX1129M3-3.3 XC9111 替代RN5RK XC6210 替代SP6205EM5XC9208 替代R5220 XC6202 替代LP2950XC9502 替代R1282D002A XC6204 替代TPS761XC9504 替代R1280D002X XC6204 替代TPS763XC9509 替代RP901 XC6204 替代TPS764XC9510 替代R5212D XC6204 替代TPS769XC9511 替代RP901 XC6221 替代TPS770XC6371 替代RH5RH XC6204 替代TPS789XC6371 替代RH5RH XC6209 替代TPS79118XC6373 替代RH5RH XC62EP 替代RN5RGXC9104 替代R1210N XC62H 替代RN5RGXC9110C501MR 替代RN5RK XC6419 替代R5325XC9236 替代RP500 XB1086 替代RN5RGXC9106 替代ST5R00 XC6411 替代R5325XC9107 替代ST5R00 XC6412 替代R5325XC6372 替代S-8324 XC6202 替代L78LXC6372 替代S-8328 XC6202 替代L78LXC6373 替代S-8324 XC6202 替代L78LXC9128 替代SP6648 XC6202 替代L78LXC9129 替代SP6648 XC6203 替代LD1117SXC9128 替代TPS61030 XC6204 替代LD2979MXC9128 替代TPS61010 XC6202 替代LD2979ZXC9236 替代TPS6220 XC6204 替代LD2980ABMXC9237 替代TPS6220 XC6201 替代LD2980ABUXC9103 替代TPS61040 XC6204 替代LD2980ACMXC9105 替代TPS61040 XC6201 替代LD2980ACUXC9129 替代TPS61010 XC6204 替代LD2981ABMXC9201 替代TL494 XC6201 替代LD2981ABUXC9208 替代TPS62202 XC6204 替代LD2981ACM XCM517 替代TPS62400 XC6201 替代LD2981ACUXC9224 替代TPS62040 XC6202 替代LEXC9104 替代TPS61040 XC6202 替代LM2931AZ/BZ XC9104 替代TPS61081DRCR XC6216 替代L4938XC6365B105MR 替代TPS62204 XE6216 替代L4938XC6365B105MR 替代TPS62202DBV XC6701B 替代L4938XC6365B105MR 替代TPS62203DBV XC6701D 替代L4938XC6366 替代TPS62203 XCM406 替代LDRXC9207A18MR 替代TPS62202 XC62KN 替代S-802XC9223B082AR 替代TPS62040 XC6202 替代S-812CXC9236 替代TL2575 XC6206 替代S-812CXC9206A18MR 替代TPS62202 XC6206 替代S-812CXC9122 替代TK11880 XC6206 替代S-812CXC9121 替代TK11880 XC6206 替代S-812CXC9120 替代TK11880 XC6202 替代S-813XC9210 替代SiP12201 XC6204 替代LP3985IM5XC9119 替代YB1508 XC62H 替代NCP584HSNXC6401 替代CAT6221 XC62E 替代NCP584HSNXC6206 替代S1F78100Y2H0 XC6404 替代NCP400FCT2G XC6217 替代FAN2502S XB1086 替代LM317MBDTRK XC6219 替代FAN2502S XC6202 替代LM2931CDXC62H 替代FAN2502S XC6202 替代LM2931ZXC62E 替代FAN2502S XC6202 替代LP2950XB1085 替代KA78 XC6202 替代LP2950CZXB1086 替代KA78 XB1086 替代MC33269DTRK XC6205 替代FAN2502S XC6203 替代MC33275STXC6212 替代FAN2500S XC6204 替代MC33761XC6213 替代FAN2500S XC6206 替代MC78FCXC6203 替代FAN1117AS XC6203 替代MC78LCXC6209 替代FAN2500S XC6202 替代MC78LXC6204 替代FAN2502S XC6204 替代MC78PCXC6204 替代FAN2504S25 XC6206 替代MC78RCXC6204 替代FAN2508S XC6217 替代NCP584HSNXC6206 替代ILC7062CM XC6203 替代SC5201-1GSTR3XC6206 替代ILC7062CP XC6402 替代NCP400FCT2G XC62HR 替代ILC7070HCM XC6403/04 替代NCP400FCT2G XC6204 替代ILC7080AIM5 XC6405 替代NCP400FCT2G XC6204 替代ILC7081AIM5 XC6401 替代NCP583XVXC6204 替代ILC7082AIM5 XC6214 替代MC78LCXC62KN 替代ILC7362CM XC6219 替代NCP584HSN XC62KN 替代ILC7362CM XC6219 替代BAXC62KN 替代ILC7362CP XC6219 替代BA0XC6202 替代KA78L XC6206 替代RE5REXC62KN 替代MC79 XC6206 替代RH5RLXC6203 替代RC1117S XC6206 替代RE5RLXC6207 替代FAN2502S XC6206 替代RE5RLXC6215 替代ILC7062CP XC6401CH 替代LP3988IMX XCM406 替代TLE4476 XC6403DH 替代LP3988IMFXC6212 替代IRU1205 XC6210B122DR 替代LP3990TLXC6213 替代IRU1205 XC6210B122DR 替代LP3990MFXC6209 替代IRU1205 XC6221A182MR 替代LP3990MFXC6210 替代IRU1205 XC6202 替代LM2931AZXC6211 替代IRU1205 XC6214 替代LM1117MPX XC6221 替代IRU1205 XC6419 替代LP5996XC6203 替代LT1117CST XC6411 替代LP5996XC6203 替代LT1117IST XC6412 替代LP5996XC6202 替代LT1118CST XC6415 替代LP5996XC6202 替代LT1118IST XB1086 替代LM1086CSXC6203 替代LT1121CST XB1117 替代LM1117SXC6203 替代LT1121IST XB1117 替代LM1117MPX XC6202 替代LT1129CST XC6203 替代LM1117MPX XC6202 替代LT1129IST XC6202 替代LM2936ZXC62KN 替代LT1175CS8 XB1117 替代LM340SXC6202 替代LT1461ACS8 XC6202 替代LM340LAZXC6202 替代LT1521CS8 XC6202 替代LM3480IM3XC6202 替代LT1521CST XC6203 替代LM3940IMP-3.3 XC6202 替代LT1521IST XC6202 替代LM78LXC6204 替代LT1761ES5 XC6404 替代LMS5258MF XC6204 替代LT1964ES5 XC6202 替代LP2950XC6204 替代LTC1844ES5 XC6204 替代LP2978XC6203 替代LT1117CST XC6204 替代LP2980AIM5 XC6207 替代LT1761ES5 XC6204 替代LP2980IM5XC6217 替代LT1761ES5 XC6204 替代LP2980IM5X XC6219 替代LT1761ES5 XC6204 替代LP2981AIM5 XC6205 替代MAX8877EUK XC6204 替代LP2981IM5XC6212 替代MAX1598EZK XC6204 替代LP2982AIM5 XC6213 替代MAX1598EZK XC6204 替代LP2982IM5XC6210 替代MAX8877EUK XC6204 替代LP2985AIM5XC6211 替代MAX8877EUK XC6204 替代LP2985IM5 XC6217 替代MAX8877EUK XC6204 替代LP3984IBP XC6219 替代MAX8877EUK XC6403 替代LP3982 XC62H 替代MAX8877EUK XC6204 替代LP3985IBL XC6209 替代MAX1598EZK XC6415 替代MIC5371 XC6210B252MR 替代MAX1792EUA25 XCM406 替代MIC5264 XC6210B332MR 替代MAX1792EUA33 XC8101 替代MIC94060 XC6402 替代MAX1818EUT XC6601 替代MCP1727 XC6210B33MR 替代MAX1818EUT33 XC6213 替代TC1014 XC6221 替代MAX8510EXK XC6212 替代TC1014 XC6401 替代MAX8559 XC62KN 替代TC59XC6209 替代MAX8863TEUK XC62KN 替代TC59XC6209 替代MAX8867EUK XC62EP 替代TC57XC6405 替代MAX8875EUK XC6206 替代TC55RP XC6204 替代MAX8877EUK XC6206 替代TC55RP XC6207 替代MAX8878EUK XC6206 替代TC55RP XC6401 替代MAX8882EUT XC6203 替代TC1264 XC6209 替代MAX8887EZK XC6207 替代TC1014 XC6207 替代MIC5203 XC6217 替代TC1014 XC6214 替代MIC39100 XC6206 替代MCP1700T XC6202 替代LP2950-02BZ XC6209 替代TC1014 XC6202 替代LP2950-03BZ XC6209 替代TC1015 XC6203 替代MIC2920A XC6209 替代TC1185 XC6202 替代MIC2950-05BZ XC6203 替代TC1262 XC6202 替代MIC2950-06BZ XC6204 替代LX8211 XC6202 替代MIC2954-02BZ XC6215 替代MC78LC00 XC6202 替代MIC2954-03BZ XC6210 替代MC78M00 XB1117 替代MIC37100 XC6204 替代MIC5245 XC6203 替代MIC39100 XC6204 替代MIC5247 XC6204 替代MIC5203 XC6221 替代MIC5253 XC6204 替代MIC5207 XC6221 替代MIC5255 XC6202 替代MIC5207 XC6221 替代MIC5259 XC6203 替代MIC5209 XC6204 替代MIC5305 XC6214 替代MIC5209 XC6419 替代MIC5371 XC6204 替代MIC5219 XB1086 替代MIC39100 XB1117 替代MIC5239 XC6205 替代MIC5203 XC6412 替代MIC5371 XC6411 替代MIC5371。
MEMORY存储芯片MAX3490ESA+T中文规格书
(V CC = +3.3V, T A = +25°C)Note 1: ∆V OD and ∆V OC are the changes in V OD and V OC , respectively, when the DI input changes state.Note 2: Measured on |t PLH (Y) - t PHL (Y)| and |t PLH (Z) - t PHL (Z)|.Note 3: The transceivers are put into shutdown by bringing RE high and DE low. If the inputs are in this state for less than 80ns, the parts are guaranteed not to enter shutdown. If the inputs are in this state for at least 300ns, the parts are guaranteed tohave entered shutdown. See Low-Power Shutdown Mode section.PARAMETERSYMBOL CONDITIONS MIN TYP MAX UNITS Time to Shutdownt SHDN MAX3483E/MAX3485E/MAX3486E/MAX3491E only (Note 3)80190300ns Receiver Propagation Delay,Low-to-High Levelt RPLH V ID = 0 to 3.0, C L = 15pF, Figure 11256290ns MAX3483E/MAX3488E 2575120Receiver Propagation Delay,High-to-Low Levelt RPHL V ID = 0 to 3.0, C L = 15pF, Figure 11256290ns MAX3483E/MAX3488E 2575120|t PLH - t PHL | ReceiverPropagation Delay Skewt RPDS V ID = 0 to 3.0, C L = 15pF, Figure 116±10ns MAX3483E/MAX3488E 12±20Receiver Output Enable Timeto Low Levelt PRZL C L = 15pF, Figure 12,MAX3483E/85E/86E/91E only 2550ns Receiver Output Enable Timeto High Levelt PRZH C L = 15pF, Figure 12,MAX3483E/85E/86E/91E only 2550ns Receiver Output DisableTime from High Levelt PRHZ C L = 15pF, Figure 12,MAX3483E/85E/86E/91E only 2545ns Receiver Output DisableTime from Low Levelt PRLZ C L = 15pF, Figure 12,MAX3483E/85E/86E/91E only 2545ns Receiver Output Enable Timefrom Shutdown to Low Levelt PRSL C L = 15pF, Figure 12,MAX3483E/85E/86E/91E only 7201400ns Receiver Output Enable Timefrom Shutdown to High Level t PRSH C L = 15pF, Figure 12,MAX3483E/85E/86E/91E only 7201400nsMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers Receiver Switching CharacteristicsFigure 24. MAX3483E/MAX3485E/MAX3486E Typical RS-485 NetworkFigure 25. MAX3488E/MAX3490E/MAX3491E Full-Duplex RS-485 NetworkMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E3.3V-Powered, ±15kV ESD-Protected, 12Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
General DescriptionThe MAX1792 low-dropout linear regulator operates from a +2.5V to +5.5V supply and delivers a guaran-teed 500mA load current with low 130mV dropout. The high-accuracy (±1%) output voltage is preset at an internally trimmed voltage (see Selector Guide ) or can be adjusted from 1.25V to 5.0V with an external resis-tive divider.An internal PMOS pass transistor allows the low 80µA supply current to remain independent of load, making this device ideal for portable battery-operated equip-ment such as personal digital assistants (PDAs), cellu-lar phones, cordless phones, base stations, and notebook computers.Other features include an active-low open-drain reset output with a 4ms timeout period that indicates when the output is out of regulation, a 0.1µA shutdown mode,short-circuit protection, and thermal shutdown protec-tion. The device is available in a miniature 1.3W, 8-pin power-µMAX package with a metal pad on the under-side of the package.________________________ApplicationsNotebook ComputersCellular and Cordless Telephones Personal Digital Assistants (PDAs)Palmtop Computers Base Stations USB Hubs Docking StationsFeatures♦Guaranteed 500mA Output Current ♦Low 130mV Dropout at 500mA ♦Up to ±1% Output Voltage AccuracyPreset at 1.5V, 1.8V, 2.5V, 3.3V, or 5.0V Adjustable from 1.25V to 5.0V ♦Reset Output with 4ms Timeout Period ♦Low 80µA Ground Current ♦0.1µA Shutdown Current ♦Thermal Overload Protection ♦Output Current Limit♦Tiny 1.3W Power-µMAX PackageMAX1792500mA Low-Dropout Linear Regulator in µMAX________________________________________________________________Maxim Integrated Products 1Pin ConfigurationTypical Operating Circuit19-1699; Rev 1; 8/08Ordering Informationblanks to complete the part number.Contact factory for other preset output voltages.For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,or visit Maxim's website at .M A X 1792500mA Low-DropoutLinear Regulator in µMAXABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.IN, SHDN , RST , SET to GND....................................-0.3V to +6V OUT to GND ................................................-0.3V to (V IN + 0.3V)Output Short-Circuit Duration........................................Indefinite Continuous Power Dissipation (T A = +70°C)8-Pin Power-µMAX (derate 17mW/°C above +70°C).......1.3WOperating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX1792500mA Low-Dropout Linear Regulator in µMAXELECTRICAL CHARACTERISTICS (continued)01.00.52.01.53.02.53.52.03.03.52.54.04.55.05.5OUTPUT VOLTAGE vs. INPUT VOLTAGEINPUT VOLTAGE (V)O U T P U T V O L T A G E (V )3.273.283.293.303.313.323.330200100300400500600700800OUTPUT VOLTAGE vs. LOAD CURRENTM A X 1792-02LOAD CURRENT (mA)O U T P U T V O L T A G E (V )3.273.293.283.313.303.323.33-4010-15356085OUTPUT VOLTAGE vs. TEMPERATURETEMPERATURE (°C)O U T P U T V O L T A G E (V )050150100200250200300100400500600700800DROPOUT VOLTAGE vs. LOAD CURRENTLOAD CURRENT (mA)D R O P O U T V O L T A GE (m V )402080601201001400 1.0 1.5 2.00.5 2.5 3.0 3.5 4.0 4.5 5.0 5.5GROUND-PIN CURRENT vs. INPUT VOLTAGEINPUT VOLTAGE (V)G R O U N D -P I N C U R R E N T (μA)608070100901101201301400200300100400500600700800GROUND-PIN CURRENT vs. LOAD CURRENTLOAD CURRENT (mA)G R O U N D -P I N C U R R E N T (μA )Typical Operating Characteristics(MAX1792EUA33, V IN = V OUT + 500mV, SHDN = IN, C IN = 1µF, C OUT = 3.3µF, T A = +25°C, unless otherwise noted.)M A X 1792500mA Low-DropoutLinear Regulator in µMAX 4_______________________________________________________________________________________between 2.5V and 3.5V, use the following equations: Typical Dropout = -93mV/V ✕V OUT(NOM) + 445mV; Guaranteed Maximum Dropout = -137mV/V ✕V OUT(NOM) + 704mV. For V OUT(NOM) ≥3.5V: Typical Dropout = 120mV; Guaranteed Maximum Dropout = 225mV.Note 2:Specifications to -40°C are guaranteed by design, not production tested.MAX1792500mA Low-Dropout Linear Regulator in µMAX_______________________________________________________________________________________5OUTPUT NOISE DC TO 1MHz20ms/divV OUT200μV/divV OUT = 3.3VR OUT = 66Ω (50mA)1000.01200100400600REGION OF STABLE C OUT ESRvs. LOAD CURRENT0.1110LOAD CURRENT (mA)C O U TE S R (Ω)300500700800LOAD-TRANSIENT RESPONSE10μs/divI OUT500mA/divV OUT 20mV/div6070658075908595-4010-15356085GROUND-PIN CURRENT vs. TEMPERATURETEMPERATURE (°C)G R O U N D -P I N C U R R E N T(μA )-800.010.11000POWER-SUPPLY REJECTION RATIOvs. FREQUENCY-10-30-60-70FREQUENCY (kHz)P S R R (d B )110-50-40-201000.11101001000OUTPUT SPECTRAL NOISE DENSITYvs. FREQUENCYFREQUENCY (kHz)O U T P U T S P E C T R A L N O I S E D E N S I T Y (μV /√H z )100.0010.010.11Typical Operating Characteristics (continued)(MAX1792EUA33, V IN = V OUT + 500mV, SHDN = IN, C IN = 1µF, C OUT = 3.3µF, T A = +25°C, unless otherwise noted.)500mA Low-DropoutLinear Regulator in µMAXSHUTDOWN WAVEFORM MAX1792-1520μs/divV SHDN 1V/div V OUT 1V/div 002V 3V R OUT = 6.6Ω (500mA)RST WAVEFORMMAX1792-1620ms/divV IN2.5V/div V OUT 2V/div 05V 00R OUT = 66Ω (50mA)V RST 2V/div M A X 1792LINE-TRANSIENT RESPONSEMAX1792-14100μs/divV IN 1V/div V OUT 10mV/div6V 3VLOAD-TRANSIENT RESPONSENEAR DROPOUT20μs/divI OUT500mA/divV OUT 50mV/divV IN = V OUT + 100mV C IN = 10μFR OUT = 660Ω TO 6.6Ω (5mA TO 500mA)Typical Operating Characteristics (continued)(MAX1792EUA33, V IN = V OUT + 500mV, SHDN = IN, C IN = 1µF, C OUT = 3.3µF, T A = +25°C, unless otherwise noted.)Detailed DescriptionThe MAX1792 is a low-dropout, low-quiescent-current linear regulator designed primarily for battery-powered applications. The device supplies loads up to 500mA and is available with preset output voltages. As illustrat-ed in Figure 1, the MAX1792 consists of a 1.25V refer-ence, error amplifier, P-channel pass transistor, and internal feedback voltage-divider.The 1.25V reference is connected to the error amplifier,which compares this reference with the feedback volt-age and amplifies the difference. If the feedback volt-age is lower than the reference voltage, the pass-transistor gate is pulled lower, which allows more current to pass to the output and increases the output voltage. If the feedback voltage is too high, the pass-transistor gate is pulled up, allowing less current to pass to the output.The output voltage is fed back through either an inter-nal resistive divider connected to OUT or an external resistor network connected to SET. The Dual Mode comparator examines V SET and selects the feedback path. If V SET is below 50mV, the internal feedback path is used and the output is regulated to the factory-preset voltage.Additional blocks include an output current limiter, ther-mal sensor, and shutdown logic.Internal P-Channel Pass TransistorThe MAX1792 features a 0.25ΩP-channel MOSFET pass transistor. Unlike similar designs using PNP pass transistors, P-channel MOSFETs require no base drive,which reduces quiescent current. PNP-based regula-tors also waste considerable current in dropout when the pass transistor saturates, and use high base-drive currents under large loads.MAX1792500mA Low-Dropout Linear Regulator in µMAX_______________________________________________________________________________________7Figure 1. Functional DiagramM A X 1792The MAX1792 does not suffer from these problems and consumes only 110µA of quiescent current under heavy loads as well as in dropout.Output Voltage SelectionThe MAX1792’s Dual Mode operation allows operation in either a preset voltage mode or an adjustable mode.Connect SET to G ND to select the preset output volt-age. The two-digit part number suffix identifies the out-put voltage (see Selector Guide ). For example, the MAX1792EUA33 has a preset 3.3V output voltage.The output voltage may also be adjusted by connecting a voltage-divider from OUT to SET to G ND (Figure 2).Select R2 in the 25k Ωto 100k Ωrange. Calculate R1with the following equation:R1 = R2 [(V OUT / V SET ) - 1]where V SET = 1.25V and V OUT may range from 1.25V to 5.0V.ShutdownPull SHDN low to enter shutdown. During shutdown, the output is disconnected from the input and supply current drops to 0.1µA. When in shutdown, RST pulls low and OUT is discharged through an internal 5k Ωresistor. The capacitance and load at OUT determine the rate at which V OUT decays. SHDN can be pulled as high as +6V, regardless of the input and output voltage.Reset OutputThe reset output (RST ) pulls low when OUT is less than 93% of the nominal regulation voltage. Once OUT exceeds 93% of the nominal voltage, RST goes high impedance after 4ms. RST is an open-drain N-channel output. To obtain a voltage output, connect a pullup resistor from RST to OUT. A 100k Ωresistor works well for most applications. RST can be used as a power-on-reset (POR) signal to a microcontroller (µC), or drive an exter-nal LED to indicate power failure. When the MAX1792 is shut down, RST is held low independent of the output voltage. If unused, leave RST grounded or unconnected.Current LimitThe MAX1792 monitors and controls the pass transis-tor’s gate voltage, limiting the output current to 0.8A (typ). This current limit doubles when the output voltage is within 4% of the nominal value to improve perfor-mance with large load transients. The output can be shorted to ground for an indefinite period of time with-out damaging the part.Thermal Overload ProtectionThermal overload protection limits total power dissipa-tion in the MAX1792. When the junction temperature exceeds T J = +170°C, a thermal sensor turns off the pass transistor, allowing the device to cool. The thermal sensor turns the pass transistor on again after the junc-tion temperature cools by 20°C, resulting in a pulsed output during continuous thermal overload conditions.Thermal overload protection protects the MAX1792 in the event of fault conditions. For continuous operation,do not exceed the absolute maximum junction-temper-ature rating of T J = +150°C.Operating Region andPower DissipationThe MAX1792’s maximum power dissipation depends on the thermal resistance of the IC package and circuit board, the temperature difference between the die junc-tion and ambient air, and the rate of air flow. The power dissipated in the device is P = I OUT x (V IN - V OUT ). The maximum allowed power dissipation is 1.3W or:P MAX = (T J(MAX)- T A ) / ( θJC + θCA )where T J - T A is the temperature difference between the MAX1792 die junction and the surrounding air, θJC is the thermal resistance from the junction to the case,and θCA is the thermal resistance from the case through the PC board, copper traces, and other materi-als to the surrounding air.The MAX1792 package features an exposed thermal pad on its underside. This pad lowers the thermal resis-tance of the package by providing a direct heat con-500mA Low-DropoutLinear Regulator in µMAX 8_______________________________________________________________________________________duction path from the die to the PC board. Additionally,the MAX1792’s ground pin (G ND) performs the dual function of providing an electrical connection to system ground and channeling heat away. Connect the exposed backside pad and GND to the system ground using a large pad or ground plane, or multiple vias to the ground plane layer.The MAX1792 delivers up to 0.5A (RMS)and operates with input voltages up to 5.5V, but not simultaneously.High output currents can only be sustained when input-output differential voltages are low, as shown in Figure 3.Applications InformationCapacitor Selection and Regulator StabilityCapacitors are required at the MAX1792’s input and output for stable operation over the full temperature range and with load currents up to 500mA. Connect a 1µF capacitor between IN and ground and a 3.3µF low equivalent series resistance (ESR) capacitor between OUT and ground. For output voltages less than 2V, use a 4.7µF low-ESR output capacitor. The input capacitor (C IN ) lowers the source impedance of the input supply.Reduce noise and improve load-transient response,stability, and power-supply rejection by using larger output capacitors such as 10µF.The output capacitor’s (C OUT ) ESR affects stability and output noise. Use output capacitors with an ESR of 0.1Ωor less to ensure stability and optimum transientresponse. Surface-mount ceramic capacitors have very low ESR and are commonly available in values up to 10µF. Connect C IN and C OUT as close to the MAX1792as possible to minimize the impact of PC board trace inductance.Noise, PSRR, and Transient ResponseThe MAX1792 is designed to operate with low dropout voltages and low quiescent currents in battery-powered systems while still maintaining good noise, transient response, and AC rejection. See the Typical Operating Characteristics for a plot of Power-Supply Rejection Ratio (PSRR) vs. Frequency. When operating from noisy sources, improved supply-noise rejection and transient response can be achieved by increasing the values of the input and output bypass capacitors and through passive filtering techniques.The MAX1792 load-transient response graphs (see T ypical Operating Characteristics ) show two compo-nents of the output response: a DC shift from the output impedance due to the load current change, and the transient response. A typical transient response for a step change in the load current from 5mA to 500mA is 18mV. Increasing the output capacitor’s value and decreasing the ESR attenuates the overshoot.Input-Output (Dropout) VoltageA regulator’s minimum input-to-output voltage differen-tial (dropout voltage) determines the lowest usable sup-ply voltage. In battery-powered systems, this determines the useful end-of-life battery voltage.Because the MAX1792 uses a P-channel MOSFET pass transistor, its dropout voltage is a function of drain-to-source on-resistance (R DS(ON)) multiplied by the load current (see Typical Operating Characteristics ):V DROPOUT = V IN - V OUT = R DS(ON)x I OUTThe MAX1792 ground current remains below 150µA in dropout.Note:T he MAX1792 has an exposed thermal pad on the bottom side of the package.MAX1792500mA Low-Dropout Linear Regulator in µMAX_______________________________________________________________________________________9Figure 3. Power Operating Regions: Maximum Output Current vs. Supply VoltageChip InformationTRANSISTOR COUNT: 845M A X 1792500mA Low-DropoutLinear Regulator in µMAX 10______________________________________________________________________________________8L , μM A X , E X P P A D .E P SPackage Information(For the latest package outline information and land patterns, go to /packages .)500mA Low-DropoutLinear Regulator in µMAXRevision HistoryMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________11©2008 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.元器件交易网。