MAX3042BCUE+中文资料
MAX267ACWG中文资料
Package InformationMAX263/MAX264/MAX267/MAX268Pin Programmable Universal and Bandwidth Filters (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline informationgo to /packages.)M A X 263/M A X 264/M A X 267/M A X 268Pin ProgrammableUniversal and Bandwidth Filters 24______________________________________________________________________________________Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)Package Information (continued)MAX263/MAX264/MAX267/MAX268Pin Programmable Universal and Bandwidth Filters (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline informationgo to /packages.)M A X 263/M A X 264/M A X 267/M A X 268Pin ProgrammableUniversal and Bandwidth Filters 26______________________________________________________________________________________Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)MAX263/MAX264/MAX267/MAX268Pin ProgrammableUniversal and Bandwidth Filters______________________________________________________________________________________27Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages.)M A X 263/M A X 264/M A X 267/M A X 268Pin ProgrammableUniversal and Bandwidth Filters Maxim cannot assum e responsibility for use of any circuitry other than circuitry entirely em bodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.28____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2008 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.。
MAX213CAI-T中文资料
General DescriptionThe MAX200–MAX211/MAX213 transceivers are designed for RS-232 and V.28 communication inter-faces where ±12V supplies are not available. On-board charge pumps convert the +5V input to the ±10V need-ed for RS-232 output levels. The MAX201 and MAX209operate from +5V and +12V, and contain a +12V to -12V charge-pump voltage converter.The MAX200–MAX211/MAX213 drivers and receivers meet all EIA/TIA-232E and CCITT V.28 specifications at a data rate of 20kbps. The drivers maintain the ±5V EIA/TIA-232E output signal levels at data rates in excess of 120kbps when loaded in accordance with the EIA/TIA-232E specification.The 5µW shutdown mode of the MAX200, MAX205,MAX206, and MAX211 conserves energy in battery-powered systems. The MAX213 has an active-low shut-down and an active-high receiver enable control. Two receivers of the MAX213 are active, allowing ring indica-tor (RI) to be monitored easily using only 75µW power.The MAX211 and MAX213 are available in a 28-pin wide small-outline (SO) package and a 28-pin shrink small-outline (SSOP) package, which occupies only 40% of the area of the SO. The MAX207 is now avail-able in a 24-pin SO package and a 24-pin SSOP. The MAX203 and MAX205 use no external components,and are recommended for applications with limited circuit board space.ApplicationsComputersLaptops, Palmtops, Notebooks Battery-Powered Equipment Hand-Held Equipment Next-Generation Device Features ♦For Low-Cost Applications:MAX221E: ±15kV ESD-Protected, +5V, 1µA, Single RS-232 Transceiver with AutoShutdown™♦For Low-Voltage and Space-Constrained Applications:MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E: ±15kV ESD-Protected, Down to 10nA,+3.0V to +5.5V, Up to 1Mbps, True RS-232Transceivers (MAX3246E Available in UCSP™Package)♦For Space-Constrained Applications:MAX3228E/MAX3229E: ±15kV ESD-Protected,+2.5V to +5.5V, RS-232 Transceivers in UCSP ♦For Low-Voltage or Data Cable Applications:MAX3380E/MAX3381E: +2.35V TO +5.5V, 1µA,2Tx/2Rx RS-232 Transceivers with ±15kV ESD-Protected I/O and Logic Pins ♦For Low-Power Applications:MAX3224E–MAX3227E/MAX3244E/MAX3245E:±15kV ESD-Protected, 1µA, 1Mbps, +3.0V to+5.5V, RS-232 Transceivers with AutoShutdown Plus™MAX200–MAX211/MAX213+5V , RS-232 Transceivers with 0.1µF External Capacitors ________________________________________________________________Maxim Integrated Products 119-0065; Rev 6; 10/03For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Ordering Information appears at end of data sheetAutoShutdown, AutoShutdown Plus, and UCSP are trademarks of Maxim Integrated Products, Inc.MAX200–MAX211/MAX213+5V , RS-232 Transceiverswith 0.1µF External Capacitors______________________________________________________________________________________19Ordering Information*Contact factory for dice specifications.M A X 200–M A X 211/M A X 213+5V , RS-232 Transceiverswith 0.1µF External Capacitors Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.20____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2003 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。
SUS304不锈钢技术资料
屈服强度大于205Mpa/抗拉强度大于520MPa/延伸率大于40%/硬度值不大于HV小于200HRB小于90HBW小于187一般考察的力学性能就是以上几点。
其它的物理性能为密度7.93热膨胀系数17.3热传导度16.32弹性模量193电阻70比热500无磁性,食品机械、制药机械广泛应用。
因而达到医药和食品的要求化学成分(%)SUS304 C≤0.15%Cr:17~19%Si≤1.5% Mn≤2.0% S/P≤0.05%最小密度7.6G/CM3属于不锈钢无磁316和316L不锈钢(316L不锈钢的性能见后)是含钼不锈钢种。
316L不锈钢中的钼含量略高于316不锈钢.316L不锈钢的最大碳含量0.03,可用于焊接后不能进行退火和需要最大耐腐蚀性的用途中.公称成分的写法:316L 00Cr17Ni12Mo2304 0Cr18Ni9从这个看化学成分都不一样的。
性能也有很大的不同,具体你要什么地方的不同还要查资料的。
304钢种能耐硫酸、磷酸、甲酸、尿素等腐蚀,适用于一般用水,控制用气、酒、牛奶、CIP清洗液等腐蚀性小或不接触物料的场合.316L钢种在304基础上增加了钼元素,可以显著提高其耐晶间腐蚀、氧化物应力腐蚀的能力,以及减少焊接时的热裂倾向性.还有良好的耐氯化物腐蚀的性能.常用于纯水、蒸馏水、药品、酱、醋等卫生要求高、介质腐蚀性能强的场合.价格上316L是304的差不多2倍机械性能304优于316L不锈钢可以按用途、化学成分及金相组织来大体分类。
以奥氏体系类的钢由18%铬-8%镍为基本组成,各元素的加入量变化的不同,而开发各种用途的钢种。
以化学成分分类:①.CR系列:铁素体系列、马氏体系列②.CR-NI系列:奥氏体系列,异常系列,析出硬化系列。
以金相组织的分类:①.奥氏体不锈钢②.铁素体不锈钢③.马氏体不锈钢④.双相不锈钢⑤.沉淀硬化不锈钢不锈钢的标识方法钢的编号和表示方法①用国际化学元素符号和本国的符号来表示化学成份,用阿拉伯字母来表示成份含量:如:中国、俄国12CrNi3A②用固定位数数字来表示钢类系列或数字;如:美国、日本、300系、400系、200系;③用拉丁字母和顺序组成序号,只表示用途。
蜚声功放说明书
5. 安装孔 用于安装到机柜时固定用。
6. 通道1的音量控制器 功放工作于立体声或并接模式时由此控制器控制通道1的输出电平,功放工作于桥接模式时由此控制器控 制输出电平,此时通道2的音量控制器失效。
7. 保护指示 当此指示灯亮,处于保护状态,方便找出问题所在。 指示的保护功能有:削峰压限保护、过热保护、过载保护、短路保护、直流保护功能。
11电压增益频率响应总谐波失真转换速率阻尼系数动态范围信噪比输入灵敏度输入阻抗平衡不平衡输出级电路类型保护功能高通滤波器低通滤波器散热气流方向输入电压频率外箱尺寸mm重量压限直流短路开关机零冲击开机软启动vhf甚高频保护压限直流短路开关机零冲击开机软启动从功放面板进风23kg29kg29kg33kg35kg38kg33kgl620xw585xh210max1200max2400max3600max4300max7200max7800650wx21250wx2450wx2675wx2800wx2975wx21650wx21950wx2520wx2450wx2300wx21100wx2max4800830wx21250wx2900w1350w1600w1950w3300w3900w2500w620wx21000wx21200wx21400wx22160wx22700wx21850wx2桥接功率1240w2000w2400w2800w43200w5400w3700wmax系列技术参数12注意
2. TRS输入座(平衡或不平衡)。连接到上一级的周边处理设备。 3. 直通插座
与XLR 输入并联,提供一个与输入信号一样的输出信号,用此平衡插座连接到另一台设备。 (仅限于MAX4300、MAX4800、MAX7200、MAX7800) 4. 输入灵敏度开关 此开关用于选择功放的输入灵敏度:0.775V、1.0V及1.4V。(仅限于MAX4300、MAX4800、MAX7200、 MAX7800)。 5. 工作模式选择开关 用此开关去选择功放的工作模式: STEREO/立体声:两个通道完全独立。 PARALLEL/并接:信号共用通道1输入,音量独立控制,输出独立。 BRIDGE/桥接:信号共用通道1输入,音量由通道1控制,输出接通道1的SPEAKON。当使用到该工作模式 时,背板的指示灯亮。 注意:具体见下页的接线图。 6. 150Hz低通滤波器开关 若系统中需要推动超低音的音箱时,将开关拨到“ON”的位置可以滤掉150Hz以上的信号,直接使用功放 推动超低音的音箱,无需外加电子分频器。(仅限于MAX4300、MAX4800、MAX7200、MAX7800) 7. 音箱螺旋座输出 这是功放螺旋座的输出端。1+接喇叭的正端,1-接喇叭的负端,桥接时1+接喇叭的正端、2+接喇叭的负端。 8. 喇叭接线柱输出 这是功放喇叭接线柱的输出端。红色接喇叭的正端,黑色接喇叭的负端,桥接时只使用红色接喇叭的正端。 9. 保险管座 此保险管座内装由标准规格的保险管,用于故障时保护功放,如果功放已经接上电源待机指示灯没有点亮 时,请检查保险管的情况,如发现保险管已熔掉,在故障排除后,必须更换同一规格的保险管。 10. 散热的气流入口,不要有任何东西堵住。
XC3042A中文资料
Device
XC3020A XC3030A XC3042A XC3064A XC3090A
CLBs
64 100 144 224 320
Array
8x8 10 x 10 12 x 12 16 x 14 16 x 20
User I/Os Max
64 80 96 120 144
Flip-Flops
256 360 480 688 928
Chip thresholds programmed as CMOS levels
500
µA
Chip thresholds programmed as TTL levels
10
mA
IIL
Input Leakage Current
CIN
Input capacitance, all packages except PGA175
70% 100% VCC
VILC
Low-level input voltage — CMOS configuration
0
20% VCC
TIN
Input signal transition time
250 ns
At junction temperatures above those listed as Operating Conditions, all delay parameters increase by 0.3% per °C.
The XC3000A family has additional interconnect resources to drive the I-inputs of TBUFs driving horizontal Longlines. The CLB Clock Enable input can be driven from a second vertical Longline. These two additions result in more efficient and faster designs when horizontal Longlines are used for data bussing.
ZMC304.306M控制器硬件手册
ZMC304/306M运动控制器硬件手册Version1.1版权说明本手册版权归所有,未经公司书面许可,任何人不得翻印、翻译和抄袭本手册中的任何内容。
涉及ZMC控制器软件的详细资料以及每个指令的介绍和例程,请参阅ZBASIC软件手册。
本手册中的信息资料仅供参考。
由于改进设计和功能等原因,正运动公司保留对本资料的最终解释权!内容如有更改,恕不另行通知!调试机器要注意安全!请务必在机器中设计有效的安全保护装置,并在软件中加入出错处理程序,否则所造成的损失,正运动公司没有义务或责任对此负责。
目录ZMC304/306M运动控制器硬件手册 (1)第一章控制器简介 (1)1.1连接配置 (1)1.2安装和编程 (2)1.3产品特点 (2)第二章硬件描述 (3)2.1ZMC304/306M系列型号规格 (3)2.1.1订货信息: (3)2.2ZMC304接线 (5)2.2.1电源接口: (6)2.2.2通讯接口: (6)2.2.3RS232接口: (7)2.2.4通用输入信号: (8)2.2.5通用输出: (9)2.2.6ADDA信号 (10)2.2.7U盘接口信号: (10)2.2.8轴接口信号: (10)第三章扩展模块 (13)第四章常见问题 (13)第五章硬件安装 (14)5.1ZMC304/306M安装尺寸 (14)第一章控制器简介ZMC304系列控制器支持最多达10轴直线插补、任意圆弧插补、空间圆弧、螺旋插补、电子凸轮、电子齿轮、同步跟随、虚拟轴设置等;采用优化的网络通讯协议可以实现实时的运动控制。
单个电脑最多支持达256个ZMC控制器同时链接。
1.1连接配置典型连接配置图ZMC运动控制器支持以太网,USB,CAN,485等通讯接口,通过CAN总结可以连接各个扩展模块,从而扩展输入输出点数或运动轴(CAN总线两端需要并接120欧姆的电阻)。
ZMC运动控制器支持U盘保存或读取数据(00x系列除外)。
1.2安装和编程ZDevelop开发环境ZMC控制器通过ZDevelop开发环境来调试,ZDevelop是一个很方便的编程、编译和调试环境。
304不锈钢拉闸门制作参数
304不锈钢拉闸门制作参数
(最新版)
目录
1.304 不锈钢拉闸门介绍
2.304 不锈钢拉闸门制作参数
2.1 材质
2.2 规格
2.3 工艺
2.4 表面处理
正文
【304 不锈钢拉闸门介绍】
304 不锈钢拉闸门是一种常用于工业、商业和住宅领域的防护设施,以 304 不锈钢为基材,具有良好的耐腐蚀性、抗氧化性、抗磨损性和高强度。
不锈钢拉闸门不仅具有出色的使用寿命,而且方便安装和维护,广泛应用于庭院、车库、仓库等场所。
【304 不锈钢拉闸门制作参数】
2.1 材质
304 不锈钢拉闸门的基材为 304 不锈钢,这是一种含 18% 铬和 8% 镍的合金钢。
304 不锈钢具有良好的耐腐蚀性、抗氧化性、抗磨损性和高强度,适用于各种环境。
2.2 规格
304 不锈钢拉闸门的规格包括门框厚度、门扇厚度、门扇高度和门扇宽度等。
这些参数可以根据客户需求进行定制。
2.3 工艺
304 不锈钢拉闸门的制作工艺包括切割、焊接、打磨、抛光等步骤。
其中,焊接工艺尤为重要,需要采用氩弧焊接或电焊等技术,确保焊接强度和美观度。
2.4 表面处理
304 不锈钢拉闸门的表面处理通常包括抛光和喷涂。
抛光可以提高不锈钢拉闸门的光洁度和观感,喷涂则可以提供额外的防护层,增强抗腐蚀性能。
此外,还可以根据客户需求进行拉丝、木纹等特殊处理。
总之,304 不锈钢拉闸门具有优越的性能和美观的外观,广泛应用于各种场所。
海康威视单兵用户手册v1.1版本
MAX352中文资料
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Digital Inputs, VCOM, VNC, VNO (Note 1) ...........(V- - 2V) to (V+ + 2V) .........................................................or 30mA (whichever occurs first) Current (any terminal) .........................................................30mA Peak Current COM_, NO_, NC_
Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10sec) .............................+300°C
(完整版)SUS304性能表
常用相关国家不锈钢厚度公差标准比较日期:2007-7-25 10:54:41钢带厚度的允许偏差1、中国国家标准(GB) 单位:mm2、日本工业标准3、美国材料协会标准(ASTM)标准SUS304、SUS301钢带不同状态下标准机械性能日期:2007-6-22 8:36:56各相关国家不锈钢钢带(钢板)标准中厚度测量位置规定日期:2007-9-7 10:42:46各相关国家不锈钢钢带(钢板)标准中厚度测量位置规定1、中国国家标准(GB 4239)宽度≥600mm,在距钢带边缘大于40mm处测量2、日本工业标准(JIS G4305)测量厚度的部位,宽度≥50mm的轧制边钢带,为距其边缘25mm以上内侧的任意一点;宽度≥30mm的切边钢带,为距其边缘15mm以上内侧的任意一点。
3、美国材料协会标准(ASTM A480)宽度≥600mm的切边钢带,测量点至少距边部15mm;宽度≥600mm的轧边钢带,测量点至少距边部25mm;中外不锈钢表面状态标准介绍ASTM480不锈钢标准表面状态Q/TY3012-2003 对厚度公差执行目标的0Cr18Ni9成品厚度控制标准太钢厚度公差执行目标的0Cr18Ni9成品厚度控制标准单位:mm注:钢带头尾共20米内的厚度上、下限允许超出上表中成品厚度范围的上、下限规定。
不锈钢的计算公式日期:2007-6-6 16:12:16中国与亚洲、北美诸国(地区)以及澳大利亚的不锈钢钢号近似对照日期:2007-6-6 15:30:13中国与亚洲、北美诸国(地区)以及澳大利亚的不锈钢标准日期:2007-4-27 15:10:02日本不锈钢板(带)表面加工标准日期:2007-4-20 14:11:46不锈钢管壁厚公差选择表日期:2007-6-7 11:23:44不锈钢管管内理论爆破压力和许用压力参数表日期:2007-6-7 11:26:18(σ/f)Et]/(D-t),其中P2:管内许可压力Mpa σ:屈服强度Mpa E:质量系数取0.85(本公司担供E=1的焊管)FQ/TY3012-2003 对厚度公差执行目标的0Cr18Ni9成品厚度控制标准日期:2007-7-4 16:08:43太钢厚度公差执行目标的0Cr18Ni9成品厚度控制标准单位:mm注:钢带头尾共20米内的厚度上、下限允许超出上表中成品厚度范围的上、下限规定。
MAX3045BESE+中文资料
General DescriptionThe MAX3040–MAX3045 is a family of 5V quad RS-485/RS-422 transmitters designed for digital data trans-mission over twisted-pair balanced lines. All transmitter outputs are protected to ±10kV using the Human Body Model. In addition the MAX3040–MAX3045 withstand ±4kV per IEC 1000-4-4 Electrical Fast Transient/Burst Stressing. The MAX3040/MAX3043 (250kbps) and the MAX3041/MAX3044 (2.5Mbps) are slew-rate limited transmitters that minimize EMI and reduce reflections caused by improperly terminated cables, thus allowing error-free transmission.The MAX3040–MAX3045 feature a hot-swap capability*that eliminates false transitions on the data cable during power-up or hot insertion. The MAX3042B/MAX3045B are optimized for data transfer rates up to 20Mbps, the MAX3041/MAX3044 for data rates up to 2.5Mbps, and the MAX3040/MAX3043 for data rates up to 250kbps.The MAX3040–MAX3045 offer optimum performance when used with the MAX3093E or MAX3095 5V quad differential line receivers or MAX3094E/MAX3096 3V quad differential line receivers.The MAX3040–MAX3045 are ESD-protected pin-compat-ible, low-power upgrades to the industry-standard ‘SN75174 and ‘DS26LS31C. They are available in space-saving TSSOP, narrow SO, and wide SO packages.*Patent pendingApplicationsTelecommunications Equipment Industrial Motor ControlTransmitter for ESD-Sensitive Applications Hand-Held Equipment Industrial PLCs NetworkingFeatureso ESD Protection: ±10kV—Human Body Model o Single +5V Operationo Guaranteed Device-to-Device Skew(MAX3040/MAX3041/MAX3043/MAX3044)o Pin-Compatible with ‘SN75174, ‘26LS31C and LTC487o Hot-Swappable for Telecom Applications o Up to 20Mbps Data Rate (MAX3042B/MAX3045B)o Slew-Rate Limited (Data Rates at 2.5Mbps and 250kbps)o 2nA Low-Power Shutdown Mode o 1mA Operating Supply Currento ±4kV EFT Fast Transient Burst Immunity per IEC 1000-4-4o Level 2 Surge Immunity per IEC 1000-4-5,Unshielded Cable Model o Ultra-Small 16-Pin TSSOP, 16-Pin Narrow SO, and Wide 16-Pin SOMAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters________________________________________________________________Maxim Integrated Products1Pin ConfigurationsSelector GuideOrdering Information19-2143; Rev 1; 12/01Ordering Information continued at end of data sheet.For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/RS-422TransmittersABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.All voltages referenced to ground (GND).Supply Voltage (V CC ).............................................................+7V Control Input Voltage (EN, EN , EN_) .........-0.3V to (V CC + 0.3V)Driver Input Voltage (T_IN).........................-0.3V to (V CC + 0.3V)Driver Output Voltage (Y_, Z_)(Driver Disabled).............................................-7.5V to +12.5V Driver Output Voltage (Y_, Z_)(Driver Enabled).................................................-7.5V to +10V Continuous Power Dissipation (T A = +70°C)16-Pin TSSOP (derate 9.4mW/°C above +70°C)..........755mW16-Pin Narrow SO (derate 8.70mW/°C above +70°C)..696mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C).....762mW Operating Temperature RangeMAX304_C_E.......................................................0°C to +70°C MAX304_E_E....................................................-40°C to +85°C Maximum Junction Temperature.....................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422TransmittersSWITCHING CHARACTERISTICS —MAX3040/MAX3043SWITCHING CHARACTERISTICS —MAX3041/MAX3044M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters 4_______________________________________________________________________________________Note 2:∆V OD and ∆V OC are the changes in V OD and V OC , respectively, when the transmitter input changes state.Note 3:This input current level is for the hot-swap enable (EN_, EN, EN ) inputs and is present until the first transition only. After thefirst transition the input reverts to a standard high-impedance CMOS input with input current I IN . For the first 20µs the input current may be as high as 1mA. During this period the input is disabled.Note 4:Maximum current level applies to peak current just prior to foldback-current limiting. Minimum current level applies duringcurrent limiting.SWITCHING CHARACTERISTICS —MAX3041/MAX3044 (continued)(V CC = +5V ±5%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5V and T A = +25°C.)OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )54-6-5-4-2-1012-3310203040506070800-76OUTPUT CURRENT vs. TRANSMITTEROUTPUT HIGH VOLTAGE0.70.81.00.91.11.220103040506070SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U RR E N T (m A )10010000105152025353040450.1110MAX3040/MAX3043SUPPLY CURRENT vs. DATA RATEDATA RATE (kbps)S U P P L Y C U R R E N T (m A )4000.1110100100010,000MAX3041/MAX3044SUPPLY CURRENT vs. DATA RATEDATA RATE (kbps)S U P P L Y C U R R E N T (m A )1052015353025MAX3042B/MAX3045BSUPPLY CURRENT vs. DATA RATEDATA RATE (kbps)0.1100100010,000110100,000S U P P L Y C U R R E N T (m A )60010203050400201040306050700426810OUTPUT CURRENT vs. TRANSMITTEROUTPUT LOW VOLTAGEOUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )MAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters_______________________________________________________________________________________5Typical Operating Characteristics(V CC = +5V, T A = +25°C, unless otherwise noted.)020104030605070021345OUTPUT CURRENTvs. DIFFERENTIAL OUTPUT VOLTAGEM A X 3040 t oc 07DIFFERENTIAL OUTPUT VOLTAGE (V)O U T P U T C U R R E N T (m A )2.102.202.152.352.302.252.502.452.402.5520301040506070TRANSMITTER DIFFERENTIAL OUTPUTVOLTAGE vs. TEMPERATURETEMPERATURE (°C)D I F FE R E N T I A L O U T P U T V O L T A G E (V )M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters 6_______________________________________________________________________________________MAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters7Detailed DescriptionThe MAX3040–MAX3045 are quad RS-485/RS-422 trans-mitters. They operate from a single +5V power supply and are designed to give optimum performance when used with the MAX3093E/MAX3095 5V quad RS-485/RS-422 receivers or MAX3094E/MAX3096 3V quad RS-485/RS-422 receivers. The MAX3040–MAX3045 only need 1mA of operating supply current and consume 2nA when they enter a low-power shutdown mode. The MAX3040–MAX3045 also feature a hot-swap capability allowing line insertion without erroneous data transfer.The MAX3042B/MAX3045B are capable of transferring data up to 20Mbps, the MAX3041/MAX3044 for data rates up to 2.5Mbps, and the MAX3040/MAX3043 for data rates up to 250kbps. All transmitter outputs are pro-tected to ±10kV using the Human Body Model.±10kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges (ESD) encountered during handling and assembly. The MAX3040–MAX3045 transmitter outputs have extra protection against electrostatic dis-charges found in normal operation. Maxim ’s engineers have developed state-of-the-art structures to protect these pins against the application of ±10kV ESD (Human Body Model), without damage.ESD Test ConditionsESD performance depends on a number of conditions.Contact Maxim for a reliability report that documents test setup, methodology, and results.Human Body ModelFigure 6a shows the Human Body Model, and Figure 6b shows the current waveform it generates when dis-charged into low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,which is then discharged into the device through a 1.5k Ωresistor.Machine ModelThe Machine Model for ESD testing uses a 200pF stor-age capacitor and zero-discharge resistance. It mimics the stress caused by handling during manufacturing and assembly. Of course, all pins (not just RS-485inputs) require this protection during manufacturing.Therefore, the Machine Model is less relevant to the I/O ports than are the Human Body Model.±4kV Electrical Fast Transient/Burst Testing(IEC 1000-4-4)IEC 1000-4-4 Electrical Fast Transient/Burst (EFT/B) is an immunity test for the evaluation of electrical and electronic systems during operating conditions. The test was adapted for evaluation of integrated circuits with power applied. Repetitive fast transients with severe pulsed EMI were applied to signal and control ports. Over 15,000 distinct discharges per minute are sent to each interface port of the IC or equipment under test (EUT) simultaneously with a minimum test duration time of one minute. This simulates stress due to dis-placement current from electrical transients on AC mains, or other telecommunication lines in close prox-imity. Short rise times and very specific repetition rates are essential to the validity of the test.Stress placed on the EUT is severe. In addition to the controlled individual discharges placed on the EUT,extraneous noise and ringing on the transmission line can multiply the number of discharges as well as increase the magnitude of each discharge. All cabling was left unterminated to simulate worst-case reflections.The MAX3040–MAX3045 were setup as specified in IEC 1000-4-4 and the Typical Operating Circuit of this data sheet. The amplitude, pulse rise time, pulse dura-tion, pulse repetition period, burst duration, and burst period (Figure 8)of the burst generator were all verified with a digital oscilloscope according to the specifica-tions in IEC 1000-4-4 sections 6.1.1 and 6.1.2. A simpli-fied diagram of the EFT/B generator is shown in Figure 7. The burst stresses were applied to Y1–Y4 and Z1–Z4simultaneously.IEC 1000-4-4 provides several levels of test severity (see Table 1). The MAX3040–MAX3045 pass the 4000V stress, a special category “X ” beyond the highest level for severe (transient) industrial environments for telecommunication lines.M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters 8_______________________________________________________________________________________MAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters_______________________________________________________________________________________9IEC 1000-4-4 Burst/Electrical FastTransient Test Levels (For Communication Lines)The stresses are applied while the MAX3040–MAX3045are powered up. Test results are reported as:1)Normal performance within the specification limits.2)Temporary degradation or loss of function or perfor-mance which is self-recoverable.3)Temporary degradation, loss of function or perfor-mance requiring operator intervention, such as sys-tem reset.4)Degradation or loss of function not recoverable due to damage.The MAX3040–MAX3045 meets classification 2 listed above. Additionally, the MAX3040–MAX3045 will not latchup during the IEC burst stress events.Hot-Swap CapabilityHot-Swap InputsWhen circuit boards are plugged into a “hot ” back-plane, there can be disturbances to the differential sig-nal levels that could be detected by receivers connected to the transmission line. This erroneous data could cause data errors to an RS-485/RS-422 system.To avoid this, the MAX3040–MAX3045 have hot-swap capable inputs.When a circuit board is plugged into a “hot ” backplane there is an interval during which the processor is going through its power-up sequence. During this time, the processor ’s output drivers are high impedance and will be unable to drive the enable inputs of the MAX3040–MAX3045 (EN, EN , EN_) to defined logic lev-els. Leakage currents from these high impedance dri-vers, of as much as 10µA, could cause the enable inputs of the MAX3040–MAX3045 to drift high or low.Additionally, parasitic capacitance of the circuit board could cause capacitive coupling of the enable inputs to either G ND or V CC . These factors could cause the enable inputs of the MAX3040–MAX3045 to drift to lev-els that may enable the transmitter outputs (Y_ and Z_).To avoid this problem, the hot-swap input provides a method of holding the enable inputs of the MAX3040–MAX3045 in the disabled state as V CC ramps up. This hot-swap input is able to overcome the leakage currents and parasitic capacitances that may pull the enable inputs to the enabled state.Hot-Swap Input CircuitryIn the MAX3040–MAX3045 the enable inputs feature hot-swap capability. At the input there are two NMOSdevices, Q1 and Q2 (Figure 9). When V CC is ramping up from 0, an internal 10µs timer turns on Q2 and sets the SR latch, which also turns on Q1. Transistors Q2, a 700µA current sink, and Q1, an 85µA current sink, pull EN to GND through a 5.6k Ωresistor. Q2 is designed to pull the EN input to the disabled state against an exter-nal parasitic capacitance of up to 100pF that is trying to enable the EN input. After 10µs, the timer turns Q2 off and Q1 remains on, holding the EN input low against three-state output leakages that might enable EN. Q1remains on until an external source overcomes theM A X 3040–M A X 3045required input current. At this time the SR latch resets and Q1 turns off. When Q1 turns off, EN reverts to a standard, high-impedance CMOS input. Whenever V CC drops below 1V, the hot-swap input is reset.The EN12 and EN34 input structures are identical to the EN input. For the EN input, there is a complimentary cir-cuit employing two PMOS devices pulling the EN input to V CC .Hot-Swap Line TransientThe circuit of Figure 10 shows a typical offset termina-tion used to guarantee a greater than 200mV offset when a line is not driven. The 50pF represents the mini-mum parasitic capacitance which would exist in a typi-cal application. In most cases, more capacitance exists in the system and will reduce the magnitude of the glitch. During a “hot-swap ” event when the driver is connected to the line and is powered up, the driver must not cause the differential signal to drop below 200mV. Figures 11 and 12 show the results of the MAX3040–MAX3045 during power-up for two different V CC ramp rates (0.1V/µs and 1V/µs). The photos show the V CC ramp, the single-ended signal on each side of the 100Ωtermination, the differential signal across the termination, and shows the hot-swap line transient stays above the 200mV RS-485 specification.Operation of Enable PinsThe MAX3040–MAX3045 family has two enable-func-tional versions:The MAX3040/MAX3041/MAX3042B have two transmit-ter enable inputs EN12 and EN34. EN12 controls the transmitters 1 and 2, and EN34 controls transmitters 3and 4. EN12 and EN34 are active-high and the part will enter the low-power shutdown mode when both are pulled low. The transmitter outputs are high impedance when disabled (Table 2).The MAX3043/MAX3044/MAX3045B have two transmit-ter enable inputs EN and EN , which are active-high and active-low, respectively. When EN is logic high or EN is logic low all transmitters are active. When EN is pulled low and EN is driven high, all transmitters are disabled and the part enters the low-power shutdown mode. The transmitter outputs are high impedance when disabled (Table 3).Applications InformationTypical ApplicationsThe MAX3040–MAX3045 offer optimum performance when used with the MAX3093E/MAX3095 5V quad receivers or MAX3094E/MAX3096 3V quad differential line receivers. Figure 13 shows a typical RS-485 con-nection for transmitting and receiving data and Figure 14 shows a typical multi-point connection.±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters 10______________________________________________________________________________________Figure 9. Simplified Structure of the Driver Enable Pin (EN)MAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters______________________________________________________________________________________11V CC 2V/div Y-Z(20mV/div)238mVY200mV/div Z200mV/div Figure 11. Differential Power-Up Glitch (0.1V/µs)V CC 2V/div Y-Z(5mV/div)238mVY50mV/div Z50mV/div 1µs/divFigure 12. Differential Power-Up Glitch (1V/µs)Figure 10. Differential Power-Up Glitch (Hot Swap)M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters 12______________________________________________________________________________________Typical Multiple-Point ConnectionFigure 14 shows a typical multiple-point connection for the MAX3040–MAX3045 with the MAX3095. Because of the high frequencies and the distances involved, high attention must be paid to transmission-line effects while using termination resistors. A terminating resistor (RT)is simply a resistor that should be placed at the extreme ends of the cable to match the characteristic impedance of the cable. When the termination resis-tance is not the same value as the characteristic impedance of the cable, reflections will occur as the signal is traveling down the cable. Although some reflections are inevitable due to the cable and resistor tolerances, large mismatches can cause significant reflections resulting in errors in the data. With this in mind, it is very important to match the terminating resis-tance and the characteristic impedance as closely as possible. As a general rule in a multi-drop system, termi-nation resistors should always be placed at both ends of the cable.Figure 13. Typical Connection of a Quad Transmitter and a Quad Receiver as a PairMAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters13Pin Configurations (continued)Figure 12. Typical Connection for Multiple-Point RS-485 BusChip InformationTRANSISTOR COUNT: 545PROCESS: CMOSOrdering Information (continued)M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/422Transmitters 14______________________________________________________________________________________Ordering Information (continued)Pin Configurations (continued)MAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422TransmittersM axim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a M axim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________15©2001 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information (continued)。
SUS304不锈钢的说明
304不锈钢的说明304不锈钢是不锈钢中常见的一种材质,密度为7.93 g/cm3,业内也叫做18/8不锈钢。
耐高温800度,具有加工性能好,韧性高的特点,广泛使用于工业和家具装饰行业和食品医疗行业。
市场上常见的标示方法中有06Cr19Ni10,SUS304,其中06Cr19Ni10一般表示国标标准生产,一般表示ASTM标准生产,SUS 304表示日标标准生产。
304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。
为了保持不锈钢所固有的耐腐蚀性,钢必须含有18%以上的铬,8%以上的镍含量。
304不锈钢是按照美国ASTM标准生产出来的不锈钢的一个牌号。
304不锈钢的基本参数值如下:抗拉强度σb (MPa)≥520304条件屈服强度σ0.2 (MPa)≥205伸长率δ5 (%)≥40断面收缩率ψ (%)≥60硬度:≤187HB;≤90HRB;≤200HV密度(20℃,g/cm3):7.93熔点(℃):1398~1454比热容(0~100℃,KJ·kgK):0.50热导率(W·m·K):(100℃)16.3,(500℃)21.5线胀系数(10·K):(0~100℃)17.2,(0~500℃)18.4电阻率(20℃,10Ω·m):0.73纵向弹性模量(20℃,KN/mm):193产品标准对于304不锈钢来说,其成份中的ni元素非常重要,直接决定着304不锈钢的抗腐蚀能力及其的价值。
304中最为重要的元素是Ni、Cr,但是又不仅限于这两个元素。
具体的要求由产品标准规定。
行业常见判定情况认为只要Ni含量大于8%,Cr含量大于18%,就可以认为是304不锈钢。
这也是为什么业内会把这类不锈钢叫做18/8不锈钢的原因。
其实,相关的产品标准对304有着非常清楚的规定,而这些产品标准针对不同形状的不锈钢又有一些差异。
下面是一些常见的产品标准与测试。
加工中心304 不锈钢光面参数
加工中心304 不锈钢光面参数英文版Machining Center 304 Stainless Steel Smooth Surface Parameters304 stainless steel, a common material in the machining industry, is widely used due to its corrosion resistance, ductility, and weldability. When working with this material on a machining center, achieving a smooth surface finish is crucial to ensure the quality of the final product. Here are some key parameters to consider when machining 304 stainless steel to achieve a smooth surface:Tool Material Selection: When machining 304 stainless steel, it's essential to choose a tool material that can withstand the high temperatures and wear resistance required. Carbide tools coated with titanium nitride (TiN) or aluminum titanium nitride (AlTiN) are commonly used for this purpose.Cutting Speed: The cutting speed plays a vital role in achieving a smooth surface. Lower cutting speeds can help reduce friction and heat generation, resulting in a finer surface finish. However, it's crucial to avoid extremely low speeds as they can lead to increased tool wear.Feed Rate: The feed rate determines the speed at which the tool moves across the workpiece. Higher feed rates can promote a smoother surface by reducing the time the tool spends in contact with the material. However, excessive feed rates can lead to tool wear and poor surface quality.Depth of Cut: The depth of cut affects the amount of material removed during each pass of the tool. Shallower depths of cut can lead to a smoother surface by reducing the amount of force exerted on the tool. However, this may require multiple passes to achieve the desired material removal.Coolant Usage: The application of coolant during machining can help reduce heat generation and improve surface finish.Water-based coolants are commonly used for 304 stainless steel, as they provide effective cooling and lubrication.Post-Machining Processes: Achieving a smooth surface may also require additional processes such as polishing or buffing after machining. These processes can remove any residual roughness or marks left by the machining process.By carefully selecting the right tool material, adjusting cutting parameters, and implementing post-machining processes, it is possible to achieve a smooth surface finish when machining 304 stainless steel on a machining center.中文版加工中心304不锈钢光面参数304不锈钢是加工行业中常见的材料,因其耐腐蚀、延展性和可焊性而被广泛使用。
Baumer 电机计数器 FE304 产品说明书
u b j e c t t o m o d i fi c a t i o n i n t e c h n i c a n d d e s i g n . E r r o r s a n d o m i s s i o n s e x c e p t e d .FE304 - socket boxFeatures–Preset counter with one preset –Adding –Display 5-digits –With reset buttonTechnical data - electrical ratings Voltage supply24/110 VAC ±10 % (50/60 Hz) 230 VAC +6/-10 % (50/60 Hz) 24 VDC ±10 %Ripple residue <48 %Nominal frequency 50 / 60 Hz Pulse ratio 1:1Service life 100 million impulses Preset 1 presetOutput contact Change-over contact by micro-switch, one-pole Switching capacity100 VA / 30 WLimit switch service life 1 million switching cycles Spark extinguisher Recommended for inductive loadStandardDIN EN 61010-1Protection class IIOvervoltage category II Pollution degree 2Emitted interference DIN EN 61000-6-4Interference immunityDIN EN 61000-6-2FE304, FE314, FE324FE314 - front panel with screw mountFE324 - front panel with spring clip mountu b j e c t t o m o d i fi c a t i o n i n t e c h n i c a n d d e s i g n . E r r o r s a n d o m i s s i o n s e x c e p t e d .FE304, FE314, FE324Connection diagramTechnical data - mechanical design DisplayWhite numbers on black Number of digits 5 digitsDigit height 4.5 mm (postion value) 3.5 mm (preset)Count mode1 impulse = 1 count Step-by-step switching Adding in2 half steps Measuring range 99 999ResetManual by reset button Ambient temperature 0...+45 °C Storing temperature -20...+70 °CRelative humidity 80 % non-condensing Protection DIN EN 60529IP 41Connection Soldering pins (flat)Weight approx.150 gMaterial Housing: Noryl PPO, black FE304Housing type Socket box MountingSocket box Dimensions W x H x L 50 x 50 x 85.9 mm Cutout dimensions 50 x 50 mm Installation depth 85.9 mmFE314Housing type Built-in housingMountingFront panel with 2 screws Dimensions W x H x L 60 x 75 x 61 mm Cutout dimensions 51 x 51 mm Installation depth 77.5 mmFE324Housing type Built-in housingMountingFront panel with spring clips Dimensions W x H x L 53.2 x 53.2 x 61 mm Cutout dimensions 51 x 51 mm Installation depth77.5 mmMax. counting speed 10 pulses/s Voltage 24/110 VAC ±10 % 230 VAC +6/-10 %Power2.4 VAMin. pulse duration 50 ms Min. pulse interval 50 ms Switch on time (at 25 °C) 100 %Max. counting speed 20 pulses/s Voltage 24 VDC ±10 %Power2.2 WMin. pulse duration 25 ms Min. pulse interval 25 ms Switch on time (at 25 °C) 100 %Trigger levelAccessoriesFront panels for FE304 Z 100.02AFront panel with transparent protective cover, for socket box 50 x 50 mmFront frames for FE304 Z 102.01AFront frame with knob lock provided on transparent coverZ 102.02A Front frame with cylinder lock provided on transparent coverZ 107.02AFront frame, insertion cutout 50 x 50 mmu b j e c t t o m o d i fi c a t i o n i n t e c h n i c a n d d e s i g n . E r r o r s a n d o m i s s i o n s e x c e p t e d .FE304, FE314, FE324Part number FE304.550ABDisplayB 5 digits 99999Voltage A324 VDC A524 VAC A8110 VAC A9230 VACReset550A With reset button FE314.550ABDisplayB 5 digits 99999Voltage A324 VDC A524 VAC A8110 VAC A9230 VACReset550A With reset buttonFE324.550ABDisplayB 5 digits 99999Voltage A324 VDC A524 VAC A8110 VAC A9230 VACReset550A With reset buttonSocket box Front panel with screw mountFront panel with spring clips mountu b j e c t t o m o d i fi c a t i o n i n t e c h n i c a n d d e s i g n . E r r o r s a n d o m i s s i o n s e x c e p t e d .FE304, FE314, FE324FE304 - socket boxFE314 - front panel with 2 screwsFE324 - front panel with spring clip mountDimensions。
miller 304 说明书
CC/CV and CC Models XMT 304(230/460 And 460/575 Volt Models)R ProcessesDescription Multiprocess WeldingArc Welding Power Source OM-2208175 493AN 2010−10File: MULTIPROCESSMiller Electric manufactures a full lineof welders and welding related equipment.For information on other quality Millerproducts, contact your local Miller distributor to receive the latest fullline catalog or individual specification sheets. To locate your nearestdistributor or service agency call 1-800-4-A-Miller, or visit us at on the web.Thank you and congratulations on choosing Miller. Now you can getthe job done and get it done right. We know you don’t have time to doit any other way.That’s why when Niels Miller first started building arc welders in 1929,he made sure his products offered long-lasting value and superiorquality. Like you, his customers couldn’t afford anything less. Millerproducts had to be more than the best they could be. They had to be thebest you could buy.Today, the people that build and sell Miller products continue thetradition. They’re just as committed to providing equipment and servicethat meets the high standards of quality and value established in 1929.This Owner’s Manual is designed to help you get the most out of yourMiller products. Please take time to read the Safety precautions. Theywill help you protect yourself against potential hazards on the worksite.We’ve made installation and operation quickand easy. With Miller you can count on yearsof reliable service with proper maintenance.And if for some reason the unit needs repair,there’s a Troubleshooting section that willhelp you figure out what the problem is. Theparts list will then help you to decide the exact part you may need to fix the problem.Warranty and service information for your particular model are also provided.Miller is the first welding equipment manufacturer in the U.S.A. to be registered to the ISO 9001 Quality System Standard.From Miller to YouMil_Thank 2009−09TABLE OF CONTENTS................................. SECTION 1 − SAFETY PRECAUTIONS - READ BEFORE USING1 .......................................................................1-1.Symbol Usage1.................................................................1-2.Arc Welding Hazards1.............................1-3.Additional Symbols For Installation, Operation, And Maintenance3......................................................1-4.California Proposition 65 Warnings4.............................................................1-5.Principal Safety Standards4 .....................................................................1-6.EMF Information4........................... SECTION 2 − CONSIGNES DE SÉCURITÉ − LIRE AVANT UTILISATION5 2-1.Symboles utilisés5 ...........................................................................................................................2-2.Dangers relatifs au soudage à l’arc5.....2-3.Dangers supplémentaires en relation avec l’installation, le fonctionnement et la maintenance7 2-4.Proposition californienne 65 Avertissements8.......................................................................................................2-5.Principales normes de sécurité9.........................................................rmations relatives aux CEM9............................................................... SECTION 3 − INTRODUCTION11 ........................................................................3-1.Specifications11...........................................................3-2.Duty Cycle And Overheating11 3-3.Volt-Ampere Curves12.................................................................................................................................. SECTION 4 − INSTALLATION13................................................4-1.Serial Number And Rating Label Location13 4-2.Dimensions And Weight13.................................................................................................................................4-3.Selecting a Location13......................................4-4.Weld Output Receptacles And Selecting Cable Sizes*14......................................................4-5.Remote 14 Receptacle Information15..............................4-6.Optional 115 Volts AC Duplex Receptacle And Circuit Breakers15...............................................................4-7.Electrical Service Guide16.......................................................4-8.Connecting 1-Phase Input Power17.......................................................4-9.Connecting 3-Phase Input Power18................................................................... SECTION 5 − OPERATION19..................................................5-1.Front Panel Controls For CC/CV Model19 5-2.Front Panel Controls For CC Model20...........................................................................................................5-3.Meter Functions For CC/CV Model21.................................................5-4.Mode Switch Settings For CC/CV Model21.........................................................5-5.Meter Functions For CC Model22.....................................................5-6.Mode Switch Settings For CC Model22................................................................5-7.Lift-Arc TIG Procedure23......................................... SECTION 6 − MAINTENANCE & TROUBLESHOOTING23.................................................................6-1.Routine Maintenance23.......................................................6-2.Voltmeter/Ammeter Help Displays24.............................................................6-3.Blowing Out Inside Of Unit25 ......................................................................6-4.Troubleshooting25 SECTION 7 − ELECTRICAL DIAGRAMS26.......................................................................................................................... SECTION 8 − PARTS LIST28 WARRANTYOM-2208 Page 17Protect yourself and others from injury — read and follow these precautions.1-1.Symbol UsageDANGER! − Indicates a hazardous situation which, if not avoided, will result in death or serious injury. The possible hazards are shown in the adjoining symbolsor explained in the text.Indicates a hazardous situation which, if not avoided,could result in death or serious injury. The possible hazards are shown in the adjoining symbols or ex-plained in the text.NOTICE − Indicates statements not related to personal injury..Indicates special instructions.SHOCK, MOVING PARTS, and HOT PARTS hazards. Consult sym-bols and related instructions below for necessary actions to avoid the hazards.1-2.Arc Welding HazardsThe symbols shown below are used throughout this manual to call attention to and identify possible hazards. When you see the symbol, watch out, and follow the related instructions to avoid the hazard. The safety information given below is only a summary of the more complete safety information found in the Safety Standards listed in Section 1-5. Read andfollow all Safety Standards.Only qualified persons should install, operate, maintain, andrepair this unit.During operation, keep everybody, especially children, away.D Wear dry, hole-free insulating gloves and body protection.D Insulate yourself from work and ground using dry insulating mats or covers big enough to prevent any physical contact with the work or ground.D Do not use AC output in damp areas, if movement is confined, or if there is a danger of falling.D Use AC output ONLY if required for the welding process.D If AC output is required, use remote output control if present on unit.D Additional safety precautions are required when any of the follow-ing electrically hazardous conditions are present: in damp locations or while wearing wet clothing; on metal structures such as floors, gratings, or scaffolds; when in cramped positions such as sitting, kneeling, or lying; or when there is a high risk of unavoid-able or accidental contact with the workpiece or ground. For these conditions, use the following equipment in order presented: 1) a semiautomatic DC constant voltage (wire) welder, 2) a DC manual (stick) welder, or 3) an AC welder with reduced open-circuit volt-age. In most situations, use of a DC, constant voltage wire welder is recommended. And, do not work alone!D Disconnect input power or stop engine before installing or servicing this equipment. Lockout/tagout input power according to OSHA 29 CFR 1910.147 (see Safety Standards).D Properly install and ground this equipment according to its Owner’s Manual and national, state, and local codes.D Always verify the supply ground − check and be sure that input power cord ground wire is properly connected to ground terminal in disconnect box or that cord plug is connected to a properly grounded receptacle outlet.D When making input connections, attach proper grounding conduc-tor first − double-check connections.D Keep cords dry, free of oil and grease, and protected from hot metal and sparks.D Frequently inspect input power cord for damage or bare wiring −replace cord immediately if damaged − bare wiring can kill.D Turn off all equipment when not in use.D Do not use worn, damaged, undersized, or poorly spliced cables.D Do not drape cables over your body.D If earth grounding of the workpiece is required, ground it directly with a separate cable.D Do not touch electrode if you are in contact with the work, ground,or another electrode from a different machine.D Do not touch electrode holders connected to two welding ma-chines at the same time since double open-circuit voltage will be present.D Use only well-maintained equipment. Repair or replace damaged parts at once. Maintain unit according to manual.D Wear a safety harness if working above floor level.D Keep all panels and covers securely in place.D Clamp work cable with good metal-to-metal contact to workpiece or worktable as near the weld as practical.D Insulate work clamp when not connected to workpiece to prevent contact with any metal object.D Do not connect more than one electrode or work cable to any single weld output terminal.SIGNIFICANT DC VOLTAGE exists in inverter weld-ing power sources AFTER removal of input power.D Turn Off inverter, disconnect input power, and discharge input capacitors according to instructions in Maintenance Section before touching any parts.wear heavy, insulated welding gloves and clothing to prevent burns.OM-2208 Page 2D Keep your head out of the fumes. Do not breathe the fumes.D If inside, ventilate the area and/or use local forced ventilation at the arc to remove welding fumes and gases.D If ventilation is poor, wear an approved air-supplied respirator.D Read and understand the Material Safety Data Sheets (MSDSs)and the manufacturer’s instructions for metals, consumables,coatings, cleaners, and degreasers.D Work in a confined space only if it is well ventilated, or while wearing an air-supplied respirator. Always have a trained watch-person nearby. Welding fumes and gases can displace air and lower the oxygen level causing injury or death. Be sure the breath-ing air is safe.D Do not weld in locations near degreasing, cleaning, or spraying op-erations. The heat and rays of the arc can react with vapors to form highly toxic and irritating gases.D Do not weld on coated metals, such as galvanized, lead, or cadmium plated steel, unless the coating is removed from the weld area, the area is well ventilated, and while wearing an air-supplied respirator . The coatings and any metals containing these elementscan give off toxic fumes if welded.D Wear an approved welding helmet fitted with a proper shade of filter lenses to protect your face and eyes from arc rays and sparks when welding or watching (see ANSI Z49.1 and Z87.1listed in Safety Standards).D Wear approved safety glasses with side shields under your helmet.D Use protective screens or barriers to protect others from flash,glare and sparks; warn others not to watch the arc.D Wear protective clothing made from durable, flame-resistant material (leather, heavy cotton, or wool) and foot protection.burns. Accidental contact of electrode to metal objects can cause sparks, explosion, overheating, or fire. Check and be sure the area is safe before doing any welding.D Remove all flammables within 35 ft (10.7 m) of the welding arc. If this is not possible, tightly cover them with approved covers.D Do not weld where flying sparks can strike flammable material.D Protect yourself and others from flying sparks and hot metal.D Be alert that welding sparks and hot materials from welding can easily go through small cracks and openings to adjacent areas.D Watch for fire, and keep a fire extinguisher nearby.D Be aware that welding on a ceiling, floor, bulkhead, or partition can cause fire on the hidden side.D Do not weld on closed containers such as tanks, drums, or pipes,unless they are properly prepared according to AWS F4.1 (see Safety Standards).D Do not weld where the atmosphere may contain flammable dust,gas, or liquid vapors (such as gasoline).D Connect work cable to the work as close to the welding area as practical to prevent welding current from traveling long, possibly unknown paths and causing electric shock, sparks, and fire hazards.D Do not use welder to thaw frozen pipes.D Remove stick electrode from holder or cut off welding wire at contact tip when not in use.D Wear oil-free protective garments such as leather gloves, heavy shirt, cuffless trousers, high shoes, and a cap.D Remove any combustibles, such as a butane lighter or matches,from your person before doing any welding.D After completion of work, inspect area to ensure it is free of sparks,glowing embers, and flames.D Use only correct fuses or circuit breakers. Do not oversize or by-pass them.D Follow requirements in OSHA 1910.252 (a) (2) (iv) and NFPA 51B for hot work and have a fire watcher and extinguisher nearby.shields even under your welding helmet.and the device manufacturer before going near arc welding, spot welding, gouging, plasma arc cutting, or induction heating operations.high.D Protect compressed gas cylinders from excessive heat, mechani-cal shocks, physical damage, slag, open flames, sparks, and arcs.D Install cylinders in an upright position by securing to a stationary support or cylinder rack to prevent falling or tipping.D Keep cylinders away from any welding or other electrical circuits.D Never drape a welding torch over a gas cylinder.D Never allow a welding electrode to touch any cylinder.D Never weld on a pressurized cylinder − explosion will result.D Use only correct shielding gas cylinders, regulators, hoses, and fit-tings designed for the specific application; maintain them and associated parts in good condition.D Turn face away from valve outlet when opening cylinder valve.D Keep protective cap in place over valve except when cylinder is in use or connected for use.D Use the right equipment, correct procedures, and sufficient num-ber of persons to lift and move cylinders.D Read and follow instructions on compressed gas cylinders,associated equipment, and Compressed Gas Association (CGA)publication P-1 listed in Safety Standards.1-3.Additional Symbols For Installation, Operation, And Maintenanceproperly sized, rated, and protected to handle this unit.D If using lift forks to move unit, be sure forks are long enough toextend beyond opposite side of unit.D Keep equipment (cables and cords) away from moving vehicleswhen working from an aerial location.D Follow the guidelines in the Applications Manual for the RevisedNIOSH Lifting Equation (Publication No. 94−110) when manu-ally lifting heavy parts or equipment.DSparks can cause fires — keep flammables away.D Have only qualified persons remove doors, panels, covers, orguards for maintenance and troubleshooting as necessary.D Reinstall doors, panels, covers, or guards when maintenance isfinished and before reconnecting input power.section.D Use only genuine replacement parts from the manufacturer.D Perform maintenance and service according to the Owner’sManuals, industry standards, and national, state, and local codes.electronic equipment perform this installation.D The user is responsible for having a qualified electrician prompt-ly correct any interference problem resulting from the installa-tion.D If notified by the FCC about interference, stop using theequipment at once.D Have the installation regularly checked and maintained.D Keep high-frequency source doors and panels tightly shut, keepspark gaps at correct setting, and use grounding and shielding to minimize the possibility of interference.D Be sure all equipment in the welding area iselectromagnetically compatible.D T o reduce possible interference, keep weld cables as short aspossible, close together, and down low, such as on the floor.D Locate welding operation 100 meters from any sensitive elec-tronic equipment.D Be sure this welding machine is installed and groundedaccording to this manual.D If interference still occurs, the user must take extra measuressuch as moving the welding machine, using shielded cables, using line filters, or shielding the work area.OM-2208 Page 3OM-2208 Page 41-4.California Proposition 65 WarningsWelding or cutting equipment produces fumes or gases which contain chemicals known to the State of California to cause birth defects and, in some cases, cancer. (CaliforniaHealth & Safety Code Section 25249.5 et seq.)Battery posts, terminals and related accessories contain lead and lead compounds, chemicals known to the State of California to cause cancer and birth defects or other reproductive harm.Wash hands after handling.This product contains chemicals, including lead, known to the state of California to cause cancer, birth defects, or other reproductive harm. Wash hands after use.For Gasoline Engines:Engine exhaust contains chemicals known to the State of California to cause cancer, birth defects, or other reproduc-tive harm.For Diesel Engines:Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm.1-5.Principal Safety StandardsSafety in Welding, Cutting, and Allied Processes, ANSI Standard Z49.1,from Global Engineering Documents (phone: 1-877-413-5184, website:).Safe Practices for the Preparation of Containers and Piping for Welding and Cutting, American Welding Society Standard AWS F4.1, from Glob-al Engineering Documents (phone: 1-877-413-5184, website:).National Electrical Code, NFPA Standard 70, from National Fire Protec-tion Association, Quincy, MA 02269 (phone: 1-800-344-3555, website: and www. ).Safe Handling of Compressed Gases in Cylinders, CGA Pamphlet P-1,from Compressed Gas Association, 4221 Walney Road, 5th Floor,Chantilly , V A 20151 (phone: 703-788-2700, website:).Safety in Welding, Cutting, and Allied Processes, CSA Standard W117.2, from Canadian Standards Association, Standards Sales, 5060Spectrum Way, Suite 100, Ontario, Canada L4W 5NS (phone:800-463-6727, website: ).Safe Practice For Occupational And Educational Eye And Face Protec-tion, ANSI Standard Z87.1, from American National Standards Institute,25 West 43rd Street, New York, NY 10036 (phone: 212-642-4900, web-site: ).Standard for Fire Prevention During Welding, Cutting, and Other Hot Work, NFPA Standard 51B, from National Fire Protection Association,Quincy, MA 02269 (phone: 1-800-344-3555, website: .OSHA, Occupational Safety and Health Standards for General Indus-try, Title 29, Code of Federal Regulations (CFR), Part 1910, Subpart Q,and Part 1926, Subpart J, from U.S. Government Printing Office, Super-intendent of Documents, P .O. Box 371954, Pittsburgh, PA 15250-7954(phone: 1-866-512-1800) (there are 10 OSHA Regional Offices—phone for Region 5, Chicago, is 312-353-2220, website:).U.S. Consumer Product Safety Commission (CPSC), 4330 East West Highway, Bethesda, MD 20814 (phone: 301-504-7923, website:).Applications Manual for the Revised NIOSH Lifting Equation , The Na-tional Institute for Occupational Safety and Health (NIOSH), 1600Clifton Rd, Atlanta, GA 30333 (phone: 1-800-232-4636, website:/NIOSH).1-6.EMF InformationElectric current flowing through any conductor causes localized electric and magnetic fields (EMF). Welding current creates an EMF field around the welding circuit and welding equipment. EMF fields may inter-fere with some medical implants, e.g. pacemakers. Protective measures for persons wearing medical implants have to be taken. For example, access restrictions for passers −by or individual risk assess-ment for welders. All welders should use the following procedures in order to minimize exposure to EMF fields from the welding circuit:1.Keep cables close together by twisting or taping them, or using a cable cover.2.Do not place your body between welding cables. Arrange cables to one side and away from the operator.3.Do not coil or drape cables around your body.4.Keep head and trunk as far away from the equipment in the welding circuit as possible.5.Connect work clamp to workpiece as close to the weld as possible.6.Do not work next to, sit or lean on the welding power source.7.Do not weld whilst carrying the welding power source or wire feeder .About Implanted Medical Devices:Implanted Medical Device wearers should consult their doctor and the device manufacturer before performing or going near arc welding, spot welding, gouging, plasma arc cutting, or induction heating operations.If cleared by your doctor, then following the above procedures is recom-mended.OM-2208 Page 5SECTION 2 − CONSIGNES DE SÉCURITÉ − LIRE AVANT UTILISATIONSe protéger et protéger les autres contre le risque de blessure — lire et respecter ces consignes.2-1.Symboles utilisésDANGER! − Indique une situation dangereuse qui si on l’évite pas peut donner la mort ou des blessures graves.Les dangers possibles sont montrés par les symbolesjoints ou sont expliqués dans le texte.Indique une situation dangereuse qui si on l’évite pas peut donner la mort ou des blessures graves. Les dan-gers possibles sont montrés par les symboles joints ousont expliqués dans le texte.NOTE − Indique des déclarations pas en relation avec des blessures personnelles..Indique des instructions spécifiques.DE CHOC ELECTRIQUE, PIECES EN MOUVEMENT , et PIECES CHAUDES. Consulter les symboles et les instructions ci-dessous y afférant pour les actions nécessaires afin d’éviter le danger.2-2.Dangers relatifs au soudage à l’arcLes symboles représentés ci-dessous sont utilisés dans ce ma-nuel pour attirer l’attention et identifier les dangers possibles. En présence de l’un de ces symboles, prendre garde et suivre les instructions afférentes pour éviter tout risque. Les instructions en matière de sécurité indiquées ci-dessous ne constituent qu’un sommaire des instructions de sécurité plus complètes fournies dans les normes de sécurité énumérées dans la Sec-tion 2-5. Lire et observer toutes les normes de sécurité.Seul un personnel qualifié est autorisé à installer, faire fonc-tionner, entretenir et réparer cet appareil.Pendant le fonctionnement, maintenir à distance toutes les personnes, notamment les enfants de l’appareil.danger .D Ne pas toucher aux pièces électriques sous tension.D Porter des gants isolants et des vêtements de protection secs et sans trous.D S’isoler de la pièce à couper et du sol en utilisant des housses ou des tapis assez grands afin d’éviter tout contact physique avec la pièce à couper ou le sol.D Ne pas se servir de source électrique à courant électrique dans les zones humides, dans les endroits confinés ou là où on risque de tomber .D Se servir d’une source électrique à courant électrique UNIQUE-MENT si le procédé de soudage le demande.D Si l’utilisation d’une source électrique à courant électrique s’avère nécessaire, se servir de la fonction de télécommande si l’appareil en est équipé.D D’autres consignes de sécurité sont nécessaires dans les condi-tions suivantes : risques électriques dans un environnement humide ou si l’on porte des vêtements mouillés ; sur des structures métalliques telles que sols, grilles ou échafaudages ; en position coincée comme assise, à genoux ou couchée ; ou s’il y a un risque élevé de contact inévitable ou accidentel avec la pièce à souder ou le sol. Dans ces conditions, utiliser les équipements suivants,dans l’ordre indiqué : 1) un poste à souder DC à tension constante (à fil), 2) un poste à souder DC manuel (électrode) ou 3) un poste àsouder AC à tension à vide réduite. Dans la plupart des situations,l’utilisation d’un poste à souder DC à fil à tension constante est re-commandée. En outre, ne pas travailler seul !D Couper l’alimentation ou arrêter le moteur avant de procéder à l’in-stallation, à la réparation ou à l’entretien de l’appareil. Déverrouiller l’alimentation selon la norme OSHA 29 CFR 1910.147 (voir nor-mes de sécurité).D Installer le poste correctement et le mettre à la terre convenable-ment selon les consignes du manuel de l’opérateur et les normes nationales, provinciales et locales.D T oujours vérifier la terre du cordon d’alimentation. Vérifier et s’assurer que le fil de terre du cordon d’alimentation est bien raccordé à la borne de terre du sectionneur ou que la fiche du cordon est raccordée à une prise correctement mise à la terre.D En effectuant les raccordements d’entrée, fixer d’abord le conduc-teur de mise à la terre approprié et contre-vérifier les connexions.D Les câbles doivent être exempts d’humidité, d’huile et de graisse;protégez −les contre les étincelles et les pièces métalliques chaudes.D Vérifier fréquemment le cordon d’alimentation afin de s’assurer qu’il n’est pas altéré ou à nu, le remplacer immédiatement s’il l’est.Un fil à nu peut entraîner la mort.D L’équipement doit être hors tension lorsqu’il n’est pas utilisé.D Ne pas utiliser des câbles usés, endommagés, de grosseur insuffi-sante ou mal épissés.D Ne pas enrouler les câbles autour du corps.D Si la pièce soudée doit être mise à la terre, le faire directement avec un câble distinct.D Ne pas toucher l’électrode quand on est en contact avec la pièce,la terre ou une électrode provenant d’une autre machine.D Ne pas toucher des porte électrodes connectés à deux machines en même temps à cause de la présence d’une tension à vide dou-blée.D N’utiliser qu’un matériel en bon état. Réparer ou remplacer sur-le-champ les pièces endommagées. Entretenir l’appareil conformé-ment à ce manuel.D Porter un harnais de sécurité si l’on doit travailler au-dessus du sol.D S’assurer que tous les panneaux et couvercles sont correctement en place.D Fixer le câble de retour de façon à obtenir un bon contact métal-métal avec la pièce à souder ou la table de travail, le plus près pos-sible de la soudure.D Isoler la pince de masse quand pas mis à la pièce pour éviter le contact avec tout objet métallique.D Ne pas raccorder plus d’une électrode ou plus d’un câble de masse à une même borne de sortie de soudage.。
不锈钢资料中英文互译
中英文互译Translate documents between English and Chinese不锈钢棒材类:不锈钢黑棒、不锈钢光亮棒、不锈钢圆棒、不锈钢光圆、不锈钢方棒、不锈钢六角棒、不锈钢异型棒、不锈钢易切削棒(303、303CU)等。
Stainless steel rod class: stainless steel HeiBang, stainless steel bar, stainless steel light round rods, stainless steel, stainless steel round light sticks, stainless steel hex party sticks, stainless steel bar, stainless steel of cutting bar (303, 303 CU), etc.不锈钢线材类:不锈钢丝、不锈钢氢退丝、不锈钢光亮丝、不锈钢冷墩丝、不锈钢螺丝线、弹簧线(硬光亮线、全硬线、雾面线)、光亮线(中硬线、硬光线、车轴线)、氢退线(全软线)、不锈钢异型丝(如:扁丝、三角丝、五角丝)等。
ˎStainless steel wire kind: stainless steel wire, stainless steel wire, stainless steel hydrogen back light wire, stainless steel wire, stainless steel screw cold mound line, spring line (hard light line, all the hard line, mist side line), bright line (hard line, hard in light, car axis), hydrogen back line (the soft line), stainless steel alien silk (such as: flat silk, triangle silk, the silk), etc.不锈钢型材类:不锈钢扁钢、不锈钢角钢、不锈钢槽钢、不锈钢方钢、不锈钢工字钢等;包括:热轧扁钢、酸白扁钢、冷拉扁钢、光亮扁钢、抛光扁钢、镜面扁钢;热轧角钢、酸白角钢、等边角钢、不等边角钢、光亮角钢、抛光角钢、非标角钢、焊接角钢;热轧槽钢、酸白槽钢、焊接槽钢、非标槽钢、不锈钢大槽钢等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
General DescriptionThe MAX3040–MAX3045 is a family of 5V quad RS-485/RS-422 transmitters designed for digital data trans-mission over twisted-pair balanced lines. All transmitter outputs are protected to ±10kV using the Human Body Model. In addition the MAX3040–MAX3045 withstand ±4kV per IEC 1000-4-4 Electrical Fast Transient/Burst Stressing. The MAX3040/MAX3043 (250kbps) and the MAX3041/MAX3044 (2.5Mbps) are slew-rate limited transmitters that minimize EMI and reduce reflections caused by improperly terminated cables, thus allowing error-free transmission.The MAX3040–MAX3045 feature a hot-swap capability*that eliminates false transitions on the data cable during power-up or hot insertion. The MAX3042B/MAX3045B are optimized for data transfer rates up to 20Mbps, the MAX3041/MAX3044 for data rates up to 2.5Mbps, and the MAX3040/MAX3043 for data rates up to 250kbps.The MAX3040–MAX3045 offer optimum performance when used with the MAX3093E or MAX3095 5V quad differential line receivers or MAX3094E/MAX3096 3V quad differential line receivers.The MAX3040–MAX3045 are ESD-protected pin-compat-ible, low-power upgrades to the industry-standard ‘SN75174 and ‘DS26LS31C. They are available in space-saving TSSOP, narrow SO, and wide SO packages.*Patent pendingApplicationsTelecommunications Equipment Industrial Motor ControlTransmitter for ESD-Sensitive Applications Hand-Held Equipment Industrial PLCs NetworkingFeatureso ESD Protection: ±10kV—Human Body Model o Single +5V Operationo Guaranteed Device-to-Device Skew(MAX3040/MAX3041/MAX3043/MAX3044)o Pin-Compatible with ‘SN75174, ‘26LS31C and LTC487o Hot-Swappable for Telecom Applications o Up to 20Mbps Data Rate (MAX3042B/MAX3045B)o Slew-Rate Limited (Data Rates at 2.5Mbps and 250kbps)o 2nA Low-Power Shutdown Mode o 1mA Operating Supply Currento ±4kV EFT Fast Transient Burst Immunity per IEC 1000-4-4o Level 2 Surge Immunity per IEC 1000-4-5,Unshielded Cable Model o Ultra-Small 16-Pin TSSOP, 16-Pin Narrow SO, and Wide 16-Pin SOMAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters________________________________________________________________Maxim Integrated Products1Pin ConfigurationsSelector GuideOrdering Information19-2143; Rev 1; 12/01Ordering Information continued at end of data sheet.For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/RS-422TransmittersABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.All voltages referenced to ground (GND).Supply Voltage (V CC ).............................................................+7V Control Input Voltage (EN, EN , EN_) .........-0.3V to (V CC + 0.3V)Driver Input Voltage (T_IN).........................-0.3V to (V CC + 0.3V)Driver Output Voltage (Y_, Z_)(Driver Disabled).............................................-7.5V to +12.5V Driver Output Voltage (Y_, Z_)(Driver Enabled).................................................-7.5V to +10V Continuous Power Dissipation (T A = +70°C)16-Pin TSSOP (derate 9.4mW/°C above +70°C)..........755mW16-Pin Narrow SO (derate 8.70mW/°C above +70°C)..696mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C).....762mW Operating Temperature RangeMAX304_C_E.......................................................0°C to +70°C MAX304_E_E....................................................-40°C to +85°C Maximum Junction Temperature.....................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422TransmittersSWITCHING CHARACTERISTICS —MAX3040/MAX3043SWITCHING CHARACTERISTICS —MAX3041/MAX3044M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters 4_______________________________________________________________________________________Note 2:∆V OD and ∆V OC are the changes in V OD and V OC , respectively, when the transmitter input changes state.Note 3:This input current level is for the hot-swap enable (EN_, EN, EN ) inputs and is present until the first transition only. After thefirst transition the input reverts to a standard high-impedance CMOS input with input current I IN . For the first 20µs the input current may be as high as 1mA. During this period the input is disabled.Note 4:Maximum current level applies to peak current just prior to foldback-current limiting. Minimum current level applies duringcurrent limiting.SWITCHING CHARACTERISTICS —MAX3041/MAX3044 (continued)(V CC = +5V ±5%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5V and T A = +25°C.)OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )54-6-5-4-2-1012-3310203040506070800-76OUTPUT CURRENT vs. TRANSMITTEROUTPUT HIGH VOLTAGE0.70.81.00.91.11.220103040506070SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U RR E N T (m A )10010000105152025353040450.1110MAX3040/MAX3043SUPPLY CURRENT vs. DATA RATEDATA RATE (kbps)S U P P L Y C U R R E N T (m A )4000.1110100100010,000MAX3041/MAX3044SUPPLY CURRENT vs. DATA RATEDATA RATE (kbps)S U P P L Y C U R R E N T (m A )1052015353025MAX3042B/MAX3045BSUPPLY CURRENT vs. DATA RATEDATA RATE (kbps)0.1100100010,000110100,000S U P P L Y C U R R E N T (m A )60010203050400201040306050700426810OUTPUT CURRENT vs. TRANSMITTEROUTPUT LOW VOLTAGEOUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )MAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters_______________________________________________________________________________________5Typical Operating Characteristics(V CC = +5V, T A = +25°C, unless otherwise noted.)020104030605070021345OUTPUT CURRENTvs. DIFFERENTIAL OUTPUT VOLTAGEM A X 3040 t oc 07DIFFERENTIAL OUTPUT VOLTAGE (V)O U T P U T C U R R E N T (m A )2.102.202.152.352.302.252.502.452.402.5520301040506070TRANSMITTER DIFFERENTIAL OUTPUTVOLTAGE vs. TEMPERATURETEMPERATURE (°C)D I F FE R E N T I A L O U T P U T V O L T A G E (V )M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters 6_______________________________________________________________________________________MAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters7Detailed DescriptionThe MAX3040–MAX3045 are quad RS-485/RS-422 trans-mitters. They operate from a single +5V power supply and are designed to give optimum performance when used with the MAX3093E/MAX3095 5V quad RS-485/RS-422 receivers or MAX3094E/MAX3096 3V quad RS-485/RS-422 receivers. The MAX3040–MAX3045 only need 1mA of operating supply current and consume 2nA when they enter a low-power shutdown mode. The MAX3040–MAX3045 also feature a hot-swap capability allowing line insertion without erroneous data transfer.The MAX3042B/MAX3045B are capable of transferring data up to 20Mbps, the MAX3041/MAX3044 for data rates up to 2.5Mbps, and the MAX3040/MAX3043 for data rates up to 250kbps. All transmitter outputs are pro-tected to ±10kV using the Human Body Model.±10kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges (ESD) encountered during handling and assembly. The MAX3040–MAX3045 transmitter outputs have extra protection against electrostatic dis-charges found in normal operation. Maxim ’s engineers have developed state-of-the-art structures to protect these pins against the application of ±10kV ESD (Human Body Model), without damage.ESD Test ConditionsESD performance depends on a number of conditions.Contact Maxim for a reliability report that documents test setup, methodology, and results.Human Body ModelFigure 6a shows the Human Body Model, and Figure 6b shows the current waveform it generates when dis-charged into low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,which is then discharged into the device through a 1.5k Ωresistor.Machine ModelThe Machine Model for ESD testing uses a 200pF stor-age capacitor and zero-discharge resistance. It mimics the stress caused by handling during manufacturing and assembly. Of course, all pins (not just RS-485inputs) require this protection during manufacturing.Therefore, the Machine Model is less relevant to the I/O ports than are the Human Body Model.±4kV Electrical Fast Transient/Burst Testing(IEC 1000-4-4)IEC 1000-4-4 Electrical Fast Transient/Burst (EFT/B) is an immunity test for the evaluation of electrical and electronic systems during operating conditions. The test was adapted for evaluation of integrated circuits with power applied. Repetitive fast transients with severe pulsed EMI were applied to signal and control ports. Over 15,000 distinct discharges per minute are sent to each interface port of the IC or equipment under test (EUT) simultaneously with a minimum test duration time of one minute. This simulates stress due to dis-placement current from electrical transients on AC mains, or other telecommunication lines in close prox-imity. Short rise times and very specific repetition rates are essential to the validity of the test.Stress placed on the EUT is severe. In addition to the controlled individual discharges placed on the EUT,extraneous noise and ringing on the transmission line can multiply the number of discharges as well as increase the magnitude of each discharge. All cabling was left unterminated to simulate worst-case reflections.The MAX3040–MAX3045 were setup as specified in IEC 1000-4-4 and the Typical Operating Circuit of this data sheet. The amplitude, pulse rise time, pulse dura-tion, pulse repetition period, burst duration, and burst period (Figure 8)of the burst generator were all verified with a digital oscilloscope according to the specifica-tions in IEC 1000-4-4 sections 6.1.1 and 6.1.2. A simpli-fied diagram of the EFT/B generator is shown in Figure 7. The burst stresses were applied to Y1–Y4 and Z1–Z4simultaneously.IEC 1000-4-4 provides several levels of test severity (see Table 1). The MAX3040–MAX3045 pass the 4000V stress, a special category “X ” beyond the highest level for severe (transient) industrial environments for telecommunication lines.M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters 8_______________________________________________________________________________________MAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters_______________________________________________________________________________________9IEC 1000-4-4 Burst/Electrical FastTransient Test Levels (For Communication Lines)The stresses are applied while the MAX3040–MAX3045are powered up. Test results are reported as:1)Normal performance within the specification limits.2)Temporary degradation or loss of function or perfor-mance which is self-recoverable.3)Temporary degradation, loss of function or perfor-mance requiring operator intervention, such as sys-tem reset.4)Degradation or loss of function not recoverable due to damage.The MAX3040–MAX3045 meets classification 2 listed above. Additionally, the MAX3040–MAX3045 will not latchup during the IEC burst stress events.Hot-Swap CapabilityHot-Swap InputsWhen circuit boards are plugged into a “hot ” back-plane, there can be disturbances to the differential sig-nal levels that could be detected by receivers connected to the transmission line. This erroneous data could cause data errors to an RS-485/RS-422 system.To avoid this, the MAX3040–MAX3045 have hot-swap capable inputs.When a circuit board is plugged into a “hot ” backplane there is an interval during which the processor is going through its power-up sequence. During this time, the processor ’s output drivers are high impedance and will be unable to drive the enable inputs of the MAX3040–MAX3045 (EN, EN , EN_) to defined logic lev-els. Leakage currents from these high impedance dri-vers, of as much as 10µA, could cause the enable inputs of the MAX3040–MAX3045 to drift high or low.Additionally, parasitic capacitance of the circuit board could cause capacitive coupling of the enable inputs to either G ND or V CC . These factors could cause the enable inputs of the MAX3040–MAX3045 to drift to lev-els that may enable the transmitter outputs (Y_ and Z_).To avoid this problem, the hot-swap input provides a method of holding the enable inputs of the MAX3040–MAX3045 in the disabled state as V CC ramps up. This hot-swap input is able to overcome the leakage currents and parasitic capacitances that may pull the enable inputs to the enabled state.Hot-Swap Input CircuitryIn the MAX3040–MAX3045 the enable inputs feature hot-swap capability. At the input there are two NMOSdevices, Q1 and Q2 (Figure 9). When V CC is ramping up from 0, an internal 10µs timer turns on Q2 and sets the SR latch, which also turns on Q1. Transistors Q2, a 700µA current sink, and Q1, an 85µA current sink, pull EN to GND through a 5.6k Ωresistor. Q2 is designed to pull the EN input to the disabled state against an exter-nal parasitic capacitance of up to 100pF that is trying to enable the EN input. After 10µs, the timer turns Q2 off and Q1 remains on, holding the EN input low against three-state output leakages that might enable EN. Q1remains on until an external source overcomes theM A X 3040–M A X 3045required input current. At this time the SR latch resets and Q1 turns off. When Q1 turns off, EN reverts to a standard, high-impedance CMOS input. Whenever V CC drops below 1V, the hot-swap input is reset.The EN12 and EN34 input structures are identical to the EN input. For the EN input, there is a complimentary cir-cuit employing two PMOS devices pulling the EN input to V CC .Hot-Swap Line TransientThe circuit of Figure 10 shows a typical offset termina-tion used to guarantee a greater than 200mV offset when a line is not driven. The 50pF represents the mini-mum parasitic capacitance which would exist in a typi-cal application. In most cases, more capacitance exists in the system and will reduce the magnitude of the glitch. During a “hot-swap ” event when the driver is connected to the line and is powered up, the driver must not cause the differential signal to drop below 200mV. Figures 11 and 12 show the results of the MAX3040–MAX3045 during power-up for two different V CC ramp rates (0.1V/µs and 1V/µs). The photos show the V CC ramp, the single-ended signal on each side of the 100Ωtermination, the differential signal across the termination, and shows the hot-swap line transient stays above the 200mV RS-485 specification.Operation of Enable PinsThe MAX3040–MAX3045 family has two enable-func-tional versions:The MAX3040/MAX3041/MAX3042B have two transmit-ter enable inputs EN12 and EN34. EN12 controls the transmitters 1 and 2, and EN34 controls transmitters 3and 4. EN12 and EN34 are active-high and the part will enter the low-power shutdown mode when both are pulled low. The transmitter outputs are high impedance when disabled (Table 2).The MAX3043/MAX3044/MAX3045B have two transmit-ter enable inputs EN and EN , which are active-high and active-low, respectively. When EN is logic high or EN is logic low all transmitters are active. When EN is pulled low and EN is driven high, all transmitters are disabled and the part enters the low-power shutdown mode. The transmitter outputs are high impedance when disabled (Table 3).Applications InformationTypical ApplicationsThe MAX3040–MAX3045 offer optimum performance when used with the MAX3093E/MAX3095 5V quad receivers or MAX3094E/MAX3096 3V quad differential line receivers. Figure 13 shows a typical RS-485 con-nection for transmitting and receiving data and Figure 14 shows a typical multi-point connection.±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters 10______________________________________________________________________________________Figure 9. Simplified Structure of the Driver Enable Pin (EN)MAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters______________________________________________________________________________________11V CC 2V/div Y-Z(20mV/div)238mVY200mV/div Z200mV/div Figure 11. Differential Power-Up Glitch (0.1V/µs)V CC 2V/div Y-Z(5mV/div)238mVY50mV/div Z50mV/div 1µs/divFigure 12. Differential Power-Up Glitch (1V/µs)Figure 10. Differential Power-Up Glitch (Hot Swap)M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters 12______________________________________________________________________________________Typical Multiple-Point ConnectionFigure 14 shows a typical multiple-point connection for the MAX3040–MAX3045 with the MAX3095. Because of the high frequencies and the distances involved, high attention must be paid to transmission-line effects while using termination resistors. A terminating resistor (RT)is simply a resistor that should be placed at the extreme ends of the cable to match the characteristic impedance of the cable. When the termination resis-tance is not the same value as the characteristic impedance of the cable, reflections will occur as the signal is traveling down the cable. Although some reflections are inevitable due to the cable and resistor tolerances, large mismatches can cause significant reflections resulting in errors in the data. With this in mind, it is very important to match the terminating resis-tance and the characteristic impedance as closely as possible. As a general rule in a multi-drop system, termi-nation resistors should always be placed at both ends of the cable.Figure 13. Typical Connection of a Quad Transmitter and a Quad Receiver as a PairMAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422Transmitters13Pin Configurations (continued)Figure 12. Typical Connection for Multiple-Point RS-485 BusChip InformationTRANSISTOR COUNT: 545PROCESS: CMOSOrdering Information (continued)M A X 3040–M A X 3045±10kV ESD-Protected, Quad 5V RS-485/422Transmitters 14______________________________________________________________________________________Ordering Information (continued)Pin Configurations (continued)MAX3040–MAX3045±10kV ESD-Protected, Quad 5V RS-485/RS-422TransmittersM axim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a M axim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________15©2001 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information (continued)。