【精品】2015-2016年河南省周口市太康县初三上学期数学期末试卷与答案

合集下载

2015—2016学年第一学期初三期末质量检测数学试卷附答案

2015—2016学年第一学期初三期末质量检测数学试卷附答案

2015—2016学年第一学期初三期末质量检测数学试卷考生须知1.本试卷共6页,共五道大题,29道小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一.选择题(共有10个小题,每小题3分,共30分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过―存水‖增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率. 将812000000用科学记数法表示应为 A .812×106 B .81.2×107 C .8.12×108 D .8.12×1092. 实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,相反数最大是A .aB .bC .cD .d3. 如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =2,DB =4,则AEAC的值为 A .12B .13C .14D .164. 若△ABC ∽△A ′B ′C ′,相似比为1:2,则△ABC 与△A ′B ′C ′的面积的比为A .1:2B . 2:1C .1:4D .4:1 5. 二次函数y =(x ﹣1)2+2的最小值为( )A .1B . -1C .2D .-2 6. 将抛物线2=-y x 向上平移2个单位,则得到的抛物线表达式为A .2y=-(x+2) B .2y=-(x-2) C .2y=-x -2 D .2y=-x +2 7. 已知Rt △ABC 中,∠C=90°,AC=3,BC=4,则cosA 的值为( ) A .34B . 43C . 35D . 458. 如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1:2,则斜坡AB 的长为–3–2–1012345–4c b a d 2题图EDCB A 3题图B A O骨柄长的34长:243cm宽:21cm 青铜展馆A .43米B .65米C .125米D . 24米9. 如图,⊙O 是△ABC 的外接圆,∠ACO =45°,则∠B 的度数为( )A.30°B. 35°C. 40°D. 45°10.小刚在实践课上要做一个如图1所示的折扇,折扇扇面的宽度AB 是骨柄长OA 的34,折扇张开的角度为120°.小刚现要在如图2所示的矩形布料上剪下扇面,且扇面不能拼接,已知矩形布料长为243cm,宽为21cm.小刚经过画图、计算,在矩形布料上裁剪下了最大的扇面,若不计裁剪和粘贴时的损耗,此时扇面的宽度AB 为( )A . 21cmB .20 cmC .19cmD . 18cm二、填空题(本题共6个小题,每小题3分,共18分) 11.4的平方根是 .12.不等式组⎪⎩⎪⎨⎧->+≥-1230211x x 的正整数解是 .13.如图,tan ∠ABC= .14.写出一个抛物线开口向上,与y 轴交于(0,2)点的函数表达式 .15. 已知⊙O 的半径2,则其内接正三角形的面积为 .16. 学校组织社会大课堂活动去首都博物馆参观,明明提前上网做了功课,查到了下面的一段文字:首都博物馆建筑本身是一座融古典美和现代美于一体的建筑艺术品,既具有浓郁的民族特色,又呈现鲜明的现代感.首都博物馆建筑物(地面以上)东西长152米、南北宽66米左右,建筑高度41米.建筑内部分为三栋独立的建筑,即:矩形展馆,椭圆形专题展馆,条形的办公科研楼.椭圆形的青铜展馆斜出墙面寓意古代文物破土而出,散发着浓郁的历史气息. 明明对首都博物馆建筑物产生了浓厚的兴趣,站到首都博物馆北广场,他被眼前这座建筑物震撼了.整个建筑宏大壮13题图CB A30︒10题图1 10题图2观,斜出的青铜展馆和北墙面交出一条抛物线,抛物线与外立面之间和谐、统一,明明走到过街天桥上照了一张照片(如图所示).明明想了想,算了算,对旁边的文文说:―我猜想这条抛物线的顶点到地面的距离应是15.7米左右.‖ 文文反问:―你猜想的理由是什么‖?明明说:―我的理由是‖. 明明又说:―不过这只是我的猜想,这次准备不充分,下次来我要用学过的数学知识准确的测测这个高度,我想用学到的知识, 我要带等测量工具‖.三、解答题(本题共72分,第17—25题,每小题5分,第26题8分,第27题6分,第28题6分,第29题7分)17.计算:2012(3)3cos602π---+--︒.18.已知0362=--xx,求代数式()()311)3(2+-+--xxxx的值.19.已知如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,求DC的长.20.如图,一次函数y1=﹣x+2的图象与反比例函数y2=xk的图象相交于A,B两点,点B的坐标为(2m,-m).(1)求出m值并确定反比例函数的表达式;(2)请直接写出当x<m时,y2的取值范围.21.已知如图,在△ABC中,∠A=30°,∠C=105°,AC=32,求AB的长.22.已知如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接A C.若∠A=22.5°,CD=8cm,求⊙O的半径.23.如图,在数学实践课中,小明为了测量学校旗杆CD的高度,在地面A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,AC为22米,求旗杆CD的高度.(结果精确到0.1米.参考数据:sin32°= 0.53,cos32°= 0.85,tan32°= 0.62)19题图20题图21题图22题图24. 如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点D ,过点B 作BE 垂直于PD ,交PD 的延长线于点C ,连接AD 并延长,交BE 于点E . (1)求证:AB =BE ;(2)若PA =2,cosB =,求⊙O 半径的长.25.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设AB=xm .(1)若花园的面积为192m 2,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15m 和6m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求x 取何值时,花园面积S 最大,并求出花园面积S 的最大值.26.在―解直角三角形‖一章我们学习到―锐角的正弦、余弦、正切都是锐角的函数,统称为锐角三角函数‖ .小力根据学习函数的经验,对锐角的正弦函数进行了探究. 下面是小力的探究过程,请补充完成:(1)函数的定义是:―一般地,在一个变化的过程中,有两个变量x 和y ,对于变量x 的每一个值,变量y 都有唯一确定的值和它对应,我们就把x 称为自变量,y 称为因变量,y 是x 的函数‖.由函数定义可知,锐角的正弦函数的自变量是 ,因变量是 ,自变量的取值范围是___________.(2)利用描点法画函数的图象. 小力先上网查到了整锐角的正弦值,如下:sin1°=0.01745240643728351 sin2°=0.03489949670250097 sin3°=0.05233595624294383 sin4°=0.0697564737441253 sin5°=0.08715574274765816 sin6°=0.10452846326765346 sin7°=0.12186934340514747 sin8°=0.13917310096006544 sin9°=0.15643446504023087 sin10°=0.17364817766693033 sin11°=0.1908089953765448 sin12°=0.20791169081775931 sin13°=0.22495105434386497 sin14°=0.24192189559966773 sin15°=0.25881904510252074 sin16°=0.27563735581699916 sin17°=0.2923717047227367 sin18°=0.3090169943749474 sin19°=0.3255681544571567 sin20°=0.3420201433256687 sin21°=0.35836794954530027 sin22°=0.374606593415912 sin23°=0.3907311284892737 sin24°=0.40673664307580015 sin25°=0.42261826174069944 sin26°=0.4383711467890774 sin27°=0.45399049973954675 sin28°=0.4694715627858908 sin29°=0.48480962024633706 sin30°=0.5000000000000000 sin31°=0.5150380749100542 sin32°=0.5299192642332049 sin33°=0.544639035015027 sin34°=0.5591929034707468 sin35°=0.573576436351046 sin36°=0.5877852522924731 sin37°=0.6018150231520483 sin38°=0.6156614753256583 sin39°=0.629320391049837523题图24题图xyOyxO–112345–1–2–3–4–512345sin40°=0.6427876096865392 sin41°=0.6560590289905073 sin42°=0.6691306063588582 sin43°=0.6819983600624985 sin44°=0.6946583704589972 sin45°=0.7071067811865475 sin46°=0.7193398003386511 sin47°=0.7313537016191705 sin48°=0.7431448254773941 sin49°=0.7547095802227719 sin50°=0.766044443118978 sin51°=0.7771459614569708 sin52°=0.7880107536067219 sin53°=0.7986355100472928 sin54°=0.8090169943749474 sin55°=0.8191520442889918 sin56°=0.8290375725550417 sin57°=0.8386705679454239 sin58°=0.848048096156426 sin59°=0.8571673007021122 sin60°=0.8660254037844386 sin61°=0.8746197071393957 sin62°=0.8829475928589269 sin63°=0.8910065241883678 sin64°=0.898794046299167 sin65°=0.9063077870366499 sin66°=0.9135454576426009 sin67°=0.9205048534524404 sin68°=0.9271838545667873 sin69°=0.9335804264972017 sin70°=0.9396926207859083 sin71°=0.9455185755993167 sin72°=0.9510565162951535 sin73°=0.9563047559630354 sin74°=0.9612616959383189 sin75°=0.9659258262890683 sin76°=0.9702957262759965 sin77°=0.9743700647852352 sin78°=0.9781476007338057 sin79°=0.981627183447664 sin80°=0.984807753012208 sin81°=0.9876883405951378 sin82°=0.9902680687415704 sin83°=0.992546151641322 sin84°=0.9945218953682733 sin85°=0.9961946980917455 sin86°=0.9975640502598242 sin87°=0.9986295347545738sin88°=0.9993908270190958 sin89°=0.9998476951563913 ①列表(小力选取了10对数值);x … …y … …②建立平面直角坐标系(两坐标轴可视数值需要分别选取不同长度做为单位长度); ③描点.在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点; ④连线. 根据描出的点,画出该函数的图象;(3)结合函数的图象,写出该函数的一条性质: .27.已知:抛物线3bx x y 21++=与x 轴分别交于点A(-3,0),B (m ,0).将y 1向右平移4个单位得到y 2.(1)求b 的值;(2)求抛物线y 2的表达式;(点(3)抛物线y 2与y 轴交于点D ,与x 轴交于点E 、F E 在点F 的左侧),记抛物线在D 、F 之间的部分为图象G (包含D 、F 两点),若直线1-+=k kx y 与图象G 有一个公共点,请结合函数图象,求直线1-+=k kx y 与抛物线y 2的对称轴交点的纵坐标t 的值或取值范围.28. 如图1,点O 在线段AB 上,AO=2,OB=1,OC 为射线,且∠BOC=60°,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 做匀速运动,设运动时间为t 秒. (1)当t=21秒时,则OP= ,S △ABP = ;(2)当△ABP 是直角三角形时,求t 的值;(3)如图2,当AP=AB 时,过点A 作AQ ∥BP ,并使得∠QOP=∠B ,求证:AQ·BP=3.为了证明AQ·BP=3,小华同学尝试过O 点作OE ∥AP 交BP 于点E.试利用小华同学给我们的启发补全图形并证明AQ·BP=3.29.如图,在平面直角坐标系中,抛物线)0(32≠-+=a bx ax y 与x 轴交于点A (2-,0)、B (4,0)两点,与y 轴交于点C . (1)求抛物线的表达式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度向C 点运动.其中一个点到达终点时,另一个点也停止运动.当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最大面积是多少?(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使2:5S P BQ CBK =△△:S ,求K 点坐标.2015—2016学年度第一学期期末初三质量检测28题图 128题备用图28题图2数学试卷答案及评分标准一、选择题(每小题有且只有一个选项是正确的,请把正确的选项前的序号填在相应的表格内. 本题共有10个小题,每小题3分,共30分)二、填空题(本题共6个小题,每小题3分,共18分) 11.2±. 12. 1,2. 13.33.14. a>0,c=2,答案不唯一. 15. 3. 16. 黄金分割,解直角三角形(答案不唯一),测角仪、皮尺(答案不唯一).三、解答题(本题共72分,第17—25题,每小题5分,第26题8分,第27题6分,第28题6分,第29题7分) 17.解:原式=11113422-+-⨯ ……………………………………………………4分 =2 ………………………………………………………………………5分 18.解:()()311)3(2+-+--x x x x=222613x x x --++ ……………………………………………………2分 =26x 4x -+. …………………………………………………………………3分 ∵0362=--x x , ∴263x x -=,∴原式=3+4=7. ………………………………………………………………… 5分 19.解:∵∠C=∠E ,∠ADC=∠BDE ,△ADC ∽△BDE ,………………………………………………… 2分 ∴BDAD DE DC =, 又∵AD :DE=3:5,AE=8, ∴AD=3,DE=5,…………………………………………………………………… 3分∵BD=4,……………………………………………………………………………… 4分 ∴435DC =, 题号 1 2 3 4 5 6 7 8 9 10答案 C A B C C D C B D D∴DC=415.……………………………………………………………………………… 5分 20.解:(1)∵据题意,点B 的坐标为(2m ,-m )且在一次函数y1=﹣x +2的图象上,代入得-m=-2m+2.∴m=2. ……………………………………………………… 1分 ∴B 点坐标为(4,-2)………………………………………… 2分 把B (4,﹣2)代入y 2=xk得k =4×(﹣2)=﹣8, ∴反比例函数表达式为y 2=﹣x8;…………………………………………………… 3分 (2)当x <4,y 2的取值范围为y 2>0或y 2<﹣2.……………………………… 5分 21.解:在△ABC 中,∠A=30°,∠C=105°∴∠B=45°,…………………………………………………… 1分 过C 作CD ⊥AB 于D , ∴∠ADC=∠BDC=90°, ∵∠B=45°, ∴∠BCD=∠B=45°,∴CD=BD ,…………………………………………………… 2分 ∵∠A=30°,AC=23,∴CD=3,…………………………………………………… 3分 ∴BD=CD=3,由勾股定理得:AD=22CD AC =3,…………………………………………………… 4分 ∴AB=AD+BD=3+3.…………………………………………………… 5分 22.解:连接OC ,………………………… 1分 ∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CE =DE =CD =4cm ,………………………… 2分∵∠A =22.5°,∴∠COE =45°,………………………… 3分∴△COE 为等腰直角三角形,………………………… 4分 ∴OC =2CE =42cm ,………………………… 5分23.解:过点B 作CD BE ⊥,垂足为E (如图),……………………………… 1分 在Rt △DEB 中,∠DEB= 90,22AC BE ==(米),BEDEtan32=……………………………… 2分 13.640.6222BEtan32DE =⨯≈=∴ (米)……………………………… 3分5.1==AB EC ……………………………… 4分15.115.1413.641.5ED CE CD ≈=+=+=∴(米)……………………… 5分答:旗杆CD 的高度为15.1米.24.解:(1)证明:连接OD ,……………………… 1分 ∵PD 切⊙O 于点D ,……………………… 2分 ∴OD ⊥PD , ∵BE ⊥PC , ∴OD ∥BE , ∴∠ADO=∠E ,∵OA=OD , ∴∠OAD=∠ADO , ∴∠OAD=∠E ,∴AB=BE ;……………………… 3分 (2)解:有(1)知,OD ∥BE , ∴∠POD=∠B ,……………………… 4分 ∴cos ∠POD=cosB=, 在Rt △POD 中,cos ∠POD=53=OP OD , ∵OD=OA ,PO=PA+OA=2+OA ,xy–1–2–3–4123456–1–2–3–412345DFO∴53=+OA 2OA ,∴OA=3,∴⊙O 半径为3.……………………… 5分 25.解:(1)∵AB=xm ,则BC=(28﹣x )m , ∴x (28﹣x )=192,解得:x 1=12,x 2=16,答:x 的值为12m 或16m ;……………………… 2分 (2)由题意可得出:⎩⎨⎧≥≥15x -286x ,………………… 3分解得:13x 6≤≤. 又S=x (28﹣x )=﹣x 2+28x=﹣(x ﹣14)2+196, ∴当x≤14时,S 随x 的增大而增大.∴x=13时,S 取到最大值为:S=﹣(13﹣14)2+196=195.……………………… 5分 答:x 为13m 时,花园面积S 最大,最大面积为195m 2.26.(1)锐角的角度;正弦值;大于0°且小于90°;…………………………………… 3分 (2)(3)答案不唯一. …………………………………… 8分 27.解:(1)把A (-3,0)代入3bx x y 21++= ∴b=4……………………………………2分 ∴y 1的表达式为:34x x y 21++= (2)将y 1变形得:y 1=(x+2)2-1 据题意y 2=(x+2-4)2-1=(x-2)2-1∴抛物线y 2的表达式为342+-=x x y …………………………………4分 (3)34x x y 22+-=的对称轴x=2 ∴顶点(2,-1)∵直线1-+=k kx y 过定点(-1,-1)当直线1-+=k kx y 与图像G 有一个公共点时1-=t …………………………………… 4分当直线过F (3,0)时,直线4341-=x y把x=2代入4341-=x y∴41-=y当直线过D (0,3)时,直线34+=x y 把x=2代入34+=x y ∴11=y即11=t∴结合图象可知1-=t 或1141≤<-t .…………………………………… 6分 28.解:(1)1,433;…………………………………… 2分 (2)①∵∠A<∠BOC=60°,∴∠A 不可能是直角.②当∠ABP=90°时,∵∠BOC=60°,∴∠OPB=30°.∴OP=2OB ,即2t=2.∴t =1. …………………………………… 3分③当∠APB=90°,如图,过点P 作PD ⊥AB 于点D ,则OP=2t ,OD=t ,PD=3t ,AD=2t +,DB=1t -. ∵∠APD+∠BPD=90°,∠B+∠BPD=90°,∴∠APD=∠B. ∴△APD ∽△PBD. ∴BD PD PD AD =,即2t 3t 1t 3t +=-,即24t t 20+-=,解得12133133t ,t 88-+--== (舍去). …………………………………… 4分(3)补全图形,如图∵AP=AB ,∴∠APB=∠B.∵OE ∥AP∴∠OEB=∠APB=∠B.∵AQ ∥BP ,∴∠QAB+∠B=180°.又∵∠3+∠OEB=180°,∴∠3=∠QAB.又∵∠AOC=∠2+∠B=∠1+∠QOP ,∵∠B=∠QOP ,∴∠1=∠2.∴△QAO ∽△OEP. ∴EPAO EO AQ =,即AQ·EP=EO·AO. ∵OE ∥AP ,∴△OBE ∽△ABP. ∴31BA BO BP BE AP OE ===. ∴OE=31AP=1,BP=23EP. ∴AQ·BP=AQ·23EP=23AO·OE=23×2×1=3. …………………………………… 6分 29.解:(1)将A (-2,0),B (4,0)两点坐标分别代入y=ax 2+bx-3(a≠0),即⎩⎨⎧=-+=--034b 16a 032b 4a ,………………………… 1分 解得:⎪⎪⎩⎪⎪⎨⎧-==43b 83a ∴抛物线的表达式为:3x 43x 83y 2--=……………………………… 2分 (2)设运动时间为t 秒,由题意可知: 2t 0<< …………………………………… 3分 过点Q 作QD ⊥AB,垂直为D ,易证△OCB ∽△DQB, ∴BQBC DQ OC =…………………………………… 4分 OC=3,OB=4,BC=5,AP=3t,PB=6-3t,BQ=t ,t5DQ 3=∴t 53DQ =∴ ∴t 533t)(621DQ PB 21S ΔPBQ ⋅-=⋅=t59t 1092+-=对称轴1)(2t 10959=-⨯-=∴当运动1秒时,△PBQ 面积最大,10959109S ΔPBQ =+-=,最大为109. …………………………………… 5分(3)如图,设K(m,3m 43m 832--) 连接CK 、BK ,作KL ∥y 轴交BC 与L , 由(2)知:109S ΔPBQ =, 2:5S :S PBQ ΔCBK = ∴49S ΔCBK = 设直线BC 的表达式为y=kx+n3)C(0,B(4,0),-⎩⎨⎧-==+∴3n 0n 4k ,解得: ∴直线BC 的表达式为y=43x-3 ∴3)m 43L(m,- 2m 83m 23KL -= ΔKLB ΔKLC ΔCBK S S S += ∴m)(4)m 83m 23(21m )m 83m 23(2122-⋅-⋅+⋅-⋅= )m 83m 23(4212-⋅⋅= 即:49)m 83m 232(2=- 解得:31或m m ==∴K 坐标为(1,827-)或(3,815-)…………………………………… 7分⎪⎩⎪⎨⎧-==3n 43k。

九年级上册周口数学期末试卷(培优篇)(Word版 含解析)

九年级上册周口数学期末试卷(培优篇)(Word版 含解析)

九年级上册周口数学期末试卷(培优篇)(Word 版 含解析)一、选择题1.如果两个相似多边形的面积比为4:9,那么它们的周长比为() A .2:3 B .2:3C .4:9D .16:812.已知34a b=(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b =C .43b a = D .43a b =3.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差2S 甲和2S 乙的大小关系是( )A .2S 甲>2S 乙B .2S 甲=2S 乙C .2S 甲<2S 乙D .无法确定4.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( ) A .2011B .2015C .2019D .20205.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( ) A .34B .14 C .13 D .126.sin30°的值是( ) A .12B .22C 3D .17.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .22B .1C .2D .28.如图,四边形ABCD 中,90BAD ACB ∠=∠=,AB AD =,4AC BC =,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A .2225y x = B .2425y x = C .225y x = D .245y x =9.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .3B .234C 1433D 223310.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位 B .向左平移1个单位,再向上平移1个单位 C .向右平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位 11.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( ) A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的12.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC的度数等于( )A .50°B .49°C .48°D .47°二、填空题13.正方形ABCD 的边长为4,圆C 半径为1,E 为圆C 上一点,连接DE ,将DE 绕D 顺时针旋转90°到DE’,F 在CD 上,且CF=3,连接FE’,当点E 在圆C 上运动,FE’长的最大值为____.14.设1x ,2x 是关于x 的一元二次方程240x x +-=的两根,则1212x x x x ++=______. 15.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____. 16.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm ,那么这张扇形纸板的弧长是________cm .17.数据8,8,10,6,7的众数是__________.18.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.19.如图,ABO 三个顶点的坐标分别为(24),(60),(00)A B ,,,,以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到A B O ''△,已知点B '的坐标是30(,),则点A '的坐标是______.20.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.21.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO =8米,母线AB =10米,则该圆锥的侧面积是_____平方米(结果保留π).22.如图,在⊙O 中,分别将弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD 的面积是__________________.23.已知关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根,则这两个相等实数根的和为_____.24.如图,⊙O 的内接四边形ABCD 中,∠A=110°,则∠BOD 等于________°.三、解答题25.已知二次函数216y ax bx =++的图像经过点(-2,40)和点(6,-8),求一元二次方程2160ax bx ++=的根.26.已知二次函数y =ax 2+bx +c (a ≠0)中,函数y 与自变量x 的部分对应值如下表:(1)求该二次函数的表达式;(2)该二次函数图像关于x 轴对称的图像所对应的函数表达式 ;27.如图,在Rt ABC ∆中,90C ∠=︒,6AC =,60BAC ∠=︒,AD 平分BAC ∠交BC 于点D ,过点D 作DEAC 交AB 于点E ,点M 是线段AD 上的动点,连结BM 并延长分别交DE ,AC 于点F 、G .(1)求CD 的长.(2)若点M 是线段AD 的中点,求EFDF的值. (3)请问当DM 的长满足什么条件时,在线段DE 上恰好只有一点P ,使得60CPG ∠=︒?28.如图,在ABC ∆中,AB AC =.以AB 为直径的O 与BC 交于点E ,与AC 交于点D ,点F 在边AC 的延长线上,且12CBF BAC ∠=∠.(1)试说明FB 是O 的切线;(2)过点C 作CG AF ⊥,垂足为C .若4CF =,3BG =,求O 的半径;(3)连接DE ,设CDE ∆的面积为1S ,ABC ∆的面积为2S ,若1215S S =,10AB =,求BC 的长.29.已知关于x 的一元二次方程(a ﹣1)x 2﹣2x +1=0有两个不相等的实数根,求a 的取值范围.30.4张相同的卡片分别写有数字﹣1、﹣3、4、6,将这些卡片的背面朝上,并洗匀. (1)从中任意抽取1张,抽到的数字大于0的概率是______;(2)从中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的a ,再从余下的卡片中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的b ,利用树状图或表格的方法,求出这个二次函数图象的对称轴在y 轴右侧的概率.31.如图,扇形OAB的半径OA=4,圆心角∠AOB=90°,点C是弧AB上异于A、B的一点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,过点C作弧AB所在圆的切线CG交OA的延长线于点G.(1)求证:∠CGO=∠CDE;(2)若∠CGD=60°,求图中阴影部分的面积.32.某小型工厂9月份生产的A、B两种产品数量分别为200件和100件,A、B两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A、B两种产品的生产数量和出厂单价,10月份A产品生产数量的增长率和A产品出厂单价的增长率相等,B产品生产数量的增长率是A产品生产数量的增长率的一半,B产品出厂单价的增长率是A产品出厂单价的增长率的2倍,设B产品生产数量的增长率为x(0x ),若10月份该工厂的总收入增加了4.4x,求x的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据面积比为相似比的平方即可求得结果.【详解】解:∵两个相似多边形的面积比为4:9,∴它们的周长比为492 3 .故选B.【点睛】本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方.2.B解析:B【解析】【分析】根据两内项之积等于两外项之积对各项分析判断即可得解.【详解】 解:由34a b=,得出,3b=4a, A.由等式性质可得:3b=4a ,正确; B.由等式性质可得:4a=3b ,错误; C. 由等式性质可得:3b=4a ,正确; D. 由等式性质可得:4a=3b ,正确. 故答案为:B. 【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键.3.A解析:A 【解析】 【分析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲. 【详解】解:由题意可知,乙的数据比甲稳定,所以2S 甲>2S 乙 故选:A 【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.C解析:C 【解析】 【分析】根据方程解的定义,求出a-b ,利用作图代入的思想即可解决问题. 【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1, ∴a−b+4=0, ∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019. 故选C. 【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.5.B解析:B 【解析】试题解析:可能出现的结果的结果有1种, 则所求概率1.4P = 故选B.点睛:求概率可以用列表法或者画树状图的方法.6.A解析:A 【解析】 【分析】根据特殊角的三角函数值计算即可. 【详解】 解:sin30°=12. 故选:A . 【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.7.A解析:A 【解析】 【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案. 【详解】 令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+, ∵20>,∴当5m =时,2PB 有最小值为:2,即PB , ∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点, ∴122OQ PB ==. 故选:A . 【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.8.C解析:C 【解析】 【分析】四边形ABCD 图形不规则,根据已知条件,将△ABC 绕A 点逆时针旋转90°到△ADE 的位置,求四边形ABCD 的面积问题转化为求梯形ACDE 的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE ,下底AC ,高DF 分别用含x 的式子表示,可表示四边形ABCD 的面积. 【详解】作AE ⊥AC ,DE ⊥AE ,两线交于E 点,作DF ⊥AC 垂足为F 点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE ∴∠BAC=∠DAE又∵AB=AD ,∠ACB=∠E=90° ∴△ABC ≌△ADE (AAS ) ∴BC=DE ,AC=AE ,设BC=a ,则DE=a ,DF=AE=AC=4BC=4a , CF=AC-AF=AC-DE=3a ,在Rt △CDF 中,由勾股定理得, CF 2+DF 2=CD 2,即(3a )2+(4a )2=x 2, 解得:a=5x , ∴y=S 四边形ABCD =S 梯形ACDE =12×(DE+AC )×DF =12×(a+4a )×4a =10a 2=25x 2. 故选C . 【点睛】本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用.9.C解析:C 【解析】 【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题. 【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点, ∴易证AE ⊥BC , ∵A 、C 关于BD 对称, ∴PA =PC , ∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长. 观察图象可知,当点P 与B 重合时,PE +PC =6, ∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a = ∵BC ∥AD , ∴AD PDBE PB= =2,∵BD =∴PD =233⨯=∴点H 的横坐标b ,∴a +b ==; 故选C . 【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.C解析:C【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】 抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.11.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y =﹣x 2+x =﹣(x 12-)2+14, ∴a =﹣1,该函数的图象开口向下,故选项A 错误;对称轴是直线x =12,故选项B 错误; 当x =12时取得最大值14,该函数有最高点,故选项C 错误; 在对称轴右侧的部分从左往右是下降的,故选项D 正确;故选:D .【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.12.A解析:A【解析】【分析】连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.【详解】连接OC,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=∠AOC=50°,故选:A.【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.二、填空题13.【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大,由题可知,PF=4,DF=171【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大,由题可知,PF=4,DF=1,∴22+1741∴FE’=171+,故答案是:171+【点睛】本题考查了图形的旋转,圆的基本性质,勾股定理的应用,中等难度,准确找到点P 的位置是解题关键.14.-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵,是关于的一元二次方程的两根,∴,∴,故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,如果,是方解析:-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵1x ,2x 是关于x 的一元二次方程240x x +-=的两根,∴121214x x x x +=-=-,, ∴()1212145x x x x ++=-+-=-,故答案为:5-.【点睛】本题考查了一元二次方程根与系数的关系,如果1x ,2x 是方程20x px q ++=的两根,那么12x x p +=﹣,12x x q =.15.(6,4).【解析】【分析】作BQ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD⊥AC 于D ,PF⊥AB 于F ,P解析:(6,4).【解析】【分析】作BQ ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解之求出x 的值,从而得出点P 的坐标,即可得出答案.【详解】解:如图,过点B 作BQ ⊥AC 于点Q ,则AQ=5,BQ=12,∴AB=2213AQ BQ +=,CQ=AC-AQ=9,∴BC=2215BQ CQ +=设⊙P 的半径为r ,根据三角形的面积可得:r=14124141315⨯=++ 过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,∴BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解得:x=6,∴点P 的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P的坐标是解题的关键.16.【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,∴圆锥的底面半径为cm,∴底面周长为2π×6=12解析:12π【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,=cm,6∴底面周长为2π×6=12πcm,即这张扇形纸板的弧长是12πcm,故答案为:12π.【点睛】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.17.8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解解析:8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8. 【点睛】 本题主要考查众数,掌握众数的概念是解题的关键. 18.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=25510BD AB ==.19.(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2).故答案为(1,2). 解析:(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的12,∴点A ′的坐标是(2×12,4×12),即(1,2).故答案为(1,2). 20.120°.【解析】试题分析:若△ABC 以O 为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC 旋转的最小角度为180°﹣60°=120°.故答案为120°. 考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC 以O 为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC 旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.21.【解析】【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的解析:60【解析】【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=12lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的底面周长=2×π×6=12π米,∴S扇形=12lr=12×12π×10=60π米2,故答案为60π.【点睛】本题考查圆锥的侧面积,掌握扇形面积的计算方法S=12lr是解题的关键.22.【解析】【分析】作OH⊥AB,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD是平行解析:【解析】【分析】作OH⊥AB,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH⊥AB,垂足为H,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,则OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG= HB=GD∴AB=CD又∵AB∥CD∴四边形ABCD是平行四边形,在Rt△OHA中,由勾股定理得:22224223OA OH-=-=∴AB=43∴四边形ABCD的面积=AB×GH=434=163故答案为:3.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD是矩形.23.2【解析】【分析】根据根的判别式,令,可得,解方程求出b=﹣2a,再把b代入原方程,根据韦达定理:即可.【详解】当关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根时,,即解析:5【解析】【分析】根据根的判别式,令=0∆,可得2220=0b a -,解方程求出b =﹣,再把b 代入原方程,根据韦达定理:12b x x a+=-即可. 【详解】当关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根时, =0∆,即2220=0b a -,解得b =﹣a 或b =(舍去),原方程可化为ax 2﹣+5a =0,则这两个相等实数根的和为故答案为:【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。

周口市九年级上学期期末数学试卷

周口市九年级上学期期末数学试卷

周口市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下面有4个汽车标致图案,其中不是轴对称图形的是()A .B .C .D .2. (2分)(2012·朝阳) (2012•朝阳)两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的俯视图是()A . 两个外离的圆B . 两个相交的圆C . 两个外切的圆D . 两个内切的圆3. (2分)将一张四条边都相等的四边形纸片按下图中①②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应是()A .B .C .D .4. (2分) (2016九上·江北期末) 一个袋子中有7只黑球,6只黄球,5只白球,一次性取出12只球,其中出现黑球是()A . 不可能事件B . 必然事件C . 随机事件D . 以上说法均不对5. (2分) (2016九上·江北期末) 下列函数中有最小值的是()A . y=2x﹣1B . y=﹣C . y=2x2+3xD . y=﹣x2+16. (2分) (2016九上·江北期末) 如果用表示1个立方体,用表示两个立方体叠加,用表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图是()A .B .C .D .7. (2分) (2016九上·江北期末) ⊙O内有一点P,过点P的所有弦中,最长的为10,最短的为8,则OP的长为()A . 6B . 5C . 4D . 38. (2分) (2016九上·江北期末) 下列m的取值中,能使抛物线y=x2+(2m﹣4)x+m﹣1顶点在第三象限的是()A . 4B . 3C . 2D . 19. (2分) (2016九上·江北期末) 四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L,K,C的投影中,与字母N属同一种投影的有()A . L,KB . CC . KD . L,K,C10. (2分) (2016九上·江北期末) 如图,圆内接四边形ABCD的BA,CD的延长线交于P,AC,BD交于E,则图中相似三角形有()A . 2对B . 3对C . 4对D . 5对11. (2分) (2016九上·江北期末) 如图,AB是⊙O的直径,弦C D⊥AB于点G.点F是CD上一点,且满足= ,连接AF并延长交⊙0于点E.连接AD,DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E= ;④S△DEF=4 .其中正确的是()A . ①②④B . ①②③C . ②③④D . ①③④12. (2分) (2016九上·江北期末) 如图,在平面直角坐标系中,⊙P与y轴相切,交直线y=x于A,B两点,已知圆心P的坐标为(2,a)(a>2),AB=2 ,则a的值为()A . 4B . 2+C .D .二、填空题 (共6题;共6分)13. (1分)(2017·长清模拟) 某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是________岁.14. (1分) (2016九上·江北期末) 大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为________ cm.15. (1分) (2016九上·江北期末) 如图,六个正方形组成一个矩形,A,B,C均在格点上,则∠ABC的正切值为________.16. (1分) (2016九上·江北期末) 如图,将一段12cm长的管道竖直置于地面,并在上面放置一个半径为5cm的小球,放置完毕以后小球顶端距离地面20cm,则该管道的直径AB为________.17. (1分) (2016九上·江北期末) 如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC 放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为________ cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)18. (1分) (2016九上·江北期末) 如图,过y轴上一点P(0,1)作平行于x轴的直线PB,分别交函数y1=x2(x≥0)与y2= (x≥0)的图象于A1 , B1两点,过点B1作y轴的平行线交y1的图象于点A2 ,再过A2作直线A2B2∥x轴,交y2的图象于点B2 ,依次进行下去,连接A1A2 , B1B2 , A2A3 , B2B3 ,…,记△A2A1B1的面积为S1 ,△A2B1B2的面积为S2 ,△A3A2B2的面积为S3 ,△A3B2B3的面积为S4 ,…则S2016=________三、解答题 (共8题;共76分)19. (5分)(2017·梁子湖模拟) 先化简,再求值:÷(﹣x﹣3),其中x=sin45°﹣4cos60°.20. (5分) (2016九上·江北期末) 如图,△ABC中,DE∥FG∥BC,AD:DF:FB=1:2:3,求S四边形DFGE:S四边形FBCG的值.21. (5分) (2016九上·江北期末) 如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子如图所示,已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度.(即AB的值)22. (10分) (2016九上·江北期末) 如图,PB切⊙O于点B,联结PO并延长交⊙O于点E,过点B作BA⊥PE 交⊙O于点A,联结AP,AE.(1)求证:PA是⊙O的切线;(2)如果OD=3,tan∠AEP= ,求⊙O的半径.23. (10分) (2016九上·崇仁期中) 甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.(1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?(2)若乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由.24. (15分) (2016九上·江北期末) 某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量与销售单价基本满足一次函数关系,并且当销售单价为26元时,每天销售量28台;当销售单价为32元时,每天销售量16台,设台灯的销售单价为x(元),每天的销售量为y(台).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?(3)若该商场每天想获得150元的利润,在保证销售量尽可能大的前提下,应将销售单价定为多少元?25. (6分) (2016九上·江北期末) 由若干边长为1的小正方形拼成一系列“L”形图案(如图1).(1)当“L”形由7个正方形组成时,其周长为________;(2)如图2,过格点D作直线EF,分别交AB,AC于点E,F.①试说明AE•AF=AE+AF;②若“L”形由n个正方形组成时,EF将“L”形分割开,直线上方的面积为整个“L”形面积的一半,试求n 的取值范围以及此时线段EF的长.26. (20分) (2016九上·江北期末) 已知x轴上有点A(1,0),点B在y轴上,点C(m,0)为x轴上一动点且m<﹣1,连接AB,BC,tan∠ABO= ,以线段BC为直径作⊙M交直线AB于点D,过点B作直线l∥AC,过A,B,C三点的抛物线为y=ax2+bx+c,直线l与抛物线和⊙M的另一个交点分别是E,F.(1)求B点坐标;(2)用含m的式子表示抛物线的对称轴;(3)线段EF的长是否为定值?如果是,求出EF的长;如果不是,说明理由.(4)是否存在点C(m,0),使得BD= AB?若存在,求出此时m的值;若不存在,说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共76分)19-1、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、26-4、。

九年级上册周口数学全册期末复习试卷(培优篇)(Word版 含解析)

九年级上册周口数学全册期末复习试卷(培优篇)(Word版 含解析)

九年级上册周口数学全册期末复习试卷(培优篇)(Word 版 含解析) 一、选择题1.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .2472.有一组数据5,3,5,6,7,这组数据的众数为( )A .3B .6C .5D .73.如图,△ABC 的顶点在网格的格点上,则tanA 的值为( )A .12B .105C .33D .10104.如图,CD 为O 的直径,弦AB CD ⊥于点E ,2DE =,8AB =,则O 的半径为( )A .5B .8C .3D .10 5.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( )A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.6.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )A .15B .25 C .35 D .45 7.对于二次函数2610y x x =-+,下列说法不正确的是( )A .其图象的对称轴为过(3,1)且平行于y 轴的直线.B .其最小值为1.C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.8.下列图形,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .9.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内 B .P 在圆上 C .P 在圆外 D .无法确定10.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,连接AB ,若∠B =25°,则∠P 的度数为( )A .25°B .40°C .45°D .50° 11.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .12 12.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( ) A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的 13.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ 的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④14.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B .3C .32D .215.已知在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CM 是它的中线,以C 为圆心,5cm 为半径作⊙C ,则点M 与⊙C 的位置关系为( )A .点M 在⊙C 上B .点M 在⊙C 内 C .点M 在⊙C 外D .点M 不在⊙C 内二、填空题16.一元二次方程290x 的解是__.17.已知线段4AB =,点P 是线段AB 的黄金分割点(AP BP >),那么线段AP =______.(结果保留根号) 18.如图,边长为2的正方形ABCD ,以AB 为直径作⊙O ,CF 与⊙O 相切于点E ,与AD 交于点F ,则△CDF 的面积为________________19.已知点P 是线段AB 的黄金分割点,PA >PB ,AB =4 cm ,则PA =____cm .20.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.21.关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,0a ≠),则关于x 的方程2(3)0a x m b +++=的解是________.22.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.23.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.24.点P 在线段AB 上,且BP AP AP AB=.设4AB cm =,则BP =__________cm . 25.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.26.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.27.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____.28.已知234x y z x z y+===,则_______ 29.如图,在△ABC 中,P 是AB 边上的点,请补充一个条件,使△ACP ∽△ABC ,这个条件可以是:___(写出一个即可),30.如图,⊙O 的内接四边形ABCD 中,∠A=110°,则∠BOD 等于________°.三、解答题31.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连结BC .(1)求证:AE=ED ;(2)若AB=10,∠CBD=36°,求AC 的长.32.某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A 类(12≤m ≤15),B 类(9≤m ≤11),C 类(6≤m ≤8),D 类(m ≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为 ,扇形统计图中A 类所对的圆心角是 度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C 类的有多少名?33.解方程:(1)x 2﹣2x ﹣1=0;(2)(2x ﹣1)2=4(2x ﹣1).34.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y (件)与销售单价 x (元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w (元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?35.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为A (6,4),B (4,0),C (2,0).(1)在y 轴左侧,以O 为位似中心,画出111A B C ∆,使它与ABC ∆的相似比为1:2; (2)根据(1)的作图,111tan A B C ∠= .四、压轴题36.问题发现:(1)如图①,正方形ABCD 的边长为4,对角线AC 、BD 相交于点O ,E 是AB 上点(点E 不与A 、B 重合),将射线OE 绕点O 逆时针旋转90°,所得射线与BC 交于点F ,则四边形OEBF 的面积为 .问题探究:(2)如图②,线段BQ =10,C 为BQ 上点,在BQ 上方作四边形ABCD ,使∠ABC =∠ADC =90°,且AD =CD ,连接DQ ,求DQ 的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD 中,∠ABC =∠ADC =90°,AD =CD ,AC =600米.其中AB 、BD 、BC 为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB +BD +BC 的最大值.37.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为(5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒; ()1求点C 的坐标;()2当点M 在ABC ∠的内部且M 与直线BC 相切时,求t 的值;()3如图2,点E 、F 分别是BC 、AC 的中点,连接EM 、FM ,在运动过程中,是否存在某一时刻,使EMF 90∠=?若存在,直接写出t 的值,若不存在,请说明理由.38.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点.(1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.39.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GD GO=?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.40.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F .(1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据折叠得出∠DFE =∠A =60°,AD =DF ,AE =EF ,设BD =x ,AD =DF =5﹣x ,求出∠DFB =∠FEC ,证△DBF ∽△FCE ,进而利用相似三角形的性质解答即可.【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AB =BC =AC =5,∵沿DE 折叠A 落在BC 边上的点F 上,∴△ADE ≌△FDE ,∴∠DFE =∠A =60°,AD =DF ,AE =EF ,设BD =x ,AD =DF =5﹣x ,CE =y ,AE =5﹣y ,∵BF =2,BC =5,∴CF =3,∵∠C =60°,∠DFE =60°,∴∠EFC +∠FEC =120°,∠DFB +∠EFC =120°,∴∠DFB =∠FEC ,∵∠C =∠B ,∴△DBF∽△FCE,∴BD BF DFFC CE EF==,即2535x xy y-==-,解得:x=218,即BD=218,故选:C.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.2.C解析:C【解析】【分析】根据众数的概念求解.【详解】这组数据中5出现的次数最多,出现了2次,则众数为5.故选:C.【点睛】本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.3.A解析:A【解析】【分析】根据勾股定理,可得BD、AD的长,根据正切为对边比邻边,可得答案.【详解】解:如图作CD⊥AB于D,,tanA=12 CDAD==,故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4.A解析:A【解析】【分析】作辅助线,连接OA ,根据垂径定理得出AE=BE=4,设圆的半径为r ,再利用勾股定理求解即可.【详解】解:如图,连接OA ,设圆的半径为r ,则OE=r-2,∵弦AB CD ⊥,∴AE=BE=4,由勾股定理得出:()22242r r =+-,解得:r=5,故答案为:A.【点睛】本题考查的知识点主要是垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断或解答. 5.A解析:A【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】由题意得:m ﹣1≠0,解得:m≠1,故选A .【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.6.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是25. 故选B.考点:概率. 7.D解析:D【解析】【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案.【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键. 8.A解析:A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C. 是轴对称图形,是中心对称图形,不符合题意;D. 是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.9.C解析:C【解析】【分析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P到圆心O的距离为4.5,⊙O的半径为4,∴点P在圆外.故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d的距离与半径r的大小确定点与圆的位置关系.10.B解析:B【解析】【分析】连接OA,由圆周角定理得,∠AOP=2∠B=50°,根据切线定理可得∠OAP=90°,继而推出∠P=90°﹣50°=40°.【详解】连接OA,由圆周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切线,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故选:B.【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.11.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.12.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x12)2+14,∴a =﹣1,该函数的图象开口向下,故选项A 错误;对称轴是直线x =12,故选项B 错误; 当x =12时取得最大值14,该函数有最高点,故选项C 错误; 在对称轴右侧的部分从左往右是下降的,故选项D 正确;故选:D .【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.13.B解析:B【解析】【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠,GPD GDP ∴∠=∠,GD GP ∴=,故②正确.③正确.AB CE ⊥,∴AE AC =,AC CD=,∴CD AE=,CAD ACE∴∠=∠,∴=,PC PAAB是直径,∴∠=︒,ACQ90∠+∠=︒,∴∠+∠=︒,90CAP CQPACP QCP90∴∠=∠,PCQ PQC∴==,PC PQ PAACQ∠=︒,90∆的外心.故③正确.∴点P是ACQ④正确.连接BD.∠=∠=︒,PAF BAD90AFP ADB∠=∠,∴∆∆∽,APF ABD∴AP AF=,AB AD∴⋅=⋅,AP AD AF AB∠=∠=︒,AFC ACB∠=∠,90CAF BAC∴∆∆∽,ACF ABC可得2=,AC AF AB∠=∠,∠=∠,CAQ ABCACQ ACB∴∆∆∽,可得2CAQ CBA=⋅,AC CQ CB∴⋅=⋅.故④正确,AP AD CQ CB故选:B.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.14.D解析:D【解析】【分析】先证明△ABD 为等腰直角三角形得到∠ABD =45°,BD =2AB ,再证明△CBD 为等边三角形得到BC =BD =2AB ,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB :CB ,从而得到下面圆锥的侧面积.【详解】∵∠A =90°,AB =AD ,∴△ABD 为等腰直角三角形,∴∠ABD =45°,BD =2AB ,∵∠ABC =105°,∴∠CBD =60°,而CB =CD ,∴△CBD 为等边三角形,∴BC =BD =2AB ,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB :CB ,∴下面圆锥的侧面积=2×1=2.故选D .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.15.A解析:A【解析】【分析】根据题意可求得CM 的长,再根据点和圆的位置关系判断即可.【详解】如图,∵由勾股定理得2268 ,∵CM 是AB 的中线,∴CM=5cm ,∴d=r ,所以点M 在⊙C 上,故选A .【点睛】本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.二、填空题16.x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】∵∴=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一解析:x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】x-=∵290∴2x=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键. 17.【解析】【分析】根据黄金比值为计算即可.【详解】解:∵点P是线段AB的黄金分割点(AP>BP)∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.解析:2【解析】【分析】计算即可. 【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴AP 2AB ==故答案为:2.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.18.【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB 、BC 是⊙O 的切线,∵C 解析:32【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB 、BC 是⊙O 的切线,∵CF 是⊙O 的切线,∴AF=EF ,BC=EC ,∴FC=AF+DC ,设AF=x ,则,DF=2-x ,∴CF=2+x ,在RT △DCF 中,CF 2=DF 2+DC 2,即(2+x)2=(2-x)2+22,解得x=12,∴DF=2-12=32,∴113322222 CDFS DF DC=⋅=⨯⨯=,故答案为:3 2 .【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.19.2-2【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×=cm,故答案为解析:2【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AP=12AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则=)21cm,故答案为:(2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的12,难度一般.20.【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△解析:1 6【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴ABEF=BCCE,∴12=x1x解得x=13,∴阴影部分面积为:S△ABC=12×13×1=16,故答案为:16.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.21.x1=-12,x2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程的解是,(a ,m ,b 均为常数,a≠0),∴方程变形为,即解析:x 1=-12,x 2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,a≠0),∴方程2(3)0a x m b +++=变形为2[(3)]0a x m b +++=,即此方程中x +3=-9或x +3=11,解得x 1=-12,x 2=8,故方程2(3)0a x m b +++=的解为x 1=-12,x 2=8.故答案为x 1=-12,x 2=8.【点睛】此题主要考查了方程解的含义.注意观察两个方程的特点,运用整体思想进行简便计算. 22.6【解析】【分析】先根据平行四边形的性质证得△BEG∽△FAG,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四解析:6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△FAG , ∵13BE DF BC ==,∴12 EG BEAG AF==,∴211,24BEG BEGABG AFGS SEG BES AG S AF∆∆∆∆⎛⎫====⎪⎝⎭,∵1BEGS∆=,∴2ABGS∆=,4AFGS∆=,∴6ABF ABG AFGS S S∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键. 23.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BDAB==.24.【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x,则AP=4-x,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).解析:(625)-【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x , 根据题意可得,444x x x -=-, 整理为:212160x x -+=,利用求根公式解方程得:x 6===±,∴16x =-264x =+>(舍去).故答案为:6-【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.25.【解析】【分析】利用勾股定理求出AC ,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴,∵AE 是直径,∴∠ABE=90°,解析:5【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC =, ∴3AB =∴5AB =【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.26.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC 可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P 或∠C=∠Q 或.【详解】解:这个条件解析:∠P =∠B (答案不唯一)【解析】【分析】要使△APQ ∽△ABC ,在这两三角形中,由∠PAB =∠QAC 可知∠PAQ=∠BAC ,还需的条件可以是∠B=∠P 或∠C=∠Q 或AP AQ AB AC =. 【详解】解:这个条件为:∠B=∠P∵∠PAB =∠QAC ,∴∠PAQ=∠BAC∵∠B=∠P ,∴△APQ ∽△ABC ,故答案为:∠B=∠P 或∠C=∠Q 或AP AQ AB AC =. 【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键. 27.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m =﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m (m +1)=0,∴m =0或m =﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.28.2【解析】【分析】设,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k 来表示x 、y 、z.29.∠ACP=∠B (或).【解析】【分析】由于△ACP 与△ABC 有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【详解】解析:∠ACP=∠B (或AP AC AC AB =). 【解析】【分析】由于△ACP 与△ABC 有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【详解】解:∵∠PAC=∠CAB ,∴当∠ACP=∠B 时,△ACP ∽△ABC ; 当AP AC AC AB=时,△ACP ∽△ABC . 故答案为:∠ACP=∠B (或AP AC AC AB =). 【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似:有两组角对应相等的两个三角形相似.30.140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.解析:140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.三、解答题31.(1)证明见解析;(2)2ACπ=【解析】【分析】【详解】分析:(1)根据平行线的性质得出∠AEO=90°,再利用垂径定理证明即可;(2)根据弧长公式解答即可.详证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴AC BD=,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴AC=7252 180ππ⨯=.点睛:此题考查弧长公式,关键是根据弧长公式和垂径定理解答.32.(1)50,72;(2)作图见解析;(3)90.【解析】【分析】(1)用A类学生的人数除以A类学生的人数所占的百分比即可得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C类学生数和C类与D类所占的百分比,从而可以将统计图补充完整;(3)用该校九年级男生的人数乘以该校九年级男生“引体向上”项目成绩为C类的的学生所占得百分比即可得答案.【详解】(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C 类的有90名.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.33.(1)x =22;(2)x =52或x =12. 【解析】【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【详解】解:(1)∵x 2﹣2x ﹣1=0,∴x 2﹣2x +1=2,∴(x ﹣2)2=2,∴x =2.(2)∵(2x ﹣1)2=4(2x ﹣1),∴(2x ﹣1﹣4)(2x ﹣1)=0, ∴x =52或x =12. 【点睛】 此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.34.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件.【解析】【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b+⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x <55时,w 随x 的增大而增大,而30≤x≤50,∴当x=50时,w 由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.35.(1)见解析;(2)-2【解析】【分析】(1)连接AO 并延长至1A ,使1AO 2AO =,同理作出点B ,C 的对应点,再顺次连接即可;(2)先根据图象找出三点的坐标,再利用正切函数的定义求解即可.【详解】(1)如图;(2)根据题意可得出()13,2A --,()12,0B -,()11,0C -, 设11A B 与x 轴的夹角为α,∴()111tan tan 180αtan α2A BC ∠=-=-=-. 【点睛】本题考查的知识点是在坐标系中画位似图形,掌握位似图形的关于概念是解此题的关键.四、压轴题36.(1)4;(2)52;(3)600(2+1). 【解析】 【分析】(1)如图①中,证明△EOB ≌△FOC 即可解决问题;(2)如图②中,连接BD ,取AC 的中点O ,连接OB ,OD .利用四点共圆,证明∠DBQ =∠DAC =45°,再根据垂线段最短即可解决问题.(3)如图③中,将△BDC 绕点D 顺时针旋转90°得到△EDA ,首先证明AB +BC +BD =(2+1)BD ,当BD 最大时,AB +BC +BD 的值最大. 【详解】解:(1)如图①中,∵四边形ABCD 是正方形,∴OB =OC ,∠OBE =∠OCF =45°,∠BOC =90°, ∵∠EOF =90°, ∴∠EOF =∠BOC , ∴∠EOB =∠FOC , ∴△EOB ≌△FOC (SAS ), ∴S △EOB =S △OFC , ∴S 四边形OEBF =S △OBC =14•S 正方形ABCD =4, 故答案为:4;(2)如图②中,连接BD ,取AC 的中点O ,连接OB ,OD .。

2016-2017学年河南省周口市太康县九年级(上)期末数学试卷

2016-2017学年河南省周口市太康县九年级(上)期末数学试卷

2016-2017学年河南省周口市太康县九年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)下列各式中属于最简二次根式的是()A.B.C. D.2.(3分)下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件3.(3分)要得到二次函数y=﹣x2+2x的图象,需将二次函数y=﹣x2的图象()A.向左平移1个单位,再向上平移1个单位B.向右平移1个单位,再向下平移1个单位C.向左平移1个单位,再向下平移1个单位D.向右平移1个单位,再向上平移1个单位4.(3分)若一元二次方程x2+2x+m=0没有实数根,则m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<15.(3分)如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°6.(3分)在△ABC中,∠C=90°,若∠A=30°,则sinA+cosB的值等于()A.1 B.C.D.7.(3分)袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为()A.B.C.D.8.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0②abc<0③2a+b <0④m>2其中,正确的是结论的个数是()A.1 B.2 C.3 D.4二、填空题(共7小题,每小题3分,满分21分)9.(3分)在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻,据此,估计该镇中看中央电视台早间新闻的约有万人.10.(3分)已知扇形的弧长是2πcm,半径为12cm,则这个扇形的圆心角是.11.(3分)若=﹣x,则x的取值范围是.12.(3分)抛物线y=﹣2x2﹣4x+1的顶点关于x轴对称的点的坐标为.13.(3分)如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于.14.(3分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,sinB的值是.15.(3分)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的范围是.三、解答题(共8小题,满分75分)16.(8分)(1)计算(1﹣)2﹣+()0(2)解方程:(x+1)(x+2)=2x+4.17.(8分)我市某中学九年级学生对市民“创建精神文明城市”知晓率采取随机抽样的方法进行问卷调查,问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解“、“从未听说”五个等级,统计后的数据整理如下表:(1)表中m的值为;(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数;(3)根据上述统计结果,请你对政府相关部门提出一句话建议.18.(8分)有一直经为cm圆形纸片,从中剪出一个圆心角是90°的最大扇形ABC(如图所示).(1)求阴影部分的面积(2)用所剪的扇形纸片围城一个圆锥,该圆锥的底面圆的半径是多少?19.(9分)甲、乙两人用如图的两个分格均匀的转盘A、B做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:(1)用列表格或画树状图的方法表示游戏所有可能出现的结果.(2)求甲、乙两人获胜的概率.20.(10分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.21.(10分)如图,斜坡AF的坡度为5:12,斜坡AF上一棵与水平面垂直的大树BD在阳光照射下,在斜坡上的影长BC=6.5米,此时光线与水平线恰好成30°角,求大树BD的高.(结果精确的0.1米,参考数据≈1.414,≈1.732)22.(10分)如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,BD∥AC.(1)图中∠OCD=°,理由是;(2)⊙O的半径为3,AC=4,求OD的长.23.(12分)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.2016-2017学年河南省周口市太康县九年级(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2016秋•太康县期末)下列各式中属于最简二次根式的是()A.B.C. D.【解答】解:A、被开方数含分母,故A不符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意;故选:D.2.(3分)(2015•漳州)下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件【解答】解:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选:D.3.(3分)(2016秋•太康县期末)要得到二次函数y=﹣x2+2x的图象,需将二次函数y=﹣x2的图象()A.向左平移1个单位,再向上平移1个单位B.向右平移1个单位,再向下平移1个单位C.向左平移1个单位,再向下平移1个单位D.向右平移1个单位,再向上平移1个单位【解答】解:∵y=﹣x2+2x=﹣(x﹣1)2+1,∴y=﹣x2向右平移1个单位,再向上平移1个单位得到y=﹣x2+2x的图象.故选:D.4.(3分)(2016秋•太康县期末)若一元二次方程x2+2x+m=0没有实数根,则m 的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<1【解答】解:∵方程x2+2x+m=0没有实数根,∴△=22﹣4m=4﹣4m<0,解得:m>1.故选C.5.(3分)(2014•重庆)如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°【解答】解:∵∠ABC=∠AOC,而∠ABC+∠AOC=90°,∴∠AOC+∠AOC=90°,∴∠AOC=60°.故选:C.6.(3分)(2016秋•太康县期末)在△ABC中,∠C=90°,若∠A=30°,则sinA+cosB 的值等于()A.1 B.C.D.【解答】解:在△ABC中,∠C=90°,若∠A=30°,得∠B=90°﹣30°=60°.sinA+cosB=sin30°+cos60°=+=1,故选:A.7.(3分)(2011•泰安)袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为()A.B.C.D.【解答】解:画树状图得:∴一共有9种等可能的结果,两次所取球的编号相同的有3种,∴两次所取球的编号相同的概率为=.故选C.8.(3分)(2016秋•太康县期末)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0②abc<0③2a+b<0④m>2其中,正确的是结论的个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②正确;∵b=﹣2a,∴2a+b=0,所以③错误;∵方程ax2+bx+c﹣m=0没有实数根,即ax2+bx+c=m没有实数根,而二次函数y=ax2+bx+c的最大值为2,∴m>2,所以④正确.故选C.二、填空题(共7小题,每小题3分,满分21分)9.(3分)(2016秋•太康县期末)在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻,据此,估计该镇中看中央电视台早间新闻的约有 1.5万人.【解答】解:该镇看中央电视台早间新闻的约有15×=1.5万,故答案为:1.510.(3分)(2016秋•太康县期末)已知扇形的弧长是2πcm,半径为12cm,则这个扇形的圆心角是30°.【解答】解:设这个扇形的圆心角的度数为n°,根据题意得2π=,解得n=30,即这个扇形的圆心角为30°.故答案为30°.11.(3分)(2016秋•太康县期末)若=﹣x,则x的取值范围是﹣3≤x≤0.【解答】解:∵=﹣x,∴,解得﹣3≤x≤0.故x的取值范围是﹣3≤x≤0.12.(3分)(2006•青海)抛物线y=﹣2x2﹣4x+1的顶点关于x轴对称的点的坐标为(﹣1,﹣3).【解答】解:∵y=﹣2x2﹣4x+1,∴=﹣1=3即顶点坐标为(﹣1,3)则关于x轴对称的点的坐标为(﹣1,﹣3).13.(3分)(2016秋•太康县期末)如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于5:8.【解答】解:∵DE∥BC,∴AE:EC=AD:DB=3:5,∴CE:CA=5:8,∵EF∥AB,∴CF:CB=CE:CA=5:8.故答案为5:8.14.(3分)(2014•市中区模拟)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,sinB的值是.【解答】解:连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∵⊙O的半径为,∴AD=3,∴在Rt△ACD中,sin∠D==,∵∠B=∠D,∴sinB=sin∠D=.故答案为:.15.(3分)(2015•绵阳模拟)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的范围是2或﹣.【解答】解:二次函数对称轴为直线x=m,①m<﹣2时,x=﹣2取得最大值,﹣(﹣2﹣m)2+m2+1=4,解得,m=﹣,∵﹣>﹣2,∴不符合题意,②﹣2≤m≤1时,x=m取得最大值,m2+1=4,解得m=±,所以,m=﹣,③m>1时,x=1取得最大值,﹣(1﹣m)2+m2+1=4,解得,m=2,综上所述,m=2或﹣时,二次函数有最大值.故答案为:2或﹣.三、解答题(共8小题,满分75分)16.(8分)(2016秋•太康县期末)(1)计算(1﹣)2﹣+()0(2)解方程:(x+1)(x+2)=2x+4.【解答】解:(1)原式=1﹣2+3﹣(﹣1)+1=4﹣2﹣+1+1=6﹣3;(2)∵(x+1)(x+2)﹣2(x+2)=0,∴(x+2)(x﹣1)=0,则x+2=0或x﹣1=0,解得:x=﹣2或x=1.17.(8分)(2016秋•太康县期末)我市某中学九年级学生对市民“创建精神文明城市”知晓率采取随机抽样的方法进行问卷调查,问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解“、“从未听说”五个等级,统计后的数据整理如下表:(1)表中m的值为0.3;(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数;(3)根据上述统计结果,请你对政府相关部门提出一句话建议.【解答】解:(1)40÷0.2=200,m==0.3,故答案为:0.3;(2)圆心角的度数是:360°×0.2=72°;(3)对市民“创建精神文明城市“应该加大宣传力度.18.(8分)(2016秋•太康县期末)有一直经为cm圆形纸片,从中剪出一个圆心角是90°的最大扇形ABC(如图所示).(1)求阴影部分的面积(2)用所剪的扇形纸片围城一个圆锥,该圆锥的底面圆的半径是多少?【解答】解:(1)连接BC,AO,∵∠BAC=90°,OB=OC,∴BC是圆0的直径,AO⊥BC,∵圆的直径为,则AC=1m,故S==.扇形(2)的长l==πcm,则2πR=π,解得:R=.故该圆锥的底面圆的半径是cm.19.(9分)(2014•丹东)甲、乙两人用如图的两个分格均匀的转盘A、B做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:(1)用列表格或画树状图的方法表示游戏所有可能出现的结果.(2)求甲、乙两人获胜的概率.【解答】解:(1)所有可能出现的结果如图:(2)从上面的表格(或树状图)可以看出,所有可能出现的结果共有12种,且每种结果出现的可能性相同,其中积是奇数的结果有4种,即5、7、15、21,积是偶数的结果有8种,即4、6、8、10、12、14、12、18,∴甲、乙两人获胜的概率分别为:P(甲获胜)==,P(乙获胜)==.20.(10分)(2014•成都)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.【解答】解:(1)∵AB=x,则BC=(28﹣x),∴x(28﹣x)=192,解得:x1=12,x2=16,答:x的值为12或16;(2)∵AB=xm,∴BC=28﹣x,∴S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,∵在P处有一棵树与墙CD,AD的距离分别是15m和6m,∵28﹣15=13,∴6≤x≤13,∴当x=13时,S取到最大值为:S=﹣(13﹣14)2+196=195,答:花园面积S的最大值为195平方米.21.(10分)(2016秋•太康县期末)如图,斜坡AF的坡度为5:12,斜坡AF上一棵与水平面垂直的大树BD在阳光照射下,在斜坡上的影长BC=6.5米,此时光线与水平线恰好成30°角,求大树BD的高.(结果精确的0.1米,参考数据≈1.414,≈1.732)【解答】解:作CM⊥DB于点M,∵斜坡AF的坡度是1::2.4,∠A=∠BCM,∴==,∴在直角△MBC中,设BM=5x,则CM=12x.由勾股定理可得:BM2+CM2=BC2,∴(5x)2+(12x)2=6.52,解得:x=,∴BM=5x=,CM=12x=6,在直角△MDC中,∠DCM=∠EDG=30°,∴DM=CM•tan∠DCM=6tan30°=6×=2,∴BD=DM+BM=+2≈2.5+2×1.732≈6.0(米).答:大树的高约为6.0米.22.(10分)(2014•大连)如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O 相切,BD∥AC.(1)图中∠OCD=90°,理由是圆的切线垂直于经过切点的半径;(2)⊙O的半径为3,AC=4,求OD的长.【解答】解:(1)∵CD与⊙O相切,∴OC⊥CD,(圆的切线垂直于经过切点的半径)∴∠OCD=90°;故答案是:90,圆的切线垂直于经过切点的半径;(2)连接BC.∵BD∥AC,∴∠ACB=∠OCD=90°,∴在直角△ABC中,BC===2,∠A+∠ABC=90°,∵OC=OB,∴∠BCO=∠ABC,∴∠A+∠BCO=90°,又∵∠OCD=90°,即∠BCO+∠BCD=90°,∴∠BCD=∠A,又∵∠CBD=∠ACB,∴△ABC∽△CDB,∴=,∴=,解得:CD=3.由勾股定理可知,OD===323.(12分)(2012•临沂)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.【解答】解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B的坐标为(﹣2,﹣2);(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(﹣2.﹣2)代入,得:,解得,∴此抛物线的解析式为y=﹣x2+x;(3)存在;如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△P′OD中,∠P′DO=90°,sin∠P′O D==,∴∠P′OD=60°,∴∠P′OB=∠P′OD+∠AOB=60°+120°=180°,即P′、O、B三点在同一直线上,∴y=2不符合题意,舍去,∴点P的坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解得y=﹣2,故点P的坐标为(2,﹣2),③若OP=BP,则22+|y|2=42+|y+2|2,解得y=﹣2,故点P的坐标为(2,﹣2),综上所述,符合条件的点P只有一个,其坐标为(2,﹣2).方法二:(3)设P(2,t),O(0,0),B(﹣2,﹣2),∵△POB为等腰三角形,∴PO=PB,PO=OB,PB=OB,(2﹣0)2+(t﹣0)2=(2+2)2+(t+2)2,∴t=﹣2,(2﹣0)2+(t﹣0)2=(0+2)2+(0+2)2,∴t=2或﹣2,当t=2时,P(2,2),O(0,0)B(﹣2,﹣2)三点共线故舍去,(2+2)2+(t+2)2=(0+2)2+(0+2)2,∴t=﹣2,∴符合条件的点P只有一个,∴P(2,﹣2).方法二追加第(4)问:在(3)的条件下,⊙M为△OBP的外界圆,求出圆心M 的坐标.(4)∵点B,点P关于y轴对称,∴点M在y轴上,设M(0,m),∵⊙M为△OBF的外接圆,∴MO=MB,∴(0﹣0)2+(m﹣0)2=(0+2)2+(m+2)2,∴m=﹣,M(0,﹣).参与本试卷答题和审题的老师有:2300680618;sdwdmahongye;HLing;曹先生;gsls;zcx;1987483819;Liuzhx;蓝月梦;CJX;三界无我;sjzx;sks;sd2011;ZJX;zhjh;MMCH(排名不分先后)hu2017年4月5日。

九年级数学上学期期末考试试题(扫描版) 新人教版1

九年级数学上学期期末考试试题(扫描版) 新人教版1

河南省太康县2016届九年级数学上学期期末考试试题2015—2016学年度上期期末考试九年级数学参考答案1.如果考生的解答与与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分的多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数.题号 1 2 3 4 5 6 7 8答案 B B D C D A A B题号9 10 11 12 13 14 15答案﹣1 (﹣1,2)50 y=x2+2x+3 +1 π8,,易得AB=BP=BC=8,即线段BC的长为8.②当AB=AP时,如图1,延长AO交PB于点D,过点O作OE⊥AB于点E,则AD⊥PB,AE=AB=4,∴BD=DP,在Rt△AEO中,AE=4,AO=5,∴OE=3,易得△AOE∽△ABD,∴,∴,∴,即PB=,∵AB=AP=8,∴∠ABD=∠P,∵∠PAC=∠ADB=90°,∴△ABD∽△CPA,∴,∴CP=,∴BC=CP﹣BP==;③当PA=PB时如图2,连接PO并延长,交AB于点F,过点C作CG⊥AB,交AB的延长线于点G,连接OB,则PF⊥AB,∴AF=FB=4,在Rt△OFB中,OB=5,FB=4,∴FP=8,易得△PFB∽△CGB,∴,设BG=t,则CG=2t,易得∠PAF=∠ACG,∵∠AFP=∠AGC=90°,∴△APF∽△CAG,∴,∴,解得t=,在Rt△BCG中,BC=t=,综上所述,当△PAB是等腰三角形时,线段BC的长为8,,,故答案为:8,,.解答题16.解:∵2a2+3a﹣6=0,即2a2+3a=6,∴原式=6a2+3a﹣4a2+1=2a2+3a+1=6+1=7.17.解:(1)由﹣2=a﹣1得,a=﹣1,由2=b﹣1得,b=3;(2)由图可知,y1<y2时x的取值范围﹣1<x<3.18.(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:3.5;②当AE=2时,四边形CEDF是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:2.19.解:(1)根据题意得:参加写字比赛的教师共有:4÷10%=40(人),∵n%= 16÷40×100%=40%,∴m%=1﹣40%﹣10%﹣30%=20%,∴m=20,n=30;如图:故答案为:40,20,30;(2)画树状图得:∵共有12种等可能的结果,A等级中一男一女参加决赛的有8种情况,∴A等级中一男一女参加决赛的概率为:=.20.(1)解:连接CD,∵BC是⊙O的直径,∴∠BDC=90°,即CD⊥AB,∵AD=DB,OC=5,∴CD是AB的垂直平分线,∴AC=BC=2OC=10;(2)证明:连接OD,如图所示,∵∠ADC=90°,E为AC的中点,∴DE=EC=AC,∴∠1=∠2,∵OD=OC,∴∠3=∠4,∵AC切⊙O于点C,∴AC⊥OC,∴∠1+∠3=∠2+∠4=90°,即DE⊥OD,∴ED是⊙O的切线.21.解:(1)过点A作AM⊥EF于点M,过点C作CN⊥EF于点N,设CN=x,在Rt△ECN中,∵∠ECN=45°,∴EN=CN=x,∴EM=x+0.7﹣1.7=x﹣1,∵BD=5,∴AM=BF=5+x,在Rt△AEM中,∵∠EAM=30°∴=,∴x﹣1=(x+5),解得:x=4+3,即DF=(4+3)(米);(2)由(1)得:EF=x+0.7=4++0.7≈4+3×1.73+0.7≈9.89≈10(米).答:旗杆的高度约为10米.22.证明:如图(1),∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,∴∠GAF=∠FAE,在△GAF和△FAE中,,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴BE+DF=EF.【类比引申】∠BAD=2∠EAF.理由如下:如图(2),延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.故答案是:∠BAD=2∠EAF.【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF.∵∠BAD=150°,∠DAE=90°,∴∠BAE=60°.又∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=80米.根据旋转的性质得到:∠ADG=∠B=60°,又∵∠ADF=120°,∴∠GDF=180°,即点G在CD的延长线上.易得,△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAG=∠BAD=150°,∴∠GAF=∠FAE,在△GAF和△FAE中,,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴EF=BE+DF=80+40(﹣1)≈109.2(米),即这条道路EF的长约为109.2米.23.解:(1)∵点A(1,0)在抛物线y=ax2﹣5ax+2(a≠0)上,∴a﹣5a+2=0,∴a=,∴抛物线的解析式为y=x2﹣x+2;(2)抛物线的对称轴为直线x=,∴点B(4,0),C(0,2),设直线BC的解析式为y=kx+b,∴把B、C两点坐标代入线BC的解析式为y=kx+b,得,解得k=﹣,b=2,∴直线BC的解析式y=﹣x+2;(3)设N(x,x2﹣x+2),分三种情况讨论:①当△OBC∽△HNB时,如图1,=,即=,解得x1=5,x2=4(不合题意,舍去),∴点N坐标(5,2);②当△OBC∽△HBN时,如图2,=,即=﹣,解得x1=2,x2=4(不合题意舍去),∴点N坐标(2,﹣1);③当N(x,x2﹣x+2)在第二象限时,H(x,0)在x轴的负半轴上,∴BH=4﹣x,∵△OBC∽△HNB,∴,即=,得到x2﹣x﹣12=0解得x1=4(舍去); x2=﹣3,∴N点的坐标为(﹣3,14)综上所述,N点的坐标为(5,2)、(2,﹣1)或(﹣3,14).。

九年级上册周口数学期末试卷(培优篇)(Word版 含解析)

九年级上册周口数学期末试卷(培优篇)(Word版 含解析)

九年级上册周口数学期末试卷(培优篇)(Word 版 含解析)一、选择题1.如图,四边形ABCD 内接于O ,若40A ∠=︒,则C ∠=( )A .110︒B .120︒C .135︒D .140︒ 2.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( )A .5B .4C .3D .23.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin aAO β=C .tan BC a β=D .cos aBD β=4.若x=2y ,则xy的值为( )A .2B .1C .12D .135.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DE BC的值为( )A .12B .13C .14D .196.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )A .15B .25 C .35 D .457.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( )A .5d <B .5d >C .5d =D .5d ≤8.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( ) A .43B .23C .33D .329.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .22B .1C 2D .210.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x2- 1-0 1 2y5 03-4-3-以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点;④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .411.方程2x x的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-112.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为()A.12×108B.1.2×108C.1.2×109D.0.12×109二、填空题13.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.14.如图,点A、B分别在y轴和x轴正半轴上滑动,且保持线段AB=4,点D坐标为(4,3),点A关于点D的对称点为点C,连接BC,则BC的最小值为_____.15.已知∠A=60°,则tan A=_____.16.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O 分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(53,0)、B(0,4),则点B2020的横坐标为_____.17.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=____°.18.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.19.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________. 20.在平面直角坐标系中,抛物线2yx 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.21.若32x y =,则x y y+的值为_____. 22.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.23.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)24.如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD=____°.三、解答题25.已知二次函数218y x bx c =++(b 、c 为常数)的图像经过点()0,1-和点()4,1A .(1)求b 、c 的值;(2)如图1,点()10,C m 在抛物线上,点M 是y 轴上的一个动点,过点M 平行于x 轴的直线l 平分AMC ∠,求点M 的坐标;(3)如图2,在(2)的条件下,点P 是抛物线上的一动点,以P 为圆心、PM 为半径的圆与x 轴相交于E 、F 两点,若PEF ∆的面积为26,请直接写出点P 的坐标. 26.如图,分别以△ABC 的边AC 和BC 为腰向外作等腰直角△DAC 和等腰直角△EBC ,连接DE .(1)求证:△DAC ∽△EBC ; (2)求△ABC 与△DEC 的面积比.27.如图是输水管的切面,阴影部分是有水部分,其中水面AB 宽10cm ,水最深3cm ,求输水管的半径.28.市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当x =45时,y =10;x =55时,y =90.在销售过程中,每天还要支付其他费用500元.(1)求出y 与x 的函数关系式,并写出自变量x 的取值范围;(2)求该公司销售该原料日获利w (元)与销售单价x (元)之间的函数关系式; (3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元? 29.解方程(1)(x +1)2﹣25=0 (2)x 2﹣4x ﹣2=030.(1)如图①,在△ABC 中,AB =m ,AC =n (n >m ),点P 在边AC 上.当AP = 时,△APB ∽△ABC ;(2)如图②,已知△DEF (DE >DF ),请用直尺和圆规在直线DF 上求作一点Q ,使DE 是线段DF 和DQ 的比例项.(保留作图痕迹,不写作法)31.某小型工厂9月份生产的A 、B 两种产品数量分别为200件和100件,A 、B 两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A 、B 两种产品的生产数量和出厂单价,10月份A 产品生产数量的增长率和A 产品出厂单价的增长率相等,B 产品生产数量的增长率是A 产品生产数量的增长率的一半,B 产品出厂单价的增长率是A 产品出厂单价的增长率的2倍,设B 产品生产数量的增长率为x (0x >),若10月份该工厂的总收入增加了4.4x ,求x 的值.32.如图示,在平面直角坐标系中,二次函数26y ax bx =++(0a ≠)交x 轴于()4,0A -,()2,0B ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)点D 是第二象限内的点抛物线上一动点 ①求ADE ∆面积最大值并写出此时点D 的坐标; ②若1tan 3AED ∠=,求此时点D 坐标; (3)连接AC ,点P 是线段CA 上的动点.连接OP ,把线段PO 绕着点P 顺时针旋转90︒至PQ ,点Q 是点O 的对应点.当动点P 从点C 运动到点A ,则动点Q 所经过的路径长等于______(直接写出答案)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用圆内接四边形的对角互补计算∠C的度数.【详解】∵四边形ABCD内接于⊙O,∠A=400,∴∠C=1800-400=1400,故选D.【点睛】此题考查圆内接四边形的性质,解题关键在于利用圆内接四边形的对角互补2.D解析:D【解析】【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.3.B解析:B【解析】【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO, ∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、BDC DCAβ∠=∠=∠,故A选项正确;B、在Rt△ADC中,cos∠ACD=DCAC, ∴cosβ=2aAO,∴AO=2cosa,故B选项错误;C、在Rt△BCD中,tan∠BDC=BCDC, ∴ tanβ=BCa∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=DCDB, ∴ cosβ=aBD∴cosaBDβ=,故D选项正确.故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键. 4.A解析:A【解析】【分析】将x=2y代入xy中化简后即可得到答案.【详解】将x=2y代入xy得:22x yy y==,故选:A.【点睛】此题考查代数式代入求值,正确计算即可. 5.B解析:B【解析】试题分析:∵DE∥BC,∴AD DEAB BC=,∵13ADAB=,∴31DEBC=.故选B.考点:平行线分线段成比例.6.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.解析:B 【解析】 【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可. 【详解】解:∵直线l 与半径为5的O 相离,∴圆心O 与直线l 的距离d 满足:5d >.故选:B. 【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d ,圆的半径为r ,当d >r 时,直线与圆相离;当d =r 时,直线与圆相切;当d <r 时,直线与圆相交.8.C解析:C 【解析】 【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积. 【详解】解:由题意可得出圆的半径为1,∵△ABC 为正三角形,AO=1,AD BC ⊥,BD=CD ,AO=BO , ∴1DO 2=,32AD =, ∴223BD 2OB OD =-=, ∴BC 3= ∴1333322ABCS=⨯=. 故选:C . 【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.解析:A 【解析】 【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案. 【详解】 令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+, ∵20>,∴当5m =时,2PB 有最小值为:2,即PB , ∵A 、B 为抛物线的对称点,对称轴为y 轴, ∴O 为线段AB 中点,且Q 为AP 中点,∴12OQ PB ==. 故选:A . 【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.10.B解析:B 【解析】 【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案. 【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误;④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x时,y<0;故此选项正确;综上:①④两项正确,故选:B .【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点. 11.C解析:C【解析】【分析】根据因式分解法,可得答案.【详解】解:2x x =,方程整理,得,x 2-x=0因式分解得,x (x-1)=0,于是,得,x=0或x-1=0,解得x 1=0,x 2=1,故选:C .【点睛】本题考查了解一元二次方程,因式分解法是解题关键.12.B解析:B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】120 000 000=1.2×108,故选:B .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题13.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4解析:【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]÷5=2.考点:方差.14.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD22345,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.15.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A=tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.16.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=53,OB=4,∠AOB=90°,∴AB2222513433 OB OA⎛⎫=+=+=⎪⎝⎭,∴OA+AB1+B1C2=53+133+4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:2020102⨯=10100.故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.17.115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连解析:115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.18.【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△解析:1 6【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴ABEF=BCCE,∴12=x 1x- 解得x =13, ∴阴影部分面积为:S △ABC =12×13×1=16, 故答案为:16. 【点睛】 本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.19.50(1﹣x )2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.解析:50(1﹣x )2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.20.【解析】【分析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.【详解】解:∵解析:2(1010,1010)-【解析】【分析】根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标.【详解】解:∵A 点坐标为()1,1,∴直线OA 为y x =,()11,1A -,∵12A A OA ∕∕,∴直线12A A 为2y x =+,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴()22,4A ,∴()32,4A -,∵34A A OA ∕∕,∴直线34A A 为6y x =+,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴()43,9A ,∴()53,9A -…,∴()220191010,1010A -,故答案为()21010,1010-. 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.21..【解析】【分析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键. 解析:52. 【解析】【分析】 根据比例的合比性质变形得: 325.22x y y ++==【详解】∵32xy=,∴325.22 x yy++==故答案为:5 2 .【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.22.140°.【解析】【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC解析:140°.【解析】【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC的内切圆的圆心,∴OB、OC为∠ABC和∠ACB的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=40°,∴∠BOC=180°-40°=140°.故答案为:140°【点睛】本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.23.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm ,则底面周长=6πcm ,侧面面积=×6π×5=15πcm2. 故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm ,则底面周长=6πcm ,侧面面积=12×6π×5=15πcm 2. 故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键. 24.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.三、解答题25.(1)0b =,1c =-;(2)()0,4M ;(3)()4,1P 或()4,1-或()0,1-【解析】【分析】(1)直接把两点的坐标代入二次函数解析式,得出关于b ,c 的二元一次方程组求解即可(2) 过点C 作CD l ⊥,过点A 作AE l ⊥.证明△CMD 相似于△AME ,再根据对应线段成比例求解即可(3)根据题意设点P 的纵坐标为y ,首先根据三角形面积得出EF 与y 的关系,再利用勾股定理得出EF与y的关系,从而得出y的值,再代入抛物线解析式求出x的值,得出点坐标.【详解】解:(1)把()4,1A和()0,1-代入218y x bx c=++得:1241b cc=++⎧⎨-=⎩解方程组得出:1bc=⎧⎨=-⎩所以,b=,1c=-(2)由已知条件得出C点坐标为2310,2C⎛⎫⎪⎝⎭,设()0,M n.过点C作CD l⊥,过点A作AE l⊥.两个直角三角形的三个角对应相等,∴CMD AME∆∆∽∴CD MDAE ME=∴2310214nn-=-∵解得:4n=∴()0,4M(3)设点P的纵坐标为y,由题意得出,1262EF y⨯⨯=46EF=∵MP与PE都为圆的半径,∴MP=PE∴()2228y84()2EFy y++-=+整理得出,∴EF46=∵46EFy=∴y=±1,∴当y=1时有,21118x =-,解得,x 4=±; ∴当y=-1时有,21118x -=-,此时,x=0 ∴综上所述得出P 的坐标为:()4,1P 或()4,1-或()0,1-【点睛】本题是一道关于二次函数的综合题目,考查的知识点有二元一次方程组的求解、相似三角形的性质等,巧妙利用数形结合是解题的关键.26.(1)见解析;(2)12 【解析】【分析】(1)利用等腰直角三角形的性质证明△DAC ∽△EBC ;(2)依据△DAC ∽△EBC 所得条件,证明△ABC 与△DEC 相似,通过面积比等于相似比的平方得到结果.【详解】(1)证明:∵△EBC 是等腰直角三角形∴BC =BE ,∠EBC =90°∴∠BEC =∠BCE =45°.同理∠DAC =90°,∠ADC =∠ACD =45°∴∠EBC =∠DAC =90°,∠BCE =∠ACD =45°.∴△DAC ∽△EBC .(2)解:∵在Rt △ACD 中, AC 2+AD 2=CD 2,∴2AC 2=CD 2∴AC CD =, ∵△DAC ∽△EBC ∴AC BC =DC EC , ∴EC BC =DC AC, ∵∠BCE =∠ACD∴∠BCE -∠ACE =∠ACD -∠ACE ,即∠BCA =∠ECD ,∵在△DEC 和△ABC 中,EC BC =DC AC,∠BCA =∠ECD , ∴△DEC ∽△ABC , ∴S △ABC :S △DEC =2DC AC ⎛⎫ ⎪⎝⎭=12. 【点睛】本题考查了相似三角形的判定和性质,以及相似三角形的面积比等于相似比的平方,解题的关键在于利用(1)中的相似推导出第二对相似三角形.27.173cm【解析】【分析】设圆形切面的半径为r,过点O作OD⊥AB于点D,交⊙O于点E,由垂径定理可求出BD 的长,再根据最深地方的高度是3cm得出OD的长,根据勾股定理即可求出OB的长.【详解】解:设圆形切面的半径为r,过点O作OD⊥AB于点D,交⊙O于点E,则AD=BD=12AB=12×10=5cm,∵最深地方的高度是3cm,∴OD=r﹣3,在Rt△OBD中,OB2=BD2+OD2,即2r=52+(r﹣3)2,解得r=173(cm),∴输水管的半径为173cm.【点睛】本题考查了垂径定理,构造圆中的直角三角形,灵活利用垂径定理是解题的关键. 28.(1)y=﹣2x+200(30≤x≤60);(2)W=﹣2x2+260x﹣6500;(3)当销售单价为60元时,该公司日获利最大为1900元.【解析】【分析】(1)根据y与x成一次函数解析式,设为y=kx+b,把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单个利润×销售量-500列出W关于x的二次函数解析式即可;(3)利用二次函数的性质求出W的最大值,以及此时x的值即可.【详解】(1)设y=kx+b,∵x=45时,y=10;x=55时,y=90,∴45110 5590k bk b+=⎧⎨+=⎩,解得:k=﹣2,b=200,∴y=﹣2x+200(30≤x≤60);(2)∵售价为x元/千克,进价为30元/千克,日销量y=﹣2x+200,每天支付其他费用500元,∴W=(x﹣30)(﹣2x+200)﹣500=﹣2x2+260x﹣6500,(3)∵W=﹣2x2+260x﹣6500=﹣2(x﹣65)2+1950,∴抛物线的对称轴为x=65,∵-2<0,∴抛物线开口向下,x<65时,y随x的增大而增大,∵30≤x≤60,∴x=60时,w有最大值为-2(60-65)2+1950=1900(元),∴当销售单价为60元时,该公司日获利最大为1900元.【点睛】本题考查二次函数和一次函数的综合应用,考查了待定系数法求一次函数解析式及二次函数的性质,熟练掌握二次函数的性质是解题关键.29.(1)x1=4,x2=﹣6;(2)x1=,x2=2【解析】【分析】(1)利用直接开平方法解出方程;(2)先求出一元二次方程的判别式,再解出方程.【详解】解:(1)(x+1)2﹣25=0,(x+1)2=25,x+1=±5,x=±5﹣1,x1=4,x2=﹣6;(2)x2﹣4x﹣2=0,∵a=1,b=﹣4,c=﹣2,∴△=b2﹣4ac=(﹣4)2﹣4×1×(﹣2)=24>0,∴x=,即x1=,x2=2.【点睛】本题考查了一元二次方程的解法,熟练掌握求根公式是解题关键.30.(1)2mn;(2)见解析.【解析】 【分析】 (1)根据相似三角形的判定方法进行分析即可;(2)直接利用相似三角形的判定方法以及结合做一角等于已知角进而得出答案.【详解】(1)解:要使△APB ∽△ABC 成立,∠A 是公共角,则AB AC AC AP =,即m n n AP =,∴AP=2m n. (2)解:作∠DEQ =∠F,如图点Q 就是所求作的点【点睛】本题考查了相似变换,正确掌握相似三角形的判定方法是解题的关键.31.5%【解析】【分析】根据题意,列出方程即可求出x 的值.【详解】根据题意,得2(12)200(12)(14)100(1)(22001100)(1 4.4)x x x x x +⨯+++⨯+=⨯+⨯+整理,得2200x x -=解这个方程,得15%x =,20x =(不合题意,舍去)所以x 的值是5%.【点睛】此题考查的是一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.32.(1)233642y x x =--+;(2)①503,点D 坐标为220,33⎛⎫- ⎪⎝⎭;②197975D -+-⎝⎭;(3)226【解析】【分析】(1)根据点坐标代入解析式即可得解;(2)①由A 、E 两点坐标得出直线AE 解析式,设点D 坐标为()22,336t t t --+,过点D 作DF y 轴交AE 于点F ,则F 坐标为()2,2t t --,然后构建ADE ∆面积与t 的二次函数,即可得出ADE ∆面积最大值和点D 的坐标;②过点M 作MN AE ⊥,在AME ∆中,由1tan 2MAE ∠=,1tan 3MEA ∠=,AE =M 的坐标,进而得出直线ME 的解析式,联立直线ME 和二次函数,即可得出此时点D 的坐标;(3)根据题意,当点P 在点C 时,Q 点坐标为(-6,6),当点P 移动到点A 时,Q′点坐标为(-4,-4),动点Q 所经过的路径是直线QQ′,求出两点之间的距离即可得解.【详解】(1)依题意得:016460426a b a b =-+⎧⎨=++⎩,解得3432a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴233642y x x =--+ (2)①∵()4,0A -,()0,2E -∴设直线AE 为y kx b =+将A 、E 代入,得042k b b =-+⎧⎨-=⎩∴122k b ⎧=-⎪⎨⎪=-⎩ ∴直线1:22AE y x =-- 设点D 坐标为()22,336t t t --+,其中20t -<<过点D 作DF y 轴交AE 于点F ,则F 坐标为()2,2t t --∴2328DF t t =--+ ∴()2214328ADE S t t ∆=⋅⨯--+ 即:26416ADE S t t ∆=--+ 由函数知识可知,当13t =-时,()max 503ADE S ∆=,点D 坐标为220,33⎛⎫- ⎪⎝⎭ ②设DE 与OA 相交于点M过点M 作MN AE ⊥,垂足为N在AME ∆中,1tan 2MAE ∠=,1tan 3MEA ∠=,AE =设MN t =,则2AN t =,3NE t =∴2325t t +=∴25t = ∴52AM t ==∴()2,0M -∴:2ME y x =--∴2233642y x y x x =--⎧⎪⎨=--+⎪⎩∴232320x x +-=∴11973x -+=(舍去),21973x --= 当1973x --=时,9753y -= ∴197975,33D ⎛⎫-+- ⎪ ⎪⎝⎭(3)当点P 在点C 时,Q 点坐标为(-6,6),当点P 移动到点A 时,Q′点坐标为(-4,-4),如图所示:∴动点Q 所经过的路径是直线QQ′,∴()()226464226QQ =-+++=′故答案为26【点睛】此题主要考查二次函数以及动点综合问题,解题关键是找出合适的坐标,即可解题.。

2015-2016年河南省周口市初三上学期期末数学试卷及参考答案

2015-2016年河南省周口市初三上学期期末数学试卷及参考答案

2015-2016学年河南省周口市初三上学期期末数学试卷一、选择题(每小题3分,共24分)1.(3分)若关于的x方程x2+3x+a=0有一个根为﹣1,则a的值为()A.﹣4B.﹣2C.2D.42.(3分)抛物线y=x2﹣2x﹣3与x轴的交点为A,B,则AB=()A.1B.2C.3D.43.(3分)在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)4.(3分)一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球5.(3分)经过矩形ABCD顶点A、D的圆与BC边相切,圆的半径为5,AD=8,则AB=()A.22B.8C.2或8D.4或66.(3分)如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AOC的面积为()A.8B.10C.12D.247.(3分)如图,在△ABC中,AB=AC,∠A=36°,CD平分∠ACB交AB于点D,若CA=4,则CB的长是()A.2+2B.+1C.﹣1D.2﹣2 8.(3分)如图,点A在由函数y=(﹣1)2(x﹣3n)(x﹣3n﹣3)(3n≤x<3n+3,为自然数)的图象组成的平滑曲线上,点B在x轴上,且AB⊥x轴,若点B 从原点O出发,沿x轴向右以每秒1个单位长的速度运动,则第2016秒时,点A的坐标是()A.(2016,0)B.(2016,2)C.(2015,0)D.(2016,﹣2)二、填空题(每小题3分,共21分)9.(3分)若关于x的一元二次方程x2+2x+a=0有实数根,则a的取值范围是.10.(3分)抛物线y=ax2+bx+2经过点(﹣2,3),则3b﹣6a=.11.(3分)在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是.12.(3分)如图,△DEF是由△ABC绕某点旋转得到的,则这点的坐标是.13.(3分)如图,AB是⊙O的直径,弦CD⊥AB,连接AC,∠CAB=22.5°,CD=2cm,则⊙O的半径为cm.14.(3分)如图,点A、B在函数y=(k>0,x>0)的图象上,将该函数图象向上平移1个单位长度得到一条新的曲线,点A,B的对应点分别为A′、B′.若A(m,4),B′(6,3),则曲线线段AB扫过的阴影部分的面积为.15.(3分)如图,在△ABC中,∠ACB=90°,AC=2,BC=4,E为边AB的中点,点D是BC边上的动点,把△ACD沿AD翻折,点C落在C′处,若△AC′E是直角三角形,则CD的长为.三、解答题(本题共8个小题,满分75分)16.(9分)先化简,再求值:÷(﹣a),其中a是方程x2+2x+1=0的根.17.(9分)已知关于x的一元二次方程x2+2mx﹣1+m2=0.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值.18.(9分)如图,AB是半圆O的直径,点C是半圆上的一个动点,∠BAC的角平分线交圆弧于点D,半圆O在点D处的切线与直线AC交于点E.(1)求证:△ADE∽△ABD;(2)填空:①若ED:DB=:2,则AE:AB=;②连接OC、CD,当∠BAC的度数为时,四边形BDCO是菱形.19.(9分)某中学计划召开“感恩的心”主题教育活动,需要从2名男生和1名女生中选拔主持人.(1)小明认为,因为选出的主持人不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?(2)如果从3名候选人主持人中随机选拔2名主持人,请通过列表或树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.20.(9分)某商场有A、B两种商品,A商品每件售价25元,B商品每件售价30元,B商品每件的成本是20元.根据市场调查“若按上述售价销售,该商场每天可以销售B商品100件,若销售单价毎上涨1元,B商品每天的销售量就减少5件.(1)请写出B商品每天的销售利润y(元)与销售单价(x)元之间的函数关系?(2)当销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?21.(10分)如图,已知抛物线y=﹣x2+x+2与x轴交于A、B两点(A左、右B),与y轴交于点C.(1)求证:△ABC是直角三角形;(2)在直线BC上方的抛物线上是否存在点P使得△PBC的面积等于△OBC的面积?并说明理由.22.(10分)如图1,在△ABC中,∠C=90°,点D在BC上,DE⊥AB于点E,点M是AD的中点,连接CM、EM.(1)问题发现:①线段CM、EM的数量关系是;②∠CME、∠CAB的数量关系是.(2)拓展探究:将△BED绕着点B旋转到图2的位置时,小明猜想(1)中的结论①②仍然成立,并尝试取AB的中点G和BD的中点F.作了△CGM和△MFE,请你证明小明的猜想.(3)问题解决:已知∠B=30°,BD=AC=4,当△BED旋转至A、D、E三点共线时,直接写出线段CM的长.23.(10分)如图,在平面直角坐标系xOy中,矩形OABC的OA、OC两边在坐标轴上,点B(4,2),D、E分别为BC、OA的中点,边AB、BC与双曲线y=(x>0)交于点F、G,点P在双曲线上点F、G两点之间,过点P作x轴的垂线交BC于点H,交直线CE于点I,连接DP、PA.设点P的横坐标为m.(1)请直接写出直线CE的解析式;(2)探索点P的位置时,小明发现:当点P在与G重合或D、P、I共线时,PD=PI.进而猜想:对于任意一点P.PD=PI也成立.请你判断该猜想是否正确,并说明理由;(3)当m为何值时,AP+PI最小,并求出这个最小值.2015-2016学年河南省周口市初三上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)若关于的x方程x2+3x+a=0有一个根为﹣1,则a的值为()A.﹣4B.﹣2C.2D.4【解答】解:把x=﹣1代入方程x2+3x+a=0得1﹣3+a=0,解得a=2.故选:C.2.(3分)抛物线y=x2﹣2x﹣3与x轴的交点为A,B,则AB=()A.1B.2C.3D.4【解答】解:当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,所以A点坐标为(﹣1,0),B点坐标为(3,0),所以AB=3﹣(﹣1)=4.故选:AD.3.(3分)在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)【解答】解:在直角坐标系中,将点(﹣2,3)关于原点的对称点是(2,﹣3),再向左平移2个单位长度得到的点的坐标是(0,﹣3),故选:C.4.(3分)一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球【解答】解:一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,至少有1个球是黑球是必然事件;至少有1个球是白球、至少有2个球是黑球和至少有2个球是白球都是随机事件.故选:A.5.(3分)经过矩形ABCD顶点A、D的圆与BC边相切,圆的半径为5,AD=8,则AB=()A.22B.8C.2或8D.4或6【解答】解:当AD,BC在圆心的异侧时,连接OE,并反向延长交AD于点F,连接OA,∵BC是切线,∴OE⊥BC,∴∠OEC=90°,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDFE是矩形,∴AB=EF,∵AD=8,∴AF=DF=4,∵AO=5,∴OF==3,∴AB=EF=3+5=8;当AD,BC在圆心的同侧时,可得AB=5﹣3=2,故选:C.6.(3分)如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AOC的面积为()A.8B.10C.12D.24【解答】解:∵反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,∴x=﹣1,y=6;x=﹣3,y=2,∴A(﹣1,6),B(﹣3,2),设直线AB的解析式为:y=kx+b,则,解得:,则直线AB的解析式是:y=2x+8,∴y=0时,x=﹣4,∴CO=4,∴△AOC的面积为:×6×4=12.故选:C.7.(3分)如图,在△ABC中,AB=AC,∠A=36°,CD平分∠ACB交AB于点D,若CA=4,则CB的长是()A.2+2B.+1C.﹣1D.2﹣2【解答】解:∵△ABC中,AB=AC,∠A=36°,∴△ABC是黄金三角形,∴BC=AC=2﹣2,故选:D.8.(3分)如图,点A在由函数y=(﹣1)2(x﹣3n)(x﹣3n﹣3)(3n≤x<3n+3,为自然数)的图象组成的平滑曲线上,点B在x轴上,且AB⊥x轴,若点B 从原点O出发,沿x轴向右以每秒1个单位长的速度运动,则第2016秒时,点A的坐标是()A.(2016,0)B.(2016,2)C.(2015,0)D.(2016,﹣2)【解答】解;∵函数y=(﹣1)2(x﹣3n)(x﹣3n﹣3)(3n≤x<3n+3,为自然数),∴函数图象与x轴的交点为(3n,0),(3n+3,0),∵3n+3﹣3n=3,2016÷3=672,∴当x=2016时,y的值为0,∴A的坐标为(2016,0),故选:A.二、填空题(每小题3分,共21分)9.(3分)若关于x的一元二次方程x2+2x+a=0有实数根,则a的取值范围是a ≤1.【解答】解:因为关于x的一元二次方程有实根,所以△=b2﹣4ac=4﹣4a≥0,解之得a≤1.故答案为a≤1.10.(3分)抛物线y=ax2+bx+2经过点(﹣2,3),则3b﹣6a=.【解答】解:把点(﹣2,3)代入y=ax2+bx+2得:4a﹣2b+2=3,2b﹣4a=﹣1,3b﹣6a=﹣,故答案为:﹣.11.(3分)在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是10.【解答】解:由题意可得,=0.2,解得,n=10.故估计n大约有10个.故答案为:10.12.(3分)如图,△DEF是由△ABC绕某点旋转得到的,则这点的坐标是(0,﹣1).【解答】解:由图可知,对应点A、D与对应点B、E的连线的垂直平分线相交于点(0,﹣1),所以,这点的坐标是(0,﹣1).故答案为:(0,﹣1).13.(3分)如图,AB是⊙O的直径,弦CD⊥AB,连接AC,∠CAB=22.5°,CD=2cm,则⊙O的半径为cm.【解答】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE=CD=1cm,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴OC=CE=cm,故答案为:.14.(3分)如图,点A、B在函数y=(k>0,x>0)的图象上,将该函数图象向上平移1个单位长度得到一条新的曲线,点A,B的对应点分别为A′、B′.若A(m,4),B′(6,3),则曲线线段AB扫过的阴影部分的面积为3.【解答】解:依题意得:B(6,2).则k=6×2=12.所以该函数解析式为:y=.把A(m,4)代入得到:4=,故m=3.所以A(3,4),则图中阴影部分的面积为:1×(6﹣3)=3.故答案是:3.15.(3分)如图,在△ABC中,∠ACB=90°,AC=2,BC=4,E为边AB的中点,点D是BC边上的动点,把△ACD沿AD翻折,点C落在C′处,若△AC′E是直角三角形,则CD的长为2或.【解答】解:如图1,当∠AC′E=90°时,作EM⊥BC垂足为M,作AN⊥ME于N.∵∠C=∠EMB=90°,∴EM∥AC,∵AE=EB,∴MB=MC=BC=2,∴EM=AC=1,∵∠C=∠CMN=∠N=90°,∴四边形ACMN是矩形,∵AC=CM=2,∴四边形ACMN是正方形,在RT△ABC中,∵AC=2,BC=4,∴AB==2,AE=,在RT△AC′E中,∵AE=,AC′=AC=2,∴C′E==1,设CD=C′D=x,在RT△EDM中,∵DE=1+x,EM=1,DM=2﹣x,∴DE2=DM2+EM2,∴(1+x)2=(2﹣x)2+12,∴x=.如图2,当∠AC′E=90°时,∵∠AC′D=90°,∴C′、E、D共线,在RT△AC′E中,∵AE=,AC′=AC=2,∴EC′==1,∴==,∵∠C=∠C′,∴△AC′E∽△BCA,∴∠C′AE=∠B,∵AE=EB,∠AEC′=∠BED,∠C′AE=∠B,∴△AC′E≌△BDE,∴∠BDE=∠C′=90°,∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′是矩形,∴AC=AC′,∴四边形ACDC′是正方形,∴CD=AC=2,故答案为2或.三、解答题(本题共8个小题,满分75分)16.(9分)先化简,再求值:÷(﹣a),其中a是方程x2+2x+1=0的根.【解答】解:原式=÷=•=,∵a是方程x2+2x+1=0的根,∴a2+2a=﹣1,原式=1.17.(9分)已知关于x的一元二次方程x2+2mx﹣1+m2=0.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值.【解答】(1)证明:∵a=1,b=2m,c=﹣1+m2,∴△=b2﹣4ac=(2m)2﹣4(﹣1+4m2)=4>0,∴对于任意实数m,方程总有两个不相等的实数根;(2)当x=1时,m2+2m=0,解得m等于0或﹣2.18.(9分)如图,AB是半圆O的直径,点C是半圆上的一个动点,∠BAC的角平分线交圆弧于点D,半圆O在点D处的切线与直线AC交于点E.(1)求证:△ADE∽△ABD;(2)填空:①若ED:DB=:2,则AE:AB=3:4;②连接OC、CD,当∠BAC的度数为60°时,四边形BDCO是菱形.【解答】(1)证明:如图1,连接OD,∵AD是∠BAC的角平分线,∴∠EAD=∠DAB,∵OA=OD,∴∠OAD=∠ODA,∴∠EAD=∠ODA,∴OD∥AE,∵DE是圆O的切线,∴OD⊥DE,∴∠E=90°,∵AB是半圆O的直径,∴∠ADB=90°,∴∠EAD=∠DAB,∠E=∠ADB,∴△ADE∽△ABD;(2)①如图2,作DG⊥AB于G,∵AD是∠BAC的角平分线,∠E=90°,DG⊥AB,∴DE=DG,∵△ADE∽△ABD,ED:DB=:2,∴△ADE与△ABD的面积比为3:4,即=,∴AE:AB=3:4;②如图3,当四边形BDCO是菱形时,∴BD=OC,CD∥OB,当CD∥OB时,BD=AC,则△AOC为等边三角形,故∠BAC=60°时,四边形BDCO是菱形.故答案为:①3:4;②60°.19.(9分)某中学计划召开“感恩的心”主题教育活动,需要从2名男生和1名女生中选拔主持人.(1)小明认为,因为选出的主持人不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?(2)如果从3名候选人主持人中随机选拔2名主持人,请通过列表或树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.【解答】解:(1)不同意他的说法.理由如下:∵有2名男生和1名女生,∴主持人是男生的概率=,主持人是女生的概率=;(2)画出树状图如下:一共有6种情况,恰好是1名男生和1名女生的有4种情况,所以,P(恰好是1名男生和1名女生)==.20.(9分)某商场有A、B两种商品,A商品每件售价25元,B商品每件售价30元,B商品每件的成本是20元.根据市场调查“若按上述售价销售,该商场每天可以销售B商品100件,若销售单价毎上涨1元,B商品每天的销售量就减少5件.(1)请写出B商品每天的销售利润y(元)与销售单价(x)元之间的函数关系?(2)当销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?【解答】解:(1)根据题意,当B商品的销售单价为x元时,其每天销售量为:100﹣5(x﹣30)件,则B商品每天的销售利润y=(x﹣20)[100﹣5(x﹣30)]=﹣5x2+350x﹣5000,故B商品每天的销售利润y(元)与销售单价(x)元之间的函数关系式为:y=﹣5x2+350x﹣5000;(2)由y=﹣5x2+350x﹣5000得:y=﹣5(x﹣35)2+1125,∵﹣5<0,∴当x=35时,y取得最大值,最大值为1125,答:当销售单价为35元时,B商品每天的销售利润最大,最大利润是1125元.21.(10分)如图,已知抛物线y=﹣x2+x+2与x轴交于A、B两点(A左、右B),与y轴交于点C.(1)求证:△ABC是直角三角形;(2)在直线BC上方的抛物线上是否存在点P使得△PBC的面积等于△OBC的面积?并说明理由.【解答】(1)证明:当y=0时,﹣x2+x+2=0,解得x1=﹣1,x2=4,则A(﹣1,0),B(4,0),当x=0时,y=﹣x2+x+2=2,则C(0,2),所以AC2=12+22=5,AB=4﹣(﹣1)=5,即AB2=25,BC2=42+22=20,因为AC2+BC2=AB2,所以△ABC为直角三角形;(2)解:存在.理由如下:过P作PD⊥x轴交BC于点D,如图,设直线BC的解析式为y=kx+b,把B(4,0),C(0,2)代入得,解得,所以直线BC的解析式为y=﹣x+2,设P(t,﹣t2+t+2),0<t<3,则D(t,﹣t+2),所以PD=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t=S△PDB+S△PDC=×4×(﹣t2+2t)=﹣t2+4t,S△OBC=×2×4=4,因为S△PCB所以﹣t2+4t=4,解得t=2,此时P点坐标为(2,3),所以在直线BC上方的抛物线上存在点P使得△PBC的面积等于△OBC的面积.22.(10分)如图1,在△ABC中,∠C=90°,点D在BC上,DE⊥AB于点E,点M是AD的中点,连接CM、EM.(1)问题发现:①线段CM、EM的数量关系是CM=ME;②∠CME、∠CAB的数量关系是∠CME=2∠CAB.(2)拓展探究:将△BED绕着点B旋转到图2的位置时,小明猜想(1)中的结论①②仍然成立,并尝试取AB的中点G和BD的中点F.作了△CGM和△MFE,请你证明小明的猜想.(3)问题解决:已知∠B=30°,BD=AC=4,当△BED旋转至A、D、E三点共线时,直接写出线段CM的长.【解答】解:(1)①CM=ME;②∠CME=2∠CAB;(2)∵AB的中点G和BD的中点F,点M是AD的中点,∴CG=BG,MG∥BD,MG=DB=BF,EF=DB=BF,MF=AB=BG,∴∠CGA=2∠ABC,CG=MF,MG=EF,∵∠CGM=∠CGA+∠AGM=2∠ABC+∠ABD,∠MFE=∠MFD+∠DFE=∠ABD+2∠DBE,而∠ABC=∠DBE,∴∠CGM=∠MFE.在△CGM和△MFE中,,∴△CGM≌△MFE.∴CM=ME,∠EMF=∠MCG.∴∠CME=∠CMG+∠GMF+∠EMF=∠CMG+∠MGA+∠MCG=180°﹣∠AGC=2∠BAC.(3)∵∠B=30°,BD=AC=4,∴AB=8,BE=2,DE=2,如图1,AE==2,CM=ME=(AE+DE)=(2+2)=+1,如图2,AE==2CM=ME=(AE﹣DE)=(2﹣2)=﹣1,综上所述:线段CM的长为:+1或﹣1.23.(10分)如图,在平面直角坐标系xOy中,矩形OABC的OA、OC两边在坐标轴上,点B(4,2),D、E分别为BC、OA的中点,边AB、BC与双曲线y=(x>0)交于点F、G,点P在双曲线上点F、G两点之间,过点P作x轴的垂线交BC于点H,交直线CE于点I,连接DP、PA.设点P的横坐标为m.(1)请直接写出直线CE的解析式;(2)探索点P的位置时,小明发现:当点P在与G重合或D、P、I共线时,PD=PI.进而猜想:对于任意一点P.PD=PI也成立.请你判断该猜想是否正确,并说明理由;(3)当m为何值时,AP+PI最小,并求出这个最小值.【解答】解:(1)∵矩形OABC的OA、OC两边在坐标轴上,点B(4,2),E为OA的中点,∴C(0,2),E(2,0),∴设直线CE的解析式为y=kx+b(k≠0),∴,解得,∴直线CE的解析式为y=﹣x+2;(2)设P(m,n),∵点P在双曲线y=(x>0)上,∴mn=2,PI=n﹣(﹣m+2)=m+n﹣2,DH2=(2﹣m)2,PH2=(2﹣n)2,∴PD2=DH2+PH2=(m﹣2)2+(2﹣n)2=(m+n﹣2)2,即PD=m+n﹣2.∴PD=PI;(3)连接DA,∵AP+PI=AP+PD≥DA,∴A、P、D共线时取等号.直线DA的方程为y=﹣x+4,联立方程组,解得m=2+或m=2﹣(舍去).∴当m=2+时,AP+PI有最小值=AD===2.。

河南省周口市九年级上学期数学期末考试试卷

河南省周口市九年级上学期数学期末考试试卷

河南省周口市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)(2019·花都模拟) 下列图形是中心对称图形的是()A .B .C .D .2. (1分)在期末体育考核中,成绩分为优秀、合格、不合格三个档次,某班有40名学生,达到优秀的有18人,合格的有17人,则这次体育考核中,不合格人数的频率是()A . 0.125B . 0.45C . 0.425D . 1.253. (1分) (2019九上·孝南月考) 如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是弧AC上的点,若∠BOC=40°,则∠D的度数为()A . 100°B . 110°C . 120°D . 130°4. (1分)如果关于的一元二次方程有实数根,则的取值范围是()A .B . 且C .D . 且5. (1分) (2016九上·北京期中) 如图,在△ABC中,AB=1,AC=2,现将△ABC绕点C顺时针旋转90°得到△A′B′C′,连接AB′,并有AB′=3,则∠A′的度数为()A . 125°B . 130°C . 135°D . 140°6. (1分)思考下列命题:(1)等腰三角形一腰上的高线等于腰长的一半,则顶角为75度;(2)两圆圆心距小于两圆半径之和,则两圆相交;(3)在反比例函数y= 2 x 中,如果函数值y<1时,那么自变量x>2;(4)圆的两条不平行弦的垂直平分线的交点一定是圆心;(5)三角形的重心是三条中线的交点,而且一定在这个三角形的内部;其中正确命题的有几个()A . 1B . 2C . 3D . 47. (1分) (2019九上·东台期中) 过元旦了,全班同学每人互发一条祝福短信,共发了380条,设全班有x 名同学,列方程为()A .B . x(x﹣1)=380C . 2x(x﹣1)=380D . x(x+1)=3808. (1分)如果抛物线y=ax2+bx+c经过点(-1,0)和(3,0),那么它的对称轴是直线()A . x= 0B . x = 1C . x = 2D . x = 39. (1分)(2019·东湖模拟) 如图,AD和AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD,交AC于点B,若OB=5,则BC的长是()A . 5B . 5C . 5 ﹣10D . 10﹣510. (1分)如图,抛物线y=ax2+bx+c的对称轴是x=,小亮通过观察得出了下面四条信息:①c<0,②abc<0,③a-b+c>0,④2a-3b=0.你认为其中正确的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)11. (1分) (2018八下·长沙期中) 当m=________时,关于x的方程是一元二次方程;12. (1分)如图,MN是⊙O的直径,若∠A=10°,∠PMQ=40°,以PM为边作圆的内接正多边形,则这个正多边形是________ 边形.13. (1分)(2018·嘉兴模拟) 把抛物线先向左平移1个单位,再向下平移2个单位,平移后抛物线的表达式是________.14. (1分)如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,banjing=6,则的长为________.15. (1分) ________叫做弧.16. (1分) (2020八上·广元期末) 一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0 )→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是________三、解答题 (共7题;共14分)17. (3分)解方程:x2﹣1=2(x+1).18. (2分) (2019八下·谢家集期中) 如图,在的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.19. (1分) (2018九上·大石桥期末) 某校9年2班有2名男生和3名女生报名参加志愿者活动。

2015-2016年河南省周口市太康县九年级(上)期中数学试卷和答案

2015-2016年河南省周口市太康县九年级(上)期中数学试卷和答案

2015-2016学年河南省周口市太康县九年级(上)期中数学试卷一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.(3分)下列各式①;②;③;④;⑤,其中二次根式的个数有()A.1个 B.2个 C.3个 D.4个2.(3分)下列二次根式属于最简二次根式的是()A.B.C.D.3.(3分)若0是关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的一根,则m值为()A.1 B.0 C.1或2 D.24.(3分)一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.(3分)下列说法中不一定正确的是()A.所有的等腰直角三角形都相似B.所有等边三角形相似C.所有矩形相似D.直角三角形被斜边上的高分成两个三角形相似6.(3分)如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.EF=AB C.S△ABD=S△ACD D.AD平分∠BAC7.(3分)如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4 B.4.5 C.5 D.5.58.(3分)如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于()A.B.C.D.二、填空题(每小题3分,共21分)9.(3分)若使二次根式有意义,则x的取值范围是.10.(3分)计算:(+1)2015(﹣1)2016=.11.(3分)若关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别为2和b,则ab=.12.(3分)一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x.根据题意,可列出方程为:.13.(3分)如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=4,DB=2,则的值为.14.(3分)如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是.15.(3分)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是m(结果保留根号)三、解答题(本大题8个小题,满分65分)16.(6分)计算:﹣32÷×+|﹣3|17.(12分)用指定的方法解方程:(1)x2﹣2x=0(因式分解法)(2)x2﹣2x﹣3=0(用配方法)(3)2x2﹣9x+8=0(用公式法)(4)(x﹣2)2=(2x+3)2(用合适的方法)18.(8分)已知关于x的方程x2+2x+a=0.(1)若该方程有两个不想等的实数根,求实数a的取值范围;(2)若该方程的一个根为1,求a的值及该方程的另一个根.19.(8分)李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.20.(6分)如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,求△ABC的周长.21.(8分)如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.22.(8分)“东方之星”客船失事之后,本着“关爱生命,救人第一”的宗旨.搜救部门紧急派遣直升机到失事地点进行搜救,搜救过程中,假设直升机飞到A处时,发现前方江面上B处有一漂浮物,从A测得B处的俯角为30°,已知该直升机一直保持在距江面100米高度飞行搜索,飞行速度为10米每秒,求该直升机沿直线方向朝漂浮物飞行多少秒可到达漂浮物的正上方?(结果精确到0.1,≈1.73)23.(9分)在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图①,当∠ABC=45°时,求证:AD=DE;(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)2015-2016学年河南省周口市太康县九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.(3分)下列各式①;②;③;④;⑤,其中二次根式的个数有()A.1个 B.2个 C.3个 D.4个【解答】解:二次根式有:,,故选:B.2.(3分)下列二次根式属于最简二次根式的是()A.B.C.D.【解答】解:A、把最简二次根式,错误;B、是最简二次根式,正确;C、把最简二次根式,错误;D、把最简二次根式,错误;故选:B.3.(3分)若0是关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的一根,则m值为()A.1 B.0 C.1或2 D.2【解答】解:∵0是关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的一根,∴(m﹣1)×0+5×0+m2﹣3m+2=0,即m2﹣3m+2=0,解方程得:m1=1(舍去),m2=2,∴m=2,故选:D.4.(3分)一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【解答】解:∵△=32﹣4×2×1=1>0,∴方程有两个不相等的实数根.故选:A.5.(3分)下列说法中不一定正确的是()A.所有的等腰直角三角形都相似B.所有等边三角形相似C.所有矩形相似D.直角三角形被斜边上的高分成两个三角形相似【解答】解:A、所有的等腰直角三角形都相似,一定正确,不符合题意;B、所有等边三角形相似,正确,不符合题意;C、所有矩形不一定相似,错误,符合题意;D、直角三角形被斜边上的高分成两个三角形相似,正确,不符合题意.故选:C.6.(3分)如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.EF=AB C.S△ABD=S△ACD D.AD平分∠BAC【解答】解:A、∵点D、E、F分别为△ABC各边中点,∴DE=AC,DF=AB,∵AC≠AB,∴DE≠DF,故该选项错误;B、由A选项的思路可知,B选项错误、C、∵S△ABD=BD•h,S△ACD=CD•h,BD=CD,=S△ACD,故该选项正确;∴S△ABDD、∵BD=CD,AB≠AC,∴AD不平分∠BAC,故选:C.7.(3分)如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4 B.4.5 C.5 D.5.5【解答】解:∵直线a∥b∥c,AC=4,CE=6,BD=3,∴=,即=,解得DF=4.5.故选:B.8.(3分)如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于()A.B.C.D.【解答】解:连接AB,∵以O为圆心,任意长为半径画弧,与射线OM交于点A,∴OA=OB,∵以A为圆心,AO长为半径画弧,两弧交于点B,∴△AOB是等边三角形,∴∠AOB=60°,∴sin∠AOB=sin60°=.故选:C.二、填空题(每小题3分,共21分)9.(3分)若使二次根式有意义,则x的取值范围是x≥2.【解答】解:∵二次根式有意义,∴2x﹣4≥0,解得x≥2.故答案为:x≥2.10.(3分)计算:(+1)2015(﹣1)2016=﹣1.【解答】解:原式=(﹣1)[(+1)(﹣1)]2015=﹣1.故答案为:﹣1.11.(3分)若关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别为2和b,则ab=4.【解答】解:∵关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别是2、b,∴由韦达定理,得,解得,.∴ab=1×4=4.故答案是:4.12.(3分)一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x.根据题意,可列出方程为:100(1+x)2=121.【解答】解:设平均每次提价的百分率为x,根据题意得:100(1+x)2=121,故答案为:100(1+x)2=121.13.(3分)如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=4,DB=2,则的值为.【解答】解:∵AD=4,DB=2,∴AB=AD+BD=4+2=6,∵DE∥BC,△ADE∽△ABC,∴=,故答案为:.14.(3分)如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB 绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是(7,3).【解答】解:直线y=﹣x+4与x轴、y轴分别交于A(3,0)、B(0,4)两点,由图易知点B′的纵坐标为O′A=OA=3,横坐标为OA+O′B′=OA+OB=7.则点B′的坐标是(7,3).故答案为:(7,3).15.(3分)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是3+9m(结果保留根号)【解答】解:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴=,∴AD=3m,在Rt△BCD中,∵∠BCD=45°,∴BD=CD=9m,∴AB=AD+BD=3+9(m).故答案为:3+9.三、解答题(本大题8个小题,满分65分)16.(6分)计算:﹣32÷×+|﹣3|【解答】解:﹣32÷×+|﹣3|=﹣9××+3﹣=﹣.17.(12分)用指定的方法解方程:(1)x2﹣2x=0(因式分解法)(2)x2﹣2x﹣3=0(用配方法)(3)2x2﹣9x+8=0(用公式法)(4)(x﹣2)2=(2x+3)2(用合适的方法)【解答】解:(1)x2﹣2x=0(因式分解法),∵x2﹣2x=0,x(x﹣2)=0,∴x1=0,x2=2;(2)x2﹣2x﹣3=0(用配方法)∵x2﹣2x﹣3=0,x2﹣2x=3,x2﹣2x+1=4,(x﹣1)2=4,∴x﹣1=±2,∴x1=3,x2=﹣1;(3)2x2﹣9x+8=0(用公式法),∵b2﹣4ac=81﹣4×2×8=17>0∴x==,∴x1=,x2=;(4)(x﹣2)2=(2x+3)2(用合适的方法)解:(x﹣2)2﹣(2x+3)2=0,∴[(x﹣2)+(2x+3)][(x﹣2)﹣(2x+3]=0,∴(3x+1)(﹣x﹣5)=0,∴x1=﹣,x2=﹣5.18.(8分)已知关于x的方程x2+2x+a=0.(1)若该方程有两个不想等的实数根,求实数a的取值范围;(2)若该方程的一个根为1,求a的值及该方程的另一个根.【解答】解:(1)∵方程x2+2x+a=0有两个实数根,∴△=4﹣4a>0,解得:a<1;(2)设方程的另一根为x1,由根与系数的关系得:,解得:.则a的值是﹣3,该方程的另一根为﹣3.19.(8分)李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.【解答】解:(1)设剪成的较短的这段为xcm,较长的这段就为(40﹣x)cm,由题意,得()2+()2=58,解得:x1=12,x2=28,当x=12时,较长的为40﹣12=28cm,当x=28时,较长的为40﹣28=12<28(舍去).答:李明应该把铁丝剪成12cm和28cm的两段;(2)李明的说法正确.理由如下:设剪成的较短的这段为mcm,较长的这段就为(40﹣m)cm,由题意,得()2+()2=48,变形为:m2﹣40m+416=0,∵△=(﹣40)2﹣4×416=﹣64<0,∴原方程无实数根,∴李明的说法正确,这两个正方形的面积之和不可能等于48cm2.20.(6分)如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,求△ABC的周长.【解答】解:延长线段BN交AC于E.∵AN平分∠BAC,在△ABN和△AEN中,∴△ABN≌△AEN(ASA),∴AE=AB=6,BN=NE,又∵M是△ABC的边BC的中点,∴CE=2MN=2×1.5=3,∴△ABC的周长是AB+BC+AC=6+10+6+3=25.21.(8分)如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.【解答】(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD∽△CBD;(2)解:∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.22.(8分)“东方之星”客船失事之后,本着“关爱生命,救人第一”的宗旨.搜救部门紧急派遣直升机到失事地点进行搜救,搜救过程中,假设直升机飞到A处时,发现前方江面上B处有一漂浮物,从A测得B处的俯角为30°,已知该直升机一直保持在距江面100米高度飞行搜索,飞行速度为10米每秒,求该直升机沿直线方向朝漂浮物飞行多少秒可到达漂浮物的正上方?(结果精确到0.1,≈1.73)【解答】解:作AD⊥BD于点D,由题意得:∠ABC=30°,AD=100米,在Rt△ABD中,=tan∠ABC,∴BD===100米,∵飞行速度为10米每秒,∴飞行时间为100÷10=10≈17.3秒,∴该直升机沿直线方向朝漂浮物飞行17.3秒可到达漂浮物的正上方.23.(9分)在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图①,当∠ABC=45°时,求证:AD=DE;(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)【解答】(1)证明:如图1,过点D作DF⊥BC,交AB于点F,则∠BDE+∠FDE=90°,∵DE⊥AD,∴∠FDE+∠ADF=90°,∴∠BDE=∠ADF,∵∠BAC=90°,∠ABC=45°,∴∠C=45°,∵MN∥AC,∴∠EBD=180°﹣∠C=135°,∵∠BFD=45°,DF⊥BC,∴∠BFD=45°,BD=DF,∴∠AFD=135°,∴∠EBD=∠AFD,在△BDE和△FDA中,∴△BDE≌△FDA(ASA),∴AD=DE;(2)解:DE=AD,理由:如图2,过点D作DG⊥BC,交AB于点G,则∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠BAC=90°,∠ABC=30°,∴∠C=60°,∵MN∥AC,∴∠EBD=180°﹣∠C=120°,∵∠ABC=30°,DG⊥BC,∴∠BGD=60°,∴∠AGD=120°,∴∠EBD=∠AGD,∴△BDE∽△GDA,∴=,在Rt△BDG中,=tan30°=,∴DE=AD;(3)AD=DE•tanα;理由:如图2,∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠EBD=90°+α,∠AGD=90°+α,∴∠EBD=∠AGD,∴△EBD∽△AGD,∴=,在Rt△BDG中,=tanα,则=tanα,∴AD=DE•tanα.。

九年级上册周口数学期末试卷(培优篇)(Word版 含解析)

九年级上册周口数学期末试卷(培优篇)(Word版 含解析)

九年级上册周口数学期末试卷(培优篇)(Word 版 含解析)一、选择题1.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin a AO β=C .tan BC a β=D .cos a BD β= 2.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个3.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( )A .①②B .②③C .①③D .①②③ 4.函数y=mx 2+2x+1的图像 与x 轴只有1个公共点,则常数m 的值是( )A .1B .2C .0,1D .1,2 5.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( )A .20°B .25°C .30°D .50°6.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =7.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( )A .12B .13C .14D .158.关于2,6,1,10,6这组数据,下列说法正确的是( )A .这组数据的平均数是6B .这组数据的中位数是1C .这组数据的众数是6D .这组数据的方差是10.29.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( )A .()2241y x =--B .()2241y x =+-C .()2241y x =-+D .()2241y x =++ 10.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位B .向左平移1个单位,再向上平移1个单位C .向右平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位 11.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .233π-B .233π-C .3π-D .3π-12.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252 B .25C .251 D 52二、填空题13.如图,⊙O 是△ABC 的外接圆,∠A =30°,BC =4,则⊙O 的直径为___.14.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .15.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______.16.已知点P 是线段AB 的黄金分割点,PA >PB ,AB =4 cm ,则PA =____cm .17.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.18.关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,0a ≠),则关于x 的方程2(3)0a x m b +++=的解是________.19.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)20.在平面直角坐标系中,抛物线2y x 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.21.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.22.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________.23.在Rt △ABC 中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____.24.如图,已知PA ,PB 是⊙O 的两条切线,A ,B 为切点.C 是⊙O 上一个动点.且不与A ,B 重合.若∠PAC =α,∠ABC =β,则α与β的关系是_______.三、解答题25.某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元?26.某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG ∶BG =3∶2.设BG 的长为2x 米.(1)用含x 的代数式表示DF = ;(2)x 为何值时,区域③的面积为180平方米;(3)x 为何值时,区域③的面积最大?最大面积是多少?27.如图,在Rt ABC ∆中,90C ∠=︒,6AC =,60BAC ∠=︒,AD 平分BAC ∠交BC 于点D ,过点D 作DE AC 交AB 于点E ,点M 是线段AD 上的动点,连结BM 并延长分别交DE ,AC 于点F 、G .(1)求CD 的长.(2)若点M 是线段AD 的中点,求EF DF的值. (3)请问当DM 的长满足什么条件时,在线段DE 上恰好只有一点P ,使得60CPG ∠=︒?28.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线-2y x =交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标;(2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.29.为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地要走多少千米?(2)开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)30.一只不透明的袋子中装有标号分别为1、2、3、4、5的5个小球,这些球除标号外都相同.(1)从袋中任意摸出一个球,摸到标号为偶数的概率是;(2)先从袋中任意摸出一个球后不放回,将球上的标号作为十位上的数字,再从袋中任意摸出一个球,将球上的标号作为个位上的数字,请用画树状图或列表的方法求组成的两位数是奇数的概率.31.已知二次函数y=ax2+bx﹣16的图象经过点(﹣2,﹣40)和点(6,8).(1)求这个二次函数图象与x轴的交点坐标;(2)当y>0时,直接写出自变量x的取值范围.32.(问题呈现)阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.∵M是ABC的中点,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根据证明过程,分别写出下列步骤的理由:①,②,③;(理解运用)如图1,AB、BC是⊙O的两条弦,AB=4,BC=6,点M是ABC的中点,MD⊥BC于点D,则BD=;(变式探究)如图3,若点M是AC的中点,(问题呈现)中的其他条件不变,判断CD、DB、BA之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC是⊙O的直径,点A圆上一定点,点D圆上一动点,且满足∠DAC=45°,若AB=6,⊙O的半径为5,求AD长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO, ∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、BDC DCAβ∠=∠=∠,故A选项正确;B、在Rt△ADC中,cos∠ACD=DCAC, ∴cosβ=2aAO,∴AO=2cosa,故B选项错误;C 、在Rt △BCD 中,tan ∠BDC=BC DC , ∴ tan β=BC a∴BC=atan β,故C 选项正确; D 、在Rt △BCD 中,cos ∠BDC=DC DB , ∴ cos β=a BD ∴cos a BD β=,故D 选项正确. 故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键.2.C解析:C【解析】【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.3.C解析:C【解析】【分析】①根据对称轴及增减性进行判断;②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断.【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2b a->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大;故①正确;根据二次函数的系数,可得图像大致如下,由于对称轴x=2b a的值未知, ∴当x=1时,y=a+b+c 的值无法判断,故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点,∴方程ax 2+bx +c =-2有两个不相等的实数根.故③正确.故选C.【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.4.C解析:C【解析】【分析】分两种情况讨论,当m=0和m ≠0,函数分别为一次函数和二次函数,由抛物线与x 轴只有一个交点,得到根的判别式的值等于0,列式求解即可.【详解】解:①若m=0,则函数y=2x+1,是一次函数,与x 轴只有一个交点;②若m ≠0,则函数y=mx 2+2x+1,是二次函数.根据题意得:b 2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故选:C.【点睛】本题考查了一次函数的性质与抛物线与x 轴的交点,抛物线与x 轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.5.B解析:B【解析】【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=AC BC,然后根据圆周角定理计算∠ADC的度数.【详解】∵BC的度数为50°,∴∠BOC=50°,∵半径OC⊥AB,∴=AC BC,∴∠ADC=12∠BOC=25°.故选B.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理.6.D解析:D【解析】【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.7.D解析:D【解析】【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105.【详解】解:()21P 105==次品 . 故选:D .【点睛】 本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.8.C解析:C【解析】【分析】先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众数,再利用求方差的计算公式求出这组数据的方差,再逐项判定即可.【详解】解:数据从小到大排列为:1,2,6,6,10,中位数为:6;众数为:6; 平均数为:()112661055⨯++++=; 方差为:()()()()()2222211525656510510.45⎡⎤⨯-+-+-+-+-=⎣⎦. 故选:C .【点睛】 本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题的关键.9.B解析:B【解析】【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-.故选:B .【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 10.C解析:C 【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.11.B解析:B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD=2602123602π⨯-⨯=23π 故选B . 12.A解析:A【解析】根据黄金比的定义得:12AP AB = ,得42AP == .故选A. 二、填空题13.8【解析】【分析】连接OB ,OC ,依据△BOC 是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O 的直径为8.【详解】解:如图,连接OB ,OC ,∵∠A=30°,∴∠BOC=解析:8【解析】【分析】连接OB ,OC ,依据△BOC 是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O 的直径为8.【详解】解:如图,连接OB ,OC ,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直径为8,故答案为:8.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.14.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD EC ABCD⨯=,解得:AB=1205060⨯=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.15.8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为: (表示样本的平均数,n 表示样本数据的个数,S2表示方差.)【详解】解:∵4,4,,6,6的平均数是5,∴4+4解析:8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.16.2-2【解析】【分析】根据黄金分割点的定义,知AP 是较长线段;则AP=AB ,代入运算即可.【详解】解:由于P 为线段AB=4的黄金分割点,且AP 是较长线段;则AP=4×=cm,故答案为解析:2【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则=)21cm,故答案为:(2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的12,难度一般.17.【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△解析:1 6【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB ∥EF ,∴△ABC ∽△FEC∴AB EF =BC CE, ∴12=x 1x- 解得x =13, ∴阴影部分面积为:S △ABC =12×13×1=16, 故答案为:16. 【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答. 18.x1=-12,x2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程的解是,(a ,m ,b 均为常数,a≠0),∴方程变形为,即解析:x 1=-12,x 2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,a≠0),∴方程2(3)0a x m b +++=变形为2[(3)]0a x m b +++=,即此方程中x +3=-9或x +3=11,解得x 1=-12,x 2=8,故方程2(3)0a x m b +++=的解为x 1=-12,x 2=8.故答案为x 1=-12,x 2=8.【点睛】此题主要考查了方程解的含义.注意观察两个方程的特点,运用整体思想进行简便计算.19.或【解析】【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有解析:5 或1555【解析】【分析】根据黄金分割比为12计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有AC=12AB=12×10=5, 当AC<BC 时,则有×10=5-,∴AC=AB-BC=10-(5 )=15-,∴AC 长为5 cm 或1555 cm. 故答案为:55 或1555【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.20.【解析】【分析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.【详解】解:∵解析:2(1010,1010)-【解析】【分析】根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标.【详解】解:∵A 点坐标为()1,1,∴直线OA 为y x =,()11,1A -,∵12A A OA ∕∕,∴直线12A A 为2y x =+,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴()22,4A ,∴()32,4A -,∵34A A OA ∕∕,∴直线34A A 为6y x =+,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴()43,9A ,∴()53,9A -…,∴()220191010,1010A -,故答案为()21010,1010-. 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.21.【解析】【分析】根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.【详解】根据二次函数的图象可知:对称轴为,已知一个点为,根据抛物线的对称性,则点关于对称性对称解析:20x -<<【解析】【分析】根据3y >,则函数图象在直线3y =的上方,所以找出函数图象在直线3y =的上方x 的取值范围即可.【详解】根据二次函数的图象可知:对称轴为1x =-,已知一个点为()03,, 根据抛物线的对称性,则点()03,关于对称性对称的另一个点为()23-,, 所以3y >时,x 的取值范围是20x -<<.故答案为:20x -<<.【点睛】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点()03,的对称点是解题的关键. 22.8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可. 由题意得,解得 考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x 轴只有一个公共点;时,抛物线与x 轴没有公共点.23.5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;∴这解析:5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB=22=10,68∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;∴这个三角形的外接圆半径长为5,故答案为5.【点睛】本题考查了90度的圆周角所对的弦是直径,熟练掌握是解题的关键.24.或【解析】【分析】分点C在优弧AB上和劣弧AB上两种情况讨论,根据切线的性质得到∠OAC的度数,再根据圆周角定理得到∠AOC的度数,再利用三角形内角和定理得出α与β的关系.【详解】解析:αβ=或180αβ+︒=【解析】【分析】分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点C 在优弧AB 上时,如图,连接OA 、OB 、OC ,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC=α-90°=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(α-90°)+2β=180°,∴180αβ+︒=;当点C 在劣弧AB 上时,如图,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC= 90°-α=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(90°-α)+2β=180°,∴αβ=.综上:α与β的关系是180αβ+︒=或αβ=. 故答案为:αβ=或180αβ+︒=.本题考查了切线的性质,圆周角定理,三角形内角和定理,等腰三角形的性质,利用圆周角定理是解题的关键,同时注意分类讨论.三、解答题25.(1)20%;(2)8640万元.【解析】【分析】(1)设平均增长率为x,根据题意可得2018年投入的资金是5000(1+x)万元,2019年投入的资金是5000(1+x) (1+x)万元,由2019年投入的资金是7200万元即可列出方程.,求解即可.(2)相当于数字7200增长了20%,列式计算.【详解】解:(1)设两年间每年投入资金的平均增长率为x,根据题意得,5000(1+x)2=7200解得,x1=0.2=20%,x2= -2.2(不符合题意,舍去)答:该市对市区绿化工程投入资金的年平均增长率为20%;(2)根据题意得,7200(1+20%)=8640万元.答:在2020年预计需投入8640万元.【点睛】本题考查一元二次方程的实际应用,增长率问题,根据a(1+x)2=b(a、b、x、n分别表示增长前量、增长后量、增长率和增长次数)列方程是解答增长率问题的关键.26.(1)48-12x;(2)x为1或3;(3)x为2时,区域③的面积最大,为240平方米【解析】【分析】(1)将DF、EC以外的线段用x表示出来,再用96减去所有线段的长再除以2可得DF的长度;(2)将区域③图形的面积用关于x的代数式表示出来,并令其值为180,求出方程的解即可;(3)令区域③的面积为S,得出x关于S的表达式,得到关于S的二次函数,求出二次函数在x取值范围内的最大值即可.【详解】(1)48-12x(2)根据题意,得5x(48-12x)=180,解得x1=1,x2=3答:x为1或3时,区域③的面积为180平方米(3)设区域③的面积为S,则S=5x(48-12x)=-60x2+240x=-60(x-2)2+240∵-60<0,∴当x=2时,S有最大值,最大值为240答:x为2时,区域③的面积最大,为240平方米本题考查了二次函数的实际应用,解题的关键是正确理解题中的等量关系,正确得出区域面积的表达式.27.(1)DC =;(2)23EF DF =;(3)当DM =DM <<时,满足条件的点P 只有一个.【解析】【分析】(1)由角平分线定义得30DAC ∠=︒,在Rt ADC ∆中,根据锐角三角函数正切定义即可求得DC 长.(2)由题意易求得BC =BD =ASA 得DFM AGM ∆≅∆,根据全等三角形性质得DF AG =,根据相似三角形判定得~BFE BGA ∆∆,由相似三角形性质得EF BE BD AG AB BC==,将DF AG =代入即可求得答案.(3)由圆周角定理可得CQG ∆是顶角为120°的等腰三角形,再分情况讨论:①当Q 与DE 相切时,结合题意画出图形,过点Q 作QH AC ⊥,并延长HQ 与DE 交于点P ,连结QC ,QG ,设Q 半径为r ,由相似三角形的判定和性质即可求得DM 长;②当Q 经过点E 时,结合题意画出图形,过点C 作CK AB ⊥,设Q 半径为r ,在Rt EQK ∆中,根据勾股定理求得r ,再由相似三角形的判定和性质即可求得DM 长;③当Q 经过点D 时,结合题意画出图形,此时点M 与点G 重合,且恰好在点A 处,由此可得DM 长.【详解】(1)解:∵AD 平分BAC ∠,60BAC ∠=︒, ∴1302DAC BAC ∠=∠=︒.在Rt ADC ∆中,tan 30DC AC =⋅︒=(2)解:易得,BC =,BD =由DE AC ,得EDA DAC ∠=∠,DFM AGM ∠=∠.∵AM DM =,∴DFM AGM ∆≅∆,∴AG DF =.由DE AC ,得~BFE BGA ∆∆, ∴EF BE BD AG AB BC==∴432363EF EF BD DF AG BC ==== (3)解:∵60CPG ∠=︒,过C ,P ,G 作外接圆,圆心为Q ,∴CQG ∆是顶角为120°的等腰三角形.①当Q 与DE 相切时,如图1,过Q 点作QH AC ⊥,并延长HQ 与DE 交于点P ,连结QC ,QG设Q 的半径QP r =则12QH r =,1232r r +=, 解得433r =. ∴43343CG =⨯=,2AG =. 易知DFMAGM ∆∆,可得43DM DF AM AG ==,则47DM AD = ∴1637DM =. ②当Q 经过点E 时,如图2,过C 点作CK AB ⊥,垂足为K .设Q 的半径QC QE r ==,则33QK r =.在Rt EQK ∆中,()221332r r +-=,解得1439r =, ∴14143393CG =⨯= 易知DFMAGM ∆∆,可得1435DM = ③当Q 经过点D 时,如图3,此时点M 与点G 重合,且恰好在点A 处,可得43DM =综上所述,当1637DM =143435DM <P 只有一个. 【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,圆周角定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置解决数学问题,属于中考压轴题.28.(1)y=﹣(x ﹣1)2+1,C(﹣1,﹣3);(2)3;(3)存在满足条件的N 点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0) 【解析】【分析】 (1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C 点坐标;(2)设直线AC 的解析式为y =kx +b ,与x 轴交于D ,得到y =2x−1,求得BD 于是得到结论;(3)设出N 点坐标,可表示出M 点坐标,从而可表示出MN 、ON 的长度,当△MON 和△ABC 相似时,利用三角形相似的性质可得MN ON AB BC =或MN ON BC AB=,可求得N 点的坐标.【详解】(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a (x ﹣1)2+1,又抛物线过原点,∴0=a (0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x ﹣1)2+1,即y=﹣x 2+2x ,联立抛物线和直线解析式可得22-2y x x y x ⎧=+⎨=⎩﹣, 解得20x y =⎧⎨=⎩或13x y =-⎧⎨=-⎩,∴B (2,0),C (﹣1,﹣3); (2)设直线AC 的解析式为y=kx+b ,与x 轴交于D ,把A (1,1),C (﹣1,﹣3)的坐标代入得13k b k b =+⎧⎨-=-+⎩, 解得:21k b =⎧⎨=-⎩, ∴y=2x ﹣1,当y=0,即2x ﹣1=0,解得:x=12,∴D (12,0), ∴BD=2﹣12=32, ∴△ABC 的面积=S △ABD +S △BCD =12×32×1+12×32×3=3; (3)假设存在满足条件的点N ,设N (x ,0),则M (x ,﹣x 2+2x ),∴ON=|x|,MN=|﹣x 2+2x|,由(2)知,,,∵MN ⊥x 轴于点N ,∴∠ABC=∠MNO=90°,∴当△ABC 和△MNO 相似时,有MN ON AB BC =或MN ON BC AB=, ①当MN ON AB BC =时,∴=|x||﹣x+2|=13|x|, ∵当x=0时M 、O 、N 不能构成三角形,∴x≠0,∴|﹣x+2|=13,∴﹣x+2=±13,解得x=53或x=73,此时N 点坐标为(53,0)或(73,0); ②当或MN ON BC AB =时,∴=,即|x||﹣x+2|=3|x|, ∴|﹣x+2|=3,∴﹣x+2=±3,解得x=5或x=﹣1,此时N 点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N 点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0).【点睛】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的。

河南省周口市九年级上学期数学期末考试试卷

河南省周口市九年级上学期数学期末考试试卷

河南省周口市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列各点中,抛物线经过的点是()A . (0,4)B . (1, )C . (, )D . (2,8)2. (2分)下列各式,,,,中,分式共有()A . 2个B . 3个C . 4个D . 5个3. (2分) (2018九上·天台月考) 如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是()A . 70°B . 55°C . 35.5°D . 35°.4. (2分) (2020九上·信阳期末) 如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD = ,④ 中,正确的有()A . 1个B . 2个C . 3个D . 4个5. (2分)抛物线y=(m﹣1)x2﹣mx﹣m2+1的图象过原点,则m的值为()A . ±1B . 0C . 1D . -16. (2分) (2019九上·象山期末) 如图,直线1l//l2//l3 ,直线AC分别交,,于点A,B,C,直线DF分别交,,于点D,E,若,则的值为()A .B .C .D .7. (2分) (2016九上·连州期末) 在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为2:1,把三角形EFO缩小,则点E的对应点E′的坐标是()A . (﹣2,1)B . (﹣8,4)C . (﹣8,4)或(8,﹣4)D . (﹣2,1)或(2,﹣1)8. (2分) (2017七上·新会期末) 如图,一艘轮船行驶在O处同时测得小岛A、B的方向分别为北偏东75°和西南方向,则∠AOB等于()A . 100°B . 120°C . 135°D . 150°9. (2分)如图所示,以直角三角形的三边分别向外作正方形,其中两个以直角边为边长的正方形面积分别为225和400,则正方形的面积是()A . 175B . 575C . 625D . 70010. (2分) (2016九上·婺城期末) 如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A . AE=6cmB . sin∠EBC=C . 当0<t≤10时,y= t2D . 当t=12s时,△PBQ是等腰三角形二、填空题 (共8题;共9分)11. (1分) (2019九上·吴兴期末) 抛物线y=(x-2)2+3的顶点坐标是________.12. (1分) (2019九上·道里期末) 已知扇形的弧长为,它的圆心角为,则该扇形的半径为________.13. (1分) (2015九上·武昌期中) 如图,△ABC是边长为a的等边三角形,将三角板的30°角的顶点与A 重合,三角板30°角的两边与BC交于D、E两点,则DE长度的取值范围是________.14. (1分) (2019八下·温州期中) 如图,在▱ABCD中,AB=6,AD=8,∠B=60°,∠BAD与∠CDA的角平分线AE、BF相交于点G,且交BC于点E、F,则图中阴影部分的面积是________.15. (1分)(2014·南通) 如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,则AB=________cm.16. (2分) (2016九上·肇庆期末) 如图所示,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(-2,0)和B(6,0),当y<0时,x的取值范围是________.17. (1分)飞机在空中水平飞行,某一时刻刚好飞到小刚头顶正上方4000米处,过了20秒,飞机距离小刚5000米,则飞机每小时飞行________千米.18. (1分) (2019九上·高邮期末) 若二次函数y=(k+1)x2﹣2 x+k的最高点在x轴上,则k=________.三、解答题 (共10题;共82分)19. (5分)(2018·海丰模拟) 计算:2sin60°+|3﹣ |﹣()﹣1+(π﹣2018)020. (10分) (2016九上·大石桥期中) 如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A (5,3),点C(0,8),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)求△ABC的面积;(3)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围.21. (5分)如图,在矩形ABCD中,AB=4,AD=5,P是射线BC上的一个动点,过点P作PE⊥AP,交射线DC 于点E,射线AE交射线BC于点F,设BP=a.(1)当点P在线段BC上时(点P与点B,C都不重合),试用含a的代数式表示CE;(2)当a=3时,连结DF,试判断四边形APFD的形状,并说明理由;(3)当tan∠PAE=时,求a的值.22. (5分) (2018七上·双城期末) 如图所示,OE,OD分别平分∠AOC和∠B OC,(1)如果∠AOB=90°,∠BOC=38°,求∠DOE的度数;(2)如果∠AOB=α,∠BOC=β(α、β均为锐角,α>β),其他条件不变,求∠DOE;(3)从(1)、(2)的结果中,你发现了什么规律,请写出来.23. (10分)(2018·赣州模拟) 如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA 的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.24. (10分) (2017九下·宜宾期中) 如图,某大楼的顶部有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1∶ ,AB=10米,AE=15米(i=1∶ 是指坡面的铅直高度BH与水平长度AH的比).(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)25. (15分) (2019九上·惠州期末) 如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过点A ,作AC⊥x轴于点C .(1)求k的值;(2)直线y=ax+b(a≠0)图象经过点A交x轴于点B,且OB=2AC.求a的值.26. (2分)如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是的切线;(2)若PB=6,DB=8,求⊙O的半径27. (10分)(2018·马边模拟) 如图,抛物线过点,.为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与相似,求点M的坐标.28. (10分) (2020九上·南昌期末) 如图,抛物线与x轴交于A、C两点,与y轴交于B点.(1)求△AOB的外接圆的面积;(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动.问当t为何值时,以A、P、Q为顶点的三角形与△OAB相似?(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.②当点M运动到何处时,四边形CBNA的面积最大?求出此时点M的坐标及四边形CBAN面积的最大值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共82分)19-1、20-1、20-2、20-3、21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、27-3、28-1、28-2、28-3、。

周口市九年级(上)期末数学试卷含答案

周口市九年级(上)期末数学试卷含答案

九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.一元二次方程x2=x的实数根是()A. 0或1B. 0C. 1D. ±12.令函数f(x)=-x2+2x+m(m是常数),当x取-1,1,2时,对应的函数值f(-1),f(1),f(2)大小关系是()A. f(-1)<f(1)<f(2)B. f(-1)<f(2)<f(1)C. f(2)<f(1)<f(-1)D. f(1)<f(2)<f(-1)3.在直角坐标系中,正方形ABCD一条对角线的端点坐标分别为(2,3),(0,-1),则另一条对角线的端点坐标为()A. (3,0),(-1,2)B. (1,1),(-1,2)C. (1,1),(3,0)D. (2,0),(0,2)4.如图,A,B在半径为的⊙O上,将沿着弦AB翻折,若∠AOB=150°,则图中月牙(阴影)的面积等于()A. π-3B. π+3C. 2π-3D. π5.下列事件中,是必然事件的是()A. 任意掷一枚骰子一定出现奇数点B. 彩票中奖率20%,买5张一定中奖C. 晚间天气预报说明天有小到中雪D. 在13个同学中至少有2人生肖相同6.如图,已知点A(4,0),B(0,3),点P在线段AB上(不与端点重合),反比例函数y=的图象经过点P,则k的取值范围是()A. k>3B. 0≤k≤3C. 0<k≤3D. k≥37.在直角坐标系中,已知点A(6,-3),以原点O为位似中心,相似比为,把线段OA缩小为OA′,则点A′的坐标为()A. (2,-1),(-2,-1)B. (-2,1),(2,1)C. (2,1),(-2,-1)D. (2,-1),(-2,1)8.如图,△ABC的顶点是正方形网格的格点,则cos A=()A. B. C. D.9.如图,在正方形ABCD中,点E是BC边上的动点,过点E作AE的垂线交CD边于点F,设BE=x,FD=y,y关于x的函数关系图象如图所示,则m=()A. 1.5B. 2C. 2.5D. 310.方程有无实数解,可以通过构造函数,利用函数图象有无交点来判断.一元三次方程x3+2x+1=0的实数解的个数是()A. 0B. 1C. 2D. 3二、填空题(本大题共5小题,共15.0分)11.sin30°•cos45°•tan60°=______.12.在平面直角坐标系中,把抛物线y=-2x2向下平移2个单位长度,再向左平移1个单位长度,得到的新抛物线解析式为______.13.已知点A(1,m),B(2,n)在反比例函数y=-的图象上,则m与n的大小关系为______.14.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是______.15.如图,∠MON=90°,点A,B分别在射线OM,ON上,AB=4,点C是线段AB的中点,△A′OC与△AOC关于直线OC对称.A′O与AB相交于点D.当△A′DC是直角三角形时,△OAB的面积等于______.三、解答题(本大题共8小题,共75.0分)16.已知关于x的方程3x2-6x+3p=0,其中p是常数.请用配方法解这个一元二次方程.17.某商品投放市场试售:以每件65元销售时,每星期可卖出250件;以每件70元销售时,每星期可卖出200件.设每件售价x(元),销售量为y(件),销售总利润为w(元).(1)若销售量与商品价格存在一次函数关系,请求出它们的关系式;(2)在(1)的函数关系下,若商品的进价为每件40元,如何定价才能使利润最大?18.有4张看上去无差别的卡片,上面分别写着1,2,3,4.小华随机抽取1张,记下数字为x,小芳在剩余的3张卡片中随机取出1张,记下数字为y,这样确定了点M的坐标.(1)画出树状图或列表,写出点M所有可能的坐标;(2)求点M在函数的图象上的概率.19.如图,在一次数学应用活动中,小明沿一条南北公路向北行走,在A处,他测得左边建筑C在北偏西30°方向,右边建筑D在北偏东30°方向;从A出向北40米行至B处,他又测得左边建筑物C在北偏西60°方向,右边建筑物D在北偏东45°方向.请根据以上数据求两建筑物C、D到这条南北公路的距离.(参考数据:≈1.732≈1.414,结果精确到0.1米)20.如图,PA⊥x轴于点A,连接OP,PA,PO分别与反比例函数y=(k>0)的图象交于点B,C.(1)求证:=;(2)已知P(4,3),PB=PC,求k的值.21.如图,点I是△ABC的内心,AI的延长线交BC于点D,与△ABC的外接圆相交于点E,连接BE.(1)求证:BE=IE;(2)若AD=6,DE=2,求AI的长.22.(1)问题发现(1)如图1,△ABC和△CDE均为等边三角形,直线AD和直线BE交于点F.填空:①∠AFB的度数是______;②线段AD,BE之间的数量关系为______;(2)类比探究如图2,△ABC和△CDE均为等腰直角三角形,∠ABC=∠DEC=90°,AB=BC,DE=EC,直线AD和直线BE交于点F.请判断∠AFB的度数及线段AD,BE之间的数量关系,并说明理由.(3)解决问题如图3,在△ABC中,∠ACB=90°,∠A=30°,AB=5,点D在AB边上,DE⊥AC于点E,AE=3,将△ADE绕着点A在平面内旋转,请直接写出直线DE经过点B时,点C到直线DE的距离.23.如图,在平面直角坐标系中,直线y=kx-4k+4与抛物线y=x2-x交于A、B两点.(1)直线总经过定点,请直接写出该定点的坐标;(2)点P在抛物线上,当k=-时,解决下列问题:①在直线AB下方的抛物线上求点P,使得△PAB的面积等于20;②连接OA,OB,OP,作PC⊥x轴于点C,若△POC和△ABO相似,请直接写出点P的坐标.答案和解析1.【答案】A【解析】解:方程整理得:x2-x=0,分解因式得:x(x-1)=0,解得:x=0或x=1,故选:A.方程利用因式分解法求出解即可.此题考查了解一元一次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.2.【答案】B【解析】解:当x=-1时,f(-1)=-3+m;当x=1时,f(1)=1+m;当x=2时,f(2)=m.∵-3+m<m<1+m,∴f(-1)<f(2)<f(1).故选:B.把x=-1、1、2分别代入f(x)=-x2+2x+m中进行比较即可.本题主要考查二次函数图象上点坐标求法,同时考查了新定义问题,读懂题意是解题的关键.3.【答案】A【解析】解:∵正方形ABCD一条对角线的端点坐标分别为(2,3),(0,-1),设A(2,3),C(0,-1),对角线AC,BD交于O,∴直线AC的解析式为y=2x-1,∵AO=CO,BO=DO,∴O(1,1),∵AC⊥BD,∴设直线BD的解析式为y=-x+b,把O(1,1)代入得,b=,∴直线BD的解析式为y=-x+,设B(m,n),∴n=-m+①,∵OC2=OB2,∴1+4=(1-m)2+(1-n)2②,联立①②组成的方程组解得:,或,∴另一条对角线的端点坐标为(3,0),(-1,2),故选:A.正方形ABCD一条对角线的端点坐标分别为(2,3),(0,-1),设A(2,3),C(0,-1),对角线AC,BD交于O,求得直线AC的解析式为y=2x-1,求得O(1,1),设直线BD的解析式为y=-x+b,得到BD的解析式为y=-x+,设B(m,n),解方程组即可得到结论.本题考查了正方形的性质,待定系数法求函数的解析式,坐标与图形的性质,正确的理解题意是解题的关键.4.【答案】B【解析】解:如图,作BD⊥AO交AO于点D.∵OA=OB,∠AOB=150°,∴∠DOB=30°,∵OB=,∴BD=OB=,S阴=S圆O-2•S弓形AmB=π•()2-2(-××)=6π-5π+3=π+3,故选:B.根据S阴=S圆O-2•S弓形AmB计算即可.本题考查圆心角,弧,弦之间的关系,翻折变换,扇形的面积等知识,解题的关键是学会用分割法求阴影部分的面积,属于中考常考题型.5.【答案】D【解析】解:A、任意掷一枚骰子一定出现奇数点,是随机事件;B、彩票中奖率20%,买5张一定中奖,是随机事件;C、晚间天气预报说明天有小到中雪,是随机事件;D、在13名同学中至少有2人生肖相同,是必然事件,故选:D.根据理解必然事件、不可能事件、随机事件的概念进行解答即可.本题考查的是理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.【答案】C【解析】解:设直线AB解析式y=mx+n∴解得:m=-,n=3,∴直线AB解析式为y=-x+3,∵反比例函数y=的图象与直线AB交于点P,∴-x+3=,∴x2-3x+k=0,∴△=9-3k≥0,∴k≤3,∵反比例函数图象在第一象限,∴k>0,∴0<k≤3,故选:C.由题意可求直线AB解析式,由直线AB与反比例函数图象交点在第一象限可求k的取值范围.本题考查了反比例函数图象上点的坐标特征,待定系数法求解析式,熟练运用判别式求参数的范围是本题的关键.7.【答案】D【解析】解:∵点A的坐标为(-6,3),以原点为位似中心将△ABO缩小,位似比为,∴点A的对应点的坐标为:(-6×,3×)或(-6×(-),3×(-)),即(-2,1)或(2,-1),故选:D.根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k解答.本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.8.【答案】B【解析】解:如图,连接BD,∵AD2=12+22=5,BD2=12+22=5,AB2=12+32=10,∴AD2+BD2=AB2,∴△ABD是直角三角形,且AD=BD,∴∠A=45°,则cos A=,故选:B.连接BD,先利用勾股定理逆定理得出△ABD是直角三角形,且AD=BD,从而得知∠A=45°,据此可得答案.本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.熟练掌握勾股定理和三角函数的定义是解决此类问题的关键.9.【答案】B【解析】解:设正方形的边长为a,则CF=a-y.∵∠BAE+∠AEB=90°,∠FEC+∠AEB=90°,∴∠BAE=∠CEF.又∠B=∠C,所以△ABE∽ECF.∴,即,整理得y=x2-x+a.当x=时,y有最小值.从所给函数图象上看,当x=m时,y有最小值3,所以,解得a=4.所以x=m==2.故选:B.设正方形的边长为a,则CF、EC均可用a表示,证明△ABE∽△ECF,写出比例式找到y与x之间的函数式,根据二次函数的最值求法,结合所给函数图象,求出a值,而后可求m值.本题主要考查动点问题产生的函数图象、相似三角形的判定和性质,解题的关键是动中找静,会阅读图象信息.10.【答案】B【解析】解:设:函数y=x3+2x+1,先用如下表格求出函数y的值,依据表格画出函数画出函数的部分图象如下:从图象可以看出:函数与x轴的交点只有一个,即一元三次方程有一个根,故选:B.设:函数y=x3+2x+1,先用表格求出函数y的值,依据表格画出函数的部分图象,从图象看函数与x轴的交点个数,即可求解.本题考查的是函数的图象,此类依据表格画出函数的部分图象,从图象看函数与x轴的交点个数即可.11.【答案】【解析】解:原式=××=.故答案为:.直接利用特殊角的三角函数值分别代入求出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.12.【答案】y=-2(x+1)2-2【解析】解:将抛物线y=-2x2向下平移2个单位长度,得到的抛物线的解析式是:y=-2x2-2,再向左平移1个单位长度,得到的抛物线的解析式是:y=-2(x+1)2-2.故答案是:y=-2(x+1)2-2.根据平移的规律:左加右减,上加下减,求出得到的抛物线的解析式即可.此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.13.【答案】m<n【解析】解:∵反比例函数y=-中k=-2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.由反比例函数y=-可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.【答案】20【解析】解:设白球的个数为x个,∵共有黄色、白色的乒乓球50个,白球的频率稳定在60%,∴=60%,解得x=30,∴布袋中白色球的个数很可能是50-30=20(个).故答案为:20.先设出白球的个数,根据白球的频率求出白球的个数,再用总的个数减去白球的个数即可.此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据白球的频率得到相应的等量关系,列出方程.15.【答案】2或2【解析】解:∵△A′DC是直角三角形,∴①如图1,当∠A′CD=90°时,过O作OH⊥AB于H,∴OH∥A′C,∴∠HOD=∠A′,∵∠AOB=90°,OH⊥AB,∴∠BOH=∠BAO,∵点C是线段AB的中点,∴OC=AC,∴∠COA=∠CAO,∵△A′OC与△AOC关于直线OC对称,∴∠A′=∠CAO,∠A′OC=∠AOC,∴∠BOH=∠HOD=∠DOC=∠COA,∴∠HOC=∠AOB=45°,∵AB=4,∴OC=2,∴OH=,∴△OAB的面积等于×4×=2;②如图2,当∠A′DC=90°,∴OA′⊥AB,∴∠BOD=∠BAO,∵△A′OC与△AOC关于直线OC对称,∴∠A′=∠BAO,∠A′OC=∠AOC,∴∠BOD=∠A′,∵点C是线段AB的中点,∴OC=AC=A′C,∴∠A′=∠A′OC,∴∠BOD=∠DOC=∠AOC=∠AOB=30°,∴∠OAB=30°,∵AB=4,∴OB=2,OA=2,∴△OAB的面积等于OB•OA=×2×2=2,综上所述,△OAB的面积等于2或2.故答案为:2或2.①如图1,当∠A′CD=90°时,过O作OH⊥AB于H,根据轴对称的性质和直角三角形的性质推出∠BOH=∠HOD=∠DOC=∠COA,求得∠HOC=∠AOB=45°,于是得到结论;②如图2,当∠A′DC=90°,根据轴对称的性质和直角三角形的性质得到∠BOD=∠DOC=∠AOC=∠AOB=30°,求得∠OAB=30°,于是得到结论.本题考查的是解直角三角形,轴对称的性质,等腰三角形的判定和性质,正确的理解题意是解题的关键.16.【答案】解:x2-2x=-p,x2-2x+1=1-p,(x-1)2=1-p,当1-p>0,即p<1时,x-1=±,所以x1=1+,x2=1-;当1-p=0,即p=1时,x-1=0,所以x1=x2=1;当1-p<0,即p<1时,方程无实数根.【解析】先配方得到(x-1)2=1-p,再讨论:当1-p>0,即p<1时,利用直接开平方法解方程;当1-p=0,即p=1时,x-1=0,所以x1=x2=1;当1-p<0,即p<1时,方程无实数根.本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.17.【答案】解:(1)设一次函数的解析式为y=kx+b,则,解得,∴一次函数的解析式为y=-10x+900;(2)根据题意得,w=(x-40)(-10x+900)=-10x2+1300x-36000=-10(x-65)2+6250,当x=65时,w有最大值,最大值为6250,所以,定价为每件65元时,利润最大,最大利润为6250元.【解析】(1)设一次函数的解析式为y=kx+b,根据题意列方程组即可得到结论;(2)根据题意得到函数关系式,根据二次函数的性质即可得到结论.本题主要考查了二次函数的实际应用,正确理解题意确定不同范围内的函数表达式是解决问题的关键.18.【答案】解:(1)根据题意画树状图如下:共有12种可能的坐标:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3);(2)在12种等可能结果中,在函数的图象上的点有(2,1),(3,2),(4,3)这3种结果,∴点M在函数y=x-1的图象上的概率为=.【解析】(1)直接用树状图列出各种可能出现的结果数,然后写出点M所有可能的坐标即可;(2)根据(1)写出的可能结果中,找出所有符合条件的点,然后根据概率公式即可得出答案.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.19.【答案】解:过点C作CE⊥AB于点E,过点D作DF⊥AB于点F,,在Rt△ACE中,可得AE=,在Rt△CBE中,BE=,则-=AB=40米,解得:CE=20≈34.6米;同理:求得DF=20(+1)≈54.6米.答:C、D距公路的距离为34.6米、54.6米.【解析】过点C作CE⊥AB于点E,过点D作DF⊥AB于点F,分别求出AE、AF的长度,继而根据AB=40米,可得出方程,解出即可.本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数值的知识求出相关线段的长度,难度一般.20.【答案】(1)作CD⊥x轴于点D,连接OB,∴CD∥AB,S△OCD=S△AOB=k,∴△OCD∽△OPA∴∴=(2)∵P(4,3),∴AP=3,OA=4,∴OP==5设PB=PC=m,则AB=3-m,OC=5-m,由(1)得:解得:m=0(舍去),m=∴k=4×(3-)=【解析】(1)作CD⊥x轴于点D,连接OB,可得CD∥AB,由相似三角形的性质可得,即可证=;(2)设PB=PC=m,则AB=3-m,OC=5-m,代入(1)的结论中可求m的值,即可求k 的值.本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,勾股定理,熟练运用相似三角形的性质是本题的关键.21.【答案】(1)证明:连接BI,∵点I是△ABC的内心,∴∠ABI=∠IBD,∠BAE=∠EAC,∵∠EBC=∠EAC,∴∠BIE=∠BAI+∠ABI,∠EBI=∠EBC+∠IBD,∴∠BIE=∠EBI,∴BE=IE(2)∵∠EBC=∠EAC=∠BAE,∠BED=∠AEB,∴△EBD∽△EAB.∴,∴BE2=DE×AE=2×(2+6)=16,∴IE=BE=4,∴AI=AD+DE-IE=6+2-4=4.【解析】(1)连接BI,利用内心条件和外角性质可证明∠BIE=∠EBI,即可得出BE=IE;(2)证明△EBD∽△EAB,求得BE的长,进而得出AI的长.本题考查三角形的内心概念和性质,相似三角形的判定和性质,等腰三角形的判定.解题的关键是正确理解三角形内心是三角形三条角平分线的交点.22.【答案】60°AD=BE【解析】解:(1)如图1中,∵△ABC和△CDE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∠ACD=∠CBF,设BC交AF于点O.∵∠AOC=∠BOF,∴∠BFO=∠ACO=60°,∴∠AFB=60°,故答案为60°,AD=BE.(2)结论:∠AFB=45°,AD=BE.理由:如图2中,∵∠ABC=∠DEC=90°,AB=BC,DE=EC,∴∠ACD=45°+∠BCD=∠BCE,==,∴△ACD∽△BCE,∴==,∠CBF=∠CAF,∵∠AFB+∠CBF=∠ACB+∠CAF,∴∠AFB=∠ACB=45°.(3)如图3中,∵AEB=∠ACB=90°,∴A,B,C,E四点共圆,∴∠CEB=∠CAB=30°,∠ABD=∠ACE,∵∠FAE=∠BAC=30°,∴∠BAD=∠CAE,∴△BAD∽△CAE,∴==cos30°=,∴EC=BD,在Rt△ADE中,∵DE=,∠DAE=30°,∴AE=DE=3,∴BE==4,∴BD=BE-DE=4-,∴CE=BD=2-,∵∠BEC=30°,∴点C到直线DE的距离等于CE•sin30°=-.如图4中,当D,EB在同一直线上时,同法可知BD=DE+EB=4+,CE=BD=2+,点C到直线DE的距离等于CE•sin30°=+.综上所述,点C到直线DE的距离等于±.(1)证明△ACD≌△BCE(SAS),即可解决问题.(2)结论:∠AFB=45°,AD=BE.证明△ACD∽△BCE,可得==,∠CBF=∠CAF,由此即可解决问题.(3)分两种情形分别求解即可解决问题.本题考查几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.23.【答案】解:(1)∵y=kx-4k+4=k(x-4)+4,即k(x-4)=y-4,而k为任意不为0的实数,∴x-4=0,y-4=0,解得x=4,y=4,∴直线过定点(4,4);(2)当k=-时,直线解析式为y=-x+6,解方程组得或,则A(6,3)、B(-4,8);①如图1,作PQ∥y轴,交AB于点Q,设P(x,x2-x),则Q(x,-x+6),∴PQ=(-x+6)-(x2-x)=-(x-1)2+,∴S△PAB=(6+4)×PQ=-(x-1)2+=20,解得x1=-2,x2=4,∴点P的坐标为(4,0)或(-2,3);②设P(x,x2-x),如图2,由题意得:AO=3,BO=4,AB=5,∵AB2=AO2+BO2,∴∠AOB=90°,∵∠AOB=∠PCO,∴当=时,△CPO∽△OAB,即=,整理得4|x2-x|=3|x|,解方程4(x2-x)=3x得x1=0(舍去),x2=7,此时P点坐标为(7,);解方程4(x2-x)=-3x得x1=0(舍去),x2=1,此时P点坐标为(1,-);当=时,△CPO∽△OBA,即=,整理得3|x2-x|=4|x|,解方程3(x2-x)=4x得x1=0(舍去),x2=,此时P点坐标为(,);解方程3(x2-x)=-4x得x1=0(舍去),x2=-,此时P点坐标为(-,)综上所述,点P的坐标为:(7,)或(1,-)或(-,)或(,).【解析】(1)变形为不定方程k(x-4)=y-4,然后根据k为任意不为0的实数得到x-4=0,y-4=0,然后求出x、y即可得到定点的坐标;(2)通过解方程组得A(6,3)、B(-4,8);①如图1,作PQ∥y轴,交AB于点Q,设P(x,x2-x),则Q(x,-x+6),则PQ=(-x+6)-(x2-x),利用三角形面积公式得到S△PAB=-(x-1)2+=20,然后解方程求出x即可得到点P的坐标;②设P(x,x2-x),如图2,利用勾股定理的逆定理证明∠AOB=90°,根据三角形相似的判定,由于∠AOB=∠PCO,则当=时,△CPO∽△OAB,即=;当=时,△CPO∽△OBA,即=,然后分别解关于x的绝对值方程即可得到对应的点P的坐标.本题考查了二次函数综合题:熟练掌握二次函数图象上点的坐标特征和相似三角形的判定方法;会利用待定系数法求抛物线解析式,通过解方程组求两函数图象的交点坐标,会解一元二次方程;理解坐标与图形性质;会运用分类讨论的思想解决思想问题.。

周口市太康县2016届九年级上期末数学试卷含答案解析

周口市太康县2016届九年级上期末数学试卷含答案解析
河南省周口市太康县 2016 届九年级上学期期末数学试卷
一、选择题:每小题 3 分,共 24 分,下列各小题均有四个答案,其中只有一个是正确的 1.tan45°的值为( ) A. B.1 C. D. 2.为备战 2016 届中考,同学们积极投入复习,卓玛同学的试卷袋里装有语文试卷 2 张,臧文试卷 3 张,英语试卷 1 张,从中任意抽出一张试卷,恰好是语文试卷的概率是( ) A. B. C. D. 3.已知一个函数图象经过(1,﹣ 4),(2,﹣ 2)两点,在自变量 x 的某个取值范围内,都有函数值 y 随 x 的增大而减小,则符合上述条件的函数可能是( ) A.正比例函数 B.一次函数 C.反比例函数 D.二次函数 4.下列统计图能够显示数据变化趋势的是( ) A.条形图 B.扇形图 C.折线图 D.直方图 5.如图,在⊙O 中,直径 CD 垂直于弦 AB,若∠C=25°,则∠BOD 的度数是( )
A.25° B.30° C.40° D.50° 6.在下列二次函数中,其图象对称轴为 x=﹣ 2 的是( ) A.y=(x+2)2 B.y=2x2﹣ 2 C.y=﹣ 2x2﹣ 2 D.y=2(x﹣ 2)2 7.如图,两个同心圆,大圆的半径为 5,小圆的半径为 3,若大圆的弦 AB 与小圆有公共点,则弦 AB 的取值范围是( )
A.8≤AB≤10 B.8<AB≤10 C.4

周口市太康县2017届九年级上期末数学试卷含答案解析

周口市太康县2017届九年级上期末数学试卷含答案解析
2016-2017 学年河南省周口市太康县九年级(上)期末数学试 卷
一、选择题(共 8 小题,每小题 3 分,满分 24 分) 1.下列各式中属于最简二次根式的是( )
A.
B.
C. D.
2.下列调查中,适宜采用普查方式的是( )
A.了解一批圆珠笔的寿命 B.了解全国九年级学生身高的现状
C.考察人们保护海洋的意识
第 1 页(共 25 页)
23.如图,点 A 在 x 轴上,OA=4,将线段 OA 绕点 O 顺时针旋转 120°至 OB 的 位置. (1)求点 B 的坐标; (2)求经过点 A、O、B 的抛物线的解析式; (3)在此抛物线的对称轴上,是否存在点 P,使得以点 P、O、B 为顶点的三角 形是等腰三角形?若存在,求点 P 的坐标;若不存在,说明理由.
D.检查一枚用于发射卫星的运载火箭的各零部件
3.要得到二次函数 y=﹣﹣2+2x 的图象,需将二次函数 y=﹣﹣2
A.向左平移 1 个单位,再向上平移 1 个单位
的图象( )
B.向右平移 1 个单位,再向下平移 1 个单位
C.向左平移 1 个单位,再向下平移 1 个单位
D.向右平移 1 个单位,再向上平移 1 个单位 4.若一元二次方程 x2+2x+m=0 没有实数根,则 m 的取值 页(共 25 页)
5.如图,△ABC 的顶点 A、B、C 均在⊙O 上,若∠ABC+∠AOC=90°,则∠AOC
的大小是( )
A.30° B.45° C.60° D.70° 6.在△ABC 中,∠C=90°,若∠A=30°,则 sinA+cosB 的值等于( )
A.1 B.
C.
D.
7.袋中装有编号为 1,2,3 的三个质地均匀、大小相同的球,从中随机取出一

周口市九年级上学期数学期末考试试卷

周口市九年级上学期数学期末考试试卷

周口市九年级上学期数学期末考试试卷姓名:________班级:________成绩:________一、 选择题(本大题共 6 小题,共 24.0 分) (共 6 题;共 24 分)1. (4 分) (2017·港南模拟) 已知,则的值是( )A.B.C.D. 2. (4 分) 如图,在平面直角坐标系中,点 A 坐标为(8,6),那么 cos 的值是( )A. B. C. D. 3. (4 分) (2017·花都模拟) 二次函数 y=3(x﹣h)2+k 的图象如图所示,下列判断正确的是( )A . h>0,k>0 B . h>0,k<0 C . h<0,k>0 D . h<0,k<0 4. (4 分) 如图,在△ABC 中,点 D、E 分别在边 AB、AC 上,下列条件中不能判断△ABC∽△AED 的是( )第 1 页 共 17 页A . ∠AED=∠B B . ∠ADE=∠CC. =D. = 5. (4 分) (2020·虹口模拟) 已知 、 和 都是非零向量,在下列选项中,不能判定 ∥ 的是 ()A.B. ∥ , ∥ C . + =0D. + = , ﹣ =6. (4 分) (2018 九上·金山期末) 在 Rt△ABC 中,∠ACB=90°,AC=12,BC=9,D 是 AB 的中点,G 是△ABC的重心,如果以点 D 为圆心 DG 为半径的圆和以点 C 为圆心半径为 的圆相交,那么 的取值范围是( )A.;B.;C.;D..二、 填空题(本大题共 12 小题,共 48.0 分) (共 12 题;共 48 分)7. (4 分) (2019 九上·普陀期末) 化简:=________.8. (4 分) 已知三条线段的长分别为 1cm,2cm, cm,如果另外一条线段与它们是成比例线段,则另外一条线段的长为________.9. (4 分) (2019 九上·宝应期末) 在 Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别是 a、b,c,a=3,c=5,则 tanB=________.10. (4 分) (2020·西安模拟) 若正多边形的一个中心角为,则这个正多边形的一个内角等于________.11. (4 分) 已知△ABC∽△DEF,∠A=∠D,∠C=∠F 且 AB:DE=1:2,则 EF:BC=________.12. (4 分) 点 C 把线段 AB 分成两条线段 AC 和 BC,如果________,那么称线段 AB 被点 C 黄金分割.第 2 页 共 17 页13. (4 分) (2018 九上·武昌期中) 抛物线 y=2(x+1)2 的顶点坐标为________. 14. (4 分) 如果二次函数 y=x²+2kx+k-4 图像的对称轴是 x=3,那么 k=________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年河南省周口市太康县初三上学期期末数学试卷一、选择题:每小题3分,共24分,下列各小题均有四个答案,其中只有一个是正确的1.(3分)tan45°的值为()A.B.1C.D.2.(3分)为备战中考,同学们积极投入复习,卓玛同学的试卷袋里装有语文试卷2张,臧文试卷3张,英语试卷1张,从中任意抽出一张试卷,恰好是语文试卷的概率是()A.B.C.D.3.(3分)已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数C.反比例函数D.二次函数4.(3分)下列统计图能够显示数据变化趋势的是()A.条形图B.扇形图C.折线图D.直方图5.(3分)如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50°6.(3分)在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2C.y=﹣2x2﹣2D.y=2(x﹣2)2 7.(3分)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤5 8.(3分)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤方程ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有()A.①③④B.②④⑤C.①②⑤D.②③⑤二、填空题:每小题3分,共21分9.(3分)计算:20150﹣|2|=.10.(3分)抛物线y=x2+2x+3的顶点坐标是.11.(3分)如图,在△ABC中,AC=BC,∠B=70°,分别以点A、C为圆心,大于AC的长为半径作弧,两弧相交于点M、N,作直线MN,分别交AC、BC于点D、E,连结AE,则∠AED的度数是°.12.(3分)如果将抛物线y=x2+2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是.13.(3分)如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为.14.(3分)如图,PA为⊙O的切线,A为切点,B是OP与⊙O的交点.若∠P=20°,OA=3,则的长为(结果保留π)15.(3分)如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PA于点C,当△PAB是等腰三角形时,线段BC的长为.三、解答题:本大题共8个小题,满分64分16.(8分)已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.17.(8分)如图,抛物线y1=x2+mx+n与直线y2=x﹣1交于点A(a,﹣2)和B (b,2).(1)求a,b的值;(2)观察图象,直接写出当y1<y2时x的取值范围.18.(9分)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD 的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)19.(9分)某中心校为迎接县教研室举行的师生写字比赛,对教师组进行了预赛,将各位教师成绩划分为A、B、C、D四个等级,绘制了两种不完整的统计图.根据图中提供的信息,解答下列问题:(1)参加写字比赛的教师共有人,扇形统计图中m=,n=,并把条形统计图补充完整.(2)中心校欲从A等级2名男教师2名女教师中随机选取两人,参加教体局决赛,请利用列表法或树状图,求A等级中一男一女参加决赛的概率(男教师分别用代码A1、A2表示,女教师分别用代码B1、B2表示)20.(9分)如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连结DE.(1)若AD=DB,OC=5,求切线AC的长;(2)求证:ED是⊙O的切线.21.(10分)如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上).(1)求小敏到旗杆的距离DF.(结果保留根号)(2)求旗杆EF的高度.(结果保留整数,参考数据:≈1.4,≈1.7)22.(11分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)23.如图,已知抛物线y=ax2﹣5ax+2(a≠0)与y轴交于点C,与x轴交于点A (1,0)和点B.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)若点N是抛物线上的动点,过点N作NH⊥x轴,垂足为H,以B,N,H 为顶点的三角形是否能够与△OBC相似(排除全等的情况)?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由.2015-2016学年河南省周口市太康县初三上学期期末数学试卷参考答案与试题解析一、选择题:每小题3分,共24分,下列各小题均有四个答案,其中只有一个是正确的1.(3分)tan45°的值为()A.B.1C.D.【解答】解:tan45°=1,即tan45°的值为1.故选:B.2.(3分)为备战中考,同学们积极投入复习,卓玛同学的试卷袋里装有语文试卷2张,臧文试卷3张,英语试卷1张,从中任意抽出一张试卷,恰好是语文试卷的概率是()A.B.C.D.【解答】解:∵卓玛同学的试卷袋里装有语文试卷2张,臧文试卷3张,英语试卷1张,∴一共有2+3+1=6种等可能的结果,∵恰好是语文试卷的有2种情况,∴恰好是语文试卷的概率是=.故选:B.3.(3分)已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数C.反比例函数D.二次函数【解答】解:设一次函数解析式为:y=kx+b,由题意得,,解得,,∵k>0,∴y随x的增大而增大,∴A、B错误,设反比例函数解析式为:y=,由题意得,k=﹣4,k<0,∴在每个象限,y随x的增大而增大,∴C错误,当抛物线开口向上,x>1时,y随x的增大而减小.故选:D.4.(3分)下列统计图能够显示数据变化趋势的是()A.条形图B.扇形图C.折线图D.直方图【解答】解:易于显示数据的变化趋势和变化规律的统计图是折线统计图.故选:C.5.(3分)如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50°【解答】解:∵在⊙O中,直径CD垂直于弦AB,∴=,∴∠DOB=2∠C=50°.故选:D.6.(3分)在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2C.y=﹣2x2﹣2D.y=2(x﹣2)2【解答】解:y=(x+2)2的对称轴为x=﹣2,A正确;y=2x2﹣2的对称轴为x=0,B错误;y=﹣2x2﹣2的对称轴为x=0,C错误;y=2(x﹣2)2的对称轴为x=2,D错误.故选:A.7.(3分)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤5【解答】解:当AB与小圆相切,∵大圆半径为5,小圆的半径为3,∴AB=2=8.∵大圆的弦AB与小圆有公共点,即相切或相交,∴8≤AB≤10.故选:A.8.(3分)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤方程ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有()A.①③④B.②④⑤C.①②⑤D.②③⑤【解答】解:∵抛物线开口向下,∴a<0,∵﹣=﹣2,∴b=4a,ab>0,∴①错误,④正确,∵抛物线与x轴交于﹣4,0处两点,∴b2﹣4ac>0,方程ax2+bx=0的两个根为x1=0,x2=﹣4,∴②⑤正确,∵当x=﹣3时y>0,即9a﹣3b+c>0,∴③错误,故正确的有②④⑤.故选:B.二、填空题:每小题3分,共21分9.(3分)计算:20150﹣|2|=﹣1.【解答】解:原式=1﹣2=﹣1.故答案为:﹣1.10.(3分)抛物线y=x2+2x+3的顶点坐标是(﹣1,2).【解答】解:∵y=x2+2x+3=x2+2x+1﹣1+3=(x+1)2+2,∴抛物线y=x2+2x+3的顶点坐标是(﹣1,2).故答案为:(﹣1,2).11.(3分)如图,在△ABC中,AC=BC,∠B=70°,分别以点A、C为圆心,大于AC的长为半径作弧,两弧相交于点M、N,作直线MN,分别交AC、BC于点D、E,连结AE,则∠AED的度数是50°.【解答】解:∵由作图可知,MN是线段AC的垂直平分线,∴CE=AE,∴∠C=∠CAE,∵AC=BC,∠B=70°,∴∠C=40°,∴∠AED=50°,故答案为:50.12.(3分)如果将抛物线y=x2+2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是y=x2+2x+3.【解答】解:设平移后的抛物线解析式为y=x2+2x﹣1+b,把A(0,3)代入,得3=﹣1+b,解得b=4,则该函数解析式为y=x2+2x+3.故答案是:y=x2+2x+3.13.(3分)如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为+1.【解答】解:连接DE.∵BE的长度固定,∴要使△PBE的周长最小只需要PB+PE的长度最小即可,∵四边形ABCD是菱形,∴AC与BD互相垂直平分,∴P′D=P′B,∴PB+PE的最小长度为DE的长,∵菱形ABCD的边长为2,E为BC的中点,∠DAB=60°,∴△BCD是等边三角形,又∵菱形ABCD的边长为2,∴BD=2,BE=1,DE=,∴△PBE的最小周长=DE+BE=+1,故答案为:+1.14.(3分)如图,PA为⊙O的切线,A为切点,B是OP与⊙O的交点.若∠P=20°,OA=3,则的长为π(结果保留π)【解答】解:∵PA切⊙O于A,∴∠PAO=90°,∵∠P=20°,∴∠POA=70°,∴=π,故答案为:π.15.(3分)如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PA于点C,当△PAB是等腰三角形时,线段BC的长为8,,.【解答】解:①当BA=BP时,则AB=BP=BC=8,即线段BC的长为8.②当AB=AP时,如图1,延长AO交PB于点D,过点O作OE⊥AB于点E,则AD⊥PB,AE=AB=4,∴BD=DP,在Rt△AEO中,AE=4,AO=5,∴OE=3,∵∠OAE=∠BAD,∠AEO=∠ADB=90°,∴△AOE∽△ABD,∴,∴BD=,∴BD=PD=,即PB=,∵AB=AP=8,∴∠ABD=∠P,∵∠PAC=∠ADB=90°,∴△ABD∽△CPA,∴,∴CP=,∴BC=CP﹣BP=﹣=;③当PA=PB时,如图2,连接PO并延长,交AB于点F,过点C作CG⊥AB,交AB的延长线于点G,连接OB,则PF⊥AB,∴AF=FB=4,在Rt△OFB中,OB=5,FB=4,∴OF=3,∴FP=8,∵∠PAF=∠ABP=∠CBG,∠AFP=∠CGB=90°,∴△PFB∽△CGB,∴,设BG=t,则CG=2t,∵∠PAF=∠ACG,∠AFP=∠AGC=90°,∴△APF∽△CAG,∴,∴,解得t=,在Rt△BCG中,BC=t=,综上所述,当△PAB是等腰三角形时,线段BC的长为8,,,故答案为:8,,.三、解答题:本大题共8个小题,满分64分16.(8分)已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.【解答】解:∵2a2+3a﹣6=0,即2a2+3a=6,∴原式=6a2+3a﹣4a2+1=2a2+3a+1=6+1=7.17.(8分)如图,抛物线y1=x2+mx+n与直线y2=x﹣1交于点A(a,﹣2)和B (b,2).(1)求a,b的值;(2)观察图象,直接写出当y1<y2时x的取值范围.【解答】解:(1)由﹣2=a﹣1得,a=﹣1,由2=b﹣1得,b=3;(2)由图可知,y1<y2时x的取值范围﹣1<x<3.18.(9分)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD 的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE= 3.5cm时,四边形CEDF是矩形;②当AE=2cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)【解答】(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:3.5;②当AE=2时,四边形CEDF是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:2.19.(9分)某中心校为迎接县教研室举行的师生写字比赛,对教师组进行了预赛,将各位教师成绩划分为A、B、C、D四个等级,绘制了两种不完整的统计图.根据图中提供的信息,解答下列问题:(1)参加写字比赛的教师共有40人,扇形统计图中m=20,n=30,并把条形统计图补充完整.(2)中心校欲从A等级2名男教师2名女教师中随机选取两人,参加教体局决赛,请利用列表法或树状图,求A等级中一男一女参加决赛的概率(男教师分别用代码A1、A2表示,女教师分别用代码B1、B2表示)【解答】解:(1)根据题意得:参加写字比赛的教师共有:4÷10%=40(人),∵n%=16÷40×100%=40%,∴m%=1﹣40%﹣10%﹣30%=20%,∴m=20,n=30;如图:故答案为:40,20,30;(2)画树状图得:∵共有12种等可能的结果,A等级中一男一女参加决赛的有8种情况,∴A等级中一男一女参加决赛的概率为:=.20.(9分)如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连结DE.(1)若AD=DB,OC=5,求切线AC的长;(2)求证:ED是⊙O的切线.【解答】(1)解:连接CD,∵BC是⊙O的直径,∴∠BDC=90°,即CD⊥AB,∵AD=DB,OC=5,∴CD是AB的垂直平分线,∴AC=BC=2OC=10;(2)证明:连接OD,如图所示,∵∠ADC=90°,E为AC的中点,∴DE=EC=AC,∴∠1=∠2,∵OD=OC,∴∠3=∠4,∵AC切⊙O于点C,∴AC⊥OC,∴∠1+∠3=∠2+∠4=90°,即DE⊥OD,∴ED是⊙O的切线.21.(10分)如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上).(1)求小敏到旗杆的距离DF.(结果保留根号)(2)求旗杆EF的高度.(结果保留整数,参考数据:≈1.4,≈1.7)【解答】解:(1)过点A作AM⊥EF于点M,过点C作CN⊥EF于点N,设CN=x,在Rt△ECN中,∵∠ECN=45°,∴EN=CN=x,∴EM=x+0.7﹣1.7=x﹣1,∵BD=5,∴AM=BF=5+x,在Rt△AEM中,∵∠EAM=30°∴=,∴x﹣1=(x+5),解得:x=4+3,即DF=(4+3)(米);(2)由(1)得:EF=x+0.7=4++0.7≈4+3×1.7+0.7≈9.8≈10(米).答:旗杆的高度约为10米.22.(11分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足∠BAD=2∠EAF关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)【解答】【发现证明】证明:如图(1),∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,∴∠GAF=∠FAE,在△GAF和△FAE中,,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴BE+DF=EF.【类比引申】∠BAD=2∠EAF.理由如下:如图(2),延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.故答案是:∠BAD=2∠EAF.【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF,过A作AH⊥GD,垂足为H.∵∠BAD=150°,∠DAE=90°,∴∠BAE=60°.又∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=80米.根据旋转的性质得到:∠ADG=∠B=60°,又∵∠ADF=120°,∴∠GDF=180°,即点G在CD的延长线上.易得,△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵AH=80×=40,HF=HD+DF=40+40(﹣1)=40故∠HAF=45°,∴∠DAF=∠HAF﹣∠HAD=45°﹣30°=15°从而∠EAF=∠EAD﹣∠DAF=90°﹣15°=75°又∵∠BAD=150°=2×75°=2∠EAF∴根据上述推论有:EF=BE+DF=80+40(﹣1)≈109(米),即这条道路EF的长约为109米.23.如图,已知抛物线y=ax2﹣5ax+2(a≠0)与y轴交于点C,与x轴交于点A (1,0)和点B.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)若点N是抛物线上的动点,过点N作NH⊥x轴,垂足为H,以B,N,H 为顶点的三角形是否能够与△OBC相似(排除全等的情况)?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由.【解答】解:(1)∵点A(1,0)在抛物线y=ax2﹣5ax+2(a≠0)上,∴a﹣5a+2=0,∴a=,∴抛物线的解析式为y=x2﹣x+2;(2)抛物线的对称轴为直线x=,∴点B(4,0),C(0,2),设直线BC的解析式为y=kx+b,∴把B、C两点坐标代入线BC的解析式为y=kx+b,得,解得k=﹣,b=2,∴直线BC的解析式y=﹣x+2;(3)方法一:设N(x,x2﹣x+2),分三种情况讨论:①当△OBC∽△HNB时,如图1,=,即=,解得x1=5,x2=4(不合题意,舍去),∴点N坐标(5,2);②当△OBC∽△HBN时,如图2,=,即=﹣,解得x1=2,x2=4(不合题意舍去),∴点N坐标(2,﹣1);③当N(x,x2﹣x+2)在第二象限时,H(x,0)在x轴的负半轴上,∴BH=4﹣x,∵△OBC∽△HNB,∴,即=,得到x2﹣x﹣12=0解得x1=4(舍去);x2=﹣3,∴N点的坐标为(﹣3,14)综上所述,N点的坐标为(5,2)、(2,﹣1)或(﹣3,14).方法二:以B,N,H为顶点的三角形与△OBC相似,∴,,设N(2n,2n2﹣5n+2),H(2n,0),①||=,∴||=2,∴2n1=5,2n2=﹣3,②||=,∴||=,∴2n1=2,2n2=0(舍)综上所述:存在N1(5,2),N2(2,﹣1),N3(﹣3,14),使得以点B、N、H为顶点的三角形与△OBC相似.初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

相关文档
最新文档