福建省漳平市第一中学动量守恒定律试题(含答案)

合集下载

《动量守恒定律》单元测试题含答案

《动量守恒定律》单元测试题含答案

《动量守恒定律》单元测试题含答案一、动量守恒定律 选择题1.如图所示,A 是不带电的球,质量0.5kg A m =,B 是金属小球,带电量为2210C q -=+⨯,质量为0.5kg B m =,两个小球大小相同且均可视为质点。

绝缘细线长0.25m L =,一端固定于O 点,另一端和小球B 相连接,细线能承受的最大拉力为276N 。

整个装置处于竖直向下的匀强电场中,场强大小500N/C E =,小球B 静止于最低点,小球A 以水平速度0v 和小球B 瞬间正碰并粘在一起,不计空气阻力。

A 和B 整体能够做完整的圆周运动且绳不被拉断,210m /s g =。

则小球A 碰前速度0v 的可能值为( )A .27 m /sB .211 m /sC .215 m /sD .219 m /s2.如图所示为水平放置的固定光滑平行直轨道,窄轨间距为L ,宽轨间距为2L 。

轨道处于竖直向下的磁感应强度为B 的匀强磁场中,质量分别为m 、2m 的金属棒a 、b 垂直于导轨静止放置,其电阻分别为R 、2R ,现给a 棒一向右的初速度v 0,经t 时间后两棒达到匀速运动两棒运动过程中始终相互平行且与导轨良好接触,不计导轨电阻,b 棒一直在宽轨上运动。

下列说法正确的是( )A .a 棒开始运动时的加速度大小为2203B L v RmB .b 棒匀速运动的速度大小为03v C .整个过程中通过b 棒的电荷量为023mv BL D .整个过程中b 棒产生的热量为203mv 3.如图所示,固定的光滑金属水平导轨间距为L ,导轨电阻不计,左端接有阻值为R 的电阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是A .导体棒ab 刚好匀速运动时的速度22FR vB L =B .通过电阻的电荷量2Ft q BL= C .导体棒的位移22244FtRB L mFR x B L-= D .电阻放出的焦耳热2222244232tRF B L mF R Q B L -= 4.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( )A .在A 离开竖直墙前,A 、B 与弹簧组成的系统机械能守恒,之后不守恒B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒C .在A 离开竖直墙后,A 、B 速度相等时的速度是223E m D .在A 离开竖直墙后,弹簧的弹性势能最大值为3E 5.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是A .AB 组成的系统机械能守恒B .B 运动的最大速度大于1m/sC .B 物体上升到最高点时与初位置的高度差为0.05mD .AB 在最高点的加速度大小等于10m/s 2 6.如图所示,足够长的光滑细杆PQ 水平固定,质量为2m 的物块A 穿在杆上,可沿杆无摩擦滑动,质量为0.99m 的物块B 通过长度为L 的轻质细绳竖直悬挂在A 上,整个装置处于静止状态,A 、B 可视为质点。

(完整word)动量守恒定律经典习题(带答案)

(完整word)动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0。

2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。

(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1。

6kg,木块与小车之间的摩擦系数为0。

2(g取10m/s2).设小车足够长,求:(1)木块和小车相对静止时小车的速度。

(2)从木块滑上小车到它们处于相对静止所经历的时间。

(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。

例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。

游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。

为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。

若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1。

分析:以物体和车做为研究对象,受力情况如图所示。

在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。

因此地面给车的支持力远大于车与重物的重力之和。

系统所受合外力不为零,系统总动量不守恒。

但在水平方向系统不受外力作用,所以系统水平方向动量守恒。

以车的运动方向为正方向,由动量守恒定律可得:车 重物初:v 0=5m/s 0末:v v Mv 0=(M+m)vs m v m N M v /454140=⨯+=+=即为所求。

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)一、动量守恒定律 选择题1.质量相等的A 、B 两球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是7 kg·m/s ,B 球的动量是5kg·m/s ,当A 球追上B 球发生碰撞,则碰撞后A 、B 两球的动量可能值是( )A .p A =6 kg·m/s ,pB =6 kg·m/sB .p A =3 kg·m/s ,p B =9 kg·m/sC .p A =-2 kg·m/s ,p B =14 kg·m/sD .p A =-4 kg·m/s ,p B =17 kg·m/s2.如图,斜面体固定在水平面上,斜面足够长,在斜面底端给质量为m 的小球以平行斜面向上的初速度1v ,当小球回到出发点时速率为2v 。

小球在运动过程中除重力和弹力外,另受阻力f (包含摩擦阻力),阻力f 大小与速率成正比即f kv =。

则小球在斜面上运动总时间t 为( )A .12sin v v t g θ+=⋅B .12sin v v t g θ-=⋅ C .1212sin 2mv mv t v v mg k θ+=+⋅+ D .1212sin 2mv mv t v v mg k θ-=+⋅- 3.如图所示,光滑的半圆槽置于光滑的地面上,且一定高度自由下落的小球m 恰能沿半圆槽的边缘的切线方向滑入原先静止的槽内,对此情况,以下说法正确的是( )A .小球第一次离开槽时,将向右上方做斜抛运动B .小球第一次离开槽时,将做竖直上抛运动C .小球离开槽后,仍能落回槽内,而槽将做往复运动D .槽一直向右运动4.如图所示,质量为M 、带有半径为R 的四分之一光滑圆弧轨道的滑块静置于光滑水平地面上,且圆弧轨道底端与水平面平滑连接,O 为圆心。

质量为m 的小滑块以水平向右的初速度0v 冲上圆弧轨道,恰好能滑到最高点,已知M =2m 。

动量守恒定律练习题含答案及解析.doc

动量守恒定律练习题含答案及解析.doc

动量守恒定律练习题含答案及解析一、高考物理精讲专题动量守恒定律1. 水平放置长为 L=4.5m 的传送带顺时针转动,速度为v=3m/s ,质量为 m 2=3kg 的小球被长为 l 1m 的轻质细线悬挂在 O 点,球的左边缘恰于传送带右端 B 对齐;质量为 m 1=1kg的物块自传送带上的左端A 点以初速度 v 0=5m/s 的速度水平向右运动,运动至B 点与球 m 2发生碰撞,在极短的时间内以碰撞前速率的1反弹,小球向右摆动一个小角度即被取走。

2已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度 g 10m/s 2。

求:( 1)碰撞后瞬间,小球受到的拉力是多大?( 2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少?【答案】( 1) 42N ( 2) 13.5J【解析】【详解】解:设滑块 m1与小球碰撞前一直做匀减速运动,根据动能定理:m gL = 1mv 2 1 m v 2121 121 0解之可得: v 1 =4m/s因为 v 1 v ,说明假设合理m 1v 1 = 1 2滑块与小球碰撞,由动量守恒定律: 2m 1v 1+m 2v 2解之得: v 2 =2m/s碰后,对小球,根据牛顿第二定律:F m 2 gm 2 v 22l小球受到的拉力:F 42N(2)设滑块与小球碰撞前的运动时间为t 1 ,则 L1v 0 v 1 t 12解之得: t 1 1s在这过程中,传送带运行距离为: S 1 vt 1 3m 滑块与传送带的相对路程为:X 1L X 1 1.5m设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为 t 2则根据动量定理:m 1 gt 2m 11v 12解之得: t2 2s滑块向左运动最大位移: x m 1 1v1 t 2=2m2 2因为 x m L ,说明假设成立,即滑块最终从传送带的右端离开传送带1再考虑到滑块与小球碰后的速度2 v1< v ,说明滑块与小球碰后在传送带上的总时间为2t2在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程X 22vt212m因此,整个过程中,因摩擦而产生的内能是Q m1 g x1 x2=13.5J2.如图:竖直面内固定的绝缘轨道abc R=3 m的光滑圆弧段bc与长l=1.5 m的粗,由半径糙水平段 ab 在 b 点相切而构成, O 点是圆弧段的圆心,Oc 与 Ob 的夹角θ=37°;过 f 点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C 的匀强电场, Ocb 的外侧有一长度足够长、宽度 d =1.6 m 的矩形区域 efgh, ef 与 Oc 交于 c 点, ecf 与水平向右的方向所成的夹角为β(53 °≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3× 10-3 kg、电荷量 q=3× l0-3 C 的带正电小物体Q 静止在圆弧轨道上 b 点,质量 m1=1.5× 10-3 kg 的不带电小物体 P 从轨道右端 a 以 v0=8 m/s 的水平速度向左运动,P、 Q 碰撞时间极短,碰后 P 以 1 m/s 的速度水平向右弹回.已知P 与 ab 间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37° =0.6, cos37° =0.8,重力加速度大小g=10m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小 B1;(3)当区域 efgh 内所加磁场的磁感应强度为B2 =2T 时,要让物体Q 从 gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】 (1) F N 4.6 10 2 N (2) B1 1.25T(3) t 127s ,1900和21430 360【解析】【详解】解: (1)设 P 碰撞前后的速度分别为 v 1 和 v 1 , Q 碰后的速度为 v 2 从 a 到 b ,对,由动能定理得: 1212P- m 1gl2 m 1v 12m 1v解得: v 1 7m/s碰撞过程中,对 P , Q 系统:由动量守恒定律: m 1v 1 m 1v 1 m 2v 2取向左为正方向,由题意 v 11m/s,解得: v 24m/sb 点:对 Q ,由牛顿第二定律得: F Nm 2 g m 2 v 2 2R解得 : F N 4.6 10 2 N(2)设 Q 在 c 点的速度为 v c ,在 b 到 c 点,由机械能守恒定律:m 2 gR(1 cos )1m 2v c21m 2v 2 22 2解得: v c 2m/s进入磁场后: Q 所受电场力 F qE 3 10 2Nm 2 g ,Q在磁场做匀速率圆周运动由牛顿第二定律得:qv c B 1m 2v c2r 1Q 刚好不从 gh 边穿出磁场,由几何关系: r 1 d 1.6m解得: B 11.25T(3)当所加磁场 B 22T ,r2m 2v c1mqB 2要让 Q 从 gh 边穿出磁场且在磁场中运动的时间最长,则 Q 在磁场中运动轨迹对应的圆心角最大,则当 gh 边或 ef 边与圆轨迹相切,轨迹如图所示:d r2 设最大圆心角为,由几何关系得:cos(180)r2 解得:1272 m2运动周期: TqB2则 Q 在磁场中运动的最长时间:t T 127?2 m2 127 s360 360 qB2 360此时对应的角: 1 90 和2 1433.如图甲所示,物块A、 B 的质量分别是m A B=4.0kg 和 m =3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块 B 右侧与竖直墙相接触.另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4s 时与物块 A 相碰,并立即与 A 粘在一起不再分开,物块 C 的 v-t 图象如图乙所示.求:①物块 C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P?【答案】(1) 2kg( 2) 9J【解析】试题分析:①由图知, C 与 A 碰前速度为 v1= 9 m/s,碰后速度为v2= 3 m/s , C 与 A 碰撞过程动量守恒. m c 1 AC2v =( m + m ) v即 m c= 2 kg② 12 s 时 B 离开墙壁,之后A、 B、C 及弹簧组成的系统动量和机械能守恒,且当A、 C 与B的速度相等时,弹簧弹性势能最大(m A+ m C) v3=( m A+ m B+ m C) v4得E p= 9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.4.如图所示,质量分别为m1和m2的两个小球在光滑水平面上分别以速度v1、 v2同向运动,并发生对心碰撞,碰后 m2被右侧墙壁原速弹回,又与 m1碰撞,再一次碰撞后两球都静止.求第一次碰后 m1球速度的大小 .【答案】 【解析】设两个小球第一次碰后 m 1 和 m 2 速度的大小分别为和 ,由动量守恒定律得:( 4 分)两个小球再一次碰撞, (4 分)得:( 4 分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得5. 如图所示,一辆质量M=3 kg 的小车 A 静止在光滑的水平面上,小车上有一质量 m=l kg的光滑小球 B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为 L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。

《动量守恒定律》单元测试题含答案

《动量守恒定律》单元测试题含答案

《动量守恒定律》单元测试题含答案一、动量守恒定律 选择题1.如图所示,一块质量为M 的木板停在光滑的水平面上,木板的左端有挡板,挡板上固定一个小弹簧.一个质量为m 的小物块(可视为质点)以水平速度v 0从木板的右端开始向左运动,与弹簧碰撞后(弹簧处于弹性限度内),最终又恰好停在木板的右端.根据上述情景和已知量,可以求出 ( )A .弹簧的劲度系数B .弹簧的最大弹性势能C .木板和小物块组成的系统最终损失的机械能D .若再已知木板长度l 可以求出木板和小物块间的动摩擦因数2.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块a 以某一初速度0v 从左侧滑上木板。

已知物块a 、b 与木板间的摩擦因数分别为a μ、b μ,木块与木板质量均为m ,a 、b 之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力。

下列说法正确的是( )A .若没有物块从木板上滑下,则无论0v 多大整个过程摩擦生热均为2013mvB .若22ab a μμμ<≤,则无论0v 多大,a 都不会从木板上滑落C .若032a v gL μ≤,则ab 一定不相碰 D .若2b a μμ>,则a 可能从木板左端滑落3.如图所示,将一光滑的、质量为4m 、半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m 的物块.今让一质量也为m 的小球自左侧槽口A 的正上方高为R 处从静止开始落下,沿半圆槽切线方向自A 点进入槽内,则以下结论中正确的是( )A .小球在半圆槽内第一次由A 到最低点B 的运动过程中,槽的支持力对小球做负功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为41︰C .小球第一次在半圆槽的最低点B 时对槽的压力为133mg D .物块最终的动能为15mgR 4.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg =,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/sB .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J5.如图所示,一质量为0.5 kg 的一块橡皮泥自距小车上表面1.25 m 高处由静止下落,恰好落入质量为2 kg 、速度为2.5 m/s 沿光滑水平地面运动的小车上,并与小车一起沿水平地面运动,取210m/s g =,不计空气阻力,下列说法正确的是A .橡皮泥下落的时间为0.3 sB .橡皮泥与小车一起在水平地面上运动的速度大小为2 m/sC .橡皮泥落入小车的过程中,橡皮泥与小车组成的系统动量守恒D .整个过程中,橡皮泥与小车组成的系统损失的机械能为7.5 J6.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a 自由下落到b ,再从b 开始以恒力制动竖直下落到c 停下.已知跳楼机和游客的总质量为m ,ab 高度差为2h ,bc 高度差为h ,重力加速度为g .则A .从a 到b 与从b 到c 的运动时间之比为2:1B.从a到b,跳楼机座椅对游客的作用力与游客的重力大小相等C.从a到b,跳楼机和游客总重力的冲量大小为m ghD.从b到c,跳楼机受到制动力的大小等于2mg7.如图所示,小车质量为M,小车顶端为半径为R的四分之一光滑圆弧,质量为m的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g为当地重力加速度)()A.若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为mgB.若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为32 mgC.若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gRmM M m+D.若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gRMm M m+8.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把它在空中自由下落的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,忽略空气阻力,则( )A.过程Ⅰ中钢珠动量的改变量小于重力的冲量B.过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小C.过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小D.过程Ⅱ中钢珠的动量改变量等于阻力的冲量9.如图所示,小车的上面是由中间凸起的两个对称曲面组成,整个小车的质量为m,原来静止在光滑的水平面上。

《动量守恒定律》单元测试题(含答案)

《动量守恒定律》单元测试题(含答案)

《动量守恒定律》单元测试题(含答案)一、动量守恒定律选择题1.如图所示,一质量为m0=0.05 kg的子弹以水平初速度v0=200 m/s打中一放在水平地面上A点的质量为m=0.95 kg的物块,并留在物块内(时间极短,可忽略),随后物块从A点沿AB方向运动,与距离A点L=5 m的B处的墙壁碰撞前瞬间的速度为v1=8 m/s,碰后以v2=6 m/s的速度反向运动直至静止,测得物块与墙碰撞的时间为t=0.05 s,g取10 m/s2,则A.物块从A点开始沿水平面运动的初速度v=10 m/sB.物块与水平地面间的动摩擦因数μ=0.36C.物块与墙碰撞时受到的平均作用力大小F=266 ND.物块在反向运动过程中产生的摩擦热Q=18 J2.如图所示,物体A、B的质量均为m=0.1kg,B静置于劲度系数k=100N/m竖直轻弹簧的上端且B不与弹簧连接,A从距B正上方h=0.2m处自由下落,A与B相碰并粘在一起.弹簧始终在弹性限度内,g=10m/s2.下列说法正确的是A.AB组成的系统机械能守恒B.B运动的最大速度大于1m/sC.B物体上升到最高点时与初位置的高度差为0.05mD.AB在最高点的加速度大小等于10m/s23.如图所示,质量为m的小球从距离地面高度为H的A点由静止释放,落到地面上后又陷入泥潭中,由于受到阻力作用,到达距地面深度为h的B点时速度减为零不计空气阻力,重力加速度为g。

则关于小球下落过程中,说法正确的是A.整个下落过程中,小球的机械能减少了mgHB.整个下落过程中,小球克服阻力做的功为mg(H+h)C.在陷入泥潭过程中,小球所受阻力的冲量大于mD.在陷入泥潭过程中,小球动量的改变量的大小等于m4.某研究小组通过实验测得两滑块碰撞前后运动的实验数据,得到如图所示的位移—时间图象.图中的线段a、b、c分别表示沿光滑水平面上同一条直线运动的滑块Ⅰ、Ⅱ和它们发生正碰后结合体的位移变化关系.已知相互作用时间极短,由图象给出的信息可知()A.碰前滑块Ⅰ与滑块Ⅱ速度大小之比为5∶2B.碰前滑块Ⅰ的动量大小比滑块Ⅱ的动量大小大C.碰前滑块Ⅰ的动能比滑块Ⅱ的动能小D.滑块Ⅰ的质量是滑块Ⅱ的质量的1 65.在光滑水平面上,有两个小球A、B沿同一直线同向运动(B在前),已知碰前两球的动量分别为pA=10 kg·m/s、pB=13 kg·m/s,碰后它们动量的变化分别为ΔpA、ΔpB.下列数值可能正确的是( )A.ΔpA=-3 kg·m/s、ΔpB=3 kg·m/sB.ΔpA=3 kg·m/s、ΔpB=-3 kg·m/sC.ΔpA=-20 kg·m/s、ΔpB=20 kg·m/sD.ΔpA=20kg·m/s、ΔpB=-20 kg·m/s6.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a自由下落到b,再从b开始以恒力制动竖直下落到c停下.已知跳楼机和游客的总质量为m,ab 高度差为2h,bc高度差为h,重力加速度为g.则A .从a 到b 与从b 到c 的运动时间之比为2:1B .从a 到b ,跳楼机座椅对游客的作用力与游客的重力大小相等C .从a 到b ,跳楼机和游客总重力的冲量大小为m ghD .从b 到c ,跳楼机受到制动力的大小等于2mg7.如图所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m =2M 的小物块.现使木箱瞬间获得一个水平向左、大小为v 0的初速度,下列说法正确的是A .最终小物块和木箱都将静止B .最终小物块和木箱组成的系统损失机械能为203Mv C .木箱速度水平向左、大小为02v 时,小物块的速度大小为04v D .木箱速度水平向右、大小为03v . 时,小物块的速度大小为023v 8.如图所示,A 是不带电的球,质量0.5kg A m =,B 是金属小球,带电量为2210C q -=+⨯,质量为0.5kg B m =,两个小球大小相同且均可视为质点。

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)一、动量守恒定律选择题1.三个完全相同的小球a、b、c,以相同的速度在光滑水面上分别与另外三个不同的静止小球相撞后,小球a被反向弹回,小球b与被碰球粘合在一起仍沿原方向运动,小球c恰好静止.比较这三种情况,以下说法中正确的是()A.a球获得的冲量最大B.b球损失的动能最多C.c球克服阻力做的功最多D.三种碰撞过程,系统动量都是守恒的2.如图所示,将质量为M1、半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M2的物块.今让一质量为m的小球自左侧槽口A的正上方h高处从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是A.小球在槽内运动的全过程中,小球、半圆槽组成的系统机械能守恒B.小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统水平动量守恒C.若小球能从C点离开半圆槽,则其一定会做竖直上抛运动D.若小球刚好到达C点,则12mh RM M=+3.如图所示,轻弹簧的一端固定在竖直墙上,一质量为2m的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,一质量为m的小物块从槽上高h处开始下滑,重力加速度为g,下列说法正确的是A.物体第一次滑到槽底端时,槽的动能为3mghB.物体第一次滑到槽底端时,槽的动能为6mghC.在压缩弹簧的过程中,物块和弹簧组成的系统动量守恒D.物块第一次被弹簧反弹后能追上槽,但不能回到槽上高h处4.如图所示,一木块静止在长木板的左端,长木板静止在水平面上,木块和长木板的质量相等均为M,木块和长木板之间、长木板和地面之间的动摩擦因数都为μ。

一颗质量为5Mm=的子弹以一定速度水平射入木块并留在其中,木块在长木板上运动的距离为L;静止后第二颗相同的子弹以相同的速度射入长木板并留在长木板中,则( )A .第一颗子弹射入木块前瞬间的速度为2gL μB .木块运动的加速度大小为g μC .第二颗子弹射入长木板后,长木板运动的加速度大小为2g μD .最终木块静止在距离长木板左端12L 处 5.—粒钢珠从静止状态开始自由下落,然后陷入泥潭中静止.若把在空中下落的过程称为过程Ⅰ,进入泥潭直到停止的过程称为过程Ⅱ, 不计空气阻力,则( )A .过程Ⅰ中的钢珠动量的改变量的大小大于过程Ⅱ中合力的冲量的大小B .过程Ⅱ中合力的冲量的大小等于过程Ⅰ中重力冲量的大小C .过程Ⅱ中钢珠克服阻力所做的功等于过程Ⅰ中重力做功D .过程Ⅰ中的钢珠动量的改变量小于过程Ⅱ中钢珠的重力的冲量6.如图所示,光滑弧形滑块P 锁定在光滑水平地面上,其弧形底端切线水平,小球Q (视为质点)的质量为滑块P 的质量的一半,小球Q 从滑块P 顶端由静止释放,Q 离开P 时的动能为1k E .现解除锁定,仍让Q 从滑块顶端由静止释放,Q 离开P 时的动能为2k E ,1k E 和2k E 的比值为( )A .12B .34C .32D .437.在采煤方法中,有一种方法是用高压水流将煤层击碎而将煤采下.今有一采煤用水枪,由枪口射出的高压水流速度为v .设水的密度为ρ,水流垂直射向煤层表面,若水流与煤层作用后速度减为零,则水在煤层表面产生的压强为( )A .2v ρB .2 2v ρC .2 v ρD .22v ρ8.如图所示,MN 和PQ 是电阻不计的平行金属导轨,其间距为L ,固定在水平面上,导轨弯曲部分光滑,平直部分粗糙,右端接一个阻值为R 的定值电阻,平直部分导轨左侧区域有宽度为d 、方向竖直向上、磁感应强度大小为B 的匀强磁场。

动量守恒定律检测题(有答案)Microsoft Office Word 97-2003 文档 - 副本

动量守恒定律检测题(有答案)Microsoft Office Word 97-2003 文档 - 副本

动量守恒定律检测题一、选择题:本题共10小题,每小题45分。

在每小题给出的四个选项中,第1~6题只有一项符合题目要求,第7~10题有多项符合题目要求。

全部选对的得4分,选对但不全的得2分,有选错的得0分。

1.如图甲所示,一轻弹簧上端固定,下端悬挂着质量为m的物体A,其静止点为O,然后再用细线在A下面挂上另一个质量也为m的物体B(如图乙所示),平衡后将细线剪断,当物体A弹回到O点时的速度为v,而此时物体B下落的速度为u,不计空气阻力,则在这段时间里弹簧的弹力对物体A的冲量大小为(D)A.m v B.mu C.m(v-u) D.m(v+u)2.光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为mB=2mA,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则(A)A.左方是A球,碰撞后A、B两球速度大小之比为2∶5B.左方是A球,碰撞后A、B两球速度大小之比为1∶10C.右方是A球,碰撞后A、B两球速度大小之比为2∶5D.右方是A球,碰撞后A、B两球速度大小之比为1∶103.高空作业须系安全带,如果质量为m的高空作业人员不慎跌落,从开始跌落到安全带对人刚刚产生作用前人下落的距离为h(可视为自由落体运动).此后经历时间t安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( A )A. +mgB. ﹣mgC. +mgD. ﹣mg4.如图所示,质量为M的木块位于光滑水平面上,在木块与墙之间用轻弹簧连接,开始时木块静止在A位置.现有一质量为m的子弹以水平速度v0射向木块并嵌入其中,则当木块回到A位置时的速度v以及此过程中墙对弹簧的冲量I的大小分别为(B)A. v= ,I=0B. v= ,I=2mv0C. v= ,I=D. v= ,I=2mv05.如图所示,A、B两物体质量分别为m1和m2置于光滑水平面上,且m1>m2 ,相距较远.将两个大小均为F的力,同时分别作用在A、B上经相同距离后,撤去两个力,两物体发生碰撞并粘在一起后将(C)A. 停止运动B. 向左运动C. 向右运动D. 运动方向不能确定6.如图所示,光滑水平面上,质量为m的小球A和质量为m的小球B通过轻质弹簧相连并处于静止状态,弹簧处于自由伸长状态;质量为m的小球C以初速度v0沿AB连线向右匀速运动,并与小球A发生弹性正碰.在小球B的右侧某位置固定一块弹性挡板(图中未画出),当小球B与挡板发生正碰后立刻将挡板撤走,不计所有碰撞过程中的机械能损失,弹簧始终处于弹性限度以内,小球B与固定挡板的碰撞时间极短,碰后小球B的速度大小不变,但方向相反,则B与挡板碰后弹簧弹性势能的最大值Em可能是(BC)A. mv02B.C. D.7.如图所示,质量分别为m和2m的A、B两个木块间用轻弹簧相连,放在光滑水平面上,A靠紧竖直墙.用水平力F将B向左压,使弹簧被压缩一定长度,静止后弹簧储存的弹性势能为E.这时突然撤去F,关于A、B和弹簧组成的系统,下列说法中正确的是(BD)A. 撤去F后,系统动量守恒,机械能守恒B. 撤去F后,A离开竖直墙前,系统动量不守恒,机械能守恒C. 撤去F后,A离开竖直墙后,弹簧的弹性势能最大值为ED. 撤去F后,A离开竖直墙后,弹簧的弹性势能最大值为8.如图所示,木块B与水平面间的摩擦不计,子弹A沿水平方向射入木块并在极短时间内相对于木块静止下来,然后木块压缩弹簧至弹簧最短.将子弹射入木块到刚相对于静止的过程称为I,此后木块压缩的过程称为Ⅱ,则(AD )A. 过程Ⅰ中,子弹和木块所组成的系统机械能不守恒,动量守恒B. 过程Ⅰ中,子弹、弹簧和木块所组成的系统机械能不守恒,动量也不守恒C. 过程Ⅱ中,子弹、弹簧和木块所组成的系统机械能守恒,动量也守恒D. 过程Ⅱ中,子弹、弹簧和木块所组成的系统机械能守恒,动量不守恒9.如图所示,质量为M的楔形物体静止在光滑的水平地面上,其斜面光滑且足够长,与水平方向的夹角为θ.一个质量为m的小物块从斜面底端沿斜面向上以初速度v0开始运动.当小物块沿斜面向上运动到最高点时,速度大小为v,距地面高度为h,则下列关系式中正确的是( BD )A. mv0=(m+M)vB. mv0cosθ=(m+M)vC. mgh= m(v0sinθ)2D. mgh+ (m+M)v2= mv0210.A、B两球沿一直线运动并发生正碰,如图所示为两球碰撞前后的位移时间图象.a、b 分别为A、B两球碰前的位移图象,C为碰撞后两球共同运动的位移图象,若A球质量是m=2kg,则由图象判断下列结论正确的是(BCD )A. A,B碰撞前的总动量为3kg•m/sB. 碰撞时A对B所施冲量为﹣4N•sC. 碰撞前后A的动量变化为4kg•m/sD. 碰撞中A,B两球组成的系统损失的动能为10J二、非选择题:本大题共6小题,共60分。

《动量守恒定律》单元测试题(含答案)

《动量守恒定律》单元测试题(含答案)

《动量守恒定律》单元测试题(含答案)一、动量守恒定律 选择题1.质量为m 、半径为R 的小球,放在半径为3R 、质量为3m 的大空心球内,大球开始静止在光滑水平面上。

当小球从如图所示的位置(两球心在同一水平面上)无初速度沿内壁滚到最低点时,大球移动的距离是( )A .2RB .125RC .4RD .34R 2.A 、B 两小球在光滑水平面上沿同一直线向同一方向运动,A 球的动量为5kg •m /s ,B 球的动量为7kg •m /s ,当A 球追上B 球时发生对心碰撞,则碰撞后A 、B 两球动量的可能值为( )A .''6/6/AB P kg m s P kg m s =⋅=⋅, B .''3/9/A B P kg m s P kg m s =⋅=⋅,C .''2/14/A B P kg m s P kg m s =-⋅=⋅,D .''5/17/A B P kg m s P kg m s =-⋅=⋅,3.水上飞行运动使用的是一种叫“喷射式悬浮飞行器”的装置,也称为“喷水飞行背包”,它通过向下喷射高压水柱的方式将操控者托举在水面 上空,利用脚上喷水装置产生的反冲动力,让你可以在水面之上腾空而起,另外配备有手动控 制的喷嘴,用于稳定空中飞行姿态.如图所示运动员在水上做飞行运动表演.他操控喷射式悬浮飞行器将水带竖直送上来的水反转180°后向下喷出,令自己悬停在空中.已知运动员与装备的总质量为100 kg ,两个圆管喷嘴的直径均为10cm ,已知重力加速度大小g =10m/s 2,水的密度ρ=1.0×103kg/cm 3,则喷嘴处喷水的速度大约为A .3.0 m/sB .5.4 m/sC .8.0 m/sD .10.2 m/s4.关于系统动量守恒的说法正确的是 ( ) ①只要系统所受的合外力为零,系统动量就守恒②只要系统内有摩擦力,动量就不可能守恒③系统所受合外力不为零,其动量一定不守恒,但有可能在某一方向上守恒④系统如果合外力的冲量远小于内力的冲量时,系统可近似认为动量守恒A .①②③B .①②④C .①③④D .②③④5.在光滑水平面上,有两个小球A 、B 沿同一直线同向运动(B 在前),已知碰前两球的动量分别为pA =10 kg·m/s 、pB =13 kg·m/s ,碰后它们动量的变化分别为ΔpA 、ΔpB .下列数值可能正确的是( )A .ΔpA =-3 kg·m/s 、ΔpB =3 kg·m/sB .ΔpA =3 kg·m/s 、ΔpB =-3 kg·m/sC .ΔpA =-20 kg·m/s 、ΔpB =20 kg·m/sD .ΔpA =20kg·m/s 、ΔpB =-20 kg·m/s6.如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6kg·m/s ,运动中两球发生碰撞,碰撞后A 球的动量增量为-4kg·m/s ,则( )A .左方是A 球,碰撞后A 、B 两球速度大小之比为2:5B .左方是A 球,碰撞后A 、B 两球速度大小之比为1:10C .右方是A 球,碰撞后A 、B 两球速度大小之比为2:5D .右方是A 球,碰撞后A 、B 两球速度大小之比为1:107.如图所示,质量为M 的木板静止在光滑水平面上,木板左端固定一轻质挡板,一根轻弹簧左端固定在挡板上,质量为m 的小物块从木板最右端以速度v 0滑上木板,压缩弹簧,然后被弹回,运动到木板最右端时与木板相对静止。

《动量守恒定律》单元测试题含答案

《动量守恒定律》单元测试题含答案

《动量守恒定律》单元测试题含答案一、动量守恒定律 选择题1.如图所示,一轻杆两端分别固定a 、b 两个半径相等的光滑金属球,a 球质量大于b 球质量.整个装置放在光滑的水平面上,将此装置从图示位置由静止释放,则( )A .在b 球落地前瞬间,a 球的速度方向向右B .在b 球落地前瞬间,a 球的速度方向向左C .在b 球落地前的整个过程中,轻杆对b 球的冲量为零D .在b 球落地前的整个过程中,轻杆对b 球做的功为零2.如图所示,质量10.3kg m =的小车静止在光滑的水平面上,车长 1.5m l =,现有质量20.2kg m =可视为质点的物块,以水平向右的速度0v 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数0.5μ=,取2g=10m/s ,则( )A .物块滑上小车后,系统动量守恒和机械能守恒B .增大物块与车面间的动摩擦因数,摩擦生热不变C .若0 2.5m/s v =,则物块在车面上滑行的时间为0.24sD .若要保证物块不从小车右端滑出,则0v 不得大于5m/s3.如图,在光滑水平面上放着质量分别为2m 和m 的A 、B 两个物块,弹簧与A 、B 栓连,现用外力缓慢向左推B 使弹簧压缩,此过程中推力做功W 。

然后撤去外力,则( )A .从撤去外力到A 离开墙面的过程中,墙面对A 的冲量大小为mWB .当A 离开墙面时,B 2mWC .A 离开墙面后,A 89W mD .A 离开墙面后,弹簧的最大弹性势能为23W 4.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( )A.在A离开竖直墙前,A、B与弹簧组成的系统机械能守恒,之后不守恒B.在A离开竖直墙前,A、B系统动量不守恒,之后守恒C.在A离开竖直墙后,A、B速度相等时的速度是223EmD.在A离开竖直墙后,弹簧的弹性势能最大值为3E5.某研究小组通过实验测得两滑块碰撞前后运动的实验数据,得到如图所示的位移—时间图象.图中的线段a、b、c分别表示沿光滑水平面上同一条直线运动的滑块Ⅰ、Ⅱ和它们发生正碰后结合体的位移变化关系.已知相互作用时间极短,由图象给出的信息可知()A.碰前滑块Ⅰ与滑块Ⅱ速度大小之比为5∶2B.碰前滑块Ⅰ的动量大小比滑块Ⅱ的动量大小大C.碰前滑块Ⅰ的动能比滑块Ⅱ的动能小D.滑块Ⅰ的质量是滑块Ⅱ的质量的166.如图所示,将质量为M1、半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M2的物块.今让一质量为m的小球自左侧槽口A的正上方h高处从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是A.小球在槽内运动的全过程中,小球、半圆槽组成的系统机械能守恒B.小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统水平动量守恒C.若小球能从C点离开半圆槽,则其一定会做竖直上抛运动D.若小球刚好到达C点,则12mh RM M=+7.如图所示,两个小球A、B在光滑水平地面上相向运动,它们的质量分别为m A=4kg,m B=2kg,速度分别是v A=3m/s(设为正方向),v B=-3m/s.则它们发生正碰后,速度的可能值分别为()A .v A ′=1 m/s ,vB ′=1 m/sB .v A ′=4 m/s ,v B ′=-5 m/sC .v A ′=2 m/s ,v B ′=-1 m/sD .v A ′=-1 m/s ,v B ′=-5 m/s8.如图所示,在光滑的水平杆上套有一个质量为m 的滑环.滑环上通过一根不可伸缩的轻绳悬挂着一个质量为M 的物块(可视为质点),绳长为L .将滑环固定时,给物块一个水平冲量,物块摆起后刚好碰到水平杆;若滑环不固定时,仍给物块以同样的水平冲量,则( )A .给物块的水平冲量为2M gLB .物块上升的最大高度为mL m M+ C .物块上升最高时的速度为2m gL D .物块在最低点时对细绳的拉力3Mg9.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则A .子弹刚穿出木块时,木块的速度为0()m v v M - B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒D .木块上升的最大高度为2202mv mv Mg- 10.如图所示,光滑弧形滑块P 锁定在光滑水平地面上,其弧形底端切线水平,小球Q (视为质点)的质量为滑块P 的质量的一半,小球Q 从滑块P 顶端由静止释放,Q 离开P 时的动能为1k E .现解除锁定,仍让Q 从滑块顶端由静止释放,Q 离开P 时的动能为2k E ,1k E 和2k E 的比值为( )A.12B.34C.32D.4311.如图所示,光滑金属轨道由圆弧部分和水平部分组成,圆弧轨道与水平轨道平滑连接,水平部分足够长,轨道间距为L=1m,平直轨道区域有竖直向上的匀强磁场,磁感应强度为IT,同种材料的金属杆a、b长度均为L,a放在左端弯曲部分高h=0.45m处,b放在水平轨道上,杆ab的质量分别为m a=2kg,m b=1kg,杆b的电阻R b=0.2Ω,现由静止释放a,已知杆a、b运动过程中不脱离轨道且不相碰,g取10m/s2,则()A.a、b匀速运动时的速度为2m/sB.当b的速度为1m/s时,b的加速度为3.75m/s2C.运动过程中通过b的电量为2CD.运动过程中b产生的焦耳热为1.5J12.在真空中的光滑水平绝缘面上有一带电小滑块.开始时滑块静止.若在滑块所在空间加一水平匀强电场E1,持续一段时间后立即换成与E1相反方向的匀强电场E2.当电场E2与电场E1持续时间相同时,滑块恰好回到初始位置,且具有动能k E.在上述过程中,E1对滑块的电场力做功为W1,冲量大小为I1;E2对滑块的电场力做功为W2,冲量大小为I2.则A.I1= I2B.4I1= I2C.W1= 0.25k E W2=0.75k E D.W1= 0.20k E W2=0.80k E13.如图所示,一轻质弹簧固定在墙上,一个质量为m的木块以速度v0从右侧沿光滑水平面向左运动并与弹簧发生相互作用。

动量动量守恒定律专题练习含答案.doc

动量动量守恒定律专题练习含答案.doc

动量动量守恒定律专题练习含答案.doc动量动量守恒定律⼀、动量和冲量1、关于物体的动量和动能,下列说法中正确的是:A 、⼀物体的动量不变,其动能⼀定不变B 、⼀物体的动能不变,其动量⼀定不变C 、两物体的动量相等,其动能⼀定相等D 、两物体的动能相等,其动量⼀定相等2、两个具有相等动量的物体A 、B ,质量分别为m A 和m B ,且m A >m B ,⽐较它们的动能,则:A 、B 的动能较⼤ B 、A 的动能较⼤C 、动能相等D 、不能确定3、恒⼒F 作⽤在质量为m 的物体上,如图所⽰,由于地⾯对物体的摩擦⼒较⼤,没有被拉动,则经时间t ,下列说法正确的是:A 、拉⼒F 对物体的冲量⼤⼩为零;B 、拉⼒F 对物体的冲量⼤⼩为Ft ;C 、拉⼒F 对物体的冲量⼤⼩是Ftcosθ;D 、合⼒对物体的冲量⼤⼩为零。

4、如图所⽰,PQS 是固定于竖直平⾯内的光滑的14圆周轨道,圆⼼O 在S 的正上⽅,在O 和P 两点各有⼀质量为m 的⼩物块a 和b ,从同⼀时刻开始,a ⾃由下落,b 沿圆弧下滑。

以下说法正确的是A 、a ⽐b 先到达S ,它们在S 点的动量不相等B 、a 与b 同时到达S ,它们在S 点的动量不相等C 、a ⽐b 先到达S ,它们在S 点的动量相等D 、b ⽐a 先到达S ,它们在S 点的动量不相等⼆、动量守恒定律 1、⼀炮艇总质量为M ,以速度v 0匀速⾏驶,从船上以相对海岸的⽔平速度v 沿前进⽅向射出⼀质量为m 的炮弹,发射炮弹后艇的速度为v /,若不计⽔的阻⼒,则下列各关系式中正确的是。

A 、'0()Mv M m v mv =-+B 、'00()()Mv M m v m v v =-++C 、''0()()Mv M m v m v v =-++D 、'0Mv Mv mv =+2、在⾼速公路上发⽣⼀起交通事故,⼀辆质量为1500kg 向南⾏驶的长途客车迎⾯撞上了⼀辆质量为3000kg 向北⾏驶的卡车,碰后两车接在⼀起,并向南滑⾏了⼀段距离后停⽌。

《动量守恒定律》测试题(含答案)(1)

《动量守恒定律》测试题(含答案)(1)

《动量守恒定律》测试题(含答案)(1)一、动量守恒定律 选择题1.如图所示,A 、B 、C 是三级台阶的端点位置,每一级台阶的水平宽度是相同的,其竖直高度分别为h 1、h 2、h 3,将三个相同的小球分别从A 、B 、C 三点以相同的速度v 0水平抛出,最终都能到达A 的下一级台阶的端点P 处,不计空气阻力。

关于从A 、B 、C 三点抛出的小球,下列说法正确的是( )A .在空中运动时间之比为t A ∶tB ∶tC =1∶3∶5B .竖直高度之比为h 1∶h 2∶h 3=1∶2∶3C .在空中运动过程中,动量变化率之比为AC A B P P P t t t::=1∶1∶1 D .到达P 点时,重力做功的功率之比P A :P B :P C =1:4:9 2.如图甲所示,一轻弹簧的两端与质量分别为1m 、2m 的两物块A 、B 相连接,并静止在光滑水平面上。

现使B 获得水平向右、大小为6m/s 的瞬时速度,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,从图像提供的信息可得( )A .在1t 、3t 两个时刻,两物块达到共同的速度2m/s ,且弹簧都处于伸长状态B .在3t 到4t 时刻之间,弹簧由压缩状态恢复到原长C .两物体的质量之比为1m :2m =2:1D .运动过程中,弹簧的最大弹性势能与B 的初始动能之比为2:33.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是A .AB 组成的系统机械能守恒B .B 运动的最大速度大于1m/sC .B 物体上升到最高点时与初位置的高度差为0.05mD .AB 在最高点的加速度大小等于10m/s 24.质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块l 、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( )A .1木块相对静止前,木板是静止的B .1木块的最小速度是023v C .2木块的最小速度是056v D .木块3从开始运动到相对静止时位移是204v g5.如图所示,足够长的光滑细杆PQ 水平固定,质量为2m 的物块A 穿在杆上,可沿杆无摩擦滑动,质量为0.99m 的物块B 通过长度为L 的轻质细绳竖直悬挂在A 上,整个装置处于静止状态,A 、B 可视为质点。

(人教版)福州市高中物理选修一第一章《动量守恒定律》测试卷(含答案解析)

(人教版)福州市高中物理选修一第一章《动量守恒定律》测试卷(含答案解析)

一、选择题1.(0分)[ID :127083]高空作业须系安全带。

如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动)。

此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( )A .2m gh mg +B .2m gh mg -C .m gh mg +D .m gh mg - 2.(0分)[ID :127082]质量为m 的乒乓球在离台高h 处时速度刚好水平向左,大小为v 1运动员在此时用球拍击球,使球以大小为2v 的速度水平向右飞出,球拍和乒乓球作用的时间极短,则( )A .击球前后球动量改变量的方向水平向左B .击球前后球动量改变量的大小是21mv mv +C .击球前后球动量改变量的大小是21mv mv -D .球拍击球前乒乓球机械能不可能是2112mgh mv + 3.(0分)[ID :127080]如图所示,体积相同的匀质小球A 和B 并排悬挂,静止时悬线平行,两球刚好接触,悬点到球心的距离均为L ,B 球悬线右侧有一固定的光滑小铁钉P ,O 2P=34L 。

现将A 向左拉开60°角后由静止释放,A 到达最低点时与B 发生弹性正碰,碰后B 做圆周运动恰能通过P 点的正上方。

已知A 的质量为m ,取3=1.73,5=2.24,则B 的质量约为( )A .0.3mB .0.8mC .mD .1.4m4.(0分)[ID :127076]一轻质弹簧下端固定在倾角为θ=30°的光滑斜面底端,上端拴接一质量为m 的挡板A ,挡板A 处于静止状态。

现将一质量为2m 的物体B 从斜面上距离挡板A 上方L 处由静止释放,物体B 和挡板A 碰撞后一起向下运动的最大距离为s ,重力加速度为g ,则下列说法正确的是( )A.A、B碰撞后瞬间的速度为gLB.A、B碰撞后瞬间的加速度为3gC.A、B碰撞后瞬间的加速度与运动到最低点时的加速度大小相等D.在最低点时弹簧弹性势能的增量为()232mg L s+5.(0分)[ID:127065]人和冰车的总质量为M,另一木球质量为m,且M∶m=31∶2。

(完整word版)动量守恒定律习题及答案

(完整word版)动量守恒定律习题及答案

动量守恒定律及答案一.选择题(共32小题)1.把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、弹、车,下列说法正确的是()A.枪和弹组成的系统,动量守恒B.枪和车组成的系统,动量守恒C.因为枪弹和枪筒之间的摩擦力很大,使系统的动量变化很大,故系统动量守恒D.三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合力为零喷出质量为△m的高温气体后,火箭的速度2.静止的实验火箭,总质量为M,当它以对地速度为v为()A.B.﹣C.D.﹣3.据新华社报道,2018年5月9日凌晨,我国长征系列运载火箭,在太原卫星发射中心完或第274次发射任务,成功发射高分五号卫星,该卫星是世界上第一颗实现对大气和陆地综合观测的全谱段高光谱卫星。

最初静止的运载火箭点火后喷出质量为M的气体后,质量为m的卫星(含未脱离的火箭)的速度大小为v,不计卫星受到的重力和空气阻力。

则在上述过程中,卫星所受冲量大小为()A.Mv B.(M+m)v C.(M﹣m)v D.mv4.在光滑的水平面上有一辆平板车,一个人站在车上用大锤敲打车的左端(如图)。

在连续的敲打下,关于这辆车的运动情况,下列说法中正确的是( )A .由于大锤不断的敲打,小车将持续向右运动B .由于大锤与小车之间的作用力为内力,小车将静止不动C .在大锤的连续敲打下,小车将左右移动D .在大锤的连续敲打下,小车与大锤组成的系统,动量守恒,机械能守恒5.设a 、b 两小球相撞,碰撞前后都在同一直线上运动。

若测得它们相撞前的速度为v a 、v b ,相撞后的速度为v a ′、v b ′,可知两球的质量之比等于( )A .B .C .D .6.两个质量相等的小球在光滑水平面上沿同一直线同向运动,A 球的动量是8kg •m/s ,B 球的动量是6kg •m/s ,A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量可能为( )A .p A =0,pB =l4kg •m/sB .p A =4kg •m/s ,p B =10kg •m/sC .p A =6kg •m/s,p B =8kg •m/sD .p A =7kg •m/s ,p B =8kg •m/s7.质量为m 1=2kg 和m 2的两个物体在光滑的水平面上正碰,碰撞时间不计,其χ﹣t(位移﹣时间)图象如图所示,则m 2的质量等于( )A.3kg B.4kg C.5kg D.6kg8.如图所示,光滑水平面上,甲、乙两个球分别以大小为v1=1m/s、v2=2m/s的速度做相向运动,碰撞后两球粘在一起以0.5m/s的速度向左运动,则甲、乙两球的质量之比为()A.1:1B.1:2C.1:3D.2:19.质量为1kg的木板B静止在水平面上,可视为质点的物块A从木板的左侧沿木板上表面水平冲上木板,如图甲所示。

《动量守恒定律》单元测试题(含答案)(1)

《动量守恒定律》单元测试题(含答案)(1)

《动量守恒定律》单元测试题(含答案)(1)一、动量守恒定律 选择题1.如图所示,一块质量为M 的木板停在光滑的水平面上,木板的左端有挡板,挡板上固定一个小弹簧.一个质量为m 的小物块(可视为质点)以水平速度v 0从木板的右端开始向左运动,与弹簧碰撞后(弹簧处于弹性限度内),最终又恰好停在木板的右端.根据上述情景和已知量,可以求出 ( )A .弹簧的劲度系数B .弹簧的最大弹性势能C .木板和小物块组成的系统最终损失的机械能D .若再已知木板长度l 可以求出木板和小物块间的动摩擦因数2.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则A .子弹刚穿出木块时,木块的速度为0()m v v M - B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒D .木块上升的最大高度为2202mv mv Mg- 3.如图所示,将一光滑的、质量为4m 、半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m 的物块.今让一质量也为m 的小球自左侧槽口A 的正上方高为R 处从静止开始落下,沿半圆槽切线方向自A 点进入槽内,则以下结论中正确的是( )A .小球在半圆槽内第一次由A 到最低点B 的运动过程中,槽的支持力对小球做负功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为41︰C .小球第一次在半圆槽的最低点B 时对槽的压力为133mgD .物块最终的动能为15mgR 4.如图所示,质量为M 、带有半径为R 的四分之一光滑圆弧轨道的滑块静置于光滑水平地面上,且圆弧轨道底端与水平面平滑连接,O 为圆心。

质量为m 的小滑块以水平向右的初速度0v 冲上圆弧轨道,恰好能滑到最高点,已知M =2m 。

,则下列判断正确的是A .小滑块冲上轨道的过程,小滑块机械能不守恒B .小滑块冲上轨道的过程,小滑块与带有圆弧轨道的滑块组成的系统动量守恒C .小滑块冲上轨道的最高点时,带有圆弧轨道的滑块速度最大且大小为023v D .小滑块脱离圆弧轨道时,速度大小为013v5.如图,质量分别为m A 、m B 的两个小球A 、B 静止在地面上方,B 球距地面的高度h =0.8m ,A 球在B 球的正上方. 先将B 球释放,经过一段时间后再将A 球释放. 当A 球下落t =0.3s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零.已知m B =3m A ,重力加速度大小为g =10 m/s 2,忽略空气阻力及碰撞中的动能损失.下列说法正确的是( )A .B 球第一次到达地面时的速度为4m/sB .A 、B 球在B 球向上运动的过程中发生碰撞C .B 球与A 球碰撞后的速度为1m/sD .P 点距离地面的高度0.75m6.质量为m 的箱子静止在光滑水平面上,箱子内侧的两壁间距为l ,另一质量也为m 且可视为质点的物体从箱子中央以v 0=2gl g 为当地重力加速度),如图所示。

《动量守恒定律》单元测试题(含答案)

《动量守恒定律》单元测试题(含答案)

《动量守恒定律》单元测试题(含答案)一、动量守恒定律 选择题1.如图所示,一质量为m 0=0.05 kg 的子弹以水平初速度v 0=200 m/s 打中一放在水平地面上A 点的质量为m =0.95 kg 的物块,并留在物块内(时间极短,可忽略),随后物块从A 点沿AB 方向运动,与距离A 点L =5 m 的B 处的墙壁碰撞前瞬间的速度为v 1=8 m/s,碰后以v 2=6 m/s 的速度反向运动直至静止,测得物块与墙碰撞的时间为t =0.05 s,g 取10 m/s 2,则A .物块从A 点开始沿水平面运动的初速度v =10 m/sB .物块与水平地面间的动摩擦因数μ=0.36C .物块与墙碰撞时受到的平均作用力大小F =266 ND .物块在反向运动过程中产生的摩擦热Q =18 J2.如图所示,弹簧的一端固定在竖直墙壁上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始下滑,则A .在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒B .在小球从圆弧槽上下滑运动过程中小球的机械能守恒C .在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒D .小球离开弹簧后能追上圆弧槽3.一质量为m 的物体静止在光滑水平面上,现对其施加两个水平作用力,两个力随时间变化的图象如图所示,由图象可知在t 2时刻物体的( )A .加速度大小为0t F F m -B .速度大小为()()021t F F t t m-- C .动量大小为()()0212tF F t t m -- D .动能大小为()()220218tF F t t m --4.如图所示,将一光滑的、质量为4m 、半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m 的物块.今让一质量也为m 的小球自左侧槽口A 的正上方高为R 处从静止开始落下,沿半圆槽切线方向自A 点进入槽内,则以下结论中正确的是( )A .小球在半圆槽内第一次由A 到最低点B 的运动过程中,槽的支持力对小球做负功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为41︰C .小球第一次在半圆槽的最低点B 时对槽的压力为133mg D .物块最终的动能为15mgR 5.质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块l 、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( )A .1木块相对静止前,木板是静止的B .1木块的最小速度是023v C .2木块的最小速度是056v D .木块3从开始运动到相对静止时位移是204v g6.水上飞行运动使用的是一种叫“喷射式悬浮飞行器”的装置,也称为“喷水飞行背包”,它通过向下喷射高压水柱的方式将操控者托举在水面 上空,利用脚上喷水装置产生的反冲动力,让你可以在水面之上腾空而起,另外配备有手动控 制的喷嘴,用于稳定空中飞行姿态.如图所示运动员在水上做飞行运动表演.他操控喷射式悬浮飞行器将水带竖直送上来的水反转180°后向下喷出,令自己悬停在空中.已知运动员与装备的总质量为100 kg ,两个圆管喷嘴的直径均为10cm ,已知重力加速度大小g =10m/s 2,水的密度ρ=1.0×103kg/cm 3,则喷嘴处喷水的速度大约为A .3.0 m/s B .5.4 m/s C .8.0 m/s D .10.2 m/s7.如图所示,将质量为M 1、半径为R 且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M 2的物块.今让一质量为m 的小球自左侧槽口A 的正上方h 高处从静止开始落下,与圆弧槽相切自A 点进入槽内,则以下结论中正确的是A .小球在槽内运动的全过程中,小球、半圆槽组成的系统机械能守恒B .小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统水平动量守恒C .若小球能从C 点离开半圆槽,则其一定会做竖直上抛运动D .若小球刚好到达C 点,则12m h R M M =+ 8.如图所示,在光滑的水平杆上套有一个质量为m 的滑环.滑环上通过一根不可伸缩的轻绳悬挂着一个质量为M 的物块(可视为质点),绳长为L .将滑环固定时,给物块一个水平冲量,物块摆起后刚好碰到水平杆;若滑环不固定时,仍给物块以同样的水平冲量,则( )A .给物块的水平冲量为2M gLB .物块上升的最大高度为mL m M+ C .物块上升最高时的速度为2m gL D .物块在最低点时对细绳的拉力3Mg9.如图所示,两滑块A 、B 位于光滑水平面上,已知A 的质量M A =1k g ,B 的质量M B =4k g .滑块B 的左端连有轻质弹簧,弹簧开始处于自由伸长状态.现使滑块A 以v =5m/s 速度水平向右运动,通过弹簧与静止的滑块B 相互作用(整个过程弹簧没有超过弹性限度),直至分开.则( )A .物块A 的加速度一直在减小,物块B 的加速度一直在增大B .作用过程中弹簧的最大弹性势能2J p E =C .滑块A 的最小动能为 4.5J KA E =,滑块B 的最大动能为8J KB E =D .若滑块A 的质量4kg A M =,B 的质量1kg B M =,滑块A 的最小动能为18J KAE =,滑块B 的最大动能为32J KB E =10.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把它在空中自由下落的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,忽略空气阻力,则( )A .过程Ⅰ中钢珠动量的改变量小于重力的冲量B .过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小C .过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小D .过程Ⅱ中钢珠的动量改变量等于阻力的冲量11.如图所示,质量为M 的长木板A 静止在光滑的水平面上,有一质量为m 的小滑块B 以初速度v 0从左侧滑上木板,且恰能滑离木板,滑块与木板间动摩擦因数为μ.下列说法中正确的是A .若只增大v 0,则滑块滑离木板过程中系统产生的热量增加B .若只增大M ,则滑块滑离木板过程中木板所受到的冲量减少C .若只减小m ,则滑块滑离木板时木板获得的速度减少D .若只减小μ,则滑块滑离木板过程中滑块对地的位移减小12.如图所示,竖直放置的半圆形轨道与水平轨道平滑连接,不计一切摩擦。

福建省漳平市第一中学下册机械能守恒定律同步单元检测(Word版 含答案)

福建省漳平市第一中学下册机械能守恒定律同步单元检测(Word版 含答案)

一、第八章 机械能守恒定律易错题培优(难)1.如图所示,ABC 为一弹性轻绳,一端固定于A 点,一端连接质量为m 的小球,小球穿在竖直的杆上。

轻杆OB 一端固定在墙上,一端为定滑轮。

若绳自然长度等于AB ,初始时ABC 在一条水平线上,小球从C 点由静止释放滑到E 点时速度恰好为零。

已知C 、E两点间距离为h ,D 为CE 的中点,小球在C 点时弹性绳的拉力为2mg ,小球与杆之间的动摩擦因数为0.5,弹性绳始终处在弹性限度内。

下列说法正确的是( )A .小球在D 点时速度最大B .若在E 点给小球一个向上的速度v ,小球恰好能回到C 点,则2v gh =C .小球在CD 阶段损失的机械能等于小球在DE 阶段损失的机械能D .若O 点没有固定,杆OB 在绳的作用下以O 为轴转动,在绳与B 点分离之前,B 的线速度等于小球的速度沿绳方向分量【答案】AD【解析】【详解】A .设当小球运动到某点P 时,弹性绳的伸长量是BP x ,小球受到如图所示的四个力作用:其中T BP F kx =将T F 正交分解,则N T sin sin 2BP BC mg F F kx kx θθ⋅====f N 14F F mg μ==T F 的竖直分量 T T cos cos y BP CP F F kx kx θθ===据牛顿第二定律得f T y mg F F ma --=解得T 3344y CP F kx a g g m m=-=- 即小球的加速度先随下降的距离增大而减小到零,再随下降的距离增大而反向增大,据运动的对称性(竖直方向可以看作单程的弹簧振子模型)可知,小球运动到CE 的中点D 时,加速度为零,速度最大,A 正确;B .对小球从C 运动到E 的过程,应用动能定理得T F 0104mgh W mgh ⎛⎫-+-=- ⎪⎝⎭若在E 点给小球一个向上的速度v ,小球恰能从E 点回到C 点,应用动能定理得T 2F 11()042mgh W mgh mv ⎛⎫-++-=- ⎪⎝⎭联立解得T F 34W mgh =,v gh = B 错误; C .除重力之外的合力做功等于小球机械能的变化,小球在CD 段所受绳子拉力竖直分量较小,则小球在CD 段时摩擦力和弹力做的负功比小球在DE 段时摩擦力和弹力做的负功少,小球在CD 阶段损失的机械能小于小球在DE 阶段损失的机械能,C 错误; D .绳与B 点分离之前B 点做圆周运动,线速度(始终垂直于杆)大小等于小球的速度沿绳方向的分量,D 正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省漳平市第一中学动量守恒定律试题(含答案)一、动量守恒定律 选择题1.质量为m 、半径为R 的小球,放在半径为3R 、质量为3m 的大空心球内,大球开始静止在光滑水平面上。

当小球从如图所示的位置(两球心在同一水平面上)无初速度沿内壁滚到最低点时,大球移动的距离是( )A .2RB .125RC .4RD .34R 2.如图所示,质量10.3kg m =的小车静止在光滑的水平面上,车长 1.5m l =,现有质量20.2kg m =可视为质点的物块,以水平向右的速度0v 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数0.5μ=,取2g=10m/s ,则( )A .物块滑上小车后,系统动量守恒和机械能守恒B .增大物块与车面间的动摩擦因数,摩擦生热不变C .若0 2.5m/s v =,则物块在车面上滑行的时间为0.24sD .若要保证物块不从小车右端滑出,则0v 不得大于5m/s3.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( )A .在A 离开竖直墙前,A 、B 与弹簧组成的系统机械能守恒,之后不守恒B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒C .在A 离开竖直墙后,A 、B 223E mD .在A 离开竖直墙后,弹簧的弹性势能最大值为3E 4.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg =,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/sB .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J5.如图,质量分别为m A 、m B 的两个小球A 、B 静止在地面上方,B 球距地面的高度h =0.8m ,A 球在B 球的正上方. 先将B 球释放,经过一段时间后再将A 球释放. 当A 球下落t =0.3s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零.已知m B =3m A ,重力加速度大小为g =10 m/s 2,忽略空气阻力及碰撞中的动能损失.下列说法正确的是( )A .B 球第一次到达地面时的速度为4m/sB .A 、B 球在B 球向上运动的过程中发生碰撞C .B 球与A 球碰撞后的速度为1m/sD .P 点距离地面的高度0.75m6.如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为m A =4kg ,m B =2kg ,速度分别是v A =3m/s (设为正方向),v B =-3m/s .则它们发生正碰后,速度的可能值分别为( )A .v A ′=1 m/s ,vB ′=1 m/sB .v A ′=4 m/s ,v B ′=-5 m/sC .v A ′=2 m/s ,v B ′=-1 m/sD .v A ′=-1 m/s ,v B ′=-5 m/s7.如图所示,离地H 高处有一个质量为m 、带电量为q +的物体处于电场强度随时间变化规律为0E E kt =-(0E 、k 均为大于零的常数,电场方向以水平向左为正)的电场中,物体与竖直绝缘墙壁间的动摩擦因数为μ,已知0qE mg μ<.t=0时,物体从墙上由静止释放,若物体所受的最大静摩擦力等于滑动摩擦力,当物体下滑4H 后脱离墙面,此时速度大小为2gH ,物体最终落在地面上.则下列关于物体的运动说法正确的是A .当物体沿墙壁下滑时,物体先加速运动再做匀速直线运动B .摩擦力对物体产生的冲量大小为202E q k μ C .摩擦力所做的功18W mgH = D .物体与墙壁脱离的时刻为gH t = 8.如图所示,光滑水平面上有一质量为m =1kg 的小车,小车右端固定一水平轻质弹簧,弹簧左端连接一质量为m 0=1kg 的物块,物块与上表面光滑的小车一起以v 0=5m/s 的速度向右匀速运动,与静止在光滑水平面上、质量为M =4kg 的小球发生弹性正碰,若碰撞时间极短,弹簧始终在弹性限度内.则( )A .碰撞结束时,小车的速度为3m/s ,速度方向向左B .从碰后瞬间到弹簧最短的过程,弹簧弹力对小车的冲量大小为4N·sC .小车的最小速度为1m/sD .在小车速度为1m/s 时,弹簧的弹性势能有最大值9.如图所示,小车的上面是由中间凸起的两个对称曲面组成,整个小车的质量为m ,原来静止在光滑的水平面上。

今有一个可以看做质点的小球质量也为m ,以水平速度v 从左端滑上小车,恰好到达小车的最高点后,又从另一个曲面滑下。

关于这个过程,下列说法正确的是( )A .小球滑离小车时,小车又回到了原来的位置B .小球滑到小车最高点时,小球和小车的动量不相等C .小球和小车相互作用的过程中,小车和小球系统动量始终守恒D .车上曲面的竖直高度若高于24v g,则小球一定从小车左端滑下 10.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把它在空中自由下落的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,忽略空气阻力,则( )A .过程Ⅰ中钢珠动量的改变量小于重力的冲量B .过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小C .过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小D .过程Ⅱ中钢珠的动量改变量等于阻力的冲量11.如图所示,光滑水平桌面上并排放两个完全相同的可视为质点的物块A 、B ,质量均为m ,其中物块A 被一条遵守胡克定律的弹性绳连接,绳另一端固定在高处O 点,弹性绳的原长为L ,劲度系数为k ,当物块A 在O 点正下方时绳处于原长状态。

现使物块A 、B 一起从绳和竖直方向夹角为θ=60°开始释放,下列说法正确的是( )A .刚一释放时物块A 对物块B 的推力为3kL B .物块A 向右运动的最远距离为23L C .从静止到物块A 、B 分离,绳对A 做的功大于A 对B 做的功D .从静止到物块A 、B 分离,绳对A 的冲量大于A 对B 的冲量12.如图甲所示,一轻弹簧的两端与质量分别为m 1和m 2的两物块A ,B 相连接,静止在光滑水平地面上,现使A 瞬时获得水平向右的速度3m/s ,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,下列说法正确的是( )A .物块A 在t 1和t 3两个时刻的加速度大小相等B .从开始计时到t 4这段时间内,物块A ,B 在t 2时刻相距最远C .t 1到t 3这段时间内弹簧长度一直在增大D .12:1:2m m13.如图所示,质量为M 的长木板A 静止在光滑的水平面上,有一质量为m 的小滑块B以初速度v 0从左侧滑上木板,且恰能滑离木板,滑块与木板间动摩擦因数为μ.下列说法中正确的是A .若只增大v 0,则滑块滑离木板过程中系统产生的热量增加B .若只增大M ,则滑块滑离木板过程中木板所受到的冲量减少C .若只减小m ,则滑块滑离木板时木板获得的速度减少D .若只减小μ,则滑块滑离木板过程中滑块对地的位移减小14.如图所示,一个质量为m 、半径足够大的1/4光滑圆弧体,静止放在光滑水平面上.有一个质量也为m 的小球,以v 0的初速度从最低点冲上圆弧体到又滑回到最低点的过程中,下列结论正确的是(已知重力加速度为g )( )A .整个过程中,圆弧体的速度先增大后减小B .小球能上升的最大高度为204v gC .圆弧体所获得的最大速度为v 0D .在整个作用的过程中,小球对圆弧体的冲量大于mv 015.如图,为一足够长的光滑水平面,右侧挡板C 与轻质弹簧一端相连,接触面均光滑的三角形斜劈A 静止放在水平面上,另一可视为质点的小球B 从斜劈顶端距地面高h 处静止释放,且3A m m =,B m m =,小球B 滑下后与弹簧作用后反向弹回,下列说法正确的有( )A .小球离开斜劈时两者水平位移3AB x x =B .小球下滑过程中,支持力对小球要做功C .弹簧可以获得的最大弹性势能为34mgh D .小球反向弹回后能追上斜劈,并滑上斜劈端h 高处16.如图所示,半径为R 、质量为M 的14一光滑圆槽静置于光滑的水平地面上,一个质量为m 的小木块从槽的顶端由静止滑下,直至滑离圆槽的过程中,下列说法中正确的是A.M和m组成的系统动量守恒B.m飞离圆槽时速度大小为2gRM m M +C.m飞离圆槽时速度大小为2gRD.m飞离圆槽时,圆槽运动的位移大小为mR m M +17.如图,长木板M原来静止于光滑水平面上,木块m从长木板M的一端以初速度v0冲上木板,当m相对于M滑行7cm时,M向前滑行了4cm,则在此过程中()A.摩擦力对m与M的冲量大小之比等于11∶4B.m减小的动能与M增加的动能之比等于11∶4C.m与M系统损失的机械能与M增加的动能之比等于7∶4D.m减小的动能与m和M系统损失的机械能之比等于1∶118.质量均为m的两个小球A B,用轻弹簧连接,一起放在光滑水平面上,小球A紧靠挡板P,如图所示。

给小球B一个水平向左的瞬时冲量,大小为I,使小球B向左运动并压缩弹簧,然后向右弹开。

弹簧始终在弹性限度内。

取向右为正方向,在小球B获得冲量之后的整个运动过程中,对于A B,及弹簧组成的系统,下列说法正确的是()A.系统机械能和动量均守恒B.挡板P对小球A的冲量为大小2IC.挡板P对小球A做的功为2 2I mD.小球A离开挡板后,系统弹性势能的最大值为2 4 I m19.如图所示,光滑水平地面上有A、B两物体,质量都为m,B左端固定一个处在压缩状态的轻弹簧,轻弹簧被装置锁定,当弹簧再受到压缩时锁定装置会失效。

A以速率v向右运动,当A撞上弹簧后,设弹簧始终不超过弹性限度,关于它们后续的运动过程说法正确的是()A .A 物体最终会静止,B 物体最终会以速率v 向右运动B .A 、B 系统的总动量最终将大于mvC .A 、B 系统的总动能最终将大于212mv D .当弹簧的弹性势能最大时A 、B 的总动能为214mv 20.如图所小,在粗糙水平面上,用水平轻绳相连的两个相同物体P 和Q ,质量均为m ,在水平恒力F 作用下以速度v 做匀速运动.在t =0时轻绳断开,Q 在F 的作用下继续前进,则下列说法正确的是( )A .t =0至2mv t F =时间内,P 、Q 的总动量守恒 B .t =0至3mv t F =时间内,P 、Q 的总动量守恒 C .4mv t F =时,Q 的动量为3mv D .3mv t F =时,P 的动量为32mv 二、动量守恒定律 解答题21.如图,水平面MN 右端N 处与水平传送带恰好平齐且很靠近,传送带以速率v=lm/s 逆时针匀速转动,水平部分长度L=lm.物块B 静止在水平面的最右端N 处、质量为m A =lkg 的物块A 在距N 点s=2.25m 处以v 0=5m/s 的水平初速度向右运动、再与B 发生碰撞并粘在一起,若B 的质量是A 的k 倍,A 、B 与水平面和传送带的动摩擦因数都为μ=0.2、物块均可视为质点,取g=l0m/s 2.(1)求A 到达N 点与B 碰撞前的速度大小;(2)求碰撞后瞬间AB 的速度大小及碰撞过程中产生的内能;(3)讨论k 在不同数值范围时,A 、B 碰撞后传送带对它们所做的功W 的表达式22.如图所示,在水平桌面上放有长木板C ,C 上右端是固定挡板P ,在C 上左端和中点处各放有小物块A 和B ,A 、B 的尺寸以及P 的厚度皆可忽略不计,刚开始A 、B 之间和B 、P 之间的距离皆为L 。

相关文档
最新文档