密度孔隙度和中子孔隙度的区别及记法
测井曲线符号极其单位符号
![测井曲线符号极其单位符号](https://img.taocdn.com/s3/m/1f2100d580eb6294dd886c3c.png)
第一道主要为反映岩性的测井曲线道,包括:自然电位测井曲线――曲线符号为SP、记录单位mv;自然伽马测井曲线――曲线符号为GR、记录单位API;井径测井曲线――曲线符号为CAL,记录单位in或cm;岩性密度测井曲线(光电吸收界面指数)――曲线符号为PE;第二道是深度道;通常的深度比例尺为1:200 或1:500第三道是反映含油性的测井曲线道,包括深中浅三条电阻率测井曲线,分别是:深侧向测井曲线――曲线符号为LLD、记录单位Ωm;浅侧向测井曲线――曲线符号为LLS、记录单位Ωm;微球形聚焦测井曲线――曲线符号为MSFL、记录单位Ωm;电阻率测井曲线通常为对数刻度。
第四道为反映孔隙度的测井曲线道,包括:密度测井曲线――曲线符号为DEN或RHOB,记录单位g/cm3;中子测井曲线――曲线符号为CNL或PHIN,记录单位%,有时为v/v。
声波测井曲线――曲线符号为AC或DT,记录单位us/ft,有时为us/m。
中子和密度测井曲线的刻度的特点是保证在含水砂岩层上两条曲线重迭,在含气层上,密度孔隙度大于中子孔隙度,在泥岩层上,中子孔隙度大于密度孔隙度;第五道是反映粘土矿物类型的测井曲线道,包括自然伽马能谱测井中的三条曲线:放射性钍测井曲线――曲线符号为Th或THOR,记录单位是ppm;放射性铀测井曲线――曲线符号为U或URAN,记录单位ppm;放射性钾测井曲线――曲线符号为K或POTA,记录单位%,有时为v/v。
测井曲线中英文名称对照测井曲线英文与汉字名称对照代码名称A1R1 T1R1声波幅度A1R2 T1R2声波幅度A2R1 T2R1声波幅度A2R2 T2R2声波幅度AAC 声波附加值AAVG 第一扇区平均值AC 声波时差AF10 阵列感应电阻率AF20 阵列感应电阻率AF30 阵列感应电阻率AF60 阵列感应电阻率AF90 阵列感应电阻率AFRT 阵列感应电阻率AFRX 阵列感应电阻率AIMP 声阻抗AIPD 密度孔隙度AIPN 中子孔隙度AMAV 声幅AMAX 最大声幅AMIN 最小声幅AMP1 第一扇区的声幅值AMP2 第二扇区的声幅值AMP3 第三扇区的声幅值AMP4 第四扇区的声幅值AMP5 第五扇区的声幅值AMP6 第六扇区的声幅值AMVG 平均声幅AO10 阵列感应电阻率AO20 阵列感应电阻率AO30 阵列感应电阻率AO60 阵列感应电阻率AO90 阵列感应电阻率AOFF 截止值AORT 阵列感应电阻率AORX 阵列感应电阻率APLC 补偿中子AR10 方位电阻率AR11 方位电阻率AR12 方位电阻率ARO1 方位电阻率ARO2 方位电阻率ARO3 方位电阻率ARO4 方位电阻率ARO5 方位电阻率ARO6 方位电阻率ARO7 方位电阻率ARO8 方位电阻率ARO9 方位电阻率AT10 阵列感应电阻率AT20 阵列感应电阻率AT30 阵列感应电阻率AT60 阵列感应电阻率AT90 阵列感应电阻率ATAV 平均衰减率ATC1 声波衰减率ATC2 声波衰减率ATC3 声波衰减率ATC4 声波衰减率ATC5 声波衰减率ATC6 声波衰减率ATMN 最小衰减率ATRT 阵列感应电阻率ATRX 阵列感应电阻率AZ 1号极板方位AZ1 1号极板方位AZI 1号极板方位AZIM 井斜方位BGF 远探头背景计数率BGN 近探头背景计数率BHTA 声波传播时间数据BHTT 声波幅度数据BLKC 块数BS 钻头直径BTNS 极板原始数据C1 井径C2 井径C3 井径CAL 井径CAL1 井径CAL2 井径CALI 井径CALS 井径CASI 钙硅比CBL 声波幅度CCL 磁性定位CEMC 水泥图CGR 自然伽马CI 总能谱比CMFF 核磁共振自由流体体积CMRP 核磁共振有效孔隙度CN 补偿中子CNL 补偿中子CO 碳氧比CON1 感应电导率COND 感应电导率CORR 密度校正值D2EC 200兆赫兹介电常数D4EC 47兆赫兹介电常数DAZ 井斜方位DCNT 数据计数DEN 补偿密度DEN_1 岩性密度DEPTH 测量深度DEV 井斜DEVI 井斜DFL 数字聚焦电阻率DIA1 井径DIA2 井径DIA3 井径DIFF 核磁差谱DIP1 地层倾角微电导率曲线1 DIP1_1 极板倾角曲线DIP2 地层倾角微电导率曲线2 DIP2_1 极板倾角曲线DIP3 地层倾角微电导率曲线3 DIP3_1 极板倾角曲线DIP4 地层倾角微电导率曲线4 DIP4_1 极板倾角曲线DIP5 极板倾角曲线DIP6 极板倾角曲线DRH 密度校正值DRHO 密度校正值DT 声波时差DT1 下偶极横波时差DT2 上偶极横波时差DT4P 纵横波方式单极纵波时差DT4S 纵横波方式单极横波时差DTL 声波时差DTST 斯通利波时差ECHO 回波串ECHOQM 回波串ETIMD 时间FAMP 泥浆幅度FAR 远探头地层计数率FCC 地层校正FDBI 泥浆探测器增益FDEN 流体密度FGAT 泥浆探测器门限FLOW 流量FPLC 补偿中子FTIM 泥浆传播时间GAZF Z轴加速度数据GG01 屏蔽增益GG02 屏蔽增益GG03 屏蔽增益GG04 屏蔽增益GG05 屏蔽增益GG06 屏蔽增益GR 自然伽马GR2 同位素示踪伽马HAZI 井斜方位HDRS 深感应电阻率HFK 钾HMRS 中感应电阻率HSGR 无铀伽马HTHO 钍HUD 持水率HURA 铀IDPH 深感应电阻率IMPH 中感应电阻率K 钾KCMR 核磁共振渗透率KTH 无铀伽马LCAL 井径LDL 岩性密度LLD 深侧向电阻率LLD3 深三侧向电阻率LLD7 深七侧向电阻率LLHR 高分辨率侧向电阻率LLS 浅侧向电阻率LLS3 浅三侧向电阻率LLS7 浅七侧向电阻率M1R10 高分辨率阵列感应电阻率M1R120 高分辨率阵列感应电阻率M1R20 高分辨率阵列感应电阻率M1R30 高分辨率阵列感应电阻率M1R60 高分辨率阵列感应电阻率M1R90 高分辨率阵列感应电阻率M2R10 高分辨率阵列感应电阻率M2R120 高分辨率阵列感应电阻率M2R20 高分辨率阵列感应电阻率M2R30 高分辨率阵列感应电阻率M2R60 高分辨率阵列感应电阻率M2R90 高分辨率阵列感应电阻率M4R10 高分辨率阵列感应电阻率M4R120 高分辨率阵列感应电阻率M4R20 高分辨率阵列感应电阻率M4R30 高分辨率阵列感应电阻率M4R60 高分辨率阵列感应电阻率M4R90 高分辨率阵列感应电阻率MBVI 核磁共振束缚流体体积MBVM 核磁共振自由流体体积MCBW 核磁共振粘土束缚水ML1 微电位电阻率ML2 微梯度电阻率MPHE 核磁共振有效孔隙度MPHS 核磁共振总孔隙度MPRM 核磁共振渗透率MSFL 微球型聚焦电阻率NCNT 磁北极计数NEAR 近探头地层计数率NGR 中子伽马NPHI 补偿中子P01 第1组分孔隙度P02 第2组分孔隙度P03 第3组分孔隙度P04 第4组分孔隙度P05 第5组分孔隙度P06 第6组分孔隙度P07 第7组分孔隙度P08 第8组分孔隙度P09 第9组分孔隙度P10 第10组分孔隙度P11 第11组分孔隙度P12 第12组分孔隙度P1AZ 1号极板方位P1AZ_1 2号极板方位P1BTN 极板原始数据P2BTN 极板原始数据P2HS 200兆赫兹相位角P3BTN 极板原始数据P4BTN 极板原始数据P4HS 47兆赫兹相位角P5BTN 极板原始数据P6BTN 极板原始数据PAD1 1号极板电阻率曲线PAD2 2号极板电阻率曲线PAD3 3号极板电阻率曲线PAD4 4号极板电阻率曲线PAD5 5号极板电阻率曲线PAD6 6号极板电阻率曲线PADG 极板增益PD6G 屏蔽电压PE 光电吸收截面指数PEF 光电吸收截面指数PEFL 光电吸收截面指数PERM-IND 核磁共振渗透率POTA 钾PPOR 核磁T2谱PPORB 核磁T2谱PPORC 核磁T2谱PR 泊松比PRESSURE 压力QA 加速计质量QB 磁力计质量QRTT 反射波采集质量R04 0.4米电位电阻率R045 0.45米电位电阻率R05 0.5米电位电阻率R1 1米底部梯度电阻率R25 2.5米底部梯度电阻率R4 4米底部梯度电阻率R4AT 200兆赫兹幅度比R4AT_1 47兆赫兹幅度比R4SL 200兆赫兹电阻率R4SL_1 47兆赫兹电阻率R6 6米底部梯度电阻率R8 8米底部梯度电阻率RAD1 井径(极板半径)RAD2 井径(极板半径)RAD3 井径(极板半径)RAD4 井径(极板半径)RAD5 井径(极板半径)RAD6 井径(极板半径)RADS 井径(极板半径)RATI 地层比值RB 相对方位RB_1 相对方位角RBOF 相对方位RD 深侧向电阻率RFOC 八侧向电阻率RHOB 岩性密度RHOM 岩性密度RILD 深感应电阻率RILM 中感应电阻率RLML 微梯度电阻率RM 钻井液电阻率RMLL 微侧向电阻率RMSF 微球型聚焦电阻率RNML 微电位电阻率ROT 相对方位RPRX 邻近侧向电阻率RS 浅侧向电阻率SDBI 特征值增益SFL 球型聚焦电阻率SFLU 球型聚焦电阻率SGAT 采样时间SGR 无铀伽马SICA 硅钙比SIG 井周成像特征值SIGC 俘获截面SIGC2 示踪俘获截面SMOD 横波模量SNL 井壁中子SNUM 特征值数量SP 自然电位SPER 特征值周期T2 核磁T2谱T2-BIN-A 核磁共振区间孔隙度T2-BIN-B 核磁共振区间孔隙度T2-BIN-PR 核磁共振区间孔隙度T2GM T2分布对数平均值T2LM T2分布对数平均值TEMP 井温TH 钍THOR 钍TKRA 钍钾比TPOR 核磁共振总孔隙度TRIG 模式标志TS 横波时差TT1 上发射上接受的传播时间TT2 上发射下接受的传播时间TT3 下发射上接受的传播时间TT4 下发射下接受的传播时间TURA 钍铀比U 铀UKRA 铀钾比URAN 铀VAMP 扇区水泥图VDL 声波变密度VMVM 核磁共振自由流体体积VPVS 纵横波速度比WAV1 第一扇区的波列WAV2 第二扇区的波列WAV3 第三扇区的波列WAV4 第四扇区的波列WAV5 第五扇区的波列WAV6 第六扇区的波列WAVE 变密度图WF 全波列波形ZCORR 密度校正值。
测井名词解释
![测井名词解释](https://img.taocdn.com/s3/m/33b0968b6529647d272852b9.png)
1.对泥岩基线而言,渗透性地层的SP可以向正或负方向偏转,它主要取决于(地层水和泥浆滤液)的相对矿化度,在RW>RM时SP曲线出现(正)异常,层内局部水淹在SP曲线上有(泥岩基线偏移)特征。
2.深侧向,浅侧向和微侧向所测量的结果分别为反映(原状地层,侵入带,冲洗带)的电阴率。
3.N2.25M0.5A电级系称为(单极供电倒装电位电极系),电极距L=(0.5m).4.根据底部梯度电极系测得的Ra曲线极大值可划分(地层高阻层底界面)5.视地层水电阴率定义为Rwa=Rt/F,当Rwa>Rw时,该储层为油气层。
6.感应测井测量地层的(电导率),与地层的电阴率有(互为倒数)关系。
7.地层孔隙压力大于其正常压力时,称地层为(异常压力地层),其声波速度(小于)正常值。
8.在某套管井段,若声幅测井CBL测得的声幅曲线值较低,声波变密度VDL图上出现左侧颜色非常浅的直线条事,右侧为颜色较深的弯曲条带则可判断改井段固井质量为:(第一界面胶结良好,第二界面胶结良好)。
9.放射性核素在衰变过程中产生的伽马身线去照射地层会产生(光电效应,康普顿效应和电子对效应),岩性刻度测井利用了伽马射线与地层介质发生的(光电效应和康普顿效应)。
10.岩石中主要的放射性核素有(铀,钍和钾)等,沉积岩石的自然放射性主要与岩石中(泥质含量)有关11.在高矿化度地层水条件下,中子伽马测井曲线上,水层的计数率小于油层的计数率;在热中子寿命曲线上,油层的热中子寿命(大于)水层的热中子寿命。
12.地层中存在天然气时,可导致声波时差值(变大或发生周波跳跃)。
密度孔隙值(变大),中子孔隙度值(变小)。
13.在充满泥浆的裸眼井中进行声波全波到测井进接收控头可依次接收到(滑行纵波,滑行横波,伪瑞利波和斯通利波)等几种波形。
14.窜槽层位在放射性同位素曲线上的幅度和参考曲线相比(明显增大)。
15.地质上按成因和岩性通常把沉积岩储集层划分为(碎屑岩,碳酸盐岩)两大主要类型。
测井解释原理
![测井解释原理](https://img.taocdn.com/s3/m/a1aae3e3aa00b52acfc7ca8f.png)
测井解释原理一:储集层定义:具有连通孔隙,既能储存油气,又能使油气在一定压差下流动的岩层。
必须具备两个条件:(1)孔隙性(孔隙、洞穴、裂缝)具有储存油气的孔隙、孔洞和裂缝等空间场所。
(2)渗透性(孔隙连通成渗滤通道)孔隙、孔洞和裂缝之间必须相互连通,在一定压差下能够形成油气流动的通道。
储集层是形成油气层的基本条件,因而储集层是应用测井资料进行地层评价和油气分析的基本对象。
储集层的分类•按岩性:–碎屑岩储集层、碳酸盐岩储集层、特殊岩性储集层。
•按孔隙空间结构:–孔隙型储集层、裂缝型储集层和洞穴型储集层、裂缝-孔洞型储集层。
碎屑岩储集层•1、定义:–由砾岩、砂岩、粉砂岩和砂砾岩组成的储集层。
•2、组成:–矿物碎屑(石英、长石、云母)–岩石碎屑(由母岩类型决定)–胶结物(泥质、钙质、硅质)•3、特点:–孔隙空间主要是粒间孔隙,孔隙分布均匀,岩性和物性在横向上比较稳定。
•4、有关的几个概念–砂岩:骨架由硅石组成的岩石都称为砂岩。
骨架成份主要为SiO 2–泥岩(Shale):由粘土(Clay)和粉砂组成的岩石。
–砂泥岩剖面:由砂岩和泥岩构成的剖面。
碳酸盐岩储集层•1、定义:–由碳酸盐岩石构成的储集层。
•2、组成:–石灰岩(CaCO 3)、白云岩Ca Mg(CO 3)2)、泥灰岩•3、特点:–储集空间复杂有原生孔隙:分布均匀(如晶间、粒间、鲕状孔隙等)次生孔隙:形态不规则,分布不均匀(裂缝、溶洞等)–物性变化大:横向纵向都变化大•4 、分类按孔隙结构:•孔隙型:与碎屑岩储集层类似。
•裂缝型:孔隙空间以裂缝为主。
裂缝数量、形态及分布不均匀,孔隙度、渗透率变化大。
•孔洞型:孔隙空间以溶蚀孔洞为主。
孔隙度可能较大、但渗透率很小。
•洞穴型:孔隙空间主要是由于溶蚀作用产生的洞穴。
•裂缝-孔洞型:裂缝、孔洞同时存在。
碳酸盐岩储集空间的基本类型砂泥岩储集层的孔隙空间是以沉积时就存在或产生的原生孔隙为主;碳酸盐岩储集层则以沉积后在成岩后生及表生阶段的改造过程中形成的次生孔隙为主。
粉体学-粉体的密度和孔隙率
![粉体学-粉体的密度和孔隙率](https://img.taocdn.com/s3/m/4488855ccc7931b764ce153b.png)
粉体学-粉体的密度和孔隙率由于粉体粒子表面粗糙,形状不规则,在堆积时,粒子与粒子间必有空隙,而且有些粒子本身又有裂缝和孔隙,所以粉体的体积包括粉体自身的体积、粉体粒子间的空隙和粒子内的孔隙,故表示方式较多,相应的就有多种粉体密度及孔隙率的表示法。
(一)粉体的密度粉体的密度系指单位体积粉体的质量。
根据粉体所指的体积不同,分为真密度、颗粒密度、堆密度三种。
各种密度定义如下。
1、真密度指粉体质量除以不包括颗粒内外空隙的体积(真实体积),求得的密度。
即排除所有的空隙占有的体积后,求得的物质本身的密度。
2、粒密度指粉体质量除以包括开口细孔与封闭细孔在内的颗粒体积,求得的密度。
即排除粒子之间的空隙,但不排除粒子本身的细小孔隙,求得的粒子本身的密度。
3、堆密度又称松密度,指粉体质量除以该粉体所占容器的体积,求得的密度。
其所用的体积包括粒子本身的孔隙以及粒子之间空隙在内的总体积。
对于同一种粉体,真密度>粒密度>堆密度。
在药剂实践中,堆密度是最重要的。
散剂的分剂量、胶囊剂的充填、片剂的压制等都与堆密度有关。
的堆密度有些药物还有“重质”和“轻质”之分,主要是其粒密度和堆密度不同,堆密度大的为重质,堆密度小的为轻质,但其真密度是常数,是相等的。
(二)粉体的孔隙率粉体的孔隙率是粉体层重空隙所占的比率,即粉体粒子间空隙和粒子本身孔隙所占体积与粉体体积之比,常用百分率表示。
粉体的孔隙率是与粒子形态、表面状态、粒子大小及粒度分布等因素有关的一种综合性质,是对粉体加工性质及其制剂质量有较大影响的参数。
散剂、颗粒剂、片剂都是由粉体加工制成,其孔隙率的大小直接影响着药物的崩解和溶出。
一般来说,孔隙率越大,崩解、溶出较快,较易吸收,所以在药剂的科研和生产中,有时要测定孔隙率。
其可通过真密度计算求得,也常用压汞法、气体吸附法等进行测定。
种子堆密度和孔隙度的基本概念
![种子堆密度和孔隙度的基本概念](https://img.taocdn.com/s3/m/fac6e35a28ea81c758f578d4.png)
➢种粒大且均匀、有颖壳或毛、种堆中轻型杂质多
➢种子干燥(未吸潮)、种堆薄、未受挤压
➢孔隙度大
4、密度和孔隙度与种子贮藏的关系:
➢ 种堆孔隙度大, ➢有利于内外气体交换
➢温湿气易散发 ➢熏蒸杀虫效果好 ➢耐贮藏 ➢有毒气体散发快
种子生产与经营种子生产与经营专业 / 教学资源库
《种子加工技术》模块1
➢2、种子堆密度和孔隙度的关系:
➢(1)二者互为消长,之和恒等于100%,即密度+孔 隙度=100%。
➢(2)种子堆密度与种子孔隙度是两个互为消长的物 理特性。一批种子具有较大的密度,其孔隙度就相应 小一些。
种子生产与经营专业 / 教学资源库
《种子加工技术》模块1
3、影响密度和孔隙度的因素:种子颗粒的大小、均匀度、种子形状、 是否带稃壳或其他附属物、表面光毛、内部细胞结构、化学组成、 种子水分、入仓条件及堆积厚度等。
种子生产与经营专业 / 教学资源库
《种子加工技术》模块1
种子堆密度和孔隙度的基 本概念
种子生产与经营专业 / 教学资源库
《种子加工技术》模块1
种子堆密度和孔隙度的基本概念
1.定义: 种子堆的密度:指种粒体积占种堆总体积的百分数。 种子堆的孔隙度:指种堆空隙体积占种堆总体积的百分
数。
种子生产与经营专业 / 教学资源库
谢 谢 / THANKS
测井曲线名字
![测井曲线名字](https://img.taocdn.com/s3/m/b5163a2bccbff121dd3683c5.png)
第一道主要为反映岩性的测井曲线道,包括:自然电位测井曲线――曲线符号为SP、记录单位mv;自然伽马测井曲线――曲线符号为GR、记录单位API;井径测井曲线――曲线符号为CAL,记录单位in或cm;岩性密度测井曲线(光电吸收界面指数)――曲线符号为PE;第二道是深度道;通常的深度比例尺为1:200 或1:500第三道是反映含油性的测井曲线道,包括深中浅三条电阻率测井曲线,分别是:深侧向测井曲线――曲线符号为LLD、记录单位Ωm;浅侧向测井曲线――曲线符号为LLS、记录单位Ωm;微球形聚焦测井曲线――曲线符号为MSFL、记录单位Ωm;电阻率测井曲线通常为对数刻度。
第四道为反映孔隙度的测井曲线道,包括:密度测井曲线――曲线符号为DEN或RHOB,记录单位g/cm3;中子测井曲线――曲线符号为CNL或PHIN,记录单位%,有时为v/v。
声波测井曲线――曲线符号为AC或DT,记录单位us/ft,有时为us/m。
中子和密度测井曲线的刻度的特点是保证在含水砂岩层上两条曲线重迭,在含气层上,密度孔隙度大于中子孔隙度,在泥岩层上,中子孔隙度大于密度孔隙度;第五道是反映粘土矿物类型的测井曲线道,包括自然伽马能谱测井中的三条曲线:放射性钍测井曲线――曲线符号为Th或THOR,记录单位是ppm;放射性铀测井曲线――曲线符号为U或URAN,记录单位ppm;放射性钾测井曲线――曲线符号为K或POTA,记录单位%,有时为v/v。
测井符号英文名称中文名称Rt true formation resistivity. 地层真电阻率Rxo flushed zone formation resistivity 冲洗带地层电阻率Ild deep investigate induction log 深探测感应测井Ilm medium investigate induction log 中探测感应测井Ils shallow investigate induction log 浅探测感应测井Rd deep investigate double lateral resistivity log 深双侧向电阻率测井Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井RMLL micro lateral resistivity log 微侧向电阻率测井CON induction log 感应测井AC acoustic 声波时差DEN density 密度CN neutron 中子GR natural gamma ray 自然伽马SP spontaneous potential 自然电位CAL borehole diameter 井径K potassium 钾TH thorium 钍U uranium 铀KTH gamma ray without uranium 无铀伽马NGR neutron gamma ray 中子伽马---------------------------------------------------GRSL—能谱自然伽马POR 孔隙度 NEWSANDPORW 含水孔隙度 NEWSANDPORF 冲洗带含水孔隙度 NEWSANDPORT 总孔隙度 NEWSANDPORX 流体孔隙度 NEWSANDPORH 油气重量 NEWSANDBULK 出砂指数 NEWSANDPERM 渗透率 NEWSANDSW 含水饱和度 NEWSANDSH 泥质含量 NEWSANDCALO 井径差值 NEWSANDCL 粘土含量 NEWSANDDHY 残余烃密度 NEWSANDSXO 冲洗带含水饱和度 NEWSANDDA 第一判别向量的判别函数 NEWSANDDB 第二判别向量的判别函数 NEWSANDDAB 综合判别函数 NEWSANDCI 煤层标志 NEWSANDCARB 煤的含量 NEWSANDTEMP 地层温度 NEWSANDQ 评价泥质砂岩油气层产能的参数 NEWSAND PI 评价泥质砂岩油气层产能的参数 NEWSAND SH 泥质体积 CLASSSW 总含水饱和度 CLASSPOR 有效孔隙度 CLASSPORG 气指数 CLASSCHR 阳离子交换能力与含氢量的比值 CLASS CL 粘土体积 CLASSPORW 含水孔隙度 CLASSPORF 冲洗带饱含泥浆孔隙度 CLASSCALC 井径差值 CLASSDHYC 烃密度 CLASSPERM 绝对渗透率 CLASSPIH 油气有效渗透率 CLASSPIW 水的有效渗透率 CLASSCLD 分散粘土体积 CLASSCLL 层状粘土体积 CLASSCLS 结构粘土体积 CLASSEPOR 有效孔隙度 CLASSESW 有效含水饱和度 CLASSTPI 钍钾乘积指数 CLASSPOTV 100%粘土中钾的体积 CLASSCEC 阳离子交换能力 CLASSQV 阳离子交换容量 CLASSBW 粘土中的束缚水含量 CLASSEPRW 含水有效孔隙度 CLASSUPOR 总孔隙度,UPOR=EPOR+BW CLASSHI 干粘土骨架的含氢指数 CLASSBWCL 粘土束缚水含量 CLASSTMON 蒙脱石含量 CLASSTILL 伊利石含量 CLASSTCHK 绿泥石和高岭石含量 CLASSVSH 泥质体积 CLASSVSW 总含水饱和度 CLASSVPOR 有效孔隙度 CLASSVPOG 气指数 CLASSVCHR 阳离子交换能力与含氢量的比值 CLASS VCL 粘土体积 CLASSVPOW 含水孔隙度 CLASSVPOF 冲洗带饱含泥浆孔隙度 CLASSVCAC 井径差值 CLASSVDHY 烃密度 CLASSVPEM 绝对渗透率 CLASSVPIH 油气有效渗透率 CLASSVPIW 水的有效渗透率 CLASSVCLD 分散粘土体积 CLASSVCLL 层状粘土体积 CLASSVCLS 结构粘土体积 CLASSVEPO 有效孔隙度 CLASSVESW 有效含水饱和度 CLASSVTPI 钍钾乘积指数 CLASSVPOV 100%粘土中钾的体积 CLASSVCEC 阳离子交换能力 CLASSVQV 阳离子交换容量 CLASSVBW 粘土中的束缚水含量 CLASSVEPR 含水有效孔隙度 CLASSVUPO 总孔隙度 CLASSVHI 干粘土骨架的含氢指数 CLASSVBWC 粘土束缚水含量 CLASSVTMO 蒙脱石含量 CLASSVTIL 伊利石含量 CLASSVTCH 绿泥石和高岭石含量 CLASSQW 井筒水流量 PLIQT 井筒总流量 PLISK 射孔井段 PLIPQW 单层产水量 PLIPQT 单层产液量 PLIWEQ 相对吸水量 ZRPMPEQ 相对吸水强度 ZRPMPOR 孔隙度 PRCOPORW 含水孔隙度 PRCOPORF 冲洗带含水孔隙度 PRCOPORT 总孔隙度 PRCOPORX 流体孔隙度 PRCOPORH 油气重量 PRCOBULK 出砂指数 PRCOHF 累计烃米数 PRCOPF 累计孔隙米数 PRCOPERM 渗透率 PRCOSW 含水饱和度 PRCOSH 泥质含量 PRCOCALO 井径差值 PRCOCL 粘土含量 PRCODHY 残余烃密度 PRCOSXO 冲洗带含水饱和度 PRCOSWIR 束缚水饱和度 PRCOPERW 水的有效渗透率 PRCOPERO 油的有效渗透率 PRCOKRW 水的相对渗透率 PRCOKRO 油的相对渗透率 PRCOFW 产水率 PRCOSHSI 泥质与粉砂含量 PRCOSXOF 199*SXO PRCOSWCO 含水饱和度 PRCOWCI 产水率 PRCOWOR 水油比 PRCOCCCO 经过PORT校正后的C/O值 PRCO CCSC 经过PORT校正后的SI/CA值 PRCO CCCS 经过PORT校正后的CA/SI值 PRCO DCO 油水层C/O差值 PRCOXIWA 水线视截距 PRCOCOWA 视水线值 PRCOCONM 视油线值 PRCOCPRW 产水率(C/O计算) PRCOCOAL 煤层 CRAOTHR 重矿物的百分比含量 CRASALT 盐岩的百分比含量 CRASAND 砂岩的百分比含量 CRALIME 石灰岩的百分比含量 CRADOLM 白云岩的百分比含量 CRAANHY 硬石膏的百分比含量 CRAANDE 安山岩的百分比含量 CRA BASD 中性侵入岩百分比含量 CRA DIAB 辉长岩的百分比含量 CRA CONG 角砾岩的百分比含量 CRA TUFF 凝灰岩的百分比含量 CRA GRAV 中砾岩的百分比含量 CRA BASA 玄武岩的百分比含量 CRAA1R1 T1R1声波幅度A1R2 T1R2声波幅度A2R1 T2R1声波幅度A2R2 T2R2声波幅度AAC 声波附加值AAVG 第一扇区平均值AC 声波时差AF10 阵列感应电阻率AF20 阵列感应电阻率AF30 阵列感应电阻率AF60 阵列感应电阻率AF90 阵列感应电阻率AFRT 阵列感应电阻率AFRX 阵列感应电阻率AIMP 声阻抗AIPD 密度孔隙度AIPN 中子孔隙度AMAV 声幅AMAX 最大声幅AMIN 最小声幅AMP1 第一扇区的声幅值AMP2 第二扇区的声幅值AMP3 第三扇区的声幅值AMP4 第四扇区的声幅值AMP5 第五扇区的声幅值AMP6 第六扇区的声幅值AMVG 平均声幅AO10 阵列感应电阻率AO20 阵列感应电阻率AO30 阵列感应电阻率AO60 阵列感应电阻率AO90 阵列感应电阻率AOFF 截止值AORT 阵列感应电阻率AORX 阵列感应电阻率APLC 补偿中子AR10 方位电阻率AR11 方位电阻率AR12 方位电阻率ARO1 方位电阻率ARO2 方位电阻率ARO3 方位电阻率ARO4 方位电阻率ARO5 方位电阻率ARO6 方位电阻率ARO7 方位电阻率ARO8 方位电阻率ARO9 方位电阻率AT10 阵列感应电阻率AT20 阵列感应电阻率AT30 阵列感应电阻率AT60 阵列感应电阻率AT90 阵列感应电阻率ATAV 平均衰减率ATC1 声波衰减率ATC2 声波衰减率ATC3 声波衰减率ATC4 声波衰减率ATC5 声波衰减率ATC6 声波衰减率ATMN 最小衰减率ATRT 阵列感应电阻率ATRX 阵列感应电阻率AZ 1号极板方位AZ1 1号极板方位AZI 1号极板方位AZIM 井斜方位BGF 远探头背景计数率BGN 近探头背景计数率BHTA 声波传播时间数据BHTT 声波幅度数据BLKC 块数BS 钻头直径BTNS 极板原始数据C1 井径C2 井径C3 井径CAL 井径CAL1 井径CAL2 井径CALI 井径CALS 井径CASI 钙硅比CBL 声波幅度CCL 磁性定位CEMC 水泥图CGR 自然伽马CI 总能谱比CMFF 核磁共振自由流体体积CMRP 核磁共振有效孔隙度CN 补偿中子CNL 补偿中子CO 碳氧比CON1 感应电导率COND 感应电导率CORR 密度校正值D2EC 200兆赫兹介电常数D4EC 47兆赫兹介电常数DAZ 井斜方位DCNT 数据计数DEN 补偿密度DEN_1 岩性密度DEPTH 测量深度DEV 井斜DEVI 井斜DFL 数字聚焦电阻率DIA1 井径DIA2 井径DIA3 井径DIFF 核磁差谱DIP1 地层倾角微电导率曲线1 DIP1_1 极板倾角曲线DIP2 地层倾角微电导率曲线2 DIP2_1 极板倾角曲线DIP3 地层倾角微电导率曲线3 DIP3_1 极板倾角曲线DIP4 地层倾角微电导率曲线4 DIP4_1 极板倾角曲线DIP5 极板倾角曲线DIP6 极板倾角曲线DRH 密度校正值DRHO 密度校正值DT 声波时差DT1 下偶极横波时差DT2 上偶极横波时差DT4P 纵横波方式单极纵波时差DT4S 纵横波方式单极横波时差DTL 声波时差DTST 斯通利波时差ECHO 回波串ECHOQM 回波串ETIMD 时间FAMP 泥浆幅度FAR 远探头地层计数率FCC 地层校正FDBI 泥浆探测器增益FDEN 流体密度FGAT 泥浆探测器门限FLOW 流量FPLC 补偿中子FTIM 泥浆传播时间GAZF Z轴加速度数据GG01 屏蔽增益GG02 屏蔽增益GG03 屏蔽增益GG04 屏蔽增益GG05 屏蔽增益GG06 屏蔽增益GR 自然伽马GR2 同位素示踪伽马HAZI 井斜方位HDRS 深感应电阻率HFK 钾HMRS 中感应电阻率HSGR 无铀伽马HTHO 钍HUD 持水率HURA 铀IDPH 深感应电阻率IMPH 中感应电阻率K 钾KCMR 核磁共振渗透率KTH 无铀伽马LCAL 井径LDL 岩性密度LLD 深侧向电阻率LLD3 深三侧向电阻率LLD7 深七侧向电阻率LLHR 高分辨率侧向电阻率LLS 浅侧向电阻率LLS3 浅三侧向电阻率LLS7 浅七侧向电阻率M1R10 高分辨率阵列感应电阻率M1R120 高分辨率阵列感应电阻率M1R20 高分辨率阵列感应电阻率M1R30 高分辨率阵列感应电阻率M1R60 高分辨率阵列感应电阻率M1R90 高分辨率阵列感应电阻率M2R10 高分辨率阵列感应电阻率M2R120 高分辨率阵列感应电阻率M2R20 高分辨率阵列感应电阻率M2R30 高分辨率阵列感应电阻率M2R60 高分辨率阵列感应电阻率M2R90 高分辨率阵列感应电阻率M4R10 高分辨率阵列感应电阻率M4R120 高分辨率阵列感应电阻率M4R20 高分辨率阵列感应电阻率M4R30 高分辨率阵列感应电阻率M4R60 高分辨率阵列感应电阻率M4R90 高分辨率阵列感应电阻率MBVI 核磁共振束缚流体体积MBVM 核磁共振自由流体体积MCBW 核磁共振粘土束缚水ML1 微电位电阻率ML2 微梯度电阻率MPHE 核磁共振有效孔隙度MPHS 核磁共振总孔隙度MPRM 核磁共振渗透率MSFL 微球型聚焦电阻率NCNT 磁北极计数NEAR 近探头地层计数率NGR 中子伽马NPHI 补偿中子P01 第1组分孔隙度P02 第2组分孔隙度P03 第3组分孔隙度P04 第4组分孔隙度P05 第5组分孔隙度P06 第6组分孔隙度P07 第7组分孔隙度P08 第8组分孔隙度P09 第9组分孔隙度P10 第10组分孔隙度P11 第11组分孔隙度P12 第12组分孔隙度P1AZ 1号极板方位P1AZ_1 2号极板方位P1BTN 极板原始数据P2BTN 极板原始数据P2HS 200兆赫兹相位角P3BTN 极板原始数据P4BTN 极板原始数据P4HS 47兆赫兹相位角P5BTN 极板原始数据P6BTN 极板原始数据PAD1 1号极板电阻率曲线PAD2 2号极板电阻率曲线PAD3 3号极板电阻率曲线PAD4 4号极板电阻率曲线PAD5 5号极板电阻率曲线PAD6 6号极板电阻率曲线PADG 极板增益PD6G 屏蔽电压PE 光电吸收截面指数PEF 光电吸收截面指数PEFL 光电吸收截面指数PERM-IND 核磁共振渗透率POTA 钾PPOR 核磁T2谱PPORB 核磁T2谱PPORC 核磁T2谱PR 泊松比PRESSURE 压力QA 加速计质量QB 磁力计质量QRTT 反射波采集质量R04 0.4米电位电阻率R045 0.45米电位电阻率R05 0.5米电位电阻率R1 1米底部梯度电阻率R25 2.5米底部梯度电阻率R4 4米底部梯度电阻率R4AT 200兆赫兹幅度比R4AT_1 47兆赫兹幅度比R4SL 200兆赫兹电阻率R4SL_1 47兆赫兹电阻率R6 6米底部梯度电阻率R8 8米底部梯度电阻率RAD1 井径(极板半径)RAD2 井径(极板半径)RAD3 井径(极板半径)RAD4 井径(极板半径)RAD5 井径(极板半径)RAD6 井径(极板半径)RADS 井径(极板半径)RATI 地层比值RB 相对方位RB_1 相对方位角RBOF 相对方位RD 深侧向电阻率RFOC 八侧向电阻率RHOB 岩性密度RHOM 岩性密度RILD 深感应电阻率RILM 中感应电阻率RLML 微梯度电阻率RM 钻井液电阻率RMLL 微侧向电阻率RMSF 微球型聚焦电阻率RNML 微电位电阻率ROT 相对方位RPRX 邻近侧向电阻率RS 浅侧向电阻率SDBI 特征值增益SFL 球型聚焦电阻率SFLU 球型聚焦电阻率SGAT 采样时间SGR 无铀伽马SICA 硅钙比SIG 井周成像特征值SIGC 俘获截面SIGC2 示踪俘获截面SMOD 横波模量SNL 井壁中子SNUM 特征值数量SP 自然电位SPER 特征值周期T2 核磁T2谱T2-BIN-A 核磁共振区间孔隙度T2-BIN-B 核磁共振区间孔隙度T2-BIN-PR 核磁共振区间孔隙度T2GM T2分布对数平均值T2LM T2分布对数平均值TEMP 井温TH 钍THOR 钍TKRA 钍钾比TPOR 核磁共振总孔隙度TRIG 模式标志TS 横波时差TT1 上发射上接受的传播时间TT2 上发射下接受的传播时间TT3 下发射上接受的传播时间TT4 下发射下接受的传播时间TURA 钍铀比U 铀UKRA 铀钾比URAN 铀VAMP 扇区水泥图VDL 声波变密度VMVM 核磁共振自由流体体积VPVS 纵横波速度比WAV1 第一扇区的波列WAV2 第二扇区的波列WAV3 第三扇区的波列WAV4 第四扇区的波列WAV5 第五扇区的波列WAV6 第六扇区的波列WAVE 变密度图WF 全波列波形ZCORR 密度校正值Rt true formation resistivity. 地层真电阻率Rxo flushed zone formationresistivity 冲洗带地层电阻率Ild deep investigate induction log深探测感应测井Ilm medium investigate induction log中探测感应测井Ils shallow investigate induction log浅探测感应测井Rd deep investigate double lateral resistivity log 深双侧向电阻率测井Rs shallow investigate double 浅双侧向电阻率测井lateral resistivity logRMLL micro lateral resistivity log 微侧向电阻率测井CON induction log 感应测井AC acoustic 声波时差DEN density 密度CN neutron 中子GR natural gamma ray 自然伽马SP spontaneous potential 自然电位CAL borehole diameter 井径K potassium 钾TH thorium 钍U uranium 铀KTH gamma ray without uranium 无铀伽马NGR neutron gamma ray 中子伽马常用测井曲线名称测井符号英文名称中文名称Rt true formation resistivity. 地层真电阻率Rxo flushed zone formation resistivity 冲洗带地层电阻率Ild deep investigate induction log 深探测感应测井Ilm medium investigate induction log 中探测感应测井Ils shallow investigate induction log 浅探测感应测井Rd deep investigate double lateral resistivity log 深双侧向电阻率测井Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井RMLL micro lateral resistivity log 微侧向电阻率测井CON induction log 感应测井AC acoustic 声波时差DEN density 密度CN neutron 中子GR natural gamma ray 自然伽马SP spontaneous potential 自然电位CAL borehole diameter 井径K potassium 钾TH thorium 钍U uranium 铀KTH gamma ray without uranium 无铀伽马NGR neutron gamma ray 中子伽马5700系列的测井项目及曲线名称Star Imager 微电阻率扫描成像CBIL 井周声波成像MAC 多极阵列声波成像MRIL 核磁共振成像TBRT 薄层电阻率DAC 阵列声波DVRT 数字垂直测井HDIP 六臂倾角MPHI 核磁共振有效孔隙度MBVM 可动流体体积MBVI 束缚流体体积MPERM 核磁共振渗透率Echoes 标准回波数据T2 Dist T2分布数据TPOR 总孔隙度BHTA 声波幅度BHTT 声波返回时间Image DIP 图像的倾角COMP AMP 纵波幅度Shear AMP 横波幅度COMP ATTN 纵波衰减Shear ATTN 横波衰减RADOUTR 井眼的椭圆度Dev 井斜。
测井常用英文对照表
![测井常用英文对照表](https://img.taocdn.com/s3/m/9bb37cc95fbfc77da269b169.png)
第一道主要为反映岩性的测井曲线道,包括:自然电位测井曲线――曲线符号为SP、记录单位mv;自然伽马测井曲线――曲线符号为GR、记录单位API;井径测井曲线――曲线符号为CAL,记录单位in或cm;岩性密度测井曲线(光电吸收界面指数)――曲线符号为PE;第二道是深度道;通常的深度比例尺为1:200 或1:500第三道是反映含油性的测井曲线道,包括深中浅三条电阻率测井曲线,分别是:深侧向测井曲线――曲线符号为LLD、记录单位Ωm;浅侧向测井曲线――曲线符号为LLS、记录单位Ωm;微球形聚焦测井曲线――曲线符号为MSFL、记录单位Ωm;电阻率测井曲线通常为对数刻度。
第四道为反映孔隙度的测井曲线道,包括:密度测井曲线――曲线符号为DEN或RHOB,记录单位g/cm3;中子测井曲线――曲线符号为CNL或PHIN,记录单位%,有时为v/v。
声波测井曲线――曲线符号为AC或DT,记录单位us/ft,有时为us/m。
中子和密度测井曲线的刻度的特点是保证在含水砂岩层上两条曲线重迭,在含气层上,密度孔隙度大于中子孔隙度,在泥岩层上,中子孔隙度大于密度孔隙度;第五道是反映粘土矿物类型的测井曲线道,包括自然伽马能谱测井中的三条曲线:放射性钍测井曲线――曲线符号为Th或THOR,记录单位是ppm;放射性铀测井曲线――曲线符号为U或URAN,记录单位ppm;放射性钾测井曲线――曲线符号为K或POTA,记录单位%,有时为v/v。
测井符号英文名称中文名称Rt true formation resistivity. 地层真电阻率Rxo flushed zone formation resistivity 冲洗带地层电阻率Ild deep investigate induction log 深探测感应测井Ilm medium investigate induction log 中探测感应测井Ils shallow investigate induction log 浅探测感应测井Rd deep investigate double lateral resistivity log 深双侧向电阻率测井Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井RMLL micro lateral resistivity log 微侧向电阻率测井CON induction log 感应测井AC acoustic 声波时差DEN density 密度CN neutron 中子GR natural gamma ray 自然伽马SP spontaneous potential 自然电位CAL borehole diameter 井径K potassium 钾TH thorium 钍U uranium 铀KTH gamma ray without uranium 无铀伽马NGR neutron gamma ray 中子伽马---------------------------------------------------GRSL—能谱自然伽马POR 孔隙度NEWSANDPORW 含水孔隙度NEWSANDPORF 冲洗带含水孔隙度NEWSANDPORT 总孔隙度NEWSANDPORX 流体孔隙度NEWSANDPORH 油气重量NEWSANDBULK 出砂指数NEWSANDPERM 渗透率NEWSANDSW 含水饱和度NEWSANDSH 泥质含量NEWSANDCALO 井径差值NEWSANDCL 粘土含量NEWSANDDHY 残余烃密度NEWSANDSXO 冲洗带含水饱和度NEWSANDDA 第一判别向量的判别函数NEWSANDDB 第二判别向量的判别函数NEWSAND DAB 综合判别函数NEWSANDCI 煤层标志NEWSANDCARB 煤的含量NEWSANDTEMP 地层温度NEWSANDQ 评价泥质砂岩油气层产能的参数NEWSAND PI 评价泥质砂岩油气层产能的参数NEWSAND SH 泥质体积CLASSSW 总含水饱和度CLASSPOR 有效孔隙度CLASSPORG 气指数CLASSCHR 阳离子交换能力与含氢量的比值CLASS CL 粘土体积CLASSPORW 含水孔隙度CLASSPORF 冲洗带饱含泥浆孔隙度CLASSCALC 井径差值CLASSDHYC 烃密度CLASSPERM 绝对渗透率CLASSPIH 油气有效渗透率CLASSPIW 水的有效渗透率CLASSCLD 分散粘土体积CLASSCLL 层状粘土体积CLASSCLS 结构粘土体积CLASSEPOR 有效孔隙度CLASSESW 有效含水饱和度CLASSTPI 钍钾乘积指数CLASSPOTV 100%粘土中钾的体积CLASSCEC 阳离子交换能力CLASSQV 阳离子交换容量CLASSBW 粘土中的束缚水含量CLASSEPRW 含水有效孔隙度CLASSUPOR 总孔隙度,UPOR=EPOR+BW CLASS HI 干粘土骨架的含氢指数CLASSBWCL 粘土束缚水含量CLASSTMON 蒙脱石含量CLASSTILL 伊利石含量CLASSTCHK 绿泥石和高岭石含量CLASSVSH 泥质体积CLASSVSW 总含水饱和度CLASSVPOR 有效孔隙度CLASSVPOG 气指数CLASSVCHR 阳离子交换能力与含氢量的比值CLASS VCL 粘土体积CLASSVPOW 含水孔隙度CLASSVPOF 冲洗带饱含泥浆孔隙度CLASSVCAC 井径差值CLASSVDHY 烃密度CLASSVPEM 绝对渗透率CLASSVPIH 油气有效渗透率CLASSVPIW 水的有效渗透率CLASSVCLD 分散粘土体积CLASSVCLL 层状粘土体积CLASSVCLS 结构粘土体积CLASSVEPO 有效孔隙度CLASSVESW 有效含水饱和度CLASSVTPI 钍钾乘积指数CLASSVPOV 100%粘土中钾的体积CLASSVCEC 阳离子交换能力CLASSVQV 阳离子交换容量CLASSVBW 粘土中的束缚水含量CLASSVEPR 含水有效孔隙度CLASSVUPO 总孔隙度CLASSVHI 干粘土骨架的含氢指数CLASSVBWC 粘土束缚水含量CLASSVTMO 蒙脱石含量CLASSVTIL 伊利石含量CLASSVTCH 绿泥石和高岭石含量CLASSQW井筒水流量PLIQT井筒总流量PLISK射孔井段PLIPQW单层产水量PLIPQT单层产液量PLIWEQ 相对吸水量ZRPMPEQ 相对吸水强度ZRPMPOR 孔隙度PRCOPORW 含水孔隙度PRCOPORF 冲洗带含水孔隙度PRCOPORT 总孔隙度PRCOPORX 流体孔隙度PRCOPORH 油气重量PRCOBULK 出砂指数PRCOHF 累计烃米数PRCOPF 累计孔隙米数PRCOPERM 渗透率PRCOSW 含水饱和度PRCOSH 泥质含量PRCOCALO 井径差值PRCOCL 粘土含量PRCODHY 残余烃密度PRCOSXO 冲洗带含水饱和度PRCOSWIR 束缚水饱和度PRCOPERW 水的有效渗透率PRCOPERO 油的有效渗透率PRCOKRW 水的相对渗透率PRCOKRO 油的相对渗透率PRCOFW 产水率PRCOSHSI 泥质与粉砂含量PRCOSXOF 199*SXO PRCOSWCO 含水饱和度PRCOWCI 产水率PRCOWOR 水油比PRCOCCCO 经过PORT校正后的C/O值PRCO CCSC 经过PORT校正后的SI/CA值PRCO CCCS 经过PORT校正后的CA/SI值PRCO DCO 油水层C/O差值PRCOXIWA 水线视截距PRCOCOWA 视水线值PRCOCONM 视油线值PRCOCPRW 产水率(C/O计算)PRCO COAL 煤层CRAOTHR 重矿物的百分比含量CRASALT 盐岩的百分比含量CRASAND 砂岩的百分比含量CRALIME 石灰岩的百分比含量CRADOLM 白云岩的百分比含量CRAANHY 硬石膏的百分比含量CRAANDE 安山岩的百分比含量CRABASD 中性侵入岩百分比含量CRA DIAB 辉长岩的百分比含量CRA CONG 角砾岩的百分比含量CRA TUFF 凝灰岩的百分比含量CRA GRAV 中砾岩的百分比含量CRA BASA 玄武岩的百分比含量CRA常用测井曲线名称(转自博客石油)A1R1 T1R1声波幅度A1R2 T1R2声波幅度A2R1 T2R1声波幅度A2R2 T2R2声波幅度AAC 声波附加值AAVG 第一扇区平均值AC 声波时差AF10 阵列感应电阻率AF20 阵列感应电阻率AF30 阵列感应电阻率AF60 阵列感应电阻率AF90 阵列感应电阻率AFRT 阵列感应电阻率AFRX 阵列感应电阻率AIMP 声阻抗AIPD 密度孔隙度AIPN 中子孔隙度AMAV 声幅AMAX 最大声幅AMIN 最小声幅AMP1 第一扇区的声幅值AMP2 第二扇区的声幅值AMP3 第三扇区的声幅值AMP4 第四扇区的声幅值AMP5 第五扇区的声幅值AMP6 第六扇区的声幅值AMVG 平均声幅AO10 阵列感应电阻率AO20 阵列感应电阻率AO30 阵列感应电阻率AO60 阵列感应电阻率AO90 阵列感应电阻率AOFF 截止值AORT 阵列感应电阻率AORX 阵列感应电阻率APLC 补偿中子AR10 方位电阻率AR11 方位电阻率AR12 方位电阻率ARO1 方位电阻率ARO2 方位电阻率ARO3 方位电阻率ARO4 方位电阻率ARO5 方位电阻率ARO6 方位电阻率ARO7 方位电阻率ARO8 方位电阻率ARO9 方位电阻率AT10 阵列感应电阻率AT20 阵列感应电阻率AT30 阵列感应电阻率AT60 阵列感应电阻率AT90 阵列感应电阻率ATAV 平均衰减率ATC1 声波衰减率ATC2 声波衰减率ATC3 声波衰减率ATC4 声波衰减率ATC5 声波衰减率ATC6 声波衰减率ATMN 最小衰减率ATRT 阵列感应电阻率ATRX 阵列感应电阻率AZ 1号极板方位AZ1 1号极板方位AZI 1号极板方位AZIM 井斜方位BGF 远探头背景计数率BGN 近探头背景计数率BHTA 声波传播时间数据BHTT 声波幅度数据BLKC 块数BS 钻头直径BTNS 极板原始数据C1 井径C2 井径C3 井径CAL 井径CAL2 井径CALI 井径CALS 井径CASI 钙硅比CBL 声波幅度CCL 磁性定位CEMC 水泥图CGR 自然伽马CI 总能谱比CMFF 核磁共振自由流体体积CMRP 核磁共振有效孔隙度CN 补偿中子CNL 补偿中子CO 碳氧比CON1 感应电导率COND 感应电导率CORR 密度校正值D2EC 200兆赫兹介电常数D4EC 47兆赫兹介电常数DAZ 井斜方位DCNT 数据计数DEN 补偿密度DEN_1 岩性密度DEPTH 测量深度DEV 井斜DEVI 井斜DFL 数字聚焦电阻率DIA1 井径DIA2 井径DIA3 井径DIFF 核磁差谱DIP1 地层倾角微电导率曲线1 DIP1_1 极板倾角曲线DIP2 地层倾角微电导率曲线2 DIP2_1 极板倾角曲线DIP3 地层倾角微电导率曲线3 DIP3_1 极板倾角曲线DIP4 地层倾角微电导率曲线4 DIP4_1 极板倾角曲线DIP5 极板倾角曲线DIP6 极板倾角曲线DRH 密度校正值DRHO 密度校正值DT1 下偶极横波时差DT2 上偶极横波时差DT4P 纵横波方式单极纵波时差DT4S 纵横波方式单极横波时差DTL 声波时差DTST 斯通利波时差ECHO 回波串ECHOQM 回波串ETIMD 时间FAMP 泥浆幅度FAR 远探头地层计数率FCC 地层校正FDBI 泥浆探测器增益FDEN 流体密度FGAT 泥浆探测器门限FLOW 流量FPLC 补偿中子FTIM 泥浆传播时间GAZF Z轴加速度数据GG01 屏蔽增益GG02 屏蔽增益GG03 屏蔽增益GG04 屏蔽增益GG05 屏蔽增益GG06 屏蔽增益GR 自然伽马GR2 同位素示踪伽马HAZI 井斜方位HDRS 深感应电阻率HFK 钾HMRS 中感应电阻率HSGR 无铀伽马HTHO 钍HUD 持水率HURA 铀IDPH 深感应电阻率IMPH 中感应电阻率K 钾KCMR 核磁共振渗透率KTH 无铀伽马LCAL 井径LDL 岩性密度LLD 深侧向电阻率LLD3 深三侧向电阻率LLD7 深七侧向电阻率LLHR 高分辨率侧向电阻率LLS 浅侧向电阻率LLS3 浅三侧向电阻率LLS7 浅七侧向电阻率M1R10 高分辨率阵列感应电阻率M1R120 高分辨率阵列感应电阻率M1R20 高分辨率阵列感应电阻率M1R30 高分辨率阵列感应电阻率M1R60 高分辨率阵列感应电阻率M1R90 高分辨率阵列感应电阻率M2R10 高分辨率阵列感应电阻率M2R120 高分辨率阵列感应电阻率M2R20 高分辨率阵列感应电阻率M2R30 高分辨率阵列感应电阻率M2R60 高分辨率阵列感应电阻率M2R90 高分辨率阵列感应电阻率M4R10 高分辨率阵列感应电阻率M4R120 高分辨率阵列感应电阻率M4R20 高分辨率阵列感应电阻率M4R30 高分辨率阵列感应电阻率M4R60 高分辨率阵列感应电阻率M4R90 高分辨率阵列感应电阻率MBVI 核磁共振束缚流体体积MBVM 核磁共振自由流体体积MCBW 核磁共振粘土束缚水ML1 微电位电阻率ML2 微梯度电阻率MPHE 核磁共振有效孔隙度MPHS 核磁共振总孔隙度MPRM 核磁共振渗透率MSFL 微球型聚焦电阻率NCNT 磁北极计数NEAR 近探头地层计数率NGR 中子伽马NPHI 补偿中子P01 第1组分孔隙度P02 第2组分孔隙度P03 第3组分孔隙度P04 第4组分孔隙度P05 第5组分孔隙度P06 第6组分孔隙度P07 第7组分孔隙度P08 第8组分孔隙度P09 第9组分孔隙度P10 第10组分孔隙度P11 第11组分孔隙度P12 第12组分孔隙度P1AZ 1号极板方位P1AZ_1 2号极板方位P1BTN 极板原始数据P2BTN 极板原始数据P2HS 200兆赫兹相位角P3BTN 极板原始数据P4BTN 极板原始数据P4HS 47兆赫兹相位角P5BTN 极板原始数据P6BTN 极板原始数据PAD1 1号极板电阻率曲线PAD2 2号极板电阻率曲线PAD3 3号极板电阻率曲线PAD4 4号极板电阻率曲线PAD5 5号极板电阻率曲线PAD6 6号极板电阻率曲线PADG 极板增益PD6G 屏蔽电压PE 光电吸收截面指数PEF 光电吸收截面指数PEFL 光电吸收截面指数PERM-IND 核磁共振渗透率POTA 钾PPOR 核磁T2谱PPORB 核磁T2谱PPORC 核磁T2谱PR 泊松比PRESSURE 压力QA 加速计质量QB 磁力计质量QRTT 反射波采集质量R04 0.4米电位电阻率R045 0.45米电位电阻率R05 0.5米电位电阻率R1 1米底部梯度电阻率R25 2.5米底部梯度电阻率R4 4米底部梯度电阻率R4AT 200兆赫兹幅度比R4AT_1 47兆赫兹幅度比R4SL 200兆赫兹电阻率R4SL_1 47兆赫兹电阻率R6 6米底部梯度电阻率R8 8米底部梯度电阻率RAD1 井径(极板半径)RAD2 井径(极板半径)RAD3 井径(极板半径)RAD4 井径(极板半径)RAD5 井径(极板半径)RAD6 井径(极板半径)RADS 井径(极板半径)RATI 地层比值RB 相对方位RB_1 相对方位角RBOF 相对方位RD 深侧向电阻率RFOC 八侧向电阻率RHOB 岩性密度RHOM 岩性密度RILD 深感应电阻率RILM 中感应电阻率RLML 微梯度电阻率RM 钻井液电阻率RMLL 微侧向电阻率RMSF 微球型聚焦电阻率RNML 微电位电阻率ROT 相对方位RPRX 邻近侧向电阻率RS 浅侧向电阻率SDBI 特征值增益SFL 球型聚焦电阻率SFLU 球型聚焦电阻率SGAT 采样时间SGR 无铀伽马SICA 硅钙比SIG 井周成像特征值SIGC 俘获截面SIGC2 示踪俘获截面SMOD 横波模量SNL 井壁中子SNUM 特征值数量SP 自然电位SPER 特征值周期T2 核磁T2谱T2-BIN-A 核磁共振区间孔隙度T2-BIN-B 核磁共振区间孔隙度T2-BIN-PR 核磁共振区间孔隙度T2GM T2分布对数平均值T2LM T2分布对数平均值TEMP 井温TH 钍THOR 钍TKRA 钍钾比TPOR 核磁共振总孔隙度TRIG 模式标志TS 横波时差TT1 上发射上接受的传播时间TT2 上发射下接受的传播时间TT3 下发射上接受的传播时间TT4 下发射下接受的传播时间TURA 钍铀比U 铀UKRA 铀钾比URAN 铀VAMP 扇区水泥图VDL 声波变密度VMVM 核磁共振自由流体体积VPVS 纵横波速度比WAV1 第一扇区的波列WAV2 第二扇区的波列WAV3 第三扇区的波列WAV4 第四扇区的波列WAV5 第五扇区的波列WAV6 第六扇区的波列WAVE 变密度图WF 全波列波形ZCORR 密度校正值测井曲线代码一览表常用测井曲线名称测井符号英文名称中文名称Rt true formation resistivity. 地层真电阻率Rxo flushed zone formationresistivity 冲洗带地层电阻率Ild deep investigate induction log深探测感应测井Ilm medium investigate induction log中探测感应测井Ils shallow investigate induction log浅探测感应测井Rd deep investigate double lateral resistivity log深双侧向电阻率测井Rs shallow investigate double 浅双侧向电阻率测井lateral resistivity logRMLL micro lateral resistivity log 微侧向电阻率测井CON induction log 感应测井AC acoustic 声波时差DEN density 密度CN neutron 中子GR natural gamma ray 自然伽马SP spontaneous potential 自然电位CAL borehole diameter 井径K potassium 钾TH thorium 钍U uranium 铀KTH gamma ray without uranium 无铀伽马NGR neutron gamma ray 中子伽马常用测井曲线名称测井符号英文名称中文名称Rt true formation resistivity. 地层真电阻率Rxo flushed zone formation resistivity 冲洗带地层电阻率Ild deep investigate induction log 深探测感应测井Ilm medium investigate induction log 中探测感应测井Ils shallow investigate induction log 浅探测感应测井Rd deep investigate double lateral resistivity log 深双侧向电阻率测井Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井RMLL micro lateral resistivity log 微侧向电阻率测井CON induction log 感应测井AC acoustic 声波时差DEN density 密度CN neutron 中子GR natural gamma ray 自然伽马SP spontaneous potential 自然电位CAL borehole diameter 井径K potassium 钾TH thorium 钍U uranium 铀KTH gamma ray without uranium 无铀伽马NGR neutron gamma ray 中子伽马5700系列的测井项目及曲线名称Star Imager 微电阻率扫描成像CBIL 井周声波成像MAC 多极阵列声波成像MRIL 核磁共振成像TBRT 薄层电阻率DAC 阵列声波DVRT 数字垂直测井HDIP 六臂倾角MPHI 核磁共振有效孔隙度MBVM 可动流体体积MBVI 束缚流体体积MPERM 核磁共振渗透率Echoes 标准回波数据T2 Dist T2分布数据TPOR 总孔隙度BHTA 声波幅度BHTT 声波返回时间Image DIP 图像的倾角COMP AMP 纵波幅度Shear AMP 横波幅度COMP ATTN 纵波衰减Shear ATTN 横波衰减RADOUTR 井眼的椭圆度Dev 井斜。
中子孔隙度、核磁孔隙度、密度孔隙度总孔隙度
![中子孔隙度、核磁孔隙度、密度孔隙度总孔隙度](https://img.taocdn.com/s3/m/0fa234898ad63186bceb19e8b8f67c1cfad6eee2.png)
中子孔隙度、核磁孔隙度、密度孔隙度总孔隙度孔隙度是岩石、土壤和其他多孔介质中的空间占有率。
它通常用来描述岩石或土壤中的孔隙空间。
孔隙度是一个重要的地质参数,对于油气田勘探、水文地质研究等领域都具有重要的意义。
孔隙度的种类有很多种,其中较为常见的包括中子孔隙度、核磁孔隙度和密度孔隙度。
本文将对这三种孔隙度分别进行介绍,并对它们的总孔隙度进行综合分析。
一、中子孔隙度中子孔隙度是指利用中子测井仪器来测定地层孔隙度的一种方法。
在地层孔隙度的测定中,由于地层中通常含有较多的水分,而水分又对中子有很强的吸收能力,所以地层中的孔隙度可以通过测定地层中中子的减弱程度来间接反映地层的孔隙度。
中子孔隙度是一种常用的测井参数,它可以用来表征地层的孔隙结构和渗透性,对于油气勘探和储层评价有着重要的意义。
二、核磁孔隙度核磁孔隙度是一种通过核磁共振仪器来测定地层孔隙度的方法。
核磁共振技术是利用核磁共振现象来研究材料内部结构和性质的一种方法。
在地质领域,核磁共振技术常常用来测定地层的孔隙度和渗透率。
通过核磁共振技术可以直接测定地层中的孔隙度,这对于研究地层的孔隙结构和渗透性具有重要的意义。
核磁孔隙度是一种新型的测井参数,目前在油气勘探和储层评价中得到了广泛的应用。
三、密度孔隙度密度孔隙度是通过测定地层岩石的密度来间接反映地层孔隙度的一种方法。
地层中的岩石通常由矿物颗粒和孔隙组成,而矿物颗粒的密度一般是已知的,因此可以通过测定地层岩石的密度来推算地层中的孔隙度。
密度孔隙度是一种传统的测井参数,它在地质勘探和石油开采领域有着较为广泛的应用。
四、总孔隙度总孔隙度是指地层中总的孔隙空间所占的比例。
它是由中子孔隙度、核磁孔隙度和密度孔隙度三种孔隙度综合得出的一个参数。
总孔隙度是地质勘探和石油开采中常用的一个参数,它可以用来表征地层的孔隙结构和储集情况,对于勘探工作和石油开采具有重要的指导意义。
总的来说,孔隙度是一个重要的地质参数,它对于油气勘探和地质勘探具有重要的意义。
中子孔隙度、核磁孔隙度、密度孔隙度总孔隙度
![中子孔隙度、核磁孔隙度、密度孔隙度总孔隙度](https://img.taocdn.com/s3/m/450f7acd03d276a20029bd64783e0912a2167cd9.png)
中子孔隙度、核磁孔隙度、密度孔隙度总孔隙度核磁共振技术在地球科学领域的应用已经相当成熟,其中孔隙度是一个非常重要的参数。
孔隙度是指岩石或土壤中的孔隙空间所占的比例。
根据孔隙空间的类型和物理特性的不同,孔隙度可以分为多种类型,比如中子孔隙度、核磁孔隙度、密度孔隙度等。
这些孔隙度参数对地质勘探和岩石物性的研究都具有重要的指导意义。
首先,中子孔隙度是通过中子测井技术获取的参数。
中子测井仪器通过向地下发送中子束,测量中子束与地下物质相互作用后的衰减情况,从而可以得到地层中的中子孔隙度。
中子孔隙度主要反映的是岩石孔隙中的氢原子含量,通常用来评价岩石的孔隙结构和孔隙分布情况。
中子孔隙度的测定结果对油气资源勘探有着重要的指导作用,可以帮助地质学家判断储集岩的储层性质,从而指导勘探工作的开展。
其次,核磁孔隙度则是利用核磁共振技术获得的孔隙度参数。
核磁共振技术是通过分析地下岩石样本中的核磁共振信号来获取有关孔隙度的信息。
核磁共振信号的强度和频率分布可以反映出岩石孔隙中的流体类型、含量和分布情况,从而得到核磁孔隙度参数。
核磁孔隙度对于评价储层流体性质和孔隙结构非常重要,可以为油气勘探提供关键的地质信息。
另外,密度孔隙度是利用密度测井技术获得的孔隙度参数。
密度测井仪器通过向地下发送γ射线,测量γ射线在地层中的衰减情况,可以推算出地层的密度孔隙度。
密度孔隙度主要反映的是岩石孔隙中的颗粒密度和岩石基质的密度差异,通常用来评价岩石的孔隙结构和孔隙度分布情况。
密度孔隙度参数对油气勘探和地质储层的评价具有重要的指导作用,可以帮助地质学家判断储集岩的物性参数,从而指导勘探工作的开展。
综合考虑中子孔隙度、核磁孔隙度和密度孔隙度这三种不同类型的孔隙度参数,可以得到地层的总孔隙度。
总孔隙度是指地层中所有孔隙空间所占的比例,是反映地层孔隙性质和储集能力的重要参数之一。
总孔隙度的大小和分布情况对油气储层的形成和分布具有重要的影响,可以为油气勘探和开发提供重要的地质依据。
储层参数计算.
![储层参数计算.](https://img.taocdn.com/s3/m/f6a1d124a6c30c2259019ee7.png)
SP SP min I sh SP max SP min 2GCUR I sh 1 Vsh GCUR 2 1
– 方法二:
SP Vsh 1 SSP
• SSP:目的层段中纯砂岩水层静自然电位。
三、储层参数计算及处理
4、泥质含量计算
3)自然伽马能谱
– 同时测量U、TH、K、SGR(无UGR)、CGR,除U外,都能用 来求泥质含量,用CGR较好。 – 方法同GR. – 当用多种方法求泥质含量时,最终应取多种方法求得的最 小者
¬ md Ê £ ¸ Â ø Í É
×Ï ¿ ¶ ¶ È £ ¬ £ ¥
三、储层参数计算及处理
2、渗透率计算
2)用孔隙度和束缚水饱和度求取 如Timur公式
0.136 4.4 K 2 S wb
•Swb,%;φ,%;K,10-3μm2
三、储层参数计算及处 b D ma f
H H ma N H f H ma
S
t t ma t f t ma
ma——骨架 f ——流体
该公式称为平均时间公式或Wyllie-Rose公式
三、储层参数计算及处理
1、孔隙度计算
2)体积法:
适用范围:平均时间公式适用于压实和胶结良好的纯砂岩地层。在这
种砂岩中,矿物颗粒间接触良好,孔隙直径较小,故可以忽略矿物颗粒与孔隙流
体交界面对声波传播的影响,可认为声波在岩石中是直线传播的。但是对于未胶
结、又未压实的疏松砂层,矿物颗粒间接触不好,故矿物颗粒与孔隙水的交界面 对声波传播影响较大,使孔隙度相同的疏松砂层的声波时差要比压实的砂层大, 因此需要用压实校正系数校正: S
1 t t ma Cp t f t ma
材料的密度、孔隙率和吸水率计算
![材料的密度、孔隙率和吸水率计算](https://img.taocdn.com/s3/m/64cdbef8a76e58fafbb0031e.png)
材料的密度、孔隙率和吸水率的计算一、材料的密度、表观密度和堆积密度1.密度(ρ)密度是材料在绝对密实状态下,单位体积的重量。
按下式计算:ρ=m/V式中ρ——密度,g/cm3;M——材料的重量,g;V——材料在绝对密实状态下的体积,cm3。
这里指的“重量”与物理学中的“质量”是同一含义,在建筑材料学中,习惯上称之为“重量”。
对于固体材料而言,rn是指干燥至恒重状态下的重量。
所谓绝对密实状态下的体积是指不含有任何孔隙的体积。
建筑材料中除了钢材、玻璃等少数材料外,绝大多数材料都含有一定的孔隙、如砖、石材等块状材料。
对于这些有孔隙的材料,测定其密度时,应先把材料磨成细粉,经干燥至恒重后,用比重瓶(李氏瓶)测定其体积,然后按上式计算得到密度值。
材料磨得越细,测得的数值就越准确。
2.表观密度(ρ0)表现密度是指材料在自然状态下,单位体积的重量。
按下式计算:Ρo=m/V0ρo——表观密度,g/cm3或kg/m3;m——材料的重量,g或kg;Vo——材料的自然状态下的体积,cm3或m3材料在自然状态下的体积包含了材料内部孔隙的体积。
当材料含有水分时,它的重量积都会发生变化。
一般测定表观密度时,以干燥状态为准,如果在含水状态下测定表度,须注明含水情况。
在试验室中测定的通常为烘干至恒重状态下的表观密度。
质地坚硬的散粒状材料,如砂、石,要磨成细粉测定密度需耗费很大的能量,一般测定其密度,在应用过程中(如混凝土配合比计算过程)近似代替其密度。
3.堆积密度(ρ'0)堆积密度是指粉状或散粒状材料在堆积状态下,单位体积的重量。
按下式计算:ρ'0=m/V'0其中ρ'0——堆积密度,kg/m3;M——材料的重量,kg;V'0——材料的堆积体积,m3。
这里,材料的重量是指自然堆积在一定容器内材料的重量;其堆积体积是指所用容器的容积。
容器的容积视材料的种类和规格而定。
材料的堆积体积既包含内部孔隙也包含颗粒之间的空隙。
材料的密度、孔隙率和吸水率计算
![材料的密度、孔隙率和吸水率计算](https://img.taocdn.com/s3/m/e4930900336c1eb91b375d26.png)
材料的密度、孔隙率和吸水率的计算一、材料的密度、表观密度和堆积密度1.密度(ρ)密度是材料在绝对密实状态下,单位体积的重量。
按下式计算:ρ=m/V式中ρ——密度,g/cm3;M——材料的重量,g;V——材料在绝对密实状态下的体积,cm3。
这里指的“重量”与物理学中的“质量”是同一含义,在建筑材料学中,习惯上称之为“重量”。
对于固体材料而言,rn是指干燥至恒重状态下的重量。
所谓绝对密实状态下的体积是指不含有任何孔隙的体积。
建筑材料中除了钢材、玻璃等少数材料外,绝大多数材料都含有一定的孔隙、如砖、石材等块状材料。
对于这些有孔隙的材料,测定其密度时,应先把材料磨成细粉,经干燥至恒重后,用比重瓶(李氏瓶)测定其体积,然后按上式计算得到密度值。
材料磨得越细,测得的数值就越准确。
2.表观密度(ρ0)表现密度是指材料在自然状态下,单位体积的重量。
按下式计算:Ρo=m/V0ρo——表观密度,g/cm3或kg/m3;m——材料的重量,g或kg;V o——材料的自然状态下的体积,cm3或m3材料在自然状态下的体积包含了材料内部孔隙的体积。
当材料含有水分时,它的重量积都会发生变化。
一般测定表观密度时,以干燥状态为准,如果在含水状态下测定表度,须注明含水情况。
在试验室中测定的通常为烘干至恒重状态下的表观密度。
质地坚硬的散粒状材料,如砂、石,要磨成细粉测定密度需耗费很大的能量,一般测定其密度,在应用过程中(如混凝土配合比计算过程)近似代替其密度。
3.堆积密度(ρ'0)堆积密度是指粉状或散粒状材料在堆积状态下,单位体积的重量。
按下式计算:ρ'0=m/V'0其中ρ'0——堆积密度,kg/m3;M——材料的重量,kg;V'0——材料的堆积体积,m3。
这里,材料的重量是指自然堆积在一定容器内材料的重量;其堆积体积是指所用容器的容积。
容器的容积视材料的种类和规格而定。
材料的堆积体积既包含内部孔隙也包含颗粒之间的空隙。
密度孔隙度和中子孔隙度的区别及记法
![密度孔隙度和中子孔隙度的区别及记法](https://img.taocdn.com/s3/m/0d4e3c87b9d528ea81c7790c.png)
Байду номын сангаас
密度孔隙度与中子孔隙度的区别
1. 体积密度——体密度与电子密度近似相等(H)除外,用淡水石灰岩 标定,所以是视密度。砂岩小于真值,云岩大于真值,双探测器补偿 泥饼影响,通过密度可以计算孔隙度,砂大云小;——光电吸收指数 Pe和体积光电吸收指数U,由岩性决定,不受孔隙度影响,因而能识 别岩性。(密孔砂大云小,中孔砂小云大) 2. 中子孔隙度——快中子变为热中子以及减速、吸收等,由含氢量决定, 孔隙流体含氢量大,骨架小,石油近于水为1,气体很低。因而确定 孔隙度。砂岩减速能力低,云岩高,因而砂小云大。 气体有挖掘效 应, ——分同位素中子(利用超热中子和热中子,测中子的衰减为 主),和脉冲中子测井。
材料的密度、孔隙率和吸水率计算
![材料的密度、孔隙率和吸水率计算](https://img.taocdn.com/s3/m/ff8ce7b2aeaad1f346933fbe.png)
材料的密度、孔隙率和吸水率的计算一、材料的密度、表观密度和堆积密度?1.密度(ρ)?密度是材料在绝对密实状态下,单位体积的重量。
按下式计算:?ρ=m/V式中ρ——密度,g/cm3;?M——材料的重量,g;?V——材料在绝对密实状态下的体积,cm3。
?这里指的“重量”与物理学中的“质量”是同一含义,在建筑材料学中,习惯上称之为“重量”。
对于固体材料而言,rn是指干燥至恒重状态下的重量。
所谓绝对密实状态下的体积是指不含有任何孔隙的体积。
建筑材料中除了钢材、玻璃等少数材料外,绝大多数材料都含有一定的孔隙、如砖、石材等块状材料。
对于这些有孔隙的材料,测定其密度时,应先把材料磨成细粉,经干燥至恒重后,用比重瓶(李氏瓶)测定其体积,然后按上式计算得到密度值。
材料磨得越细,测得的数值就越准确。
?2.表观密度(ρ0)?表现密度是指材料在自然状态下,单位体积的重量。
按下式计算:Ρo=m/V0ρo——表观密度,g/cm3或kg/m3;?m——材料的重量,g或kg;?V o——材料的自然状态下的体积,cm3或m3?材料在自然状态下的体积包含了材料内部孔隙的体积。
当材料含有水分时,它的重量积都会发生变化。
一般测定表观密度时,以干燥状态为准,如果在含水状态下测定表度,须注明含水情况。
在试验室中测定的通常为烘干至恒重状态下的表观密度。
质地坚硬的散粒状材料,如砂、石,要磨成细粉测定密度需耗费很大的能量,一般测定其密度,在应用过程中(如混凝土配合比计算过程)近似代替其密度。
? 3.堆积密度(ρ'0)?堆积密度是指粉状或散粒状材料在堆积状态下,单位体积的重量。
按下式计算:?ρ'0=m/V'0????其中ρ'0——堆积密度,kg/m3;?M——材料的重量,kg;?V'0——材料的堆积体积,m3。
?这里,材料的重量是指自然堆积在一定容器内材料的重量;其堆积体积是指所用容器的容积。
容器的容积视材料的种类和规格而定。
孔隙度的计算
![孔隙度的计算](https://img.taocdn.com/s3/m/32a65a53b94ae45c3b3567ec102de2bd9605debf.png)
孔隙度的计算
孔隙度是指岩石或土壤中孔隙体积与总体积之比。
它是地质学、地球物理学、土木工程等领域中重要的参数。
孔隙度的计算需要使用一定的公式。
孔隙度计算公式
常见的孔隙度计算公式有以下两种:
1. 孔隙度= 孔隙体积/ 总体积
该公式的计算方法是先测量样品的总体积,然后使用水饱和法测量样品的孔隙体积。
孔隙度即为孔隙体积与总体积之比。
2. 孔隙度= (1 - 干密度/ 饱和密度) ×100%
该公式的计算方法是先测量样品的干密度和饱和密度,然后使用公式计算孔隙度。
其中,干密度是指样品在干燥状态下的密度,饱和密度则是指样品在完全饱和状态下的密度。
应用范围
这两种孔隙度计算公式都有其适用的范围。
第一种公式适用于孔隙度较大的岩石或土壤,而第二种公式适用于孔隙度较小的样品。
在实际应用中,需要根据样品的特点来选择合适的计算公式。
总之,孔隙度是岩石或土壤中的一个重要参数,其计算需要使用一定的公式。
通过合理使用这些公式,可以准确地计算出样品的孔隙度,为后续的研究提供有效的数据支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 体积密度——体密度与电子密度近似相等(H)除外,用淡水石灰岩 标定,所以是视密度。砂岩小于真值,云岩大于真值,双探测器补偿 泥饼影响,通过密度可以计算孔隙度,砂大云小;——ห้องสมุดไป่ตู้电吸收指数 Pe和体积光电吸收指数U,由岩性决定,不受孔隙度影响,因而能识 别岩性。(密孔砂大云小,中孔砂小云大) 2. 中子孔隙度——快中子变为热中子以及减速、吸收等,由含氢量决定, 孔隙流体含氢量大,骨架小,石油近于水为1,气体很低。因而确定 孔隙度。砂岩减速能力低,云岩高,因而砂小云大。 气体有挖掘效 应, ——分同位素中子(利用超热中子和热中子,测中子的衰减为 主),和脉冲中子测井。