12.2.4三角形全等判定(四)HL

合集下载

12.2.4三角形全等的判定(HL)

12.2.4三角形全等的判定(HL)

B
AC=BC DC=EC
∴Rt△ACD≌ Rt △BCE(HL) ∴ DA=EB (全等三角形对应边相等)
第18页,共26页。
练习1:如图,AB=CD,AE ⊥BC,DF ⊥BC, CE=BF.求证AE=DF.
C
D
∵CE=BF ∴CE-EF=BF-EF 即CF=BE。
FE
A
B
课本14页练习2题
第19页,共26页。
射线C´N于点A´;
⑷ 连接A´B´.
现象:两个直角三角形能重合。
说明:
第13页,共26页。
M BB´´


A
C N AA´ ´
C´´
三角形全等判定定理5
斜边和一条直角边对应相等的两个直角三角形全等。
(简写为“斜边、直角边”或“HL”。)
A

∟ ∟
B
C


几何语言: ∵在RRt△t ABC和RtR△tA´B´C´中 AB=A´B´ BC=B´C´
第1页,共26页。
旧知回顾
我们学过的判定三角形全等的方法:
SSS ASA
SAS AAS
第2页,共26页。
A
三边对应相等的两个三角
B
C 形全等。(简写成
D
“边边边”或“SSS”)
E
F
第3页,共26页。
两边和它们夹角对应
相等的两个三角形全
等。(简写成
B
“边角边”或“SAS”)
E
第4页,共26页。
A C
A
D
B
CE
F
第12页,共26页。
请你动手画一画
任意画出一个Rt△ABC,∠C=90°。再画一 个Rt△A´B´C´,使得∠C´= 90°, B´C´=BC, A´B´= AB。

12.2三角形全等的判定第4课时斜边、直角边(HL)教案2021-2022学年人教版数学八年级上册

12.2三角形全等的判定第4课时斜边、直角边(HL)教案2021-2022学年人教版数学八年级上册

12.2 三角形全等的判定第4课时斜边、直角边(HL)一、教学目标1.掌握判定直角三角形全等的一种特殊方法——“斜边、直角边”(即“HL”).2.会运用“HL”解决一些简单的实际问题和推理证明问题.二、教学重难点重点“斜边、直角边”的探究及其运用.难点灵活运用三角形全等的判定方法进行证明,并注意“HL”与其他判定方法的区别与联系.重难点解读“HL”是直角三角形特有的判定方法,对于一般三角形不适用.“HL”实际上就是两边及其中一边的对角对应相等,但所对的角是直角,所以它只对直角三角形适用,对一般三角形并不适用,因此在“HL”使用过程中要突出直角三角形这个条件.三、教学过程活动1 旧知回顾1.如图,在Rt△ABC中,直角边是________,________,斜边是________.2.我们学过的判定两个三角形全等的方法有:________,________,________,________.活动2 探究新知1.教材第41页思考.提出问题:(1)判定一般三角形全等的依据是什么?请说出它们的共同点.(2)对于两个直角三角形,除了直角相等外,还需要满足几个条件,就能证明这两个直角三角形全等?2.教材第42页 探究5.提出问题:(1)你能画出Rt △A ′B ′C ′吗?怎么画?用什么方法?(2)将画好的Rt △A ′B ′C ′剪下,比一比,看一看,它能否与Rt △ABC 重合?(3)根据上面的探究,你能否得出判定两个直角三角形全等的条件? 活动3 知识归纳提出问题:(1)判定两个直角三角形全等的特殊方法是什么?它对一般的三角形是否适用?(2)归纳判定两个直角三角形全等的方法.1. 斜边 和一条直角边分别相等的两个直角三角形全等,简写成“斜边、直角边”或“ HL ”.2.判定两个直角三角形全等的方法有 SSS , SAS , ASA , AAS ,HL .HL 只适用于 直角三角形 ,对于一般三角形不适用.活动4 典例赏析及练习例 如图,AB ⊥BD ,CD ⊥BD ,AD=CB.求证:AD ∥BC.【答案】证明:∵AB ⊥BD ,CD ⊥BD ,∴∠ABD=∠CDB=90°(垂直的定义).在Rt △ABD 和Rt △CDB 中,,,AD CB BD DB ∴Rt △ABD ≌Rt △CDB (HL ).∴∠ADB=∠CBD.∴AD∥BC(内错角相等,两直线平行).练习:1.下列语句中不正确的是( C )A.斜边和一条直角边对应相等的两个直角三角形全等B.有两边对应相等的两个直角三角形全等C.有两个锐角相等的两个直角三角形全等D.有一条直角边和一个锐角对应相等的两个直角三角形全等2.如图,AB=CD,AE⊥BC,DF⊥BC,垂足分别为E,F,CE=BF,下列结论错误的是( D )A.DF∥AEB.∠C=∠BC.CF=BED.∠A+∠D=90°活动5 课堂小结1.“HL”判别法是证明两个直角三角形全等的特殊方法,它只对两个直角三角形有效,不适合一般三角形.2.证明两个直角三角形全等的方法有:SSS,SAS,ASA,AAS,HL.注意SSA 和AAA不能判定两个三角形全等.四、作业布置与教学反思。

12.2.4全等三角形的判定(第4课时HL)八年级数学上册(人教版)

12.2.4全等三角形的判定(第4课时HL)八年级数学上册(人教版)

情境引入
人教版数学八年级上册
上节课我们学习了什么方法可以判定两个三角形全等? 三条边分别相等的三角形全等(SSS). 两边和它们的夹角分别相等的两个三角形全等(SAS). 两角和它们的夹边分别相等的两个三角形全等(ASA) 两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS) 除了上面的方法,还有其他方法能判定两个三角形全等吗? 我们继续探索三角形全等的条件.
D FE
A
B
课堂检测
人教版数学八年级上册
2.如图,C是路段AB的中点,两人从C同时出发,以相同的速
度分别沿着两条直线行走,并同时到达D,E两地.DA⊥AB,
EB⊥AB.D,E与路段AB的距离相等吗?为什么?
解:相等,理由如下:AC=BC.
∵同时出发,同时到达,且速度相同,
∴AE=DF∥CD.
AC=A′C′, BC=B′C′,
B┐
C
A′
∴Rt△ABC≌Rt△A′B′C′(HL).
提醒:用“HL”证明两个直角三角形全等,书写时两
个三角形符号前面要加上“Rt”.

B′
C′
典例精析
人教版数学八年级上册
例1:如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.
求证:BC=AD.
证明:∵AC⊥BC,BD⊥AD,
1.如图,AE⊥BC,DF⊥BC,E,F是垂足,且AE=DF, AB=DC,求证:∠ABC=∠DCB.
证明:∵AE⊥BC,DF⊥BC, ∴在Rt△ABE和Rt△DCF中, AE=DF AB=CD ∴Rt△ABE≌Rt△DCF(HL) ∴∠ABC=∠DCB.
小试牛刀
人教版数学八年级上册
2.已知:如图,AB⊥BC,AD⊥DC,AB=AD,求证:BC=DC. 证明:连接AC.

12.2第4课时直角三角形全等的判定(HL)

12.2第4课时直角三角形全等的判定(HL)

第4课时 直角三角形全等的判定(HL)
2.如图 12-2-45 所示,P 是∠BAC 内一点,且点 P 到 AB,AC 的距离 PE,PF 相等,则直接得到 Rt△PEA≌Rt△PFA 的依据是( C )
A.AAS C.HL
B.ASA D.SSS
图 12-2-45
第4课时 直角三角形全等的判定(HL)
(1)求证:Rt△ABE≌Rt△CBF; (2)若∠CAE=30°,求∠ACF 的度数.
图 12-2-56
第4课时 直角三角形全等的判定(HL)
解:(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°. 在 Rt△ABE 和 Rt△CBF 中,AAEB= =CCFB, , ∴Rt△ABE≌Rt△CBF(HL). (2)∵∠ABC=90°,AB=CB,∴∠BAC=45° ∵∠CAE=30°,∴∠BAE=∠BAC-∠CAE=45°-30°=15°. 由(1)知 Rt△ABE≌Rt△CBF, ∴∠BCF=∠BAE=15°, ∴∠ACF=∠BCF+∠ACB=15°+45°=60°.
第4课时 直角三角形全等的判定(HL)
14.如图 12-2-57,已知 AD,AF 分别是两个钝角三角形 ABC 和 ABE 的高,如果 AD=AF,AC=AE.求证:BC=BE.
图 12-2-57
第4课时 直角三角形全等的判定(HL)
证明:∵AD,AF 分别是两个钝角三角形 ABC 和 ABE 的高, ∴∠ADC=∠AFE=90°. 在 Rt△ADC 和 Rt△AFE 中,AACD= =AAEF, , ∴Rt△ADC≌Rt△AFE(HL),∴CD=EF. 在 Rt△ABD 和 Rt△ABF 中,AABD= =AABF, ,∴Rt△ABD≌Rt△ABF(HL), ∴BD=BF,∴BD-CD=BF-EF, 即 BC=BE.

12.2.4直角三角形全等的判定(HL)教案

12.2.4直角三角形全等的判定(HL)教案
-能够运用全等三角形的知识解决实际几何问题。
举例:在教学过程中,教师应重点讲解HL判定法的原理和运用步骤,通过示例演示和练习题,让学生熟练掌握这一判定方法。同时,强调直角三角形全等在解决几何问题中的重要性,如计算边长、角度等。
2.教学难点
-理解HL判定法背后的逻辑关系,尤其是斜边和直角边对应关系;
-在复杂图形中识别并运用HL判定法;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解直角三角形全等判定HL的基本概念。HL是指当两个直角三角形的斜边和直角边分别相等时,这两个三角形全等。这一判定方法是解决几何问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。通过分析案例中直角三角形全等的判定过程,了解HL在实际中的应用,以及它如何帮助我们解决问题。
-解决与直角三角形全等相关的综合问题。
举例:
a)难点突破:教师应详细解释HL判定法中斜边和直角边对应关系,通过直观图示和实际操作,让学生理解全等的条件。例如,可以设计对比实验,让学生比较全等和不全等的直角三角形,从中感悟到对应边的重要性。
b)识别运用:针对复杂图形,教师应引导学生如何从众多信息中提取关键直角三角形的边角关系,并应用HL判定法。例如,可以给出一些包含多个直角三角形的图形,让学生识别哪些部分可以用HL判定法证明全等。
3.重点难点解析:在讲授过程中,我会特别强调斜边和直角边相等这一判定条件和其在解决问题中的应用。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与直角三角形全等相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用模型或教具演示HL判定法的基本原理。

人教版数学八年级上册第12章课时4 三角形全等的判定方法-HL(18页)

人教版数学八年级上册第12章课时4 三角形全等的判定方法-HL(18页)
∴ Rt△EBC≌Rt△DCB (HL).
B
D
C
课堂小结
内容
“斜边、
直角边”




使用方法
斜边和一条直角边对应相
等的两个直角三角形全等.
在直角三角形中
只须找除直角外的两个条件即
可(两个条件中至少有一个条
件是一对对应边相等)
BE=CF.求证:AE=DF.
证明:∵BE=CF
∴BE+EF=CF+EF
即BF=CE
∵AE⊥BC,DF⊥BC
∴∠AEC=∠DFB=90°
在Rt△AEC和Rt△DFB中,
∴Rt△AEC ≌ Rt△DFB (HL)
=
=
∴AE=DF
当堂检测
1.判断两个直角三角形全等的方法不正确的有( D )
∴Rt△ABC ≌ Rt△ A′B′C′ (HL)
先斜边,
后直角边
典例分析
例1
如图2,AC⊥BD,DE交AC于点E,AB=DE,AC=DC.
求证:△ABC≌△DEC.
证明:∵AC⊥BD
∴∠ACB=∠DCE=90°
在Rt△ABC和Rt△DEC中,
=
=
∴Rt△ABC ≌ Rt△DEC (HL)
A.两条直角边对应相等
B.斜边和一锐角对应相等
C.斜边和一条直角边对应相等
D.两个锐角对应相等
2.如图,在△ABC中,AD⊥BC于点D,CE⊥AB于点 E ,
AD、CE交于点H,已知EH=EB=3,AE=4,则 CH的长为
( A )
A.1
B.2
C.3
D.4
3.如图,△ABC中,AB=AC,AD是高,

12.2.4 三角形全等的判定(四)(HL)人教版数学八年级上册课件

12.2.4 三角形全等的判定(四)(HL)人教版数学八年级上册课件
⊥BC,BD⊥AD,垂
足分别为C、D,AD=BC.求证:AC=BD.
D
C
HL
P
Rt△ABD≌Rt△BAC A
B
AC=BD
变式3 如图:AB⊥AD,CD⊥BC,AB=CD,判断AD和BC
的位置关系.
A
HL
Rt△ABD≌Rt△CDB
B
∠ADB=∠CBD
AD∥BC
D C
B
C
A'
B'
C'
课堂练习
1.下列条件:
①两条直角边对应相等;
②斜边和一锐角对应相等;
C'
解:全等,依据是SAS.
利用“HL”判定直角三角形全 等
问题4:任意画出一个Rt△ABC,使∠C=90°.再画一个
Rt△A ′B ′C ′,使∠C′=90 °,B′C′=BC,A ′B ′=AB,
把画好的Rt△A′B′ C′ 剪下来,放到Rt△ABC上,它们
能重合吗?
A
B
C
直角三角形全等的判定(“HL”)
掌握用一般方法及特殊方法证明两直角三角形全等.
能够将证明一组角相等或线段相等转化证全等.善于 利用图中隐含的公共边或角.
课前预习
1.布置学生的课前预习任务; 2.进行预习方法指导; 3.对学生预习任务进行检查与评定。
回顾引入
想一想,填一填:
图形
A
B
C
A'
B'
C'
条件
是否能判定三角形全等
三边相等(SSS)
N A
A'
B
C
M
B'
C'
作法:(1)先画∠MCN=90°,

人教版八年级数学上册12.2三角形全等的判定(四)(HL)教学设计

人教版八年级数学上册12.2三角形全等的判定(四)(HL)教学设计
5.总结反思题:请学生撰写一篇关于本节课学习心得的短文,内容包括对“HL”判定全等三角形定理的理解、学习过程中的困惑与收获、对几何学习的感悟等。通过反思,促使学生深入思考,提高自主学习能力。
作业要求:
1.请同学们认真完成作业,注意书写规范,保持卷面整洁。
2.对于基础巩固题和提高拓展题,要求学生在规定时间内独立完成,注重解题过程的逻辑性和完整性。
4.培养学生运用几何画板、实物模型等工具辅助解题的能力,提高学生的实践操作能力。
(三)情感态度与价值观
1.培养学生严谨、认真的学习态度,养成善于观察、思考、总结的学习习惯。
2.培养学生的团队合作意识,学会倾听、表达、沟通,提高解决问题的能力。
3.增强学生对数学美的感悟,激发学生对数学学科的兴趣和热爱。
人教版八年级数学上册12.2三角形全等的判定(四)(HL)教学设计
一、教学目标
(一)知识与技能
1.理解三角形全等的定义,掌握全等三角形的性质。
2.学习并掌握“HL”(斜边和直角边)判定全等的方法,能够准确识别和运用HL判定全等三角形。
3.能够运用三角形全等的判定方法解决实际问题,如求三角形的边长、角度等。
4.培养学生勇于探索、积极进取的精神风貌,提高学生的自信心和自尊心。
二、学情分析
八年级学生已具备一定的几何基础,掌握了三角形的基本概念和相关性质,对全等三角形有了初步的认识。在此基础上,学生对“HL”判定全等三角形的定理学习具备了一定的接受能力。然而,学生在实际应用中,可能对判定方法的运用和证明过程存在一定的困难。因此,在教学过程中,教师需要关注以下几点:
3.实践应用题:结合生活实际,让学生收集身边的直角三角形图形,如墙角、桌面等,并运用“HL”判定全等三角形的方法,求出其中未知边长或角度。通过实际操作,培养学生的几何应用能力。

12.2 《三角形全等的判定(四)(HL)》教案-河南省漯河市舞阳县人教版八年级数学上册

12.2 《三角形全等的判定(四)(HL)》教案-河南省漯河市舞阳县人教版八年级数学上册

12.2 《三角形全等的判定(四)(HL)》【课标内容】1.获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验.2.体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力.3.了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和科学态度.4.掌握基本事实:斜边和直角边分别相等的两个直角三角形全等.【教材分析】本节课的主要内容是探索两个直角三角形全等的条件和如何利用“直角边斜边”的条件证明三角形全等,是在学生学习了线段、角、相交线、平行线和三角形的有关知识之后展开的.“HL”是证明两个三角形全等的重要方法之一,也是证明线段相等、角相等的重要依据.在【教学过程】中,我让学生充分体验到动手操作、剪拼、翻折平移、推理证明的数学方法,一步步培养他们的逻辑推理能力.整节课让学生从画几何图形,剪拼,翻折平移,起到了较好的作用,学生更加清楚直观,以及学习推理证明的方法.【学情分析】本节是人教版八年级上册第十二章第二节的第四课时,全等三角形的判定(HL)是学生学习了图形的全等的概念及特征后的一节内容,它不仅是后面学习平行四边形性质与判定的基础,而且也是证明线段相等、角相等以及两线互相垂直、平行的重要依据.因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用.【教学目标】1.经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2.掌握直角三角形全等的判定,并能运用其解决一些实际问题.3.在探索直角三角形全等的判定及其运用的过程中,能够进行有条理的思考并进行简单的推理.【教学重点】掌握判定两个直角三角形全等的特殊方法-HL【教学难点】熟练选择判定方法,判定两个直角三角形全等【教学方法】五步教学法、引导探究法【课前准备】三角板、多媒体【课时设置】一课时【教学过程】一、预学自检互助点拨(阅读教材P41-43,完成以下问题)1.判定三角形全等:、、、 .2.如图,Rt△ABC中,直角边是、,斜边是 .(【设计意图】复习旧知,可更快更准确地解答下面的两个直角三角形全等的条件.)二、合作互学探究新知(动手操作):1.已知线段a,c ,和一个直角α,利用尺规作一个Rt△ABC,使∠C=∠α,AB=c,CB= a.2.与同桌重叠比较,是否重合?3.从中你发现了什么?(【设计意图】比较判定两个直角三角形全等的条件与判定两个一般三角形全等的条件的异同点,感知直角三角形全等判定也能用已学的判定条件.激发学生挑战新问题的积极性,培养学生的分析、作图能力.画法直接由教师蛤出,而不安排学生画出,是考虑学生反映画图有一定的难度,况且作图不是本节课的重点.)三、自我检测成果展示1.如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由.理由:∵ AF⊥BC,DE⊥BC (已知)∴∠AFB=∠DEC= °(垂直的定义)在Rt△和Rt△中⎩⎨⎧==_______________________________∴ ≌ ( )∴∠ = ∠ ( )∴ (内错角相等,两直线平行)【设计意图】 让学生表述,培养归纳、表达能力,并能进一步理解“HL ”这一条件,自己读题、审题,先独自证明,培养学生独自面对围难的勇气和信心.2.两个直角三角形全等的条件是( )A.一锐角对应相等;B.两锐角对应相等;C.一条边对应相等;D.两条边对应相等3.如图,∠B=∠D=90°,BC=CD ,∠1=30°,则∠2的度数为( )A. 30°B. 60°C. 30°和60°之间D. 以上都不对4.如果两个直角三角形的两条直角边对应相等,那么两个直角三角形全等的依据是( )A. AASB.SASC.HLD.SSS5.如图,在Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B ,C 作过点A 的直线的垂线BD ,CE ,若BD=4cm ,CE=3cm ,求DE 的长.四、应用提升挑战自我在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC 上,且AE=CF.(1)求证: Rt△ABE≌Rt△CBF;(2)若∠CAE=30º,求∠ACF度数.(【设计意图】充分利用多媒体资源帮助学生理解、消化、新的知识,能够灵活的运用这节课所学习的内容.)五、经验总结反思收获本节课你学到了什么?写出来【设计意图】充分利用多媒体资源帮助学生理解、消化、新的知识,能够灵活的运用这节课所学习的内容.教师引导学生总结今天学习的主要内容,关键是区别两种情况,判断哪一种情况可以判断两个三角形全等,在学习后进行适当总结有助于学生更加深刻理解内容.【板书设计】全等三角形判定HL【备课反思】本节数学课教学,主要是让学生在回顾全等三角形判定(除了定义外,已经学了四种方法:SSS、SAS、ASA、AAS、)的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解.探索“HL公理”中,要求学生用文字语言、图形语言、符号语言来表达自己的所思所想,强调从情景中获得数学感悟,注重让学生经历观察、操作、推理的过程.数学教学应努力体现“从问题情景出发,建立模型、寻求结论、解决问题”.纵观整个教学,不足的方面:第一,启发性、激趣性不足,导致学生的学习兴趣不易集中,课堂气氛不能很快达到高潮,延误了学生学习的最佳时机;第二,在学生的自主探究与合作交流中,时机控制不好,导致部分学生不能有所收获;第三,在评价学生表现时,不够及时,没有让他们获得成功的体验,丧失激起学生继续学习的很多机会.这些我在今后的教学中会争取改进.。

12.2.4《三角形全等的判定》 角角边

12.2.4《三角形全等的判定》 角角边

4.如图,AB⊥BC,AD⊥DC,∠1=∠2, 求证:AB=AD. 证明:∵AB⊥BC,AD⊥DC(已知), ∴ ∠B=∠D=90°. A 在⊿ABC和⊿ADC中, ∠1=∠2 , 1 2 ∠B=∠D, B AC=AC(公共边), ∴⊿ABC≌⊿ADC(AAS), ∴ AB=AD. C
D
5 已知ABC中,BE AD于E,CF AD于F, 且BE CF,那么BD与DC相等吗?
(SSS) (SAS) (ASA) (AAS)
两个三角 形中相等 的边或角 三条边
是否全等(全等画 “√”,不全等画 “×”
公理或推 论(简写)
两边夹角 两边一角 两边与一 边对角 两角夹边 两角一边 两角与一 三 个
√ √ ×
SSS SAS

√ ×
ASA AAS
角对边 角
已知:
如图∠B=∠DEF, BC=EF, 求证:ΔABC≌ ΔDEF AB=DE (1)若要以“SAS”为依据,还缺条件 ______; ∠ACB= ∠F (2)若要以“ASA”为依据,还缺条件______; AB=DE、AC=DF (3)若要以“SSS” 为依据,还缺条件______;
知识应用
1.如图,AB⊥BC, AD⊥DC, ∠1=∠2. 求证: AB=AD. 证明: ∵ AB⊥BC, AD⊥DC, ∴ ∠B=∠D=900,
在△ABC和△ADC中, ∠B=∠D, ∠1=∠2, AC=AC, ∴ △ABC ≌△ADC (AAS) ∴ AB=AD.
知识应用
2. 如图,要测量河两岸相对的两点A,B的距离,可以 在AB的垂线BF上取两点C,D,使BC=CD,再定出 BF的垂线DE,使A, C,E在一条直线上, 这时测得DE的长就是AB的长。为什么? 证明: ∵ AB⊥BD, DE⊥BD, A ∠B=∠EDC=900 在△ABC和△EDC中, ∠B=∠EDC=900 D BC=DC, B 1C F 2 ∠1=∠2, ∴ △ABC ≌△DEF (ASA) E ∴ AB=ED.

12.2.4用“HL”判定三角形全等(教案)

12.2.4用“HL”判定三角形全等(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了HL判定法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对HL判定法的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调HL判定法的原理和适用条件这两个重点。对于难点部分,我会通过具体例题和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与HL判定法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示HL判定法的基本原理。
五、教学反思
在今天的教学中,我重点关注了HL判定法的教学,尝试了多种方法来帮助学生理解和掌握这个几何判定全等的重要工具。我发现,通过引入日常生活中的实例,学生们能够更快地理解抽象的几何概念,并且对HL判定法的兴趣明显增加。然而,我也注意到,学生在实际应用这一判定法时,仍然存在一些困难。
在讲授过程中,我尽量用简洁明了的语言解释HL判定法的原理,并通过案例分析和实验操作来加深学生的理解。我观察到,大多数学生在听到原理介绍后,能够跟上思路,但在自己动手解题时,却容易忽视HL判定法只适用于直角三角形这一关键点。这说明我在教学中需要更多地强调这一点,确保学生能够清晰地区分不同判定法的适用范围。
2.抽象思维与问题解决能力:引导学生从具体的直角三角形全等案例中抽象出HL判定法的通用原理,培养学生从特殊到一般的抽象思维能力,并能运用该原理解决实际问题。
3.数学表达与交流能力:通过课堂讨论、例题解析和习题练习,鼓励学生用准确、规范的数学语言表达思考过程和解题步骤,提升数学表达和交流能力。

八年级数学上册高效课堂(人教版)12

八年级数学上册高效课堂(人教版)12
例题2:已知直角三角形ABC和DEF,∠B=∠E,BC=EF,AC=DF,判断两个三角形是否全等。
2.答疑解惑:针对学生在练习中遇到的问题,进行解答和指导。
(五)总结归纳
1.让学生回顾本节课所学内容,总结HL判定法的含义、适用条件和运用方法。
师:通过本节课的学习,我们掌握了直角三角形全等的判定方法——HL判定法。谁能告诉我,HL判定法的含义是什么?它适用于哪些类型的三角形?
(二)过程与方法
1.探索并发现直角三角形全等判定方法——HL判定法。
2.学会运用HL判定法解决实际问题,培养解决问题的策略和思维方式。
3.在解决实际问题的过程中,学会将HL判定法与其他全等判定方法相结合,提高解决问题的效率。
(三)情感态度与价值观
1.培养学生勇于探索、积极思考的良好学习习惯,增强学生自主学习的能力。
4.作业要求:
(1)作业需独立完成,书写工整,保持卷面整洁。
(2)解题过程中,要求步骤清晰,逻辑严谨,避免出现遗漏和错误。
(3)对于基础巩固题,要求全体学生掌握;对于能力提升题,学有余力的学生尽量完成。
5.作业反馈:
教师应及时批改作业,了解学生的学习情况,针对存在的问题进行针对性的指导。同时,鼓励学生积极参与课堂讨论,分享解题心得,提高学生的合作意识和团队精神。
a. HL判定法适用于哪些类型的三角形?
b.如何运用HL判定法判断两个直角三角形是否全等?
c. HL判定法与其他全等判定方法有何联系和区别?
2.小组分享:各小组向全班分享讨论成果,教师点评并总结。
(四)课堂练习
1.设计练习题:针对HL判定法设计不同难度的练习题,让学生独立完成。
例题1:已知直角三角形ABC和DEF,AB=DE,BC=EF,判断两个三角形是否全等。

12.2.4直角三角形全等的判定(HL)教学设计 初中八年级上册数学教案教学设计课后反思 人教版

12.2.4直角三角形全等的判定(HL)教学设计 初中八年级上册数学教案教学设计课后反思 人教版

课题:12.2.4直角三角形全等的判定(HL)课型:新授课【教学内容】直角三角形全等的判定(HL)【学习目标】1.知识与技能:(1)探索并掌握直角三角形全等的判定方法“HL”;(2)能够合理选择恰当的直角三角形判定方法来解决问题。

2.过程与方法:经历探索直角三角形全等判定方法的过程,体会利用操作、证明、归纳获得数学结论的过程,培养学生反思的习惯和理性的思维习惯。

3.情感态度与价值观:通过探究与交流,解决一些问题,获得成功的体验,进一步激发探究的积极性。

【学习重点】掌握判定两个直角三角形全等的特殊方法-HL。

【学习难点】灵活应用直角三角形的判定方法解决问题。

【教法学法】探究、讨论、归纳法【教学准备】直角三角形板、两张透明纸、圆规直尺【课时安排】1课时【教学流程】预习提纲教案1.斜边与一条直角边分别相等的两个直角三角形.(简写成“”或“”).2.如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC (填“全等”或“不全等”)根据(用简写法).3.略.4.课后练习题……(略).教案一、情境导入、目标引领(时间:5分钟)1、判定两个三角形全等的方法有:、、、。

2、这些方法能判定直角三角形全等吗?3、思考:对于两个直角三角形,除了直角相等外,还要添几个条件,这两个直角三角形就全等呢?我们知道直角三角形是特殊的三角形,所以可以用一般三角形全等的判定方法: SSS 、SAS、ASA、AAS。

只要添加一边一锐角或两直角边分别相等,这两个直角三角形就全等了。

4.问题:如果两个直角三角形满足斜边和一条直角边分别相等,那么这两个直角三角形全等吗?二、自主学习、合作探究(时间:10分钟)探究:动手画一画(小组比较)1.任意画出一个Rt△ABC,∠C=90°,再画一个Rt△A´B´C´,使得∠C´= 90°,B´C´=BC,A´B´= AB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
解:在Rt△ACB和Rt△ADB中,则
AB=AB,
A
B
A). ∴BC=BD(全等三角形对应边
D
相等).
如图,两根长度为12米的绳子,一端系在旗杆上, 另一端分别固定在地面两个木桩上,两个木桩离旗 杆底部的距离相等吗?请说明你的理由。
解:BD=CD 因为∠ADB=∠ADC=90° AB=AC
第四课时
月河镇黄家湾九年一贯制学校 张 奎
相等 ,对应角 相等 1、全等三角形的对应边 ---------, -------。
2、判定三角形全等的方法有: SAS、ASA、AAS、SSS A 斜边 直 角 认识直角三角形 边 C 直角边 Rt△ABC
B
舞台背景的形状是两个直角三角形,工作人员想 知道两个直角三角形是否全等,但每个三角形都有一 条直角边被花盆遮住,无法测量。
已知线段a、c(a﹤c)和一个直角α ,利用尺规作 一个Rt△ABC,使∠C= ∠ α ,CB=a,AB=c.
a c 想一想,怎样画 呢? α
按照下面的步骤做一做:
⑴ 作∠MCN=∠α=90°; M
⑵ 在射线CM上截取线段CB=a; M
B
C
N
C ⑷ 连接AB. M B
N
⑶ 以B为圆心,C为半径画弧,交射线 CN于点A; M B
C
A
N
C
A
N
⑴ △ABC就是所求作的三角形吗? ⑵ 剪下这个三角形,和其他同学所作的三角形进行比较,它们能重合吗?
直角三角形全等的条件
斜边和一条直角边对应相等的两个直角三 角形全等. 简写成“斜边、直角边”或“HL”.
例题 已知:如图,在△ABC和△ABD中,AC⊥BC, AD⊥BD, 垂足分别为C,D,AC=BD,求证: BC=AD。 证明:∵ AC⊥BC, AD⊥BD ∴∠C=∠D=90° 在Rt△ABC和Rt△BAD中 AB=BA AC=BD ∴ Rt△ABC≌Rt△BAD (HL) ∴BC=AD
(1)你能帮他想个办法吗?
根据ASA,AAS可测量对应一边和一锐角
根据SAS可测量其余两边与这两边的夹角。
(2)如果他只带一个卷尺,能完成这个任务吗? 工作人员测量了每个三角形没有被遮住的直角边 和斜边,发现它们分别对应相等。于是,他就肯定“ 两个直角三角形是全等的”。
斜边和一条直角边对应相等→两个直角三角形全等。 你相信这个结论吗? 让我们来验证这个结论。
D
C
A
B
一般三角 “ AAS ” “ SSS ” 形全等的 “SAS” “ ASA ” 判定
直角三角 形全等的 “ SAS ” “ ASA ”“ AAS ”“ SSS ” “ HL ” 判定
灵活运用各种方法证明直角三角形全等
如图,AC=AD,∠C,∠D是直角,将上述条件标 注在图中,你能说明BC与BD相等吗?

AD=AD 所以Rt△ABD≌Rt△ACD(HL) 所以BD=CD
数学是人类的思考中最高 的成就,数学是无穷的科学。 ——赫尔曼外尔
相关文档
最新文档