2009yu

合集下载

响应香港2009东亚运动会

响应香港2009东亚运动会

響應香港2009東亞運動會2009 南區夏日越野賽SOUTHERN DISTRICT CROSS COUNTRY RUN日期:2009年8月16日(星期日)DATE : 16 August 2009 SUNDAY登記時間 : 上午7時00分至8時15分REGISTRATION TIME:0700-0815地點:香港仔郊野公園 VENUE : ABERDEEN COUNTRY PARK查詢/傳真 Enquiry/Fax : 2555 1014 / 2555 06261. 多謝你参賽。

你的報名己穫接受。

比賽名單附於下列表內。

請於比賽當日登記時間內領取比賽号碼布。

請小心保菅你的私人財物,勿隨便擺放,盡量放於大會指定儲物區,雖然本會不負責任何損失。

運動員必須看清楚其姓名和組別是否正確,倘有錯誤須立即更正。

Thank you for your participation. Your entry has been accepted. Runners list is appended below. Please collect your number bit during the Registration time on the race day. Take care of your personal belongings by placing them in our designated area though we do not guarantee against any loss. Please check the correctness of name and category and inform us for any amendment.程序PROGRAMME:1. 比賽時間RACE TIME男女子少年B 及 C組BOYS/GIRLS CAT. B & C 上午8時45分0845男女子D,E,F及G組MEN/WOMEN CAT. D, E,F & G 上午8時50分0850男女子少年 A組BOYS/GIRLS CAT. A 上午9時45分09452. 頒獎 / 抽獎PRIZE PRESENTATION/LUCKY DRAW 10時30分10302. Transport交通–中區From Central: Bus 7*, 70, 37B & all PLB toAberdeen Centre香港仔中心.銅鑼灣From Causeway Bay (Opposite Sogo) : Bus 38,42, 72, 77, 76* and PLB 4C* to Aberdeen/Shek Pai Wan灣仔From Wanchai : Bus 37B, PLB 35M, 4A*, 4B** 真達比賽場地Straight to the race place. 其他車輛到達香港仔中心後約15分鐘步行Other transport about 15 minutes walking after reaching Aberdeen Centre.比賽編號Race No 姓名Name組別Category1Hui Yot Nga FA 2Jesy Lau FA 3Ma Ching Lui FA 4Sophie ChillingWorth FA 5Wong Chak Yan FA 6杜凱迎FA 7李嘉琳FA 8莫宜雅FA 9陳嘉欣FA 10陳諾琳FA 11黃雯牽FA 12楊早苗FA 13Emily Chilling Worth FB 14Lai Cheuk Fung FB 15Leung Yee FB 16Li Hoi Ying FB 17Sin Chin Hang FB 18Tam Nga Man Kathy FB 19Tsanag Man Ki FB 20王螢FB 21佘金玉FB 22何家希FB 23何煒翎FB 24何樂彤FB 25吳文諾FB 26吳家慧FB 27李詠琛FB 28李漫琪FB 29李樂怡FB 30車征霞FB 31房芷欣FB 32凌雯思FB 33孫曉嵐FB 34梁展晴FB 35梁恩蕙FB 36梁敏兒FB38梁曉瑜FB 39陸芯怡FB 40陳彩儀FB 41陳詠恩FB 42陳雅琳FB 43陳樂昕FB 44陳穎陶FB 45陳諾瑤FB 46陳儷文FB 47黃愷惠FB 48黃寶怡FB 49楊芷瑜FB 50楊綽杏FB 51溫芷晴FB 52鄒樂欣FB 53廖希予FB 54蔡祿兒FB 55鄧芷晴FB 56鄭葭騫FB 57盧詠瑜FB 58盧劍瑩FB 59鍾泳茵FB 60羅敏琪FB 61譚靜瑩FB 62關銘怡FB 63蘇婉容FB 64鐘卓穎FB 65Chan Nga Suet FC 66Hannah Gilchrist FC 67Ip Ching Lam FC 68Sin Chin Wing FC 69Yao Him Tung FC 70王綺敏FC 71何雪文FC 72何嘉芙FC 73吳芷凝FC 74吳培英FC 75吳穎璇FC 76李心怡FC 77李虹FC79李紫筠FC 80李嘉敏FC 81卓頌盈FC 82林嘉瑋FC 83林綺美FC 84徐凱妍FC 85袁淑華FC 86張嘉燕FC 87梁祟妍FC 88章令宜FC 89陳珮琪FC 90陳嘉淇FC 91陳嘉雯FC 92陳綺琪FC 93陳潔常FC 94麥芷柔FC 95麥羨淇FC 96黃家希FC 97黃嘉雯FC 98葉麗珍FC 99劉婉丹FC 100劉嘉雯FC 101歐陽詩敏FC 102鄭展儂FC 103鄭潤晶FC 104盧嘉咏FC 105羅宛欣FC 106蘇倩敏FC 107Chan Yee Lun FD 108Chiu Kit Man FD 109Fung Yin Man FD 110Ho Hiohen Christelle FD 111Iris Lui FD 112Jennifer Lan Chun Wu FD 113Ng Choi Long FD 114Nitya Paniker FD 115吳秀雯FD 116李嘉慧FD 117徐沛揚FD 118蔡雯斯FD120Cheung Chik Ming FE 121Eisa Cheung FE 122Lee Wai Yin FE 123Leung Pui Shan FE 124Loh Wai Shan FE 125M.C.Ng FE 126Riche Isabelle FE 127Yeonk Yung Kim FE 128王慧敏FE 129陳雅欣FE 130黃玉華FE 131葉慧儀FE 132鄒素嫻FE 133劉詠嘉FE 134譚康妮FE 135嚴惠茵FE 136蘇潔心FE 137鄧素娟FE 138Ame Engelhart FF 139Chan Kwok Lin FF 140Chan Po Mei FF 141Cheung Mei Yi FF 142Hing Ling Chan FF 143Ho Shui Chun FF 144Kim Faure FF 145Lee Yin Ping FF 146Li Wai Ying FF 147Li Yin Ling FF 148Luk Yuen Yee FF 149Ng Shuk Ching FF 150Priya Vaidyanathan FF 151Regina Tang FF 152Siu Yuen Fan FF 153So Yuen Yi Wrinple FF 154Susan Mifsud FF 155To Kit La FF 156Tracy Chung FF 157Tse Suk Fun FF 158Yung Lai Kam FF 159石惠珍FF161張楚琼FF 162梁淑玲FF 163曹慧貞FF 164勞燕娥FF 165曾少鄉FF 166曾煥明FF 167黃樹勤FF 168楊美倫FF 169潘翠茵FF 170鄭素恩FF 171謝素芳FF 172簡惠明FF 173蘇少波FF 174Chan Wai Mui FG 175Ip Kit Ching FG 176Ko Shuk Han Patty FG 177Lai Chi Man FG 178Mok Chui Ha Fanny FG 179Siu Yee Wan FG 180Wong Kit Fun FG 181Wong Yin Yee FG 182Yau Yuk Yee Cindy FG 183Yuen Wah Chu FG 184尹瑞嫻FG 185何麗霞FG 186吳玉珍FG 187李碧金FG 188周潔冰FG 189林美娟FG 190莫玉明FG 191劉鳳鈴FG 192鄧惠珍FG 193Alvin MA 194Ben Cherry MA 195Cheuk Hei Anson Pau MA 196Chong Hoi Sun MA 197Chu Shing Hei MA 198Edward Salmon MA 199Fan See Long MA 200Ip Poe Lam MA202Matthew ChillingWorth MA 203Tung Chun Yu MA 204Wong Chun Hei MA 205朱綽希MA 206吳卓君MA 207李孟憲MA 208李瑋銘MA 209房益聰MA 210邱子灝MA 211梁鈞皓MA 212梁德綸MA 213陳朗陶MA 214陳澤熙MA 215陸璟怡MA 216單諾言MA 217程鈞洋MA 218黃俊星MA 219黃梓臻MA 220詹栩政MA 221蕭皓琮MA 222霍嘉強MA 223Adam ChillingWorth MB 224Au Pui Wa MB 225Cheung In Lam MB 226Got Ho Wai MB 227Henry Salmon MB 228Ip Ho Lam MB 229Li Chun Hei MB 230Lin Ho Kong MB 231Ma Chung Pak MB 232Oliver Engelhart MB 233Pang Kam To MB 234Reiny Brown MB 235Sebastian Engelhart MB 236Tam King Man Kenny MB 237Wong Chak Lam MB 238Yao Shing Yu MB 239文駿倡MB 240王學軒MB 241朱俊傑MB243江家衡MB 244何思駿MB 245余璟晉MB 246余懷謙MB 247余懷瀚MB 248吳子峰MB 249巫朗軒MB 250李日勤MB 251李世榮MB 252杜朗MB 253李萬軒MB 254李豪MB 255李霆謙MB 256汪柏謙MB 257阮瑞峰MB 258房益雄MB 259林守業MB 260林晉成MB 261林耀弼MB 262邱建豪MB 263唐勺謙MB 264高可臻MB 265高卓豪MB 266張玉衡MB 267張志濱MB 268張竣熹MB 269張嘉麟MB 270張曉鍵MB 271梁尚軒MB 272梁珈皓MB 273梁逸禮MB 274陳子峯MB 275陳文凱MB 276陳柏儒MB 277陳迪行MB 278陳敏MB 279陳嘉晞MB 280陳曉斌MB 281程鈞朗MB 282黃百亨MB284葉衍蓁MB 285熊晉邦MB 286蒙立恆MB 287趙國權MB 288劉裕軒MB 289劉龍生MB 290歐陽沛嵐MB 291鄭海帆MB 292黎柏權MB 293錢穎嘉MB 294鄺煜樺MB 295譚旭霖MB 296譚隽軒MB 297Cheng Wai Hung MC 298Cheung Lok Man MC 299Daniel Ting MC 300Graeme Irwin MC 301Jabez Kot MC 302James O'connor MC 303Lai Chi Hin MC 304Lee Hoi Wai MC 305Lee Ka To MC 306Liam Gilchrist MC 307Ryan Cheung MC 308Yiu Kin Man MC 309Yuen Pak Chung MC 310Zee Howard MC 311王卓傑MC 312王陸奇MC 313左啟邦MC 314伍嘉偉MC 315佘人佳MC 316何均毅MC 317何耀健MC 318吳子聰MC 319吳冠龍MC 320岑偉成MC 321巫憶軒MC 322李子聰MC 323李君順MC325李俊賢MC 326李家亮MC 327李祖維MC 328李梓楊MC 329李嘉頌MC 330李嘉榮MC 331李曉陽MC 332林家正MC 333林樹勤MC 334范展豐MC 335徐政昊MC 336徐浩德MC 337徐德志MC 338張炳康MC 339張家宏MC 340張盛誠MC 341張錦泉MC 342梁志凌MC 343梁依能MC 344梁智揚MC 345梁華樂MC 346梁逸然MC 347曹頌恩MC 348梁嘉豪MC 349莊禮榮MC 350陳子歷MC 351陸俊延MC 352陳啟立MC 353陳國哲MC 354郭靖軒MC 355陳嘉瑋MC 356陳德儀MC 357陳錦平MC 358陳錦和MC 359麥潤良MC 360彭嘉盛MC 361曾偉麟MC 362曾偉谦MC 363黃永松MC 364黃安立MC366黃家恩MC 367黃浚銘MC 368黃啟銘MC 369黃培燊MC 370黃景隆MC 371馮嘉卓MC 372黃儁朗MC 373黃儁曜MC 374楊善澧MC 375楊霆峰MC 376葉沛康MC 377葉衍亮MC 378趙家朗MC 379趙家謙MC 380趙偉楠MC 381趙喬峰MC 382劉家奇MC 383劉祖基MC 384劉梓聰MC 385劉達劻MC 386歐陽家騏MC 387樊銘恩MC 388蔡展鸿MC 389蔡禧揚MC 390鄧志楓MC 391鄧浩文MC 392鄭浩然MC 393鄧皓徽MC 394盧劍鳴MC 395蕭文舜MC 396蕭淞瑞MC 397蕭逸隆MC 398霍嘉康MC 399謝子毅MC 400謝宏昕MC 401鍾穎德MC 402羅梓鋒MC 403譚思郎MC 404蘇炳剛MC 405Andre Lui MD 406Chan Kin Lok MD407Chan Sung Ming MD 408Chan Wai Cheung MD 409Cheung Chun Kit MD 410Clemens Padel MD 411Jack Bennett MD 412Lai Cheuk Chi MD 413Lee Ho Pong MD 414Lee Ho Tak MD 415Li Ming Ho MD 416Lin Kai Yip MD 417Pang Chung Yin MD 418Riche Romain MD 419Robert Zorn MD 420So Shun Tak MD 421Tam Kwok Yee MD 422Wong Kin Yu MD 423Yao Shing Him MD 424方威廉MD 425王健威MD 426朱興祥MD 427何國龍MD 428吳棋煒MD 429岑永德MD 430岑鎮昇MD 431李挺青MD 432周偉邦MD 433林晧楊MD 434容煒烜MD 435張浩揚MD 436陳子峰MD 437陳國恆MD 438曾偉恒MD 439黃志偉MD 440黃卓男MD 441黃振杰MD 442馮健剛MD 443楊志榮MD 444溫耀昌MD 445葉志強MD 446葉偉健MD 447鄒威寶MD448廖政杰MD 449盧庭熙MD 450賴佑昇MD 451謝宏志MD 452謝振雄MD 453羅鈞晧MD 454Campbell Job ME 455Chan Chit Ming ME 456Chan Chun Ming ME 457Chan Hon Wah ME 458Chan Lok ME 459Chan Sai On ME 460Chiang Yuk Kung ME 461Christian Pietsch ME 462Erkan Yilmaz ME 463Fung Hing Man ME 464Grant Beuzeval ME 465Jason Wong ME 466K C Wu ME 467Kwan Yu Sun ME 468Kwok Tat Chuen ME 469Kwok Yuk Fai ME 470Lai David ME 471Lau Wing Ho ME 472Li Chi Keung ME 473Li Chi Kwong ME 474Lo Hok Yin ME 475Mah Hoi Cheung ME 476Michael Anderson ME 477Mike Grirushan ME 478Mok Wai Lan ME 479Mok Wai Man ME 480Pang Chi Ching ME 481Poon Cheuk Yu ME 482Roman Angulo ME 483Wai Chi Shing ME 484Wong Man Ho ME 485Wong Wai Shing ME 486Yu Kam Leung ME 487Yu Kwok Wai ME 488Yue Tak Cheong ME489孔慶照ME 490方繼德ME 491朱佑文ME 492牟展程ME 493何景樹ME 494吳天偉ME 495杜志文ME 496周俊權ME 497周偉倫ME 498林鎮良ME 499張鈺麟ME 500張慶枝ME 501梁老恆ME 502莫偉源ME 503陳家裕ME 504陳振奮ME 505陳継榮ME 506陳劍燦ME 507黄偉源ME 508曾昭雄ME 509黃恩偉ME 510黃漢傑ME 511黃漢傑ME 512楊永帆ME 513楊位健ME 514葉如林ME 515鄒志偉ME 516鄒志輝ME 517劉國寶ME 518鄧志剛ME 519關偉立ME 520蘇禮賢ME 521Au Ka Ming MF 522Au Pui Wa MF 523Benjamin Liu MF 524Bike Ho MF 525Chan Chi Ming MF 526Chan Chi Wa MF 527Chan Chin Hong MF 528Chan Chun Shun MF 529Chan Hing Fai MF530Chan Kai Man MF 531Chan Po Shing MF 532Chau Kwok Leung MF 533Cheung Sheung Man MF 534Cheung Wah Tat MF 535Chiu Bing Lam MF 536Cho Keung Lau MF 537Choy Ming MF 538Chung Cheuk Ming MF 539Cyrus Chiu MF 540Da Rosa David A MF 541Franco Chan MF 542Fung Wai Keung MF 543Fung Wai Yin Patrick MF 544Gary Cheung MF 545George Cheung MF 546Got Hang Fai MF 547Hiroshi Kaho MF 548Ho Kong Chuen MF 549Hong Yiu Wah MF 550James Ho MF 551Jonathan Gilchrist MF 552K.D.Chu MF 553Koh Kee Haw MF 554Kwok Sau Kwong MF 555Lai Chi Keung MF 556Lai Wai Ming MF 557Lam Fuk Wah MF 558Lam Lung Wai MF 559Lau Wai Kuen MF 560Law Kwok Kuen MF 561Lester Li MF 562Leung Tung Hoi MF 563Li Chi Wah MF 564Lin Loi Tim MF 565Lui Kwong tai MF 566Ma Man Choi MF 567Ng Fu Kwong MF 568Ng Kwan Shing MF 569Ng Tak Wah MF 570Ng Yun Hoi MF571Nick Salmon MF 572Paul Cherry MF 573Paul Chilling Worth MF 574Peter Brown MF 575Sam Mak MF 576Simon Cheng MF 577Sin Man Yin MF 578So Kin Wah MF 579So Shiu Tsung Thomas MF 580So Wai Hin MF 581Sum Wai Kee MF 582Sun Lun Cheung MF 583Tam Chiu Chong MF 584Tam Ka Kit Clarence MF 585Tin Tze Tung MF 586Wan Kuen Fat MF 587Wan Kuen Fat MF 588Wong Chun Che MF 589Yao Chi Yuen MF 590Yau Wing Ki MF 591Yeung Yiu Man MF 592Yuen Wing Hei MF 593Yuen Wing Sau MF 594王國榮MF 595朱偉亮MF 596江建華MF 597余偉基MF 598余漢明MF 599何廣宙MF 600吳宏基MF 601宋光平MF 602巫新強MF 603李竹寶MF 604李國信MF 605李國儉MF 606阮國明MF 607周錦輝MF 608林永昌MF 609林楚豹MF 610林樺MF 611侯保民MF612胡敏華MF 613徐興中MF 614袁錦驊MF 615馬劍偉MF 616張卓凡MF 617張國棟MF 618張樹強MF 619梁德祐MF 620梁贊深MF 621章志文MF 622陳玉泉MF 623陸兆江MF 624陳守平MF 625陳事求MF 626陳俊賢MF 627陸威彪MF 628陳家耀MF 629陳振球MF 630陳健俊MF 631陳國雄MF 632陳愛MF 633郭瑞榮MF 634陳漢成MF 635麥國輝MF 636傅學信MF 637黃永豪MF 638馮兆明MF 639黃國良MF 640黃紹華MF 641黃華福MF 642楊志文MF 643楊國強MF 644葉俊輝MF 645鄒建文MF 646劉健強MF 647劉智彪MF 648劉贊銓MF 649樂勝偉MF 650樊達祥MF 651蔡樹光MF 652黎郁文MF653蕭遙MF 654羅振良MF 655關沛強MF 656龔永順MF 657Au Ka Hung MG 658Chan Chak Yan MG 659Chan Yue Lun MG 660Cheung Yung Kwan MG 661Chin Kam Wing MG 662Chin Kwok Wing MG 663Derek Irwin MG 664Fan Kwok Hung MG 665Felix Yip MG 666Franky Wong MG 667George Nip MG 668Henry Tsui MG 669Ip Chi Shing MG 670Jesse Chang MG 671Kwan Wing Yui MG 672Lam Kin San MG 673Law Yuk Sim MG 674Leung Kwai Man MG 675Li Siu Kin MG 676Lui Charles MG 677Luk Wai Yuen MG 678Mui Hoi Wai MG 679Patrick S. Ford MG 680Paul Jackson MG 681Pok Cheung Wah MG 682Siu Kwok Lam MG 683Tam Yang Hung MG 684Tse Tak Ming MG 685Wong Hung Cheung MG 686Yeu Chung Choi MG 687Yeung Hok Ko MG 688Yip Wai Kwong MG 689丁偉泉MG 690孔維親MG 691朱少棠MG 692何仲蕾MG 693何偉明MG694何偉星MG 695何景邦MG 696何萬齡MG 697何錦華MG 698吳澤賢MG 699李炳強MG 700李啟同MG 701李國興MG 702李瑞華MG 703杜輝MG 704李雙菊MG 705李耀璋MG 706沈浪平MG 707周潤桐MG 708林志祥MG 709林春強MG 710林國華MG 711姚浚帆MG 712唐保亨MG 713夏健華MG 714徐永勝MG 715張志仍MG 716張耀榮MG 717梁偉強MG 718梁啟德MG 719曹貴成MG 720梁耀光MG 721陳天福MG 722陳振才MG 723陳揮明MG 724陳錦榮MG 725陳鑑榮MG 726曾潤康MG 727賀國賢MG 728黃志華MG 729黃建業MG 730黃海昌MG 731黃國强MG 732黃樹寶MG 733黃錦泉MG 734黃鏡銘MG735葉耀榮MG 736趙國明MG 737劉俊興MG 738劉偉霖MG 739劉礎君MG 740蔡國良MG 741蔡錦昌MG 742蔡耀威MG 743鄭文MG 744鄭廣強MG 745鄭潤源MG 746鄧樹均MG 747黎小文MG 748盧宏傑MG 749盧建廣MG 750蕭爾輝MG 751謝亦華MG 752鍾錦生MG 753鄺元相MG 754鄺松德MG 755譚榮MG 756蘇志文MG 757 Deepa Natarajan FF 758 Richard Wandoff MF 759 Kathryn Wandoff FF。

[08-08][五感图乌瞰图dvd中字][09韩国最新爱情影片](不好找的资源)影视下

[08-08][五感图乌瞰图dvd中字][09韩国最新爱情影片](不好找的资源)影视下

[08-08][五感图乌瞰图DVD中字][09韩国最新爱情影片](不好找的资源)影视下...=750)window.open('/DownloadImg/20 09/8/24/242659_5201852_1.jpg');"src="/DownloadImg/2009/8/24/2 42659_5201852_1.jpg"onload="if(this.width>'750')this.width='750';if(this.height>'2 000')this.height='2000';" border=0>◎译名五感图/乌瞰图◎片名Ogamdo◎年代2009◎国家韩国◎类别爱情◎语言韩语◎字幕中文字幕◎IMDB评分N/A◎文件格式XviD + AC3◎视频尺寸640 x 272◎文件大小2CD 2 x 50 x 15MB◎片长129 Mins◎导演边赫Daniel H. Byun 导演("His Concern")许秦豪Heo Jin-ho (II) 导演("I'm Right Here")闵奎东Min Gyoo-dong 导演("The End and the Beginning"/"La Fin et le début")吴基焕Oh Ki-hwan 导演("Have Faith in the Moment")刘永植Yu Yeong-shik 导演("33rd Man")◎主演严正花Jeong-hwa Eom张赫Hyuk Jang金康宇Kang-woo Kim车秀妍Su-yeon Cha车贤静Hyun-Jung Cha金秀路Su-ro Kim金敏善Min-sun Kim裴宗玉Chong-ok Bae李诗英Si-young Lee金东旭Dong-wook Kim李成敏Seung-min Lee郑义哲Yui-Cheol Jeong申世京Se-Kyeong Shin宋中基Jung-ki Song黄政民Jeong-min Hwang金孝珍Hyo-jin Kim◎简介这里的主人公们讲述着他们隐秘的爱情,来刺激你的五感……第一次相遇的他和她之间的刺激的一夜情:每天乘坐快速列车上班的民秀(张赫饰)对坐在自己前排的魅力女人智苑(车贤贞饰)一见钟情,跟着她下车的民秀终于拿到了联络方式,几天后,民秀计划与她有特别的第二次的相遇。

2009广交会买家库_鞋

2009广交会买家库_鞋

FANNY COM I巴西鞋帽FANNY COM IMP E EXP LTDA005511-3313005511-3313Rua florencio de abr MULTIBILLIO中国香港鞋帽MULTIBILLION INTERNATIONAL2759566727595667927,METRO CENTRE,KLNFOKUS D.O.O FAN YING FAN YING00385 1 24100385 1 24110000 ZAGREB,KOLEDOV 文体用品、户FOKUS D.O.O克罗地亚共和FAREHEEN BU巴基斯坦鞋,日用百货F AREHEEN BU ANWAR AHMAD ANWAR AHMAD0092 21 4520092 21 452606,WESTLAN75350 SANTAC RUZ 美国鞋,服装SANTAC RUZ T.C MANUEEL001 831 475001 831 475California95018IT ASIA PAC Mr E Di Muc Mr E Di Muc00852 2169600852 25274Room 1901, 19/F, Hen IT ASIA PAC香港裤子,衬衫,高Farming瑞典发电及输电,Farming0046 155 290046 155 28Blommenhovsv 22, SEAL HABIB GENERAL TRADING GROU0092 81 8420092 81 820NO 1-18.17 WABAR MON AL HABIB GE巴基斯坦陶瓷制品, 电FAR WEST IN MR.LEW BOCH MR.LEW BOCH001 5036403001 5033579P.O. BOX 345,CORNELI FAR WEST IN美国五金工具工业FASHION CEN JUAN CARLOS JUAN CARLOS00502 3390800502 339082A.AVE. 11-01009 FASHION CEN危地马拉珠宝, 化妆品FASHION SPO黎巴嫩鞋FASHION SPO ALI MSHEIK A LI MSHEIK00961 3848800961 5 431BEIRUT, SHOUEIFATK. K. OVERS印度鞋帽K. K. OVERSEAS9111-2003369111-2141, QASIMJAN STREEFAST TRAC D PAUL CONAGH PAUL CONAGH001 718 398001 718 398123 SEVENTH11215FAST TRAC D美国玩具, 建筑产PD.FAJAR TI印度尼西亚鞋类PD.FAJAR TI RUDY SETYAWAN0062 21 6590062 21 639JL.PERNIAGA11220 FAULKS FOOT南非鞋类FAULKS FOOT A.K. VANKER A.K. VANKER0027 32 5330027 32 533P.O.BOX 4474000 FAVORI SHOE土耳其鞋,制鞋用品F AVORI SHOE SERPIL ABAZ SERPIL ABAZ0090 212 630090 212 63GEDIKPASA HAMAM CAD. FAYYAZ BROT巴基斯坦鞋,家居用品F AYYAZ BROT FAYYAZ AHMA FAYYAZ AHMA0092 42 6660092 42 6661241 ST NO 54000 FOOTCORP南非鞋帽FOOTCORP0027-39-9740027-39-974P O BOX 40UMZINTO 42 LJL COMAPNY美国鞋帽LJL COMAPNY808-383-572808-834-6753161 ALA ILIMA ST. # SIFCAN阿尔及利亚服装,鞋,家具SIFCAN MR.NABIL MR.NABIL00213 6152700213HAI KHEMISTI BIR EL APCAPITAL意大利鞋帽APCAPITALFilippo Cuneo+39-0276022+39-0276022VIA MOLINO DELLE ARMFDG SUD AQU M SARDIN De M CELHAY Ph0033 5589170033 558919ROUTE DE BAYONNE, 40 FDG SUD AQU法国其他玩具及其FDG 45 SA法国玩偶车,纱线F DG 45 SAM BOUCHENY M BOUCHENY 0033 2 38340033 2 383459 RUE JEAN COCTEAU,SA FDG 90M BILDSTEIN M BILDSTEIN0033 3 84570033 3 84225 RUE DES CAPUCINS, SA FDG 90法国鞋类用品及附Fed & Beyon日本皮革手提包,Fed & Beyond Inc.0081 3 34760081 3 347610-14-302, Sarugakuc ANGERS COMP加纳鞋帽ANGERS COMPANY LIMITED233-21-7778233-21-7768P.O.BOX CE 11338TEMA DUROJAIYE P新加坡鞋帽DUROJAIYE PATRICK OLUWAFEMI006594676426563325647B LK 30 MARINE CRESCE P.T.FEMS IN印度尼西亚服装,鞋P.T.FEMS IN DEEPAK HARIRAMANI0062 21 6400062 21 641KOMPLEK MARINATAMA B FENCHRIS IN尼日利亚机械产品,时F ENCHRIS IN CHUKWUDI00234 803320023436,BREADFRUIT STREET SUN SANG KO中国香港鞋帽SUN SANG KONG YUEN SHOES FTY.852-2763112852-2797924UNIT 3, 11/F., WAH S FENG YIU (H香港鞋类产品FENG YIU (H CORBIN TSEN CORBIN TSEN00852 2896000852 28967ROOM 2603,26/F,YEN S NAJJAR LEAT叙利亚皮革, 皮衣,NAJJAR LEAT M.FADI AL N M.FIRASAL N00963 11 3300963 11 33SHALLAN BOBOBI 4 AGA CHAUSS-EURO法国鞋帽CHAUSS-EUROP(0033)23547(0033)2354931, RUE GABRIEL MONM FERRETERIA 厄瓜多尔五金制品,工F ERRETERIA ROLANDO SAN ROLANDO SAN00593 2657000593 26654MARISCAL SUCRE 1649 Five Fortun香港运动鞋Five Fortun Ms Queena C Ms Queena C00852 2322600852 232691/F, 7 Kam Fung Stre SIR INDUSTR黎巴嫩鞋帽SIR INDUSTR ZAKI BOUTROS01-48204001-496202DEKWANEH INDUSTRIAL STAC Y ADAM西班牙鞋STAC Y ADAM FCO.GASCON PRATS0034 96 1250034 96 125POL.IND.MASSANASSA C WAI MING CO中国香港鞋帽WAI MING COMPANY2549173925491839M/F, NO. 4 SECOND AT CONTEKS IC 土耳其体育用品,服C ONTEKS IC FURKAN GOZA FURKAN GOZA0090 212 640090 212 53KUCUKKOY,KA34080ALAN TEKSTI土耳其衣服,鞋ALAN TEKSTI FURKAN GOZA FURKAN GOZA0090 212 640090 212 53KUCUKKOY,KARAYOLLARIJANET GREEN Ms. JANET G Ms. JANET G00233 21 6700233 24 25P.O. BOX 838 KOFORID JANET GREEN加纳塑料制家庭用BACK OFFICE加拿大鞋帽BACK OFFICE SOLUTIONS403-293-014403-293-01445 DEL RAY ROAD NE,FIBRO CHILE CLAUDIO HAS CLAUDIO HAS0056 2 68160056 2 6811YUNGAY3241, SANTIAGO FIBRO CHILE智利石油及从沥青FOOTWEAR IN TEDDY YU TEDDY YU001 973-882001 973-8821 EVANS ST, FAIRFIEL FOOTWEAR IN美国皮革鞋面的鞋A Z TRADING香港服装,运动鞋A Z TRADING SIKANDIR SIKANDIR00852 2311600852 27214尖沙咀弥敦道36-44号重FILCO INC.R ALPH FILIO RALPH FILIO001 360-377001 360-3771115 SHORE DR, BREME FILCO INC.美国硫化橡胶制品FINETEX INT美国鞋类FINETEX INT NAM LUI001 909 468001 909 46821621 E.BLU CA 91789 FRIENDS INT印度皮革,皮革制F RIENDS INT GREESH GROVER0091 562 360091OPP.BASANT MARKET,HI CALZADO FIO墨西哥鞋帽CALZADO FIORANNO5233364432752333644101fco cardenas larios# FIORANNO SH墨西哥鞋帽FIORANNO SHOES5233364432752333644101FCO.CARDENAS LARIOS FIRECOLLECT巴基斯坦鞋帽FIRECOLLECTION57532335179080B-8 Empire Centre, M Haug A/S挪威工业鞋类,防H aug A/S Asbjoern Si Asbjoern Si0047 73 53 0047 73 53 7486 Trondheim MOHD.EBRAHI阿拉伯联合酋鞋MOHD.EBRAHI FIROOZ00971 4 22600971 4 229MURSHID BAZAR,OPP.NO FIRS GMBH德国鞋帽FIRS GMBH030-7400449030-7400449PRINZENSTRASSE 27,D-First 2 Mar新加坡成衣及内衣,First 2 Mar Tommy LimJohn Poh0065 6748880065 674888Weltech Industrial BSALEM SAEED沙特阿拉伯鞋帽SALEM SAEED ALFAHMY0096650648900966264681JEDDAH - BUGSHAN''SFISTAR INTE中国香港鞋帽FISTAR INTERNATIONAL TRADING 852-2802208852-280225510/F, YU FUNG COMMERSPOGA ENTER中国香港鞋帽SPOGA ENTERPRISE LTD.280220812802255110/F, YU FUNG COMMERBEIJING IMP MELSON CHIN MELSON CHIN001 7137718001 71327089111 JACKWOOD ST BEIJING IMP美国信息产品, 电FITWELL TRA阿拉伯联合酋鞋FITWELL TRADING DUBAI00971 4 2257862P.O.BOX 1874 DUBAI鞋FIT WELL TR S. Z. LINS. Z. LIN00971 4 22600971 4 225SOUK DEIRA STREET,MU FIT WELL TR阿拉伯联合酋FIVEWAYS SP澳大利亚溜冰鞋(旱冰F IVEWAYS SP BE CURRELL B E CURRELL0061 7 38000061 7 3800240 Johnson Rd ForesKLINGSPOR A Joern Weber Soeren Kyll0045 76 33 0045 76 33 Birkemose Alle 2, DK KLINGSPOR A丹麦未装支架的石ALMACENES F FABIO CADAVID GONZAL0057 4 51170057 4 5128CALLE 51 NO.50-30,ME ALMACENES F哥伦比亚小雕像和其他FLASH INVES尼日利亚鞋帽FLASH INVESTMENT LTD234-01587472340154544012 ADISA BASSSUA STR鞋,日用品FLIPPER TRA A.ANVER A.ANVER00971 6 54200971 6 542P.O.BOX:21176,SHARJA FLIPPER TRA阿拉伯联合酋FRATELLI BA Stefano Bar Stefano Bar0039 010 580039 010 80Via Luigi Canepa 9, FRATELLI BA意大利鞋靴零件;活FLORA BELLA美国鞋帽FLORA BELLA INTERNATIONAL214-828-929214-351-95710875 Shady Trail #1FLORENT PAG法国鞋帽FLORENT PAGLIANO04782482130478248213167 cours lafayette,FLORENTINE ENTERPRISES LIMITE001 905 684001 905 684261 Martind L2W 1A1 FLORENTINE 加拿大皮革制外底的FLORIDA LEA美国制鞋材料,制F LORIDA LEA DENNIS QUEE DENNIS QUEE001 407 856001 407 85610531 SATELLITE BLVDKENBOO INTE罗马尼亚运动鞋,运动K ENBOO INTE FLORIN ZHUA FLORIN ZHUA0040 21 4040040 21 4048 SOLDAT CROITORU STFIT RITE CO美国鞋类FIT RITE CO YING CHIUEN WANG001 916 372001 916 4432200 DEL MO CA 95691KAMINERO LT以色列鞋,日用品KAMINERO LT HANA KREINER00972 3 63900972 3 53717,YESOD AMAHALA ST.CARMA GLOBA爱尔兰鞋帽CARMA GLOBAL SOURCING0035321451600353214516Cloghroe House, ClogHAMPTON DIR STEVE HEROU STEVE HEROU001 8028638001 8028638350 PIONEER DRIVE, W HAMPTON DIR美国五金工具工业F. MIAMI SH日本皮革鞋面的鞋F. MIAMI SH HUNAIGUNIYA HUNAIGUNIYA0081 3 33540081 3 33541-9-2, SHINJUKU, SINT.DE.T法国鞋帽T.DE.T331425832023314258320810,RUE FELIX ZIEM STFASHION & T菲律宾礼品, 玩具,FASHION & T RAMON LABAR RAMON LABAR0063 2 45030063 2 2410NS-15,PODIUM FLOOR,PFONTANA AUT乌干达鞋,汽车零配F ONTANA AUT ANVERALI B.ANVERALI B.00256 41 3400256 41 34PLOT 3,ENTEBBE ROAD(FOOT FOCUS南非鞋类,照明设F OOT FOCUS E.C.JEEWA0027 31 3060027 31 306178 GREY ST4001FOOTLOCKER南非鞋,收音机FOOTLOCKER B.A.EBRAHIM0027 11 2480027 11 8301 RENAISSANCE RD.CROSan Francis香港鞋附件,皮鞋S an Francis Mr Victor W Mr Victor W00852 2890700852 28955Room 1802, 18/F, ForFOOT-TECH I中国香港鞋帽FOOT-TECH INTERNATIONAL CO., 852-2736316852-237550223/F., CONCORD TECHNBIGSTON STEVE TRACH STEVE TRACH001 215-238001 215-238444 N 4TH ST, PHILAD BIGSTON美国一般鞋靴, 皮CENTRE ZONE中国香港鞋帽CENTRE ZONE LIMITED217113132785349010/F, INTER-CONTINENMAN TAT HON中国香港鞋帽MAN TAT HONG2343522827978681RM. 7, 14/F., HUNG TMILLION SHO中国香港鞋帽MILLION SHOES CO., LTD2343522827978681RM. 7,14/F., HUNG TAMILLION SHO中国香港鞋帽MILLION SHOES CO., LTD.2343522827970792RM. 7, 14/F., HUNG TYUEN SHUN H中国香港鞋帽YUEN SHUN HONG2343522827978681RM. 7, 14/F., HUNG TOKAMOTO FOO日本鞋,服装及其O KAMOTO FOO OKAMOTO YOS OKAMOTO YOS0081 3 38170081 3 381720-16, YANAGIBASHI 2FOOTWEAR FI英国制鞋材料,合F OOTWEAR FI PAUL AUDEMA PAUL AUDEMA0044 1458 20044 1458 24-6 Canvin Court, BaFORCO DEVEL香港鞋,帽FORCO DEVEL TONY TUNGTONY TUNG00852 2815600852 25456ROOM 403,BLISSFUL BU厄瓜多尔鞋类,手提包O ING FERNAND ING FERNAND00593 7 28100593 7 281LORENZO PIEDRA 4-25CENTRAL TOP中国香港鞋帽CENTRAL TOP INDUSTRIES LIMITE2330816323308163UNIT 1,28TH/ FLOOR,IMBIZS.R.O.斯洛伐克鞋帽IMBIZS.R.O.0042153415000421534150Sadova 14, Spisska NP.T. FORTUN印度尼西亚制鞋材料P.T. FORTUN Mr. DYLAN T Mr. DEDE CH0062 22 5200062 22 520JL.SRIWIJAY40255FORTUNE TEX中国香港鞋帽FORTUNE TEXTILE INTERNATIONAL2340036723040307RM.801,8/F,DANNIES HFortune Int美国一般鞋靴,皮F ortune Internationa Frank Zhou001 212 997001 212 997110 W. 40th St. NewFORTUNATE I香港鞋类, 包类,FORTUNATE I CONNIE LAM00852 2803700852 28032B12 FL.CARFIELD COMMFORUM香港鞋,衣服FORUM JASON LAU00852 2473900852 24820SHOP 70,GROUND FLOORFORM SUCCES香港鞋类,纺织品F ORM SUCCES FRANCK FUERIC LU00852 2721300852 23116UNIT 14,9/F,NORTH TOFORM SUCCES中国香港鞋帽FORM SUCCESS CO. LTD852-2721-38852-2311-65RM 06,17/F,SOUTH TOWFORM SUCCES中国香港鞋帽FORM SUCCESS CO. LTD.852-2721383852-2311654UNIT 14, 9/F., NORTHFORM SUCCES中国香港鞋帽FORM SUCCESS CO., LTD852-2721-38852-2311-65UNIT 06, 17/F, SOUTHFIRM SUCCES陈经理陈经理00852 2721300852 23116KOWLOONFIRM SUCCES香港鞋, 织物, 日FOUAD HUSSE埃及鞋帽FOUAD HUSSEIN CONSULTING2035275643203527564337 GALAA STREET VICTFOUNTAIN-EV美国服装与服饰,FOUNTAIN-EVERGREEN TRADING GR001 4156409001 41556456732 DI LUSSO DR. ELFOX MOTORI,Lara Petrol Giacomo Bon0039 0522 90039 0522 9Via Romana 7, I 4202 FOX MOTORI,意大利玩具娃娃长袍Sirco Bvba比利时鞋类Sirco Bvba0032 3 326 0032 3 325 Bisschoppenhoflaan 6FRAN STAN I尼日利亚电子产品,服F RAN STAN I MESCOBI KEM MESIOBI STA00234 80332360063A BRIGHT STREET M,M FRANCE-CONT法国鞋FRANCE-CONT M.TOUAZI M.TOUAZI0033 1 45230033 1 452314,RUE DES PETITS HO BUTTONBOSS荷兰鞋帽BUTTONBOSS(31)5347697(31)5347675DE REULVER 102,7544 FRANCH CORN斯里兰卡服装, 玩具,FRANCH CORN M.RIFAAN DE M.RIFAAN DE0094 11 4200094 11 271NO.40A,KAWDANA ROAD, SMALL PLANE中国香港鞋帽SMALL PLANET COMPANY LIMITED2690092630054488UNIT 1802 18/F SHATI PINET法国其他鞋靴,皮P INET M DE JACQUE M DE JACQUE0033 1553590033 1426066 RUE ROYALE, 75008, FIRST ORIGI美国服装与服饰,FIRST ORIGI康福康福001 2122675001 212267573M ST NYNY10013, U. FIRST ORIGI美国鞋帽FIRST ORIGINAL INC(USA)212-267-573212-267-57373M ST NYNY10013, U. FRANK SHOPP喀麦隆鞋帽FRANK SHOPPING23798625602373333138P.O.BOX 1218 LIMBE,SHONG PHUC J Mr. PHAM T.Mr. DANG QU0084 4 82180084 4 821730D NGUYEN CONG TRU HONG PHUC J越南电气产品附件Francesco S Andy Perill Frank Peril0064 9 827 0064 9 827 12 Bentinck Street N Francesco S新西兰鞋靴零件;活Fransi A/S C arsten Fri Carl Friis0045 38 10 0045 38 10 Rentemestervej 69, D Fransi A/S丹麦鞋靴、护腿和WAY CHINA E尼日利亚鞋帽WAY CHINA ENTERPRISE LIMITED 0577885247505778852475FLAT 501,RUIXING TOW FREE BIRD E台湾省鞋FREE BIRD E M.Y.CHANGM.Y.CHANG00886 2 25500886 2 2553RD FL,NO.239,CHANGA FREEDOM OCE中国香港鞋帽FREEDOM OCEAN COMPANY3170318131703181RM2209A, BLOCK A, ME DRAGON西班牙鞋帽DRAGON0034915275400349152753MESON DE PAREDES 20. FREEZED BEE西班牙凉拖鞋,拖鞋F REEZED BEE RUFO MENEND RUFO MENEND0034 985 360034 985 33C/.LOPE DE VEGA, 4,E FREDO C.INT尼日利亚建材,纺织品F REDO C.INT CHIEF A.C.O CHIEF A.C.O00234 46 4100234 46 4155 NEW MARKET ROAD P TAEWON INT'香港鞋TAEWON INT'LESTER CHEN ALBERT RHEE00852 2787100852 23945RM1518,METRO CENTRE CHEN HIN SD马来西亚鞋,制鞋原料C HEN HIN SD BRYAN CHONG0060 3 79830060 3 7981NO.A-112,JA57100 FRONTLINE T肯尼亚五金制品,衣F RONTLINE T MATHEW NDON MATHEW NDON00254 2 22600254P.O.BOX 51484,NAIROB HUMANIC奥地利橡胶或塑料制HUMANIC Herr Karl-H Herr Karl-H0043 316 780043 316 78Lastenstrasse 11, A-ALGO ENTERP香港鞋ALGO ENTERP DANNY CHAN,DANNY CHAN,00852 2797200852 23426FLAT 1901,19/F.,NEW FT. CONTACT中国香港鞋帽FT. CONTACT TEXTILES LTD.852-2341386852-23413021/F., FLAT F, BLOCK HONGKONG HE中国鞋帽HONGKONG HENGST PACIFIC TAICA0512-5354010512-535401NO.36 GUOTAI GARDEN, EXCEL COMPA香港鞋,布,礼品EXCEL COMPA SAM HO00852 2148000852 21480ROOM 1004,KING CENTR FUFEILUNSHO中国鞋帽FUFEILUNSHOES CO,LTD.0086-752-880086-752-88HUIZHOU GUANGDONG CH FUKUSEN CO 日本纺织品,鞋FUKUSEN CO KAZUYUKI MO KUMAGAI, AK0081 78 6410081 78 6416-7,9-CHOME UDEZUKA-FULL JOINT 香港箱包,鞋FULL JOINT KEN LEUNG00852 2413200852 24159ROOM 2305,MEGA TRADE FULLMAX IMP美国纺织品及原料FULLMAX IMPORT & EXPORT CORP.001 3018403001P.O. BOX 1655ROCKVIL FULONG INDU泰国鞋FULONG INDU RACHANEE KO RACHANEE KO0066 2 39860066 2 39833133/55-56 SUKUMVIT FUN AL-JAZI科威特鞋类FUN AL-JAZI ABDUL KARIM ABDUL KARIM00965 2403000965 24128AQARAT AL-K13136YAO SHENG E中国香港鞋帽YAO SHENG ENTERPRISES LTD.852-2744750852-2785475ROOM 102, 1/F., ELIT FUT RAP IND印度制鞋材料,皮F UT RAP IND PATAS MAHAJAN0091 11 3530091108-A,D.D.A110055 FUTURE INDU美国鞋帽FUTURE INDUSTRIES732-290-766732-290-76017 INDUSTRIAL DRIVEC KAGOSHIMA K日本运动鞋, 鞋,KAGOSHIMA K TSUKASA CHO TSUKASA CHO0081 99 2690081 99 2682-5,TOUKAIC8910115 GITA日本男士服装, 女GITA Yuji Goto0081 765 240081 765 24533-1 Kichijima, Uoz Tazechehr C伊朗鞋帽Tazechehr C Mohammad Ali Afrasia0098-711-220098-711-22No.322, 3/F, Dashti FRANCIS & C中国香港鞋帽FRANCIS & C FRANCIS YIP9089678027773375920 BLOCK 10 PAK TIN Shoe-Ab B.V荷兰鞋类Shoe-Ab B.V Dhr. G. Zan Dhr. G. Zan0031 33 2980031 33 298Zuidwenk 78 L, NL-37 signcorp de英国鞋帽signcorp de gurch0044781448000441274746acre mills, acre lan THE BROTHER以色列鞋THE BROTHER GABY LEVYGABY LEVY00972 3 68700972 3 68755,YESOD HA-MAALA ST GABYETO INT美国鞋GABYETO INT MR. GABRIEL.E.ONUORA001 770 9910016349 VALLEY DALE DR GADOL,S.A.巴拿马机电设备,家G ADOL,S.A.I GAL VAHNISH00507 445 200507 44145CALLE 13 1/2 Y 14,AVGAILLAN INT M CANBAKAN MME CANBAKA0033 1695360033 1695366 RUE RENE CASSIN, 9 GAILLAN INT法国纯棉制针织或DIMITRIS & 希腊鞋DIMITRIS & GEORGIOS NIKOLAIDI0030 69 3020030 69 302A.44,P.P.GERMANOU,KA Michael Gal爱尔兰标准规格的鞋Michael Gal Mr. Mark Ga Mr. Michael00353 1 28500353 1 285Cabinteely, Dublin 1 TOKYO PARK 美国鞋TOKYO PARK MOSHE MAMAN001 212 866001 212 866175W 126 ST.NEW YORK TOKYO PARK 美国鞋TOKYO PARK MOSHE MAMAN001 212 866001 212 866175W 126 ST.NEW YORK GANKA INC.加拿大鞋帽GANKA INC.418-872-281418-872-6291401, DES PINS O.,AN GANAPTI ASS印度鞋原料GANAPTI ASS HEMANT0091 11 5030091 11 503RZF/8,MAHAV110045GANTE SA M GANTE0033 5627480033 5614958 IMPASSE DERASEYRE, GANTE SA法国纺织材料制鞋GAO YUAN EN中国香港鞋帽GAO YUAN ENTERPRISES DEVELOPM2389019823897296UNIT C1, 12/F., 6 WI GARDENIA SH丹麦鞋子,鞋类GARDENIA SH ALLAN GUTKI ALLAN GUTKI0045 39 18 0045 39 18 EMDRUPVEJ 28 A,DK-21Garden Retr MS.WINDERMS.WINDER001 403 255001 403 255205 60 Ave T2H 0B1 Garden Retr加拿大皮革或再生皮WIND SPORT 希腊鞋帽WIND SPORT CLUB0030210411400301204114139 Papanastasiou Av GARLIN-NEUM美国动物皮革,鞋G ARLIN-NEUM Peter Garde Peter Garde001 603-595001 603-88166 River Rd., Hudson LAMBERT HOG英国鞋类, 拖鞋,LAMBERT HOG Miss. CHRIS Mr. GARRY H0044 207 250044 207 4626,MANCHEST WIU 3PZCurtidos Ga AlejandroDi GabrielGarc0034 96 5370034 96 695Brigadier Algarra, 1 Curtidos Ga西班牙鞋靴、护腿和MAROM CORPO美国机械及设备,MAROM CORPO DERMAN RUSS DERMAN RUSS001 7866213001 305 39110400 NW 33RD STREET LC GLOBAL C中国鞋帽LC GLOBAL CO.,LTD.0595-5131020595-513102501 ROOM.HONG DAI BUOUTSOURCING NETWORKS001 2025189001 20251892905, WOODLAND DRIVE OUTSOURCING美国家用电器, 纺NOVELTIES L加拿大鞋类,药品NOVELTIES L MR.AL LADAK001 519 433001 519 433P.O.BOX 270T6E 5N5 EXCEL UNION荷兰鞋,服装EXCEL UNION GAVIN CHEUNG0031 416 330031AXER SHOE.SPRANGSEWE EXCEL UNION法国鞋,服装EXCEL UNION GAVIN CHEUNG0033 2 51800033113 BD DE L44100 UNIVERSAL S南非鞋帽UNIVERSAL SOLUTIONS2711453059527114530595P.O.BOX 8804 EDENGLE GAZI UNION 泰国衣服,内衣裤G AZI UNION GAZI SHAFIA GAZI SHAFIA0066 2 2467745/24633157/13 SOI-10400 GAZELLA IMP厄立特里亚鞋GAZELLA IMP YEMANE BERH YEMANE BERH00291 1 18100291 1 20022-26 HERO'S AVE,P.ODIAMANT, Sr Giovanni Ba Federico Ze0039 045 660039 045 66Viale del Lavoro 8, DIAMANT, Sr意大利橡胶或塑料制ABS Pumps L Lawrence J.K.aGipson0044 8706080044 1293 5Station Road, GB RH6 ABS Pumps L英国乳品加工机械GBB MANUFAC法国其他材料制无GBB MANUFAC M PASQUIER M BIOTTEAU 0033 2416360033 241636ZONE INDUSTRIELLE EV GENERAL BUS美国纺织品, 鞋,GENERAL BUS HUSSEIN HAK ALI HAKIM001 973 817001 973 81716 HERBERT 07105ETS PAPPO法国一般鞋靴,纺E TS PAPPOM DJENDERED M DJENDERED0033 1 48590033 1 485977 RUE VICTOR HUGO, ACE IMPORT 美国机械及设备,ACE IMPORT ZONE001 9179128001 71826552558 WEST 15TH STREE Durban Dist香港植物纤维布,Durban Dist庄志恒先生庄志恒先生00852 2797700852 27631香港九龙观塘 成业街1 GROHMANN SC奥地利鞋类GROHMANN SC GINO COLAYCO0043 662 850043 662 85DR.HANS LECHNER STRA FAR EAST FO香港鞋类FAR EAST FO GINO COLAYCO00852 2744600852 27444FLAT D,4TH FLOOR,ARDGOLD STONE YOUNG. YANG YOUNG. YANG0082 51 3220082 51 761#236-18,HAKJANG-DONG GOLD STONE 韩国休闲服, 休闲G&G FASHION美国鞋帽G&G FASHION AND ACCESSARIES01-415-379-01-415-379-790 46Aue, U.S.A. GOLD DOUBLE中国香港鞋帽GOLD DOUBLE LTD2666038326665728FLAT D,7/F,BLOCK 2,TG.DOULATRAM MS.ALICE HW Mr. RAMESH 00886 2 25200886 2 256N-510,CHIA HSIN BLDG G.DOULATRAM台湾省机械,原料,纺HUNKER FOOT LISA LEE LISA LEE001 909-937001 909-9374237 E AIRPORT DR, O HUNKER FOOT美国一般鞋靴, 动Kloecker Gm Michael Lei Manuela Elk0049 2862 90049 2862 3Hauptstrasse 64, DE Kloecker Gm德国编号为8444、GEBRA NONFO德国鞋,纺织品,服GEBRA NONFO DRAUSEN DRAUSEN0049 23 2790049 23 279BURGSTRASSE44867 GEEM INVEST埃及鞋帽GEEM INVESTMENT FOR LEATHER P0020261004400202610044GREEN LAND COMPOUND, WESTERN INT其他国家鞋帽WESTERN INTERNATIONAL LLC(SHE755-8228543755-82285427/fl;flat701,orienta GREAT EAST 中国香港鞋帽GREAT EAST HEADWEARS CO.852-2789090852-2392814UNIT 809, BLOCK A,HO GUMMI HASEN德国内外轮胎,充G UMMI HASEN EDGAR OHLRO DERCK0049 471 390049 471 39POSTFACH 10 04 80,D-Bata Indust荷兰鞋类Bata Indust Dhr P. Bolk Dhr P. Bolk0031 499 360031 499 36Postbus 10050, NL-56Bata Indust BAEMS P. Rademake0031 499 360031 499 36Europaplein 1, NL 56 Bata Indust荷兰针织或钩编的Boby Footwe新加坡鞋靴、护腿和Boby Footwe Tong Cheh M Lau Wee Soo0065 6469890065 646955Acacia Court, 2,Pand HILBO INTER香港鞋,园艺用品H ILBO INTER WALDER W.T.WALDER W.T.00852 2311800852 2721411/F.,CAMBRIDGE HOUST T Group L Brian Holli Brian Holli001 519 652001 519 6521806 Wharnc N6L 1K1T T Group L加拿大用栓塞方法将GENESIS OVE印度鞋帽GENESIS OVERSEAS9198250198091797475802M-5, 12/93, SHASTRIN BUSSY EXPOR法国其他木家具,BUSSY EXPOR M NAJIB SAM MME FAKHRY0033 1646680033 16466725 AVENUE DU GENERALGENTRADING NEJIB ATUFA NEJIB ATUFA001 416 219001 416 763251 DAVENPO M5R 1J9 GENTRADING 加拿大鞋,衣服,清洁Berner Osak Sten Enholm George Bern00358 9 13 00358 9 13 Etelaranta 4 B, FI 0 Berner Osak芬兰鞋靴、护腿和KARFOTEK希腊玩具,办公用K ARFOTEK EVRENIADIS GEORGE0030 24610 0030 24610 VATHYLAKOS 50100 MAINLINE FA英国鞋帽MAINLINE FASHION ACCESSORIES 019238011410192380116130, CLARENDON ROAD,WALLEGRO SUC MR.GERARD G MR.GERARD G0065 9819980065 624793257,SELEGIE188350 ALLEGRO SUC新加坡家具,服装,鞋ESPERANCE俄罗斯联邦鞋类ESPERANCEAIMONTCHEAIMONTCHE007 095 714007 095 714MOSCOW,GREE117485 SARL LEO ET法国鞋,衣服SARL LEO ET MR.COLAS0033 3 83320033 3 8332ZAC DU SAUL54390 SARL LEO ET法国鞋,衣服SARL LEO ET MR.COLAS0033 3 83320033 3 8332ZAC DU SAUL54390 EAGLE ANIMA巴拿马鞋类EAGLE ANIMA MR.EAGLE00507 4413600507 44138P.O.BOX.3006.Z.L.COL GIOSEPPO S.西班牙鞋类GIOSEPPO S.GERMAN NAVA GERMAN NAVA0034 965 680034 965 68N-340 KM.727 ELCHE P SAM WON TEX韩国包类, 鞋SAM WON TEX KIM DONG SU KIM DONG SU0082 2 41740082 2 4143#170-16,BANGI-DONG,S GIANTWIN IN泰国鞋GIANTWIN IN SARANA LAOV SARANA LAOV0066 2 27630066 2 6936161/66 INTH10320 GENERAL EXP中国香港鞋帽GENERAL EXPORTS LTD272218822723513411/F WING ON PLAZA,T GREENFIELD 中国香港鞋帽GREENFIELD (H.K.) CORP.(852)2793-0(852)2793-0UNIT 1009,10/F.,HEWLMueller Mas Juerg Ziela Max Mueller0049 511 960049 511 9 Max-Mueller-Strasse Mueller Mas德国木材、软木、GREAT GOLDE HUANG XIAOFANG001 604 439001 604 4396142 NEVILL V5J 2J6 GREAT GOLDE加拿大服装,鞋,纺织GATY ENTERP美国风雪大衣,帐G ATY ENTERP GARY GAUBA G ARY GAUBA001 408 930001 413 6385655 SILVER CA 95138MEMORIAS,S.GUSTAVO A.G GUSTAVO A.G00507 3176500507 31765APDO.2023 BALBOA ANC MEMORIAS,S.巴拿马鞋,家具,灯具SAMER BADAW沙特阿拉伯鞋,地毯SAMER BADAW ABDUL GAFOO ABDUL GAFOO00966 2 64700966 2 648JEDDAH-AL-B21423 GHANTUS "SH以色列鞋GHANTUS "SH GHANTUS GHA GHANTUS GHA00972 4 67400972 4 674SAKHNIN 20173鞋ETS GHASSAN Mr. GHASSAN Mr. GHASSAN00225 20 220022501 PO BOX 6225ETS GHASSAN科特迪瓦共和GRAND HAVEN香港鞋GRAND HAVEN H.W.KWONGH.W.KWONG00852 2997700852 29977SUITE 1501-4,15/F.,TBio Ped Fra MR.GREG HEL MR.GREG HEL001 905 829001 905 8292150 Winsto L6H 5V1Bio Ped Fra加拿大其他材料制护Ghim Soon S新加坡生皮、皮革及Ghim Soon S Tan Huat Hu Tan Cho Thi0065 6748920065 674369Blk 1,Upp.Boon Keng GREAT HARVE中国香港鞋帽GREAT HARVEST TRAVEL & TRADIN00852-2813400852-28137RM301,30-32 WONG MA 鞋,礼品MOJTABA TEX JAVAD SEDAQATYAR00971 4 22500971 4 221CENTRAL MARKET MURSH MOJTABA TEX阿拉伯联合酋ROCK - JUNC加拿大鞋类, 首饰,ROCK - JUNC Mr. GHULAM Mr. GHULAM 001 613 562001 613 562151 RIDEAU K1N 5X4 SCHAEFER (H中国香港鞋帽SCHAEFER (HONG KONG) TRADE CO00852-6199300852-31527UNIF E 3/F GOOD HARVGraf Canada GIBON GIBON001 403 287001 403 2871st Street T2G 2L2 Graf Canada加拿大(专用)皮或合Giertsen AS0047 55 94 0047 55 94 Nygaerdsviken 1, NO Giertsen AS挪威标准规格的鞋GIL HOLSTER法国皮革,鞋类用G IL HOLSTER M PETIT M PETIT0033 4 42730033 4 427346 CHEMIN DU PUITS S SOLAR INTER香港美容产品,美S OLAR INTER G.S.MALLHI00852 3116900852 2723344 MODY ROAD,10/FL.,GINDO INDUS Mr. TEFERA Mr. TEFERA 00251 1 65500251 1 655P.O.BOX.22192 ADDIS GINDO INDUS埃塞俄比亚鞋类, 家居用PARIS NEW Y加拿大凉拖鞋,拖鞋P ARIS NEW Y GINETTE PRO GINETTE PRO001 514 851001 514 871630, CATHCART, SUITEGIN NABEX G EUGENE EZEA EUGENE EZEA00234 1 32000234ZONE B BLOCK 3 SHOP GIN NABEX G尼日利亚鞋, 包类, 帽GINN YOUNG 中国台湾鞋帽GINN YOUNG IND. CO., LTD886-2-25153886-2-251534TH FL., NO.71, SEC. GINN YOUNG 中国台湾鞋帽GINN YOUNG IND.CO.,LTD00886-2-25100886-2-2514TH FL.,NO.71,SEC.1C JNK BUSINES印度鞋帽JNK BUSINES KETAN PATEL91-278-241691-278-25212ND FLOOR, GANDHI CH TOPS & BOTT美国鞋帽TOPS & BOTTOMS847-676-888847-676-8393940, W. Madison St. KAR WING TR美国鞋,日用百货K AR WING TR GEORGIANA L GEORGIANA L001 626 350001 626 3501923 FRANK STILES ST SIERRA ENTE澳大利亚鞋帽SIERRA ENTERPRISES PTY LTD6129659330561296593307PO BOX 185, CHERRYBR GLOBAL EXPO泰国服装,女式鞋G LOBAL EXPO HARDISH SINGH SACHDE0066 2 88600066 2 886023/1 SOI LA10700GLF GLOBAL澳大利亚鞋帽GLF GLOBAL089258929108945126823 PETREL CLOSE WILSOGLOBAC CORP TAMAI HIDEK TAMAI HIDEK0081 982 320081 982 321-1543-1,SH8820864 GLOBAC CORP日本大理石, 花岗GLOBAL IMPO RODRIGO E.B RODRIGO E.B0056 32 8900056 32 837AV.JARDIN DEL MAR 34 GLOBAL IMPO智利纱线,织物,服FLOURISH RE美国鞋,床,服装,FLOURISH RE MARK LOWEMARK LOWE001 805 3403810436F SWEET BRIAR STR GLOBAL LINK韩国鞋,服装GLOBAL LINK ARIF HOSSAI ARIF HOSSAI0082 2 77730082 2 7773#133-6,1.GAHOEHEON-D GLOBALZONE 中国香港鞋帽GLOBALZONE CO LTD(852)245918(852)245940FLAT I-6, 1/F, LEE F GLOBAL WEAR美国粗斜纹棉布,GLOBAL WEAR TONG WANGTONG WANG001 212 958001 212 9581232 SONOMA CA 95476fannycom@.brfannyng007@FANYING@FOKUS.HRFAREHN@;VVIP@.PKFARHAEL_75@faritgen@farming@farming.seFARQPK@farwestimports@FASHIONC@.GTFASHIONSPORT@Fasih4u@FASTRAC@FATIM@.IDFAULKSFOOTWEAR@FREEMAIL.ABSA.CO.ZAFAVORI@FAYYAZBROTHER@fc@webmail.co.zafccljl@FCNABIL_2003@YAHOO.FR;NABILC_2003@YAHOO.FR fcuneo@apcapital.itFDG40@FDG.FRFDG45@FDG.FRFDG90@FDG.FRfed.beyond@felicialcompany@femiking_exporters@FEMS@.IDFENCHRIS@fenella@FENGYIU@FERASALNAJJAR@FERRARIS@FERRESANCHEZ@ffccq@ffrancophone@FGASCON@fgconnie@FGOZALAN@.TRFGOZALAN@.TRFIAGREEN@fiaz@shaw.caFIBRO@FIBRO.CLfic.bj@FIDA@filuinc@finetexusa@FINTL@fioranno@.mxfioranno@.mxfirecolllection@firmapost@haug.noFIROOZ1977@firsgmbh@first2@.sgfisintel@fisintel@fist@FITWELL@.AEFITWELL@.AEFIVEWAYS@.AUfj@klingspor.dkFLAMENCO@.COflashinvestltd@FLIPPER@.AEfllibarb@tin.itflorabellaint@florent.pagliano@wanadoo.frflorent@florida@FLORIN@;GEORGE@ FLOZOS@FLYFOOT@.ILfm@carma.iefmarcoux@FMIAMI@NBA.BIJLOBA.ME.JPfnarbonne@tdet.frFNTENT@.PHFONTANA@UTLONLINE.CO.UGFOOTFOCUS@NETACTIVE.CO.ZAFOOTLOCKER@footpain@foottech@footwear@footwear@footwear@footwear@footwear@footwear@FOOT-WEAR@footwearfindings@FORCODEVELOPMENT@FORDONEZ@fornia@fortrade@imbiz.skFORTUNA@.IDfortune.hk@FORTUNECN@FORTUNTE@FORUM_00HK@FOSUCO@fosuco@fosuco@fosuco@FOSUCODG@fouad_hussein_consulting@fountain_evergreen@FOXMOTORI@VIRGILIO.ITframaco@FRANCESHOE@francey@FRANCHCO@SLT.LKfrancis@francois-pinet@wanadoo.frfrankchinause@frankchinause@frankmcmoli@FRANK-VN@HN.VNN.VNfranshoe@fransi@fransi.dkfredzhou@FREE.BIRD@freedomocean@freeguasp@yahoo.esFREEZED@NETCOM.ESFREIGO@FRIENDHK@;TAEWONHK@ FRONTIER@.MYFRONTRAD@fruehwirth.karl@FS992203@ftcontact@fu@FU4PK@fufeilunshoes@FUKUSEN@PAR.ODN.NE.JPFULLJOINT@fullmaxwholesale@FULONG@FUNALJAZIRA@fusheng@FUTRAPINDIA@YAHOO.CO.INfuturemorey@FWKX3958@WEB.NE.JPfwne5940@web.ne.jpfwscl@fy2003francis@g.zandbergen@shoe-ab.nlg_bussan@GABILEVI@.ILGABRIELEONUORAH.@GADOLSA@.PAgaillan@club-internet.frGALANIMP@OTENET.GRgallagher@GAMECENTERS@GAMECENTERS@ganka@ganka.caGANPATIASSO@gante@wanadoo.frgaoyuan@gardenia@email.dkgardens@garifal2@panafonet.grGARLINLEATHER@GARRY.HOGARTH@garte@teleline.esgarussi@gary@garypettitt@GASTOWNR@GAVIN.CHEUNG@;SCHJMY@GAVIN.CHEUNG@;SCHJMY@gavin.cooke@GAZI-19555G@GAZZELA2002@gb.bazzani@GBA.SALES@GBBSHOES@GBCEXPORT@GCDAD@WANADOO.FRgchan74@gchong@GCNESTOR@.PHGCNESTOR@.PHGD@GDFOOTWEAR.CO.KRGdcress2@gdl@GDM@;GDS1@gearbox@Gebr.Kloecker@t-online.deGEBRA@GEBRA.DEgeem_shoes_eg@geepas@gehc@GENE-HASENKRUG@T-ONLINE.DEgeneral@bata.nlgeneral@bata.nlgeneral@.sgGENERAL@/WALDER-IP@ general@genesis@GENIMEX@SKYNET.DEGENTRADING@GEORGE.BERNER@BERNER.FIGEORGE@,KARFOTEK@OTENET.GRgerald@GERARD@.SGGERARD@ROL.RUGERARDCO@WANADOO.FRGERARDCO@WANADOO.FRGERENCIA@GERMAN@GESAMWON@GESSARIN@gexport@gfcorp@GFIBIG@MAX-MUELLER-GRUPPE.DEGGCT@GGUABA@GGUZMANSD@GHAFOORIL@;GHAFOORIL@ GHANTUS_SHOES@GHASSANI@AFRICAONLINE.CO.CIGHAVEN@gheller@ghimsoon@.sgghttc@GHULAM@.AEGHUSSAIN@SPRINT.CAgiantcy@GIBSON@giertsen@giertsen.noGIL.HOLSTERS@TISCALI.FRGILLJESSI@;MALLHIS20@YAHOO.CA gindo@.etginettep77@GINNABEXNIGLTD@giyoet@giyoet@gjk_2119@yahoo.co.ingktopsandbottoms@glai@glengee@GLEXNET@glfglobal@.auGLOBAC@MCN.NE.JP/INFO@GLOBAL@GLOBALIMPORTER@GLOBALLIL_GZB@globalzoneco@GLOGALWEAR@。

2009年全国青少年信息学奥赛获奖情况

2009年全国青少年信息学奥赛获奖情况

1 1 1 1
1 1
1 1
2 1 1 1
11 1 1
11 1
1
2 1 1
~4~
1 1
1 1 1
1
1
1
湖南省长沙雅礼中学 湖南省长沙长郡中学 湖南省湖南师大附中 湖南省长沙市一中 湖南省衡阳市第八中学 湖南省长沙市南雅中学 吉林 2 所 吉林省东北师大附中 吉林省吉林一中 江苏 7 所 江苏省常州高级中学 江苏省南京外国语学校 江苏省南师附中 江苏省苏州中学 江苏省大丰高级中学 江苏省新海高级中学 江苏省常州市第一中学 江西 3 所 江西省九江一中 江西省南昌二中 江西省萍乡中学 辽宁 2 所 辽宁省东北育才学校 辽宁省大连育明高中 内蒙古 1 所 内蒙古包头市第九中学 山东 7 所 山东省山东师大附中 山东省实验中学 山东省昌邑一中 山东省青岛第二中学 山东省东营市胜利第二中学
643
977
9
16 内蒙古 1602 225 1377 1111
33
1078 491
17 河南 1600 150 1450 2311 133 2178 -711
~8~
18 湖北 19 广西 20 黑龙江 21 山西 22 新疆 23 吉林 24 天津 25 贵州 26 甘肃 27 海南 28 宁夏 29 澳门 30 云南 31 青海
254.25
天津
3
2.91
301.67
四川
24
5.83
249.33
河北
23
4.85
249.8
湖北
22
3.88
239.75
黑龙江
22
3.88
231.25
吉林
21
2.91

JAPANVIDEOTOPICS-yu.emb-japan.go.jp

JAPANVIDEOTOPICS-yu.emb-japan.go.jp

JAPAN VIDEO TOPICSJapan Video Topics Selection 2000-20061.Vol. 1. Tourist Attractions of Japan2.Vol.2. Japanese Culture and Lifestyle3.Vol.3. Modern JapanJapan Video Topics Selection 2008/091.Vol.1. Culture/Lifestyle-Monkiri Asobi – The Art of Paper-cutting-Donabe – Most Versatile of Cooking pots-Deco Art –It’s Everywhere-High-Rise Work Fashion2.Vol.2. Tourism / Festival-Tokyo’s Subtropical islands-Night festival in Chuchibu-Iwami Kagura – Ancient Ritual to Modern Folk Art3.Vol.3. Technology / Environment-Fresh Ideas for Mobile Living-Minamata – An Eco-Aware Community-Green Revolution Transforms City RooftopsJapan Video Topics – Tohoku Selection (Fukushima, Miyagi, Iwate)1.Miyagi – where the Samurai spirit lingerscquer Reborn3.Hiraizumi – Glories of Long Ago4.Nanbu-tekki Cast Ironwarekes of Many Colors20062006-011.Fighting Sport Builds Friendship2.Block Toy Unblocks Creativity3.Heroes of Disaster –Tokyo’s Hyper-Rescue Team4.Underground Caverns of Akiyoshi2006-021.City of Countless Faces2.The Art of the Compact3.Keeping the Expressways safe4.Weaving Works of Beauty2006-031.Shimane – Land of Silver, Swords and Ancient Shrinestest Digital camera Trends3.Art of Hidden beauty4.More than Cute – Kawaii!2006-041.The roots of Japanese Anime2.Shop Assistants with Purchasing Power3.Exploring Japan: Appreciating Japanese style Rooms4.The Japanese Economy is Rising From Recession2006-051.Japan’s Assistance for Iraq2.Exploring Japan: Appreciating Japanese Sounds3.Japanese Anime in Malaysia4.Citizens in City Planning2006-061.Mobile Phone TV2.Exploring Japan: Appreciating Wooden Architecture3.Japan Welcomes Young Students2006-071.Climbing for Cleaning2.Living with Flowers3.Furoshiki – The Flexible Wrapping Cloth4.Self-expression through Digital Art2006-081.Beach Cleaning Buggy2.Secrets of the White Egret Castle3.The Yukata Fashion Boom4.WASHI, The Finest Japanese Paper5.The Popular Tokyo English Bus Tour2006-091.State-of-the-art Prosthetics2.Staying at a World Heritage Site3.Basement Food Riches4.Preparing for Natural Disasters2006-101.Japan’s 50 Years as a UN member2.Onsen, Warm-hearted Hot Springs – Beppu and Yufuin3.Ramen, Japan’s Favourite Noodles4.The Small Island that Drives on Ethanol2006-111.Global Oysters Supported by Forests2.Not Just for Play – Mobile Game Devices Evolve3.Tokyo - One Day Trip4.UDON Noodles Fostered by nature2006-121.One-day Trip to Tsukuba – Nature and Science2.Edo Kites Flying High3.Supporting the Next generation of Aircraft – Carbon Fiber Composite Materials4.Tokyo Traditional Taste20072007-011.Naoshima – The Island of Art2.Bringing a new Charm to Bonsai3.At the Forefront of Endoscopy4.Japan’s Creative Cheese2007-021. A day Trip Across Tokyo Bay2.The Charm of Modern Paper Craft3.Cleaning Water with Carbon Fibre4.Revitalizing a Town with Ume2007-031. A new Focus for Art in Tokyo2.Recycling with IC Cards3.The Rebirth of Japanese Calligraphy4.Izu Peninsula in Spring2007-101.Try New products for free at Sample lab2.Revealing the hidden side of industry3.Eating on the train – Ekiben boxed meals4. A designer’s ideas transform local industries2007-111. A New Style of Lifelong learning in Shibuya2.The lake that inspired tale of Genji3.Why is Japanese fruit so Delicious?4.Clear as glass, but so much stronger2007-121.Yokohama –Japan’s First Modern City2.Traditional Art Meets Pop Culture3. A Challenge of Skills4.Never Too Old to Play20082008-11.Toyako – Scenic Site of G8 summit2.“Eco” – The New Brand Image3.New Year’s Friendly Demons4.The Miniature World of Omake2008-21.Winter in Japan’s Snow Country2.Tree Surgeons at Work3.Robot, a Remarkable Companion4.World’s Biggest Comic Convention1.Tokyo Girls Collection2.Japan Tourism Goes Green3.High-Tech Hairpieces4.Railway Country2008/2009No. 1. May 081.Mixing Up a Super Fuel2.Hokkaido Horse Trekking3.Fresh Ideas for Mobile Living4.New Future for Smallest RoomNo. 2. June 081.Untouched for 8000 years. Shirakami-Sanchi Forest2.High-Rise Work Fashion3.Fine Mist Cools City Heat4.Minamata. An Eco Aware CommunityNo. 3. Aug 081.Tokyo’s Subtropical islands2.Toys for All Ages3.Japanese Cuisine – Sincerity is the Key4.Building to Blend with NatureNo. 4. Sept 081.Manga Goes Worldwide2.World’s Biggest Firework3.Japanese Denim – High fashion and Eco friendly4.Deco art –It’s EverywhereNo. 5. Oct 081.Walking the Old Tokaido Highwaypact Houses for Spacious Living3.Learning About Life From Food4.Fun Ways to get FitNo. 6. Nov 081.The Healing Powers of the Jellyfish2.Ready to Eat. Instantly, Anywhere3.Bamboo’s Deep Roots in Japanese Life4.Traditional Crafts, Modern Design. That’s Kanazawa No. 7. Jan 091.Night festival in Chichibu2.Monkiri Asobi – The Art of Paper cutting3.Miyadaiku – Guardians of a Tradition of Building in Wood4.Sushi From Tokyo Bay Again1.Tiny satellite Carries a Big Dream2. A stroll through Old Kawagoe3.Carry Your Own Chopsticks4.Tsukemono – the Pleasure of Japanese Pickles No. 9. March 091.Donabe – Most versatile of Cooking pots2.Bonsai –nature’s Beauty in Miniature3.Iwami Kagura – Ancient Ritual to Modern folk Art4.Green revolution Transforms City Rooftops 2009/2010No. 1. May 091.The Cherry Blossoms of Yoshino2.Titanium Tikes for Temple Roofs3.How Old Firms Survive4.Old Crafts in Modern ArtNo. 2. June 091.Hiking the Shinetsu Trail2.When Mending Becomes an Art3. A Better Way To Peaceful Sleep4.New technology for Disabled SportsNo. 3. August 091.Ajisai – Hydrangeas in Hakone2.Lettuce from a factory3.Mizuhiki – the Art of Tying Paper Cords4.New Life for Old FacilitiesNo. 4. Sept 091.Dancing the Summer Nights Away2.Mottainai – Even Tiny Scraps Can be reused3.Cruising the Shimato River4.Umbrellas to Slip in a PocketNo. 5. October 091.Funadansu Sea Chests2.Sweet Accessories3.Yamaga Lantern Festival4.Wagakki – Ancient Japanese Musical Instruments No. 6. Dec 091.Unfolding the story of the kyo-sensu fan2.Highly polished skills3.Matsuri-zushi – festival sushi4.Iriomote’s Shichi festival1.The Miniature Appeal of Netsuke2.Nature’s beauty at Lake Akan3.Keeping Frozen Cells Alive – CAS4.Wazuma – Japanese Traditional Magic No. 8. Feb 101.Nambu-tekki Cast Ironware2.Winter Train to Tsugaru3.Jomon Art – Ancient Yet Modern4.Kendo – a Sport For Mind And Body No. 9. March 101.Mount Fuji in Winter2.Yusan-Bako Picnic Boxes3.New Ways to Use cardboard4.Kariwano’s Giant Tug-of-war 2010/20112010/2011 No. 11.Kukunodate – Sakura and Samurai2.Designed for Universal Use3. A Tradition of Fine Blades4.Edo period Puppet Theater2010/2011 No. 21.Wasabi2.Rebun – island of Flowers3.Japan’s Advanced Vending machines4.Tenugui – the Handy Cloth2010/2011 No. 31.Cyber Robot Suits2.Kumiko Latticwork3.The Essential Bean4.Pillars of Flame2010/2011 No. 41.The Dinosaurs of Katsuyama2.Tokyo’s new Green Hearth3.Ishikari Stone Lanterns2010/2011 No. 51.Onigiri – rice to go2.When lacquer meets deerskin3.Electric vehicles hit the street4.Owara Kaze no Bon Festival2010/2011 No. 6kes of Many Colors2.Safe Water from Every Tap3.Tsumami Kanzashi Hair Ornaments4.Karatsu Kunchi Festival2010/2011 No. 71.Wajima-nuri lacquer ware2.Lighting up the night in Arashiyama3.Fine marquetry from Hakone4. A cascade of chrysanthemums2010/2011 No. 81.Japan’s High-Speed rail System2.Matsue – the water city3.Speedy and safe –Japan’s egg technology4.Artful gift wrapping5.Azuki – the versatile little red bean2010/2011 No. 91.Izu – paradise of flowers2.Snow and Hemp in Ojiya3.Leave it All to the Movers4.Hina – Ningyo Dolls2011/20122011/2012 No. 11.The Colorful World of Bentobako2.Miniaturizing Medicine3.Experimenting with Fashion4.Miyajima – Island Shrine to Nature2011/2012 No. 21.Takachiho – land of Legends2.Waling on Wood3.Flea Markets for Fun4.Technology inspired By Tradition2011/2012 No. 31.Hiraizumi – Once Again a Beacon of Hope2.Fukushima World’s Leading Aluminum technology3.The Magnificent Wooden Chests of Sendai4.Keeping the Auto Industry on the Road2011/2012 No. 41. A festival of festivals – Tohoku Rokkon Sai2.800 years of tradition – Aizu Tajima Gion Festival3.Showcasing Tohoku dance – Kitakami Michinoku Geino Festival4.Festival on Matsushima Bay – Shiogama Minato Festival2011/2012 No. 51.Solar Power in Japan2.Ise-Shima – Ancient Shrines and Pearls3.Stationery Moves with the Times4.The Ukiyo-e Tradition2011/2012 No. 61.Niihama Taiko Festival2.Japanese Rice Snacks3.Shapuing World with Plastics4.The Puppet Art of Bunraku2011/2012 No. 71.Gokayama’s Thatched Farmhouses2.Another Taste of Japan3.Stronger and Lighter than Steel4.Maki-e – Gold on Lacquer2011/2012 No. 81.Meiji Jingu – A Tokyo Oasis2.Ameyaiku Candy Sculpture3.Saving Energy with Sensors4.Kyo Yuzen Kimono Dyeing2011/2012 No. 91.The Camellias of Hagi2.Arita Porcelain3.Leading-Edge desalination technology4.Wadaiko Drumming2012/20132012/2013 No. 11.Tohoku Reconstruction – Eco Friendly and Disaster Resistant2.Tohoku’s Eco-friendly Reconstruction3.Geothermal Energy in Japan4.Pioneering Disaster Technology5.New National Park for Sanriku2012/2013 No. 2A glimpse of Japan’s Cultural Heritage1.Kamakura – Home of Samurai Culture2.Jomon Archaeological Sites in Tohoku3.Okinawa World Heritage4.Mt. Fuji, Japan’s sacred Mountain。

2009复旦大学年研究生录取统计表

2009复旦大学年研究生录取统计表

报名人数录取人数报录比报名人数录取人数马克思主义哲学2510 2.54210中国哲学4267196外国哲学7312 6.084512逻辑学1234伦理学52 2.531宗教学1234184科学技术哲学105292西方马克思主义221103经济哲学1比较哲学4企业伦理学313政治经济学8913 6.85418经济思想史102561经济史515西方经济学10116 6.31398世界经济23544 5.34398人口、资源与环境经济学137 1.86218发展经济学1728.5欧盟经济92 4.5应用经济学8818 4.89国民经济学68611.33144区域经济学4968.17财政学10719 5.63金融学14831917.761288产业经济学506国际贸易学1061010.6153劳动经济学1936.33统计学31数量经济学133 4.3392金融管理与金融工程产业组织学92 4.5142法学理论266 4.33法律史197 2.71宪法与行政法学269 2.89刑法学2739民商法学12619 6.631189诉讼法学339 3.67经济法学1944.75复旦大学2009年研究生分专业报考、录取人数统计表专业名称硕士生博士生环境与资源保护法学145 2.8国际法学131177.71526法律硕士648156 4.15政治学理论78136478中外政治制度226科学社会主义与国际共产主义运动83 2.67中共党史94 2.25242国际政治418 5.136010国际关系13320 6.65286外交学7024 2.92175社会学8623 3.74418人口学632人类学73 2.33民俗学313马克思主义基本理论94 2.25184马克思主义中国化研究73 2.3352思想政治教育2810 2.8367课程与教学论154 3.75高等教育学245 4.8教育经济与管理(教育学)3248文艺学309 3.33255语言学及应用语言学335 6.6143汉语言文字学3615 2.4208中国古典文献学197 2.71297中国古代文学12418 6.894511中国现当代文学5711 5.18235比较文学与世界文学458 5.63255中国文学批评史135 2.6134艺术人类学与民间文学422183现代汉语语言学441122影视文学71对外汉语教学206 3.33中国文学古今演变31342文学写作818汉语国际教育硕士163 5.33英语语言文学12919 6.79497俄语语言文学72 3.5法语语言文学103 3.33德语语言文学221日语语言文学1535亚非语言文学2137外国语言学及应用语言学8238新闻学396468.614913传播学3021225.17898广告学124620.67广播电视学50316.67325编辑出版17117公共关系45145媒介管理学39219.5183国际传播3719 1.95电影学92 4.5广播电视艺术学1535史学理论及史学史147222考古学及博物馆学257 3.5771历史地理学7618 4.223513历史文献学11162专门史214 5.25166中国古代史5969.83114中国近现代史388 4.75228世界史478 5.88155文物学254 6.25115人口史11当代中国史41基础数学5519 2.892512计算数学1811 1.6498概率论与数理统计259 2.78123应用数学6317 3.7164运筹学与控制论4111 3.7384理论物理3510 3.51917粒子物理与原子核物理44111原子与分子物理109 1.1132凝聚态物理5728 2.042418光学3519 1.841512无线电物理111无机化学1510 1.52414分析化学3011 2.73169有机化学3910 3.93916物理化学5520 2.753417高分子化学与物理7342 1.744131化学生物学239 2.561914应用化学45植物学74 1.7552动物学623生理学96 1.563微生物学5512 4.5875神经生物学8535 2.432722遗传学9747 2.064832发育生物学128 1.5106细胞生物学818生物化学与分子生物学12744 2.894531生物物理学118 1.3822生态学2112 1.75118生物信息学63253人类生物学41422一般力学与力学基础54 1.25固体力学53 1.67流体力学422119工程力学103 3.33光学工程1243材料物理与化学2418 1.332711材料学215 4.2物理电子学2614 1.861010电路与系统7726 2.96106微电子学与固体电子学354106 3.345427电磁场与微波技术42254信息功能材料与器件53 1.67光电系统与控制技术97 1.29通信与信息技术6019 3.16计算机系统结构37312.33174计算机软件与理论30887 3.547118计算机应用技术15840 3.954711飞行器设计134 3.25环境科学2014 1.433514环境工程159 1.67生物医学工程62322医学电子学116 1.8374生物力学85人体解剖与组织胚胎学155375免疫学175 3.453病原生物学239 2.562112病理学与病理生理学5912 4.92148法医学194 4.7553放射医学53 1.6753分子医学32 1.533医学信息学51511疾病蛋白组学266 4.332016内科学32150 6.4212352儿科学9323 4.043719老年医学1226神经病学5769.5309精神病与精神卫生学762皮肤病与性病学315 6.2164影像医学与核医学8415 5.63615临床检验诊断学236 3.8371护理学1331112.09外科学29144 6.6116953妇产科学1681511.23913眼科学6112 5.083011耳鼻咽喉科学4310 4.34015肿瘤学12119 6.3710921康复医学与理疗学1411442运动医学71731麻醉学4868134急诊医学1025全科医学717口腔临床医学52 2.5流行病学与卫生统计学7722 3.54012劳动卫生与环境卫生学218 2.63114营养与食品卫生学3849.583儿少卫生与妇幼保健学154 3.7533卫生毒理学52 2.542社区卫生与健康促进73 2.33中西医结合基础83 2.6774中西医结合临床387 5.43207药物化学4914 3.553药剂学6320 3.153814生药学95 1.822药物分析学156 2.5药理学4115 2.731912生物医学工程(医学)616社会医学与卫生事业管理(医学)7617 4.47管理科学与工程8126 3.125311工商管理19641 4.78会计学226企业管理20630 6.8713515旅游管理6019 3.16101东方管理学151工商管理硕士1790405 4.42行政管理153169.56295社会医学与卫生事业管理4010社会保障1553环境管理961.5社会管理与社会政策337公共政策22图书馆学83 2.67法律硕士(法学)6564 1.02光学工程(专业学位)212材料工程65 1.2电子与通信工程(专业学位)771集成电路工程(专业学位)4341 1.05计算机技术4443 1.02化学工程硕士19191环境工程(专业学位)991生物工程30301物流工程30301临床医学硕士1251251口腔医学硕士331会计硕士3027 1.11汉语国际教育硕士3935 1.11英汉笔译3732 1.16合计1357432764.1436341139大学2008年招收学历教育研究生分专业报考、录取人数统计表报名人数录取人数报录比报名人数录取人数马克思主义哲学359 3.89369中国哲学2874196外国哲学6912 5.754515逻辑学842伦理学83 2.6741宗教学1243113科学技术哲学1352.6232西方马克思主义82经济哲学71比较哲学企业伦理学政治经济学5911 5.36377经济思想史32 1.551经济史616西方经济学117157.8356世界经济270475.74337专业名称硕士生博士生人口、资源与环境经济学2711 2.45186发展经济学92 4.5欧盟经济52 2.5应用经济学6617 3.88国民经济学4467.33184区域经济学9827 3.63财政学74107.4金融学122710112.159312产业经济学499国际贸易学1271012.7183劳动经济学2538.33统计学数量经济学58319.33112金融管理与金融工程24212211产业组织学112 5.592投资学42221法学理论266 4.33法律史218 2.63宪法与行政法学228 2.75刑法学224 5.5民商法学124148.8610817诉讼法学548 6.75经济法学31310.33环境与资源保护法学174 4.25国际法学169189.398010法律硕士858150 5.72政治学理论103128.585410中外政治制度314科学社会主义与国际共产主义运动74 1.75中共党史74 1.75204国际政治5787.13489国际关系164217.81477外交学5723 2.48194社会学9721 4.62408人口学74 1.75人类学83 2.67民俗学212马克思主义基本理论340.75203马克思主义中国化研究32 1.5222思想政治教育331131356课程与教学论133 4.33高等教育学1243教育经济与管理(教育学)264 6.5文艺学3510 3.5327语言学及应用语言学457 6.43154汉语言文字学4112 3.423513中国古典文献学185 3.6125中国古代文学135177.944511中国现当代文学6711 6.093710比较文学与世界文学4312 3.58315中国文学批评史114 2.75214艺术人类学与民间文学623172现代汉语语言学41471影视文学71对外汉语教学275 5.4中国文学古今演变414文学写作22211英语语言文学13720 6.85597俄语语言文学72 3.5法语语言文学103 3.33德语语言文学616日语语言文学133 4.33亚非语言文学2739外国语言学及应用语言学616319新闻学411459.135713传播学2741321.08694广告学140528广播电视学4659.2395编辑出版35217.5公共关系33133媒介管理学64512.8国际传播32310.67电影学92 4.5广播电视艺术学22211史学理论及史学史264考古学及博物馆学207 2.8664历史地理学5617 3.292510历史文献学3专门史1472115中国古代史357573中国近现代史338 4.132110世界史5717 3.35245文物学163 5.3383人口史21当代中国史基础数学6523 2.832515计算数学137 1.8663概率论与数理统计239 2.56123应用数学5717 3.3583运筹学与控制论4013 3.08116理论物理4822 2.181712粒子物理与原子核物理230.6721原子与分子物理10120.8376等离子体物理111凝聚态物理462323530光学4219 2.21128无线电物理32 1.5无机化学2714 1.932319分析化学2793165有机化学4610 4.64212物理化学6327 2.333622高分子化学与物理703524425化学生物学2217 1.29138应用化学52 2.541植物学61643动物学85 1.6生理学74 1.7585微生物学4912 4.08179神经生物学6327 2.332720遗传学884426137发育生物学72 3.5106细胞生物学1025生物化学与分子生物学11225 4.485932生物物理学87 1.1422生态学2416 1.5105生物信息学73 2.3373人类生物学32 1.5一般力学与力学基础43 1.33固体力学43 1.33流体力学450.81110工程力学115 2.2光学工程65 1.2材料物理与化学2517 1.472510材料学1863物理电子学1714 1.211310电路与系统7521 3.57107微电子学与固体电子学329107 3.074728电磁场与微波技术51522信息功能材料与器件64 1.5光电系统与控制技术95 1.8通信与信息技术5119 2.68计算机系统结构4410 4.4131计算机软件与理论33987 3.98921计算机应用技术14437 3.894116飞行器设计104 2.5环境科学3222 1.452910环境工程1472生物医学工程32 1.532医学电子学145 2.874生物力学63人体解剖与组织胚胎学107 1.4364免疫学255573病原生物学2110 2.12111病理学与病理生理学8213 6.31149法医学205432放射医学340.7544分子医学62364医学信息学522疾病蛋白组学222211412内科学417508.3418154儿科学10322 4.684118老年医学112 5.5288神经病学6061063精神病与精神卫生学52 2.5153皮肤病与性病学381383815影像医学与核医学9317 5.4741临床检验诊断学275 5.4护理学80117.27外科学403439.3722549妇产科学1661511.075412眼科学6712 5.58329耳鼻咽喉科学4312 3.584714肿瘤学148217.059722康复医学与理疗学104 2.573运动医学1311341麻醉学3957.8154急诊医学92 4.5全科医学循证医学口腔临床医学632流行病学与卫生统计学5318 2.943112劳动卫生与环境卫生学2510 2.5125营养与食品卫生学356 5.8331儿少卫生与妇幼保健学95 1.822卫生毒理学53 1.6752社区卫生与健康促进1025中西医结合基础52 2.563中西医结合临床5110 5.1146药物化学2211274药剂学5014 3.574110生药学73 2.3353药物分析学227 3.14药理学3211 2.91195生物医学工程(医学)92 4.5社会医学与卫生事业管理(医学)8618 4.78管理科学与工程9430 3.13419管理科学信息管理与信息系统物流与运营管理112工商管理24039 6.15会计学302企业管理16730 5.5714012旅游管理6119 3.21171技术经济及管理东方管理学223市场营销财务管理金融工程管理工商管理硕士2016375 5.38行政管理140159.33205社会医学与卫生事业管理287教育经济与管理社会保障165 3.2环境管理166 2.67社会管理与社会政策287公共政策6图书馆学1535注:本表统计数字不含港澳台和外籍研究生。

2009-plant root growth, architecture and function - Hodge

2009-plant root growth, architecture and function - Hodge

REVIEW ARTICLEPlant root growth,architecture and function Angela Hodge&Graziella Berta&Claude Doussan&Francisco Merchan&Martin CrespiReceived:3December2008/Accepted:6February2009/Published online:5March2009 #Springer Science+Business Media B.V.2009Abstract Without roots there would be no rhizo-sphere and no rhizodeposition to fuel microbial activity.Although micro-organisms may view roots merely as a source of carbon supply this belies the fascinating complexity and diversity of root systems that occurs despite their common function.Here,we examine the physiological and genetic determinants of root growth and the complex,yet varied and flexible,root architecture that results.The main functions of root systems are also explored including how roots cope with nutrient acquisition from the heterogeneous soil environment and their ability to form mutualistic associations with key soil micro-organisms(such as nitrogen fixing bacteria and mycorrhizal fungi)to aid them in their quest for nutrients.Finally,some key biotic and abiotic constraints on root development and function in the soil environment are examined and some of the adaptations roots have evolved to counter such stresses discussed.Keywords Root systems.Auxin.Root architecture. Soil heterogeneity.Abiotic and biotic stresses.Soil micro-organisms(including nitrogen-fixing bacteria and mycorrhizal fungi)Physiological and genetic determinants of root growth and achitectureA major difference between plant and animal devel-opment is that positional information rather than cell lineage determines cell fate in plants(Singh and Bhalla2006).Post-embryonically,plant development is essentially driven by stem cells localized in apical regions of shoots and roots,and referred to as apical meristems.This particular characteristic allows plants,Plant Soil(2009)321:153–187DOI10.1007/s11104-009-9929-9Responsible Editor:Yves Dessaux.A.Hodge(*)Department of Biology,Area14,P.O.Box373,University of York,York YO105YW,UKe-mail:ah29@G.BertaDipartimento di Scienze dell’Ambiente e della Vita, Universitàdel Piemonte Orientale,via Bellini25/G,Alessandria15100,ItalyC.DoussanUMR1114EMMAH INRA/UAPV Domaine Saint-Paul, Site Agroparc,Avignon Cedex984914,FranceF.MerchanDepartamento de Microbiología y Parasitología, Facultad de Farmacia,Universidad de Sevilla,c/Profesor García González,Sevilla41012,EspañaM.CrespiInstitut des Sciences du Végétal(ISV),CNRS,1Avenue de la Terrasse,Gif-sur-Yvette91198,Francewhich are sessile organisms,to adapt their morphol-ogy and organ development to the encountered environmental conditions.The spatial configuration of the root system(number and length of lateral organs),so-called root architecture,vary greatly depending on the plant species,soil composition, and particularly on water and mineral nutrients availability(Malamy2005).Plants can optimize their root architecture by initiating lateral root primordia and influencing growth of primary or lateral roots. The root system results from the coordinated control of both genetic endogenous programs(regulating growth and organogenesis)and the action of abiotic and biotic environmental stimuli(Malamy2005).The interactions between these extrinsic and intrinsic signals however complicate the dissection of specific transduction pathways.Such complex traits likely depending on multiple genes may be analyzed through quantitative genetics via the identification of quantitative trait loci(QTL)linked to root architecture (e.g.Mouchel et al.2004,Fitz Gerald et al.2006). Understanding the molecular mechanisms governing such developmental plasticity is therefore likely to be crucial for crop improvement in sustainable agricul-ture.In this section,we focus on hormonal and genetic determinants of root architecture.The embryonic root apical meristem(RAM) specification occurs very early in embryo develop-ment(Benfey and Scheres2000).The RAM con-stitutes the stem cell niche that eventually produces all below-ground organs,including lateral roots (Sabatini et al.2003).The cellular organization of Arabidopsis RAMs is very regular,with the initials of the various tissue types surrounding a quiescent center(QC).An asymmetric division of the hypoph-ysis generates a large basal daughter and a small apical daughter,called the lens-shaped cell,which is the progenitor of the QC.During root initiation,the QC appears to act like an organizing center that can direct surrounding cells to produce a set of initials (Aida et al.2004,Jenik et al.2007).Different mechanisms specify the initials above the QC that give rise to the ground tissue and the stele(proximal initials)as well as the initials below the QC that produce the root cap(distal initials).This root cap and the underlying root apical meristem form the root zone called the distal root apex,where cells divide actively.At certain distance from the RAM,the anticlinal and asymmetric divisions of a group of pericycle cells are the initial event of the formation of a lateral root.Several consequent divisions result in the formation of a dome-shape primordium that grows through outer cell layers and a meristem is estab-lished.Upon activation of this meristem,the lateral root emerges from the parental root and continue to grow in the soil(Malamy1995and references therein).Phytohormonal regulation of the root system:Auxin as a major playerThe different stages of root development are con-trolled and regulated by various phytohormones with auxin playing a major role(reviewed by Leyser 2006).In roots,auxin is involved in lateral root formation,maintenance of apical dominance and adventitious root formation.All these developmental events require correct auxin transport and signaling.During embryonic RAM formation many auxin-related mutants,such as those involved in its biosynthesis yuc1yuc4yuc10yuc11quadruple mutant (Cheng et al.2007),or mutants affected in transport or signaling(monopteros,bodenlos,auxin transport inhibitor resistant1(tir1)and related tir1/afb1–3 quadruple mutant(Dharmasiri et al.2005,Jenik et al. 2007)are unable to form the embryonic RAM.The auxin flux coming from the apical region of the embryo into the hypophysis leads to TIR1(and related redundant AFBs)pathway activation and induction of auxin-response genes such as PIN genes (coding for auxin efflux carriers),whose products will increase auxin transport and accumulation to further differentiate the hypothesis(Benkova et al.2003).Auxin also plays a major role in lateral root initiation and teral root development can be divided in different steps:primordium initia-tion and development,emergence,and meristem activation.Auxin local accumulation in Arabidopsis root pericycle cells adjacent to xylem vessels,triggers lateral root initiation by re-specifying these cells into lateral root founder cells(Dubrovsky et al.2008). Furthermore,it is also involved in the growth and organization of lateral root primordia and emergence from the parent root(Laskowski et al.2006).Indeed, mutants or transgenic lines with elevated auxin biosynthesis and endogenous levels of IAA display significant increased root branching(Seo et al.1998, King et al.1995).In addition,overexpression of theDFL1/GH3-6or the IAMT1genes,which encode enzymes modulating free IAA levels,results in a reduction in lateral root formation(Staswick et al. 2005;Qin et al.2005).Hence,normal auxin biosyn-thesis and homeostasis are necessary for lateral root initiation in Arabidopsis.However,overall auxin content is not always positively correlated with lateral root number(Ivanchenko et al.2006).Auxin transport into the regions where lateral root initiate also seems crucial for the regulation of root branching(Casimiro et al.2001).Functional analyses of mutants impaired in auxin transport,such as the aux1,axr4,and pin multiple mutants(Benkova et al. 2003;Marchant et al.2002),have demonstrated the crucial role of auxin transport in lateral root forma-tion.In the root,auxin is transported in both an acropetal(base-to-apex;Ljung et al.2005)and basipetal(apex-to-base)direction within inner and outer tissues of the root apex(Swarup and Bennett 2003).Studies using auxin transport inhibitors have shown that the polarity of auxin movement provides an important developmental signal during lateral root initiation(Casimiro et al.2001)and root gravitropism (Parry et al.2001).The strong bias in the direction of auxin transport within a tissue results from the asymmetrical cellular localization of an influx system involving the AUX1protein(Swarup and Bennett 2003)and an efflux apparatus with PIN-type efflux facilitators(reviewed by Paponov et al.2005).The auxin efflux system regulated by PIN protein family members is also crucial for lateral root development(Benkova et al.2003).Although not all pin mutations affect lateral root formation,multiple pin mutants have dramatic defects in root patterning, including lateral root development(Benkova et al. 2003;Blilou et al.2005).Cellular localisation of PIN proteins is also important as a gnom mutant allele is defective in PIN-dependent developmental processes, including lateral root primordium development,pre-sumably due to disorganized PIN1localization (Geldner et al.2004).When auxin reaches the target tissue it induces a transcriptional response.Several auxin-responsive genes and gene families involved in auxin signalling have been identified,of which the Aux/IAAs and ARFs are the best studied.Auxin induces expression of Aux/IAA proteins,which in many cases reduces the sensitivity of cells toward auxin.This induction is mediated by ARF proteins that bind to the auxin-responsive elements(AuxREs)in the promoters of auxin-responsive genes,and activate or repress transcription through interaction with specific Aux/ IAA proteins(Liscum and Reed2002).These loops represent extensive feedback as well as feed-forward regulation(for further information on Aux/IAA pro-teins,their degradation and their interaction with ARF transcription factors see the review by Benjamins and Scheres2008).Alterations in these control systems affect several auxin-dependent plant pathways includ-ing root development.For example,normal differen-tiation of a root cap from the distal initials depends on a pair of redundantly acting auxin response factors, ARF10and ARF16(Wang et al.2005).In double mutants,the root cap initials overproliferate,thereby generating a mass of undifferentiated progeny. Another example are the gain-of-function solitary root(slr)mutants which carries a stabilizing mutation in the IAA14negative regulator of auxin signaling and cannot form lateral root primordia.Detailed analyses of the slr mutant demonstrated that the slr mutation blocks early cell divisions during initiation (Fukaki et al.2002)Other hormones involved in the control of root developmentAlthough auxin plays a fundamental role in root growth and development,several other phytorho-mones modulate auxin action and consequently affect root development and architecture.In contrast to auxin,exogenous cytokinin application suppresses lateral root formation,and transgenic Arabidopsis plants with decreased cytokinin levels display in-creased root branching and enhanced primary root growth(Werner et al.2003).The notion that cytokinin negatively regulates root growth has also been verified by studies of cytokinin perception and signalling.For instance,double mutants for the redundant Arabidopsis cytokinin receptors AHK2 and AHK3display a faster growing primary root and greatly increased root branching(Riefler et al. 2006).To identify the stage of lateral root develop-ment sensitive to cytokinin,Laplaze et al.(2007) performed transactivation experiments that revealed that xylem-pole pericycle cells,but not lateral root primordial,are sensitive to cytokinin.Cytokinins perturb the expression of PIN genes in lateral root founder cells and prevent the formation of the auxingradient required to pattern the primordia.Recently cytokinin have also been shown to induce differenti-ation of cells situated between the root meristem and the elongation zone(Dello Ioio et al.2007),providing new insights on the molecular mechanisms involved in root meristem maintenance.The actively growing primary root of dicotyledon plants may exhibit apical dominance forcing their lateral roots to develop further away from the root tip (Lloret and Casero2002).Root apical dominance may be triggered by the root-cap-synthesized cytoki-nin and the balance between auxin and cytokinin regulates root gravitropism,a major determinant of root architecture(Aloni et al.2006).The control of lateral root initiation depends on the primary root vascular system which conveys spatial information as well as photosynthetic carbon to the newly formed primordial(Parizot et al.2008).Three types of vascular differentiation can be distinguished:(1) primary differentiation,which occurs in cells origi-nating from the primary vascular meristem,the procambium;(2)secondary differentiation,where the derivates originate from the vascular cambium; and(3)regenerative differentiation,in which the vascular elements re-differentiate from parenchyma cells at lateral root junctions.The vascular tissues are induced by polar auxin movement along the plant body,from the hydathodes of young leaves downward to the root tips.Cytokinin by itself does not induce vascular tissues,but in the presence of auxin,it promotes vascular differentiation and regeneration,a critical process for the establishment of a root system (Aloni et al.2006).Another hormone involved in lateral root for-mation is ethylene.Treatments that induce C2H4 production(i.e.flooding)promote adventitious and lateral root formation(Mergemann and Sauter2000). Ethylene stimulates auxin biosynthesis and basipetal auxin transport toward the elongation zone,where it activates a local auxin response leading to inhibition of cell elongation.Stepanova et al.(2005)showed that ethylene-triggered inhibition of root growth is mediated by the action of the weak ethylene insensitive2/anthranilate synthaseα1(WEI2/ASA1) and wei7/anthranilate synthaseß1(ASB1)genes that encode rate-limiting tryptophan biosynthesis enzymes In addition,ethylene modulates the tran-scription of several components of the auxin trans-port machinery and induces a local activation of the auxin signaling pathway to regulate root growth (Ruzicka et al.2007).Abscisic acid(ABA),a universal stress hor-mone,plays a significant role in stimulating elongation of the main root and emergence of lateral roots in response to drought(De Smet et al. 2006b).As with other hormones,the complexity of the plant responses induced by this hormone makes it difficult to distinguish primary from secondary effects(e.g.stomata closure affects water movement in the plant).In general,ABA has an antagonistic effect on lateral root primordial formation and emergence to auxin,which initiates lateral roots (Malamy2005).This role of ABA in the control of the activity of the lateral root meristems has a significant impact on the final size and architecture of the root system(De Smet et al.2006b).Indeed, responsiveness to certain abiotic factors is lost in certain ABA signaling mutants(Signora et al.2001; He et al.2005;Fujii et al.2007)such as the systemic inhibition of lateral root formation in high N conditions in the ABA-insensitive mutant abi4 (Signora et al.2001).Genetic and genomic approaches to analyze root growth and architectureForward and reverse genetic approaches have been undertaken to elucidate the genetic control of lateral root formation.As expected,most of the lateral root mutants(approximately40%)identified in A.thaliana are affected in a specific component of the auxin pathways.Their phenotypes can usually be rescued or mimicked through auxin application.Several mutants having lateral root phenotypes(De Smet et al.2006a) have been linked to auxin signaling(axr mutants,tir1, msg2-1,shy2),auxin transport(aux1and pin mutants),and auxin homeostasis(alf1,ydk1,dfl1). Analysis of these mutants has led to the identification of several genes that regulate lateral root formation and/or coordinate this process in response to environ-mental cues(reviewed in Osmont et al.2007).Few Arabidopsis mutants such as the previously men-tioned slr-1/AUXIAA14(Fukaki et al.2002)and alf4-1(Celenza et al.1995),are not capable of initiating any lateral roots.The encoded ALF4protein is conserved among plants and has no similarities to proteins from other kingdoms.The Arabidopsis gene is involved in lateral root initiation but not in primaryroot formation as the alf4-1mutant forms a primary root.DiDonato et al.(2004)have shown that ALF4 functions are required to maintain the pericycle in a mitosis-competent state needed for lateral root forma-tion.Other mutants are affected in vascular tissues and consequently cannot produce lateral roots(e.g. Ohashi-Ito and Bergmann2007).In contrast,ectopic expression of PLT genes, coding for AP2-type transcription factors,trigger de novo formation of roots from shoot structures.PLT1 was isolated by reverse genetics technologies based on the identification of a QC–and stem-cell–specific enhancer trap line.Indeed,PLT genes are pivotal determinants of QC and stem cell identity(Aida et al.2004).Although plt1mutants only display mild root growth defects,the establishment and mainte-nance of the QC and stem cells in the root meristem, are severely impaired in the plt1plt2double mutant. NAC1is another transcription factor implicated in lateral root development since its overexpression enhances lateral root initiation(Xie et al.2002).A genetic framework for the control of cell division and differentiation in root meristematic cells have been recently proposed(Dello Ioio et al.2008).A second strategy used to identify non-essential modulators of root development,is exploiting natural genetic variation by analysis of quantitative trait loci(QTL).QTL mapping has the advantage of identifying genomic regions containing genes with subtle effects masked in a particular genetic background.For instance,in A.thaliana and maize QTLs linked to root architecture have been identified (Mouchel et al.2004;Tuberosa et al.2002;Loudet et al.2005).Exploring the polymorphisms underlying natural variation can identify the DNA sequence changes that lead to a modified root system architec-ture in nature.In recent years,several new genomics resources and tools(e.g.genome sequences,tens of thousands of molecular markers,microarrays,and knock-out collections)have become available to assist in QTL mapping and cloning,even if these genes have subtle effects on phenotype(see Paran and Zamir2003).For example,quantitative morpholog-ical and physiological variation analysis of a cross between isogenized Arabidopsis accessions revealed that the BREVIS RADIX(BRX)transcription factor controls the extent of cell proliferation and elonga-tion in the growth zone of the root tip(Mouchel et al. 2004).Genomics have provided new tools to explore downstream and upstream genes of broad regulatory signals such as hormone-responsive factors.Tran-scriptional changes during root branching in Arabi-dopsis have been monitored to identify key regulators of root architecture(Himanen et al.2004),including several core cell cycle genes.In addition,Vanneste et al.(2005)compared the early transcriptome of lateral root formation using synchronised induction of these organs in wild type and slr mutants.This revealed negative and positive feedback mechanisms that regulate auxin homeostasis and signalling in the pericyle initial cells.The advent of genomic resources have allowed the combination of global profiling with novel biological approaches such as enhancer trap lines driving green fluorescent protein(GFP)expression in specific root cell types(Brady et al.2007).These authors used transgenic lines that expressed GFP in specific root tissues to isolate corresponding fluores-cent protoplast populations derived from them and characterise their expression patterns using micro-arrays.Thus were able to determine which genes were expressed and at what level in a particular root cell type.Recently,these transgenic plants were used to characterise the transcriptional response to high salinity of different cell layers and developmental stages of the Arabidopsis root(Dinneny et al.2008). Transcriptional responses are highly constrained by developmental parameters further revealing interac-tions between developmental fates and environmental stresses.Genomic approaches mainly rely on the expression patterns of protein-coding genes.However,the dis-covery of small RNAs(microRNAs,miRNA;and small interfering RNAs,siRNA)in the last decade altered the paradigm that protein coding genes are the only significant components of gene regulatory net-works(Chapman and Carrington2007).Small RNAs are involved in a variety of phenomena that are essential for genome stability,establishment or main-tenance of organ identity,adaptive responses to biotic and abiotic stresses.In plants,MIRNAs are genes generally encoded in intergenic regions whose matu-ration requires a particular type III RNase named DICER-LIKE1(DCL1)(Chapman and Carrington 2007).The small mature miRNA is then incorporated in a protein complex,the so-called RISC(RNA-Induced Silencing Complex)that can recognizemRNAs partially complementary to the miRNA nucleotide sequence.This recognition event mediated by the RISC-loaded miRNA leads to cleavage or translational inhibition of the target mRNA.Mutants affected in miRNA metabolism(biosynthesis,action and transport as dcl1,ago1,hen1,hyl1,hst1,se)show pleiotropic phenotypes confirming the role of miR-NAs in diverse developmental processes(Chapman and Carrington2007).Several MIRNAs have been involved in root development.For example,Arabidopsis mir164a and mir164b mutant plants produced more lateral roots than wild-type plants(Guo et al.2005).These phenotypes are similar to those obtained by NAC1 overexpression,a transcription factor targetted by miR164(Xie et al.2002).Overexpression of miRNA-resistant NAC1mRNA results in slight increases in lateral root numbers.In addition,the auxin-related transcription factors ARF10and ARF16 are also targets of three related microRNA(miRNA) genes,miR160a,miR160b and miR160c.These miR-NAs limit the expression domain of ARF10and ARF16 to the columella,and have a complementary pattern. The over-expression of a miRNA-resistant ARF16 mRNA under its own promoter results in pleiotropic developmental defects.MIR160overexpressing plants, in which the expression of ARF10and ARF16is repressed,and the arf10-2arf16-2double mutants display the same root tip defect,with uncontrolled cell division and blocked cell differentiation in the root distal region showing a tumor-like root apex and loss of gravity-sensing(Wang et al.2005).Apart from these examples,due to the large diversity of these novel regulatory RNAs,it is likely that many other miRNAs or other small RNAs participate in the regulation of root development and architecture.Root meristematic cells integrate signals from the environment to regulate specific developmental responses and cope with external constraints.This post-embryonic growth and development requires the activation of hormone homeostasis and signalling pathways,transcriptional regulation by specific tran-scription factors and post-transcriptional regulation of developmental regulators by non-coding RNAs. These regulatory mechanisms may be particularly relevant to adjust differentiation processes to the environmental conditions encountered during growth, notably on primary and lateral root developmental programs.Root system achitectureRoot systems and architecture definitionsSoil is a complex medium with high spatial and temporal environmental variability at a wide range of scales,including those relevant to plant roots.The root system,with its extensive but structured devel-opment,can be considered as an evolutionary response to such spatio-temporal variability in re-source supply and associated constraints upon growth (Harper et al.1991).As a consequence,the extension in space and time of the root system is governed by genetically driven developmental rules which are modulated by environmental conditions.As demon-strated by QTL mapping which recently revealed that root morphology is in most cases regulated by a suite of small-effect loci that interact with the environment (de Dorlodot et al.2007).The architecture of a root system is the result of developmental processes and is a dynamic notion. Root architecture addresses two important concepts: the shape of the root system and its structure.The shape defines the location of roots in space and the way the root system occupies the soil.Its quantifica-tion is generally achieved by measuring variables such as root depth,lateral root expansion and root length densities.In contrast,root structure describes the variety of the components constituting the root system(roots and root segments)and their relation-ship(e.g.topology:connexion between roots;root gradients).While,root differentiation has important impacts upon structure—function relations(Clarkson 1996).The rhizosphere(i.e.the volume of soil around living plant roots that is influenced by root activity; Hinsinger et al.2005),is often simply thought of as a cylindrical shape around the root.However,this oversimplification does not account for integration at the root system level or for the inherent complexity of root systems which arise from geometry,temporal dynamics and the heterogeneous aspects of roots. These complexities are incorporated into the concept of root architecture.Root geometry is complex because of the specific motion in space of each root, the relative locations between roots and the possible overlapping of their zones of influence.The temporal dynamic comes both from the growth of the different root axes and from physiological processes associatedwith root segments (i.e.tissue differentiation)result-ing in temporal and spatial variability of function along the root axes.The diversity among roots within the root system and soil heterogeneity further increase this variability.Root classification and elaboration of the root system It has long been recognized that the in situ morphol-ogy of a root system can be complex and may vary greatly,even within a species (Weaver 1926;Cannon 1949;Kutschera 1960),reflecting the interplay be-tween developmental processes and environmental constraints (Fig.1).Consequently,the complexity of root systems has led to a number of different classification systems.These classifications can be based on:branch structure (topology)(Fitter 1987;2002),root activity (Wahid 2000)or development (Cannon 1949).The latter is the more classical approach and is useful in understanding growth as well as obtaining a more global view of root architecture,for example,in relation to plant habitat.Thus,developmental classification has been widely used in modelling approaches to simulate architecture (cf section below).From a developmental stand point roots are classified according to their ontogenesis into three main categories:primary,nodal and lateral roots(Cannon 1949;Harper et al.1991;Klepper 1992),the formation of which has been shown to be genetically separable (Hochholdinger et al.2004).This classification also reflects differences between monocot –and dicotyledon species:dicots root system is derived from primary roots and lateral branching (primary root system),with roots that may exhibit radial growth.Depending on the extension of laterals relative to the primary axis,the morphology of the root system will vary between taprooted and diffuse or fasciculate (Fig.1).In monocots,root systems derive not only from branching of primary roots but also from emmited nodal roots (adventitious root system).Monocot roots do not undergo secondary radial growth.The primary root differentiates from the seed ’s radicle already present in the seed embryo.This generally gives rise to a single-axis root system,or taproot system,with dominant vertical growth (gravitropism).Adventitious (or nodal)roots differ-entiate from organs other than roots (e.g.rhizomes,stems etc)and are initiated at precise locations (near stem nodes for example)with a defined temporal pattern,in coordination with the development of the shoot.They are often abundant and give rise to a fasciculated root system.Adventitious roots are much less sensitive to gravitropism than primary roots (Klepper 1992).Lateral roots originate from the branching of a parent axis,often at near rightangles,Fig.1Diversity of root systems.On the top row,root systems are little branched,while more profusely branched on the bottom row.Dominance of a single main axis increases from left to right (from Kutschera 1960)。

上海地图2009超级详细的矢量地图

上海地图2009超级详细的矢量地图
Han gZh
gBe
i
Rd.
虹 井
Wu
Zho
ng

南 镇 Rd.(S) HuanZhen
桂林路站 Guilin Rd. Sta.



Huangpu R
航南


E 沪闵 levated 高架 路 Rd.
G
合川路站 Hechuan Rd. Sta.


ngXin 路 Ho

Xin Lon g Rd.
M
环北



路 A


We Gan gHu iSi
杨 高 Ya ngG 北 ao 一 Rd .(N 路 .1)
A


广


Ring uter 道O
Jian n gYa
Do 东 ng Rd

Rd. nDa
浦 Pu
ng

Jian

联一



gDo
A2
nYa





(N Ave




FuL
ian





线 9号 No.9 轨道 Line Rd. nLin etro
路T
ia
漕河泾开发区公园 Caohejing hi-tech Park


康 健
CaoBao Rd.
华夏宾馆 Huaxia Hotel
QinZhou
路 KangJian Rd.


桂林公园 Guilin Park

2009年全国运动会赛艇决赛女子双人双桨w2x运动学分析

2009年全国运动会赛艇决赛女子双人双桨w2x运动学分析

作者 简介
田维 ( 90 18 一).浙 江 师范 大 学体 育与 健康 科 学 学院 硕
( 稿 日期 :2 1 - 9 5) 收 0 O 0 —1
士研 究生:研 究方 向 :体 育教 育训 练学 。
作者 简介 ( 17 )参 考 文 献 接 8页 [ 薛 学勤 全 国计 算机等 级 考试一级B 程 高等教 育出版社 ,2( 1 ] 教 0 [ 林 东 计 算机 组装 与 维修 电子工 业 出版社 ,2f 2 ] 0) 4 师
l 7 70 %
317 % 6 2 3 6 8 % Байду номын сангаас 6 9 7 % 3 4 29 % 3 6 6 3 %
1 7 64 % 1 1 95 % 1 6 78 % 1 2 8 8 % 1 1 % 8 8
4 4 82 % 4 4 6 3 % 4 2 7 6 % 5 6 17 % 5 5 45 %
并对获得数据 通过E c 暾 件进行统 计学 分析 ,为研究提供理 论依 xE 据。③文献资料法 。收集和整理 目前国内外优秀 皮艇运动员资料 , 并

表4 W 2 X运 动 员 一 个 划 桨 周期 的入 水 角和 出水 角 ( ) 。
对资料进行针对性分析 。
2 结 果 分 析
21 时 间和 位 移

辽宁
江西
( ) x 2 W2 的竞速规 律 :世 界大赛上 强队在w x 2 中的速度模式 反 映 了这一项 目全程的竞速规律 ,强队采用全力划法是这一项 目的竞速 特点 。全力划表现为一起 航出发就全力争先 ,根据 自身的专项体能的 特点选择转途中的地点和时间 。
"+2 ” s ”
李 得 加 ,中 学 一级 教 师 , 洪 泽县 职 业 技 术教 育 中心 教

2009年第一届天马期货实盘大赛冠军于海飞访谈录

2009年第一届天马期货实盘大赛冠军于海飞访谈录

2009年第一届天马期货实盘大赛冠军于海飞访谈录2009年第一届(总第19期)天马期货实盘大赛冠军,第二届(总第20期)亚军,第三届(总第21期,目前正在进行中)凭借自己的帐户以及指导的2个账号独占前5席位中的3席。

访谈精彩语录:期货短期创造很高的收益是不难的,难的是持续获利能力。

最关键的还是你能够保得住你的本钱,这个本钱包括你原始的本钱,也包括你赚到的钱,投资者要把赚到的钱也看成本钱。

真正考验一个人是不是高手,要看他在比赛中是否能够保持稳定性。

从长期投资来看,靠偶然性胜出的人最终还是会以失败收场。

其实我的操作很简单,就是盈利的模式重复做就行了。

在明确的趋势面前,我会顺着趋势的方向操作,并合理地进行加码,这样就能取得比较不错的收益率。

一般的投资者不能使用比赛的加码方式,这样做最终会导致失败。

大赛中你做的好的时候,自然对你是一个表彰,对你的信心也是一个促进。

短期出现波动比较大的话,投资者一定要懂得休息,不休息更容易冲动。

如果投资者仔细去研究会发现受国外盘子影响比较大的商品它波动较大,不容易做趋势。

人一定要控制好自己的欲望,如果控制不好可能前功尽弃,兵败如山倒就是这个道理。

我非常崇拜一个美国的投资家利弗莫尔,他经常说的一句话就是:一定要把一部分利润提出来以备用。

过去的时候和很多人一样,单子做对了,赚的钱很少,单子做错了就死扛了,最后抗到了爆仓。

从长远的来说,从概率上来讲,从过来人的眼光来说,从历史的总结来看,趋势交易的胜率会比做短线交易高很多。

趋势比较明朗的时候,就需要很好的耐心,不能看这个品种好看那个品种也好,结果丢了西瓜拣了芝麻。

我不是说一定做多的,但行情的确是多头,是必须要做多的。

期货和股票的最大区别是,期货的专业性更高。

对于期货来讲的话,我不会动用超过我资产的20%来做期货。

我的理念就是这样,要让账户成为一个提款机而不能成为一个吞钱的老虎机。

如果趋势并没有被破坏掉,只是进行了震荡,回撤很正常的,这时候不一定要进行止损。

WangYuKulhawy2008_JGGE_Reliability Index for Serviceability Limit State of building foundations

WangYuKulhawy2008_JGGE_Reliability Index for Serviceability Limit State of building foundations

Reliability Index for Serviceability Limit Stateof Building FoundationsYu Wang,M.ASCE1;and Fred H.Kulhawy,Dist.M.ASCE2Abstract:Extensive research has been conducted on reliability-based design͑RBD͒for the ultimate limit state͑ULS͒.Several RBD codes have been developed and implemented around the world that calibrate the ULS design for a target ULS reliability index͑␤uls͒. However,the serviceability limit-state͑SLS͒design still is considered using conventional deterministic approaches with an unknown SLS reliability index͑␤sls͒.This paper presents a relationship between␤sls and the␤uls that is specified already in the RBD codes.This relationship is linear,and a key variable in it is the ratio͑R͒of the SLS capacity͑Q sls͒to the ULS capacity͑Q uls͒.Both closed-form approximations and Monte Carlo simulations are used to characterize R probabilistically.For illustration,the relationship then is used to estimate␤sls for augered cast-in-place piles designed in accordance with the RBD methodologies in the National Building Code of Canada.The results are highly dependent on the statistics of the limiting tolerable foundation settlement͑y lt͒.For larger y lt values,the calculated␤slsϾ␤uls,which means that ULS designs automatically satisfy SLS criteria.For smaller y lt values,SLS criteria begin to control the design.The importance of sound y lt criteria is stressed.DOI:10.1061/͑ASCE͒1090-0241͑2008͒134:11͑1587͒CE Database subject headings:Reliability;Serviceability;Limit states,foundations;Cast in place;Piles.IntroductionOver the last two decades,reliability-based design͑RBD͒meth-odologies gradually have gained popularity in geotechnical engi-neering.Several RBD codes have been developed andimplemented around the world,such as the load and resistancefactor design͑LRFD͒code adopted by the American Associationof State Highway and Transportation Officials͑AASHTO1997͒,the Canadian National Building Code͑Becker1996͒,Eurocode7͑CEN2001͒,and the Japanese Geo-Code21͑Honjo and Kusak-abe2002͒.Reliability theory nominally is used in these RBDdesign codes to deal rationally with geotechnical-related uncer-tainties that arise in loads,geologic site interpretations,geotech-nical properties,computational models,etc.Design risk in RBDis quantified by the probability of failure͑p f͒,or more frequently, the reliability index͑␤͒,which is defined as␤=−⌽−1͑p f͒=⌽−1͑1−p f͒͑1͒in which⌽−1=inverse standard normal probability distribution function.A review of these RBD design codes shows that,although theyapply reliability principles for ultimate limit-state͑ULS͒designsand calibrate the designs for a target ULS reliability index͑␤uls͒, the serviceability limit-state͑SLS͒designs still are evaluated using conventional deterministic approaches with an unknown SLS reliability index͑␤sls͒.Most research on RBD has focused on the ULS designs,with one exception being the RBD study for transmission line͑and similar͒structure foundations that was sponsored by the Electric Power Research Institute͑EPRI͒͑Phoon et al.1995,2003a,b͒.However,in this EPRI study of SLS design,the limiting tolerable foundation settlement͑y lt͒still was considered to be deterministic.This paper presents a relationship that can infer the␤sls from the␤uls that is specified already in the design codes.The deriva-tion considers y lt as a random variable and accounts for the un-certainties associated with the calculation models.First,␤and ␤uls are defined,which is followed by derivation of the relation-ship between␤sls and␤uls.A key variable in this relationship is the ratio͑R͒of the SLS capacity͑Q sls͒to the ULS capacity͑Q uls͒. Capacity herein refers to the maximum soil resistance mobilized by a loaded foundation unit when it reaches either the ultimate limit state͑Q uls͒or serviceability limit state͑Q sls͒.Both closed-form approximations and Monte Carlo simulations are used to characterize R probabilistically.Then,for illustration,the rela-tionship is used to estimate␤sls for augered cast-in-place͑ACIP͒piles that are designed in accordance with the National Building Code of Canada͑NBCC͒,as described by Becker͑1996͒.Finally, the effects of y lt on␤sls are discussed.Definition of Reliability IndexIn RBD,design quantities such as the load͑F͒and the capacity ͑Q͒are modeled as random variables,as shown in Fig.1.For simplicity herein,it will be assumed that all components of both F and Q can be lumped into the single distributions shown.In addition,since F and Q must be positive,and for mathematical convenience,they commonly are assumed to be lognormally dis-tributed͑Ang and Tang1975͒.The basic reliability problem is to1Assistant Professor,Dept.of Building and Construction,City Univ.of Hong Kong,Tat Chee Avenue,Kowloon,Hong Kong.E-mail:yuwang@.hk2Professor,School of Civil and Environmental Engineering,CornellUniv.Hollister Hall,Ithaca,NY14853-3501.E-mail:fhk1@Note.Discussion open until April1,2009.Separate discussions mustbe submitted for individual papers.The manuscript for this paper wassubmitted for review and possible publication on July10,2007;approvedon March7,2008.This paper is part of the Journal of Geotechnical andGeoenvironmental Engineering,V ol.134,No.11,November1,2008.©ASCE,ISSN1090-0241/2008/11-1587–1594/$25.00.JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING©ASCE/NOVEMBER2008/1587evaluate p f ͑or ␤͒from some pertinent probabilistic characteriza-tions of F and Q ,which frequently include the mean ͑m F and m Q ͒,standard deviation ͑s F and s Q ͒,coefficient of variation ͑COV F and COV Q ͒,and even probability density function.Note that,al-though this paper addresses lognormal random variables and con-siders F as a single random variable,the basic methodology can be extended to non-lognormal random variables and to F that has two or more load components.For lognormally distributed F and Q ,the p f can be evaluated asp f =Prob ͑Q ϽF ͒=Prob ͑Q /F Ͻ1͒=Prob ͓ln ͑Q /F ͒Ͻln ͑1͔͒=Prob ͓ln ͑Q ͒−ln ͑F ͒Ͻ0͔=Prob ͓Q N −F N Ͻ0͔͑2͒in which Q N and F N =equivalent normal random variables for Q and F ,respectively.For this condition,the equivalent safety mar-gin M =Q N −F N ,and it is normally distributed with the following mean ͑m M ͒and standard deviation ͑s M ͒m M =m QN −m FN ͑3͒s M2=s QN2+s FN2͑4͒in which m QN and m FN =mean of Q N and F N ,respectively;and s QNand s FN =standard deviation of Q N and F N ,respectively.Then,Eq.͑2͒can be rewritten asp f =Prob ͓Q N −F N Ͻ0͔=⌽͑−m M /s M ͒͑5͒The mean ͑m ͒and standard deviation ͑s ͒of a lognormal ran-dom variable can be related to the mean ͑m N ͒and standard devia-tion ͑s N ͒of its equivalent normal random variable bym N =lnͫmͱ1+COV 2ͬ͑6͒s N =ͱln ͑1+COV 2͒͑7͒in which COV=coefficient of variation of the lognormal random variable,expressed asCOV =s /m͑8͒Combining Eqs.͑1͒–͑8͒leads to the following for the reliability index ␤␤=m Ms M =lnͫm Qm Fͱ1+COV F21+COV Q 2ͬͱln ͓͑1+COV Q 2͒͑1+COV F 2͔͒͑9͒Eq.͑9͒has been used as the basis for RBD ͑e.g.,Rosenblueth andEsteva 1972;Barker et al.1991;Becker 1996;Phoon et al.2003a,b ͒and can be used to evaluate ␤for both the ULS and SLS designs,as discussed below.For reference,Table 1correlates reliability indices for repre-sentative geotechnical components and systems and their corre-sponding probabilities of failure and expected performance levels.The reliability indices range from 1to 5,corresponding to prob-abilities of failure varying from about 0.16to 3ϫ10−7.Reliability Index for Ultimate Limit-State Designs For ULS designs,the capacity Q is the ULS capacity ͑Q uls ͒.Therefore,the ␤uls obtained from Eq.͑9͒can be expressed as␤uls =lnͫm Q uls m Fͱ1+COV F21+COV Quls2ͬͱln ͓͑1+COV Quls2͒͑1+COV F 2͔͒͑10͒The ULS design equation that is used frequently in RBD codes is given as␩F n ഛ␺Q n͑11͒in which ␩=load factor ͑ജ1͒;␺=resistance factor ͑ഛ1͒;and F n and Q n =nominal load and capacity,respectively.Conceptually,the RBD process contains five basic steps:͑1͒establish the proba-bilistic distribution of load F ;͑2͒establish the probabilistic dis-tribution of capacity Q ;͑3͒select the nominal values F n and Q n for Eq.͑11͒;͑4͒select a target p f or ␤that would establish the design risk;and ͑5͒perform calibration analyses that incorporate Steps 1–4to determine values of ␩and ␺that achieve a consis-tent design risk ͑i.e.,target p f or ␤͒across the range of the input parameters and their variability.Through the calibration process,the RBD codes ensure that all designs have a nominally consistent p f or ␤.For example,the resistance factors proposed by the EPRI study result in a nominal ␤uls =3.2͑Phoon et al.2003b ͒.For the NBCC ͑Becker 1996͒,the proposed resistance factors for pile axial compression capacity,when interpreted from static loading tests,also lead to a nominal ␤uls =3.2.F Qs Fs QP r o b a b i l i t y D e n s i t y F u n c t i o nLoad,F Capacity,QFig.1.Lognormally distributed load and capacityTable 1.Relationship between Reliability Index ͑␤͒and Probability of Failure ͑p f ͒͑after USACE 1997,p.B-11͒Reliability index ␤Probability of failure ͓p f =⌽͑−␤͔͒Expected performance level1.00.16Hazardous 1.50.07Unsatisfactory2.00.023Poor 2.50.006Below average3.00.001Above average4.00.00003Good5.00.0000003High Note:⌽͑͒=standard normal probability distribution function.1588/JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING ©ASCE /NOVEMBER 2008Reliability Index for Serviceability Limit State For SLS designs,the capacity Q is the SLS capacity ͑Q sls ͒.If the ratio of Q sls to Q uls is defined as R ,the SLS probability of failure ͑p f sls ͒can be expressed asp f sls =Prob ͑Q sls ϽF ͒=Prob ͑Q sls /F Ͻ1͒=Prob ͕ln ͓͑Q sls /Q uls ͒ϫ͑Q uls /F ͔͒Ͻln ͑1͖͒=Prob ͓ln ͑RQ uls /F ͒Ͻln ͑1͔͒=Prob ͓ln ͑R ͒+ln ͑Q uls ͒−ln ͑F ͒Ͻ0͔͑12͒If R is lognormally distributed and uncorrelated with Q uls ,as vali-dated by the Monte Carlo simulations and hypothesis test shown in the next section,Eq.͑12͒can be rewritten asp f sls =Prob ͓R N +Q uls N−F N Ͻ0͔=Prob ͓M sls Ͻ0͔=⌽͑−m M sls /s M sls ͒͑13͒in which R N =equivalent normal random variable for R ;and M sls =R N +Q uls N−F N =normally distributed equivalent safety mar-gin with the following mean ͑m M sls ͒and standard deviation ͑s M sls ͒:m M sls =m RN +m Q uls N −m FN͑14͒s M sls 2=s RN 2+s Q uls N 2+s FN2͑15͒in which m RN =mean of R N ;and s RN =standard deviation of R N .Combining Eqs.͑1͒,͑5͒–͑8͒,and ͑13͒–͑15͒leadsto␤sls =⌽ͩm M sls s M slsͪ=ln ͫm Rͱ1+COV R2ͬ+lnͫm Q ulsͱ1+COV Quls2ͬ−lnͫm Fͱ1+COV F2ͬͱln ͑1+COV R 2͒+ln ͑1+COV Quls2͒+ln ͑1+COV F 2͒͑16͒which can be rewritten as␤sls =ln ͫm Q uls m Fͱ1+COV F21+COV Quls2ͬ+lnͫm Rͱ1+COV R2ͬͱln ͓͑1+COV R 2͒͑1+COV Quls2͒͑1+COV F 2͔͒͑17͒Combining Eqs.͑10͒and ͑17͒results in␤sls =C 0+C 1␤uls͑18͒in which C 0and C 1=intercept and slope of this linear function,respectively,given byC 0=lnͫm Rͱ1+COV R2ͬͱln ͓͑1+COV R 2͒͑1+COV Quls2͒͑1+COV F 2͔͒͑19͒C 1=ͱln ͓͑1+COV Q uls2͒͑1+COV F 2͔͒ln ͓͑1+COV R 2͒͑1+COV Q uls2͒͑1+COV F 2͔͒͑20͒Since ␤uls is specified in the RBD codes,␤sls can be estimateddirectly using Eq.͑18͒with m R ,COV R ,COV Q uls ,and COV F .Probabilistic Characterization of R =Q sls /Q ulsA key random variable in the relationship between ␤uls and ␤sls is R =Q sls /Q uls and its probabilistic characteristics,such as m R ,COV R ,and its assumed lognormal distribution and lack of corre-lation with Q uls .Probabilistic characterization of R requires a load–displacement model that relates the foundation displacement to load capacity and probabilistic characterization of the limiting tolerable foundation settlement ͑y lt ͒.The load–displacement model and its associated uncertainties are described below,fol-lowed by probabilistic characterization of y lt .Then,both closed-form approximations and Monte Carlo simulations are used to characterize R probabilistically.A hypothesis test is performed to illustrate that R is uncorrelated to Q uls .Foundation Load–Displacement ModelAccurate prediction of foundation movements is a difficult task,and most analytical attempts have met with only limited success,primarily because they can not include all the important factors,such as the in situ stress state,soil behavior,soil–foundation in-terface characteristics,and construction effects ͑Kulhawy 1994;Becker 1996;Phoon et al.2003b ͒.Alternatively,an empirical approach has been employed that utilizes load test results and normalizes the test load–displacement curves to obtain a single representative design curve ͑Phoon et al.1995,2003b,2006;Chen 1998;Kulhawy and Chen 2005͒.For pile foundations under axial loading,the load-displacement curves can be represented reasonably well by the following hyperbolic model:Q Q uls =y a +by͑21͒in which Q uls =uls capacity interpreted from load tests;y =axial butt displacement;and a and b =hyperbolic model parameters.Chen ͑1998͒and Kulhawy and Chen ͑2005͒compiled a data-base that includes load tests of 56augered cast-in-place ͑ACIP ͒piles from 31sites.The ACIP pile is constructed by drilling a continuous flight auger into the ground and,after reaching the designed depth,pumping sand–cement grout or concrete through the hollow stem as the auger is withdrawn steadily.If required,reinforcing can be inserted into the fresh grout or concrete after complete withdrawal of the auger.The tested ACIP piles were constructed in mostly sandy cohesionless soils with effective stress friction angles ranging from 32to 47°.For the 40ACIP piles with depth ͑D ͒/diameter ͑B ͒Ͼ20,Phoon et al.͑2006͒fur-ther quantified the model uncertainties associated with parameters a and b obtained from the ACIP database and found that a and bJOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING ©ASCE /NOVEMBER 2008/1589are correlated random variables that follow a lognormal distribu-tion and have the following statistics:mean͑m a=5.15mm and m b=0.62͒,standard deviation͑s a=3.07mm and s b=0.16͒,and coefficient of correlation͑␳a,b=−0.67͒.Limiting Tolerable Settlements for Building FoundationsThe limiting tolerable foundation settlement͑y lt͒is the maximum settlement that a building foundation can sustain before causing any serviceability failure,and it corresponds to the SLS capacity Q sls,expressed asR=Q slsQ uls=y lta+by lt͑22͒The y lt for building foundations has been examined by many researchers͑e.g.,Skempton and MacDonald1956;Lumb1964; Grant et al.1974;Wahls1981,1994;Zhang and Ng2005͒,and deterministic y lt values for buildings have been proposed and adopted in design codes around the world.Zhang and Ng͑2005͒synthesized the y lt values reported in the literature into a database, which contains over300buildings that are supported by either pile foundations or shallow͑footing or raft͒foundations.Fragility curves were employed to represent the cumulative probability dis-tribution of y lt,and it was found that y lt is lognormally distributed for shallow foundations,pile foundations,and all foundations.Table2summarizes the y lt statistics,including the mean͑m ylt ͒,standard deviation͑s ylt ͒and coefficient of variation͑COV ylt͒.Forpile foundations,m ylt =96mm,s ylt=56mm,and COV ylt=0.583.In contrast,for all foundations,m ylt =123mm,s ylt=73mm,andCOV ylt =0.593.These y lt statistics are significantly larger than theallowable settlement limit of25mm that is used frequently in deterministic SLS designs of most foundation types͑e.g.,Peck et al.1974;Wahls1994͒.However,these pile statistics are used as a starting point in the example below.The effect of y lt on␤sls is discussed later.Closed-Form ApproximationsWith the load–displacement model and probabilistic characteriza-tion of y lt,the probabilistic characteristics of R,given by m R and s R,can be approximated by a Taylor series expansion as follows:m RϷm yltm a+m b m ylt͑23͒s R2ϷͩץRץaͪ2s a2+ͩץRץbͪ2s b2+ͩץRץy ltͪ2s y lt2+2ץRץaץRץb␳a,b s a s b +2ץRץaץRץy lt␳a,ylts a s ylt+2ץRץbץRץy lt␳b,ylts b s ylt=m ylt2sa2+my lt4sb2+ma2sy lt2+2␳a,bm ylt3sas b͑m a+m b m ylt͒4͑24͒For ACIP piles,m R and s R can be estimated as follows:m RϷ965.15+0.62͑96͒=1.484s R2Ϸ͓͑962͒͑3.072͔͒+͓͑964͒͑0.162͔͒+͓͑5.152͒͑562͔͒+2͓͑−0.67͒͑963͒͑3.07͒͑0.16͔͓͒5.15+0.62͑96͔͒4=0.101Therefore,s R=0.317and COV R=s R/m R=0.317/1.484=0.214.The m R,s R,and COV R also can be obtained from Monte Carlo simulations,which are able to provide additional insights into the probability distribution of R,as discussed below.Monte Carlo SimulationsMonte Carlo simulations begin with generation of a set of three normal random variables͑U1,U2,U3͒,in which U3is independent of U1or U2,but U1and U2are correlated as defined below ͑Grigoriu1995;Phoon et al.2006͒U1=s aN Z1+m aNU2=s bN͑Z1␳+Z2ͱ1−␳2͒+m bNU3=s ylt N Z3+m ylt N͑25͒in which Z1,Z2,and Z3=uncorrelated standard normal randomvariables;and m aN,m bN,m ylt N ,s aN,s bN,and s ylt N=mean and stan-dard deviation of their respective equivalent normal random vari-ables a N,b N,and y lt ing Eqs.͑6͒and͑7͒,m aN,m bN,m ylt N,s aN,s bN,and s ylt Ncan be calculated from m a,m b,m ylt,s a,s b,and s ylt.The equivalent coefficient of correlation␳can be calculated from͑Phoon et al.2006͒␳=ln͕␳a,bͱ͓exp͑s aN2͒−1͔͓exp͑s bN2͒−1͔+1͖s aN s bN͑26͒Then,U1,U2,and U3are converted to the correlated lognormalrandom variables a and b and the uncorrelated lognormal randomvariable y lt as follows͑Grigoriu1995͒:a=exp͑U1͒b=exp͑U2͒y lt=exp͑U3͒͑27͒For each set of these three random variables,Eq.͑22͒is used tocalculate R.A total of20,000Monte Carlo simulations were done.Asshown in Fig.2,the simulations result in m R=1.505,s R=0.303,and COV R=0.202.Table3compares the R statistics from theMonte Carlo simulations to those from the closed-form approxi-Table2.Statistics of Limiting Tolerable Settlement͑y lt͒of Buildings͑after Zhang and Ng2005͒StatisticsAllfoundationsShallowfoundationsPilefoundationsMean,m ylt͑mm͒12312996Standard deviation,s ylt͑mm͒737256Coefficient of variation,COV ylt0.5930.5580.5831590/JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING©ASCE/NOVEMBER2008mations.They compare favorably,with the difference between them less than 5–6%.This consistency provides confidence for using these R statistics to estimate ␤sls .In addition to the R statistics,Fig.2shows that the R histo-gram is slightly skewed and can be characterized properly by a skewed distribution,such as a lognormal distribution.To test the hypothesis adopted in the derivation of the ␤sls and ␤uls relation-ship that R is lognormally distributed,a Kolmogorov–Smirnov ͑KS ͒goodness-of-fit test is performed for the lognormal distribu-tion ͑Ang and Tang 1975͒.As shown in Fig.3,the theoretical and observed cumulative probabilities are almost identical,with a maximum difference ͑D n max ͒of about 1%.Comparison of D n max with KS values at various significance levels shows that a lognor-mal distribution of R is statistically significant at the 5%level.Benjamin and Cornell ͑1970͒recommend that hypothesis testing be conducted at a significance level chosen by convention,with 5%being the most commonly used level.Therefore,the assump-tion is justified that R is lognormally distributed.Hypothesis Test for Correlation between R and Q uls To test the hypothesis adopted in the derivation of the ␤sls and ␤uls relationship that R is uncorrelated to Q uls ,a scatter plot of R versus Q uls is shown in Fig.4for the ACIP pile test data described above ͑Chen 1998͒.The R is estimated using Eq.͑22͒with the m y lt reported by Zhang and Ng ͑2005͒.The correlation is mea-sured by a Spearman’s rank correlation coefficient ͑r s ͒=−0.25͑Walpole et al.1998͒.The advantages in using r s over the con-ventional correlation coefficient ͑r ͒are twofold:͑1͒the random variables R and Q uls do not have to be assumed to be normally distributed,and ͑2͒the underlying assumption for r ,that the re-lationship between R and Q uls is linear,becomes unnecessary.Therefore,r s is able to measure the correlation ͑both linear and nonlinear ͒between R and Q uls ,which are lognormally distributed.A test is performed for the hypothesis that the correlation be-tween R and Q uls is zero against the alternative that it is not zero,and the computed statistic z =−parison of the computedz with z values at various significance levels shows that a zero correlation between R and Q uls is statistically significant at the 5%level.Therefore,the assumption is justified that R and Q uls are uncorrelated,and Eq.͑18͒can be used directly to estimate ␤sls from ␤uls ,m R ,COV R ,COV Q uls ,and COV F .For illustration,␤sls is estimated for ACIP piles designed in accordance with the NBCC,as discussed below.SLS Reliability Index Estimated for NBCCBecker ͑1996͒described the development of RBD methodologies for the NBCC and summarized the calibration process,corre-sponding ULS reliability index ͑␤uls ͒,and proposed resistance factors.For example,the proposed resistance factor ␺=0.6for the axial compression capacity of a pile foundation,when interpreted from static loading tests.The corresponding ␤uls =3.2,and the coefficient of variation of Q uls ͑COV Q uls ͒=0.25.Using Eq.͑18͒,the SLS reliability index ͑␤sls ͒can be esti-mated directly.Fig.5shows the estimated ␤sls as a function of the coefficient of variation for load effects ͑COV F ͒for ACIP piles designed in accordance with the NBCC.As COV F increases from 0to 1.0,␤sls remains relatively constant at about 3.6with slight variation between 3.53and 3.65.As summarized in Table 4and illustrated in Fig.5,the COV F of various load effects for onland and offshore foundations lies in the range of 0.05–0.6͑MeyerhofTable parison of R Statistics from Monte Carlo Simulations and Closed-Form Approximations StatisticsMonte Carlo simulations Closed-form approximations Difference ͑%͒Mean,m R1.505 1.4841Standard deviation,s R0.3030.3175Coefficient of variation,COV R0.2020.2146020*********0.40.81.21.622.42.83.23.6R =Q sls /Q ulsC u m u l a t i v e P r o b a b i l i t y (%)Fig. 3.Kolmogorov–Smirnov goodness-of-fit test for lognormal distribution012345605001000150020002500300035004000Q uls (kN)R =Q s l s /Q u lsFig.4.Scatter plot of R versus Q uls0100020003000400050006000R =Q sls /Q ulsF r e q u e n c y20406080100C u m u l a t i v e P r o b a b i l i t y (%)Fig.2.R histogram from Monte Carlo simulations1993,1995͒.Fig.5also includes the variations of the intercept C 0and slope C 1.As COV F increases from 0to 1.0,C 0decreases from 1.15to 0.42,while C 1increases from 0.76to 0.97.The opposing effects of C 0and C 1result in a ␤sls that remains rela-tively constant at about 3.6.The estimated ␤sls is larger than the ␤uls =3.2specified in the NBCC.This result indicates that,for the axial compression ca-pacity of ACIP piles designed in accordance with the NBCC and static loading test results,the designs automatically satisfy the SLS design requirements and have a ␤sls =3.6,which is larger than the ␤uls =3.2.This result can be attributed to the probabilistic characterization of R ,which shows that R is larger than 1͑see Table 3͒,and therefore,the SLS capacity Q sls is larger than Q uls .Since Q sls is larger than Q uls and the probability of Q uls ϽF is ⌽͑−␤uls ͒,the ⌽͑−␤sls ͒,or the probability of Q sls ϽF ,is smaller than ⌽͑−␤uls ͒.Therefore,␤sls is larger than ␤uls .Effect of Limiting Tolerable SettlementsThe y lt statistics ͑i.e.,m y lt =96mm and s y lt =56mm ͒reported by Zhang and Ng ͑2005͒and used herein are significantly larger than the displacement limit of 25mm that is used frequently in deter-ministic SLS designs ͑e.g.,Peck et al.1974;Wahls 1994͒.To explore the effect of y lt on the estimated ␤sls ,a sensitivity study was performed using two different m y lt values ͑25and 15mm ͒in combination with the COV y lt =0.583reported by Zhang and Ng ͑2005͒.For m y lt =25mm,s y lt =m y lt ͑COV y lt ͒=25͑0.583͒=ing Eqs.͑23͒and ͑24͒,the m R ,s R ,and COV R are estimated as 1.211,0.249,and 0.205,respectively.Similarly,for m y lt =15mm,the s y lt ,m R ,s R ,and COV R are estimated as 9mm,1.038,0.272,and 0.262,respectively.Then,␤sls is estimated using these m R ,s R ,and COV R values.Fig.6shows the estimated ␤sls as a function of the COV F for m y lt =25mm.As COV F increases from 0to 1.0,␤sls increasesgradually from 3.00to 3.08.Fig.6also includes the variations of the intercept C 0and slope C 1.As COV F increases from 0to 1.0,C 0decreases from 0.54to 0.19,while C 1increases from 0.77to 0.97.The range of ␤sls for dead loads is about 3.02–3.10,and the range of ␤sls for live loads is about 3.15–3.30.Although these values of ␤sls are smaller than ␤uls =3.2,they correspond to an expected performance level that is among “above average”͑see Table 1͒.In addition,they are larger than the target ␤sls =2.6that is given in the EPRI study ͑Phoon et al.1995,2003a,b ͒.There-fore,even with m y lt =25mm and s y lt =15mm,the NBCC design of ACIP piles still is acceptable for the SLS design requirements.Fig.7shows the estimated ␤sls as a function of the COV F for m y lt =15mm.As COV F increases from 0to 1.0,␤sls increases gradually from 2.22to 3.07.The range of ␤sls for dead loads is about 2.24–2.39,and the range of ␤sls for live loads is about 2.49–2.95.These values of ␤sls correspond to an expected perfor-mance level that varies from “poor”to “above average”͑see Table 1͒.Therefore,the design might be unacceptable for the SLS design requirements.Fig.7also includes the ␤sls versus COV F relationships for m y lt =25and 96mm from Figs.5and 6.As m y lt decreases from 96to 25and 15mm,␤sls decreases significantly,particularly for dead loads.The ␤sls for dead loads decreases from about 3.6for m y lt =96mm to about 2.3for m y lt =15mm,and the corresponding expected performance level changes from between “above average”and “good”to between “poor”and “below av-0123450.00.20.40.60.81.0Coefficient of Variation of Load Effects,COV FS L S R e l i a b i l i t y I n d e x ,βs l sI n t e r c e p t ,C 0o r S l o p e ,C 1Fig.5.Estimated SLS reliability index ␤sls for m y lt =96mm and s y lt =56mm Table 4.Coefficient of Variation of Load Effects for Onland and Offshore Foundations ͑after Meyerhof 1993,1995͒Load type COV F Dead 0.05–0.15Live0.2–0.6Environmental0.3–0.50123450.00.20.40.60.81.0Coefficient of Variation of Load Effects,COV FS L S R e l i a b i l i t y I n d e x ,βs l sI n t e r c e p t ,C 0o r S l o p e ,C 1Fig.6.Estimated SLS reliability index ␤sls for m y lt =25mm and s y lt =15mm0123450.00.20.40.60.81.0Coefficient of Variation of Load Effects,COV FS L S R e l i a b i l i t y I n d e x ,βs l sFig.7.Estimated SLS reliability index ␤sls for varying m y lt。

2009年日历表(含阴历)A4

2009年日历表(含阴历)A4

2009年日历2009年1月2009年2月2009年3月日一二三四五六日一二三四五六日一二三四五六12312345671234567元旦节初七腊八节初七初八立春初十十一十二十三初五初六初七初八惊蛰初十十一45678910891011121314891011121314初九小寒十一十二十三十四十五十四元宵节十六十七十八十九二十十二十三十四十五十六十七十八111213141516171516171819202115161718192021十六十七十八十九二十廿一廿二廿一廿二廿三雨水廿五廿六廿七十九二十廿一廿二廿三春分廿五181920212223242223242526272822232425262728小年廿四大寒廿六廿七廿八廿九廿八廿九三十2月大初二初三初四廿六廿七廿八廿九三十3月小初二25262728293031293031除夕春节初二初三初四初五初六初三初四初五2009年4月2009年5月2009年6月日一二三四五六日一二三四五六日一二三四五六123412123456初六初七初八清明节劳动节初八初九初十十一十二芒种十四567891011345678978910111213初十十一十二十三十四十五十六初九初十立夏十二十三十四十五十五十六十七十八十九二十廿一121314151617181011121314151614151617181920十七十八十九二十廿一廿二廿三十六十七十八十九二十廿一廿二廿二廿三廿四廿五廿六廿七廿八192021222324251718192021222321222324252627廿四谷雨廿六廿七廿八廿九4月小廿三廿四廿五廿六小满廿八廿九廿九三十闰5月初二初三初四初五262728293024252627282930282930初二初三初四初五初六5月大初二初三初四端午节初六初七初六初七初八31初八2009年7月2009年8月2009年9月日一二三四五六日一二三四五六日一二三四五六1234112345初九初十十一十二十一十三十四中元节十六十七56789101123456786789101112十三十四小暑十六十七十八十九十二十三十四十五十六立秋十八十八白露二十廿一廿二廿三廿四12131415161718910111213141513141516171819二十廿一廿二廿三廿四廿五廿六十九二十廿一廿二廿三廿四廿五廿五廿六廿七廿八廿九三十8月小192021222324251617181920212220212223242526廿七廿八廿九6月小大暑初三初四廿六廿七廿八廿九7月大初二初三初二初三初四秋分初六初七初八2627282930312324252627282927282930初五初六初七初八初九初十处暑初五初六初七初八初九初十初九初十十一十二3031十一十二2009年10月2009年11月2009年12月日一二三四五六日一二三四五六日一二三四五六123123456712345国庆节国庆节中秋节十五十六十七十八十九二十立冬十五十六十七十八十九456789108910111213146789101112十六十七十八十九寒露廿一廿二廿二廿三廿四廿五廿六廿七廿八二十大雪廿二廿三廿四廿五廿六111213141516171516171819202113141516171819廿三廿四廿五廿六廿七廿八廿九廿九三十10月小初二初三初四初五廿七廿八廿九11月大初二初三初四181920212223242223242526272820212223242526 9月大初二初三初四初五霜降初七小雪初七初八初九初十十一十二初五初六冬至初八初九初十十一2526272829303129302728293031初八重阳节初十十一十二十三十四十三十四十二十三十四十五十六Updated 2013-10-19 Shu。

2009中考考点梳理__-- ciyu

2009中考考点梳理__-- ciyu

中考专项复习之二:词语专家解读考点:词语是语言表达的基础。

一个人语言能力的高低,往往取决于掌握词语的多少,掌握的标尺是积累、理解和运用。

课标对词语教学的规定十分明确,教材也以课文为背景通过注释和课后“读一读,写一写”作了具体安排。

从2008年全国中考试题对词语考查的情况来看,主要涉及到下述四个方面:①正确理解与运用课内外常见的词语和新生词语;②了解词语的基本义、引申义和比喻义,辨析常见的同义词、多义词、反义词在不同语言环境中的不同意义;③联系上下文理解词语的意思,体味和推敲重要词语在具体语言环境中的意义及表达效果;④联系生活和自己的积累,推想文章中有关生词和新词在语言环境中的恰当意义,辨析词语的感情色彩和语体色彩。

考查的内容主要是在学生所学教材中出现的常用词语和新词,试题载体则不限于学生所学教材,很大一部分是把所学词语移用于生活和时事中的鲜活材料。

题型分析:2008年全国中考试题中的词语试题,在题型上主要有:①选择题:选出所给句子中加点词语理解不正确或解释不当的一项;选出依次填入句子或语段中的词语或关联词语最恰当的一项;选出所给句子中加点词语或关联词语或熟语使用有误或不当的一项。

②简答题:结合具体语境解释指定词语的意思并用新词造句。

③填空题:从备选词语中选择最恰当的词语或用序号按要求填空。

解题策略:词语试题侧重考查考生积累、理解和运用词语的能力。

常用词语以学生所学课文中出现的词语为准,新生词语则以当前流行的一些热词为准,试题材料兼顾课内课外,以时事材料为主。

解题时务须看清题目要求,抓住题干中的关键词,冷静答题。

这里的关键,是要在积累上下工夫,掌握课后“读一读,写一写”的常用词语,同时也要了解当下流行的并经国家语委认可的一些新生词语。

典型例题透视:例选出下面语段空白处运用词语最恰当的一项()摆手舞追忆的是土家族先民创业的艰辛,缅怀的是祖先的功绩,展示的是古往今来的生活场景,涵蕴的是人与社会、人与生活、人与自然的和谐。

QQPinyin_2009_3_3

QQPinyin_2009_3_3
fang'fa 方法 1
fang'shang'qu 放上去 1
fang'song'yi'xia 放松一下 1
fang'xin 放心 1
fang'zai 放在 2
fei 飞 0
fei 非 0
fei'diao 废掉 1
fei'le 废了 1
fei'su 飞速 2
fei'zhu'liu 非主流 1
hui 会 1
hui'fu 回复 3
hui'fu'hou 恢复后 1
hui'fu'ke'jian 恢复可见 2
hui'fu'ke'jian 回复可见 1
hui'tou 回头 1
hun'hun 混混 1
huo 或 1
huo'hu 火狐 1
ji 级 1
ji 基 0
ji 及 0
ji 即 0
gai 钙 0
gai'bu'liao 改不了 1
gai'diao'le 改掉了 1
gai'hui'lai 改回来 1
gai'le 改了 1
gai'tian 改天 1
gai'tong'xue 该同学 1
gan 干 0
gan'xie'da'jia 感谢大家 1
gang 刚 0
gang'cai 刚才 2
dei 得 0
deng 等 0

Case study of a giant debris flow in the Wenjia Gully,

Case study of a giant debris flow in the Wenjia Gully,

Nat Hazards(2013)65:835–849DOI10.1007/s11069-012-0395-yO R I G I N A L P A P E RCase study of a giant debrisflow in the Wenjia Gully, Sichuan Province,ChinaBin Yu•Yu Ma•Yufu WuReceived:22December2011/Accepted:9September2012/Published online:19September2012ÓSpringer Science+Business Media B.V.2012Abstract The debrisflow,which was triggered in the Wenjia Gully on August13,2010, is an extreme example of mass movement events,which occurred after the Wenchuan earthquake of May12,2008.This Earthquake triggered in the Wenjia Gully the second largest co-seismic landslide,which can be classified as a rockslide-debris avalanche.A lot of loose sediments was deposited in the basin.In the main so called Deposition Area II of this landslide,with a volume of309106m3,flashfloods can easily trigger debrisflows because of the steep bottom slope and the relative small grain sizes of the sediments.The largest debrisflow of August13,2010destroyed the most downstream dam in the catchment during a heavy rain storm.The debrisflow with a peak discharge of1,530m3/s and a total volume of3.19106m3caused the death of7persons,5persons were missing, 39persons were injured and479houses buried.After three rainy seasons,only16%of the landslide-debris deposition was taken away by5large-scale debrisflow events.Since the threshold for rainfall triggered debrisflows in the Wenjia Gully and other catchments drastically decreased after the Wenchuan Earthquake,new catastrophic events are expected in the future during the rainy season.Keywords Wenchuan earthquakeÁWenjia GullyÁCo-seismic rockslide-debris avalancheÁRainfall triggered debrisflowsÁYield strengthÁPeak dischargesÁMeteorological threshold for debrisflows1IntroductionThe Wenchuan Earthquake occurred in the Longmen mountain fault belt with a magnitude Ms8.0on the Richter scale on May12,2008(Huang and Li2009).Numerous landslides B.Yu(&)ÁY.WuState Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu Universityof Technology,Chengdu610059,Chinae-mail:drbinyu@Y.MaEngineering and Technical College,Chengdu University of Technology,Leshan614000,Chinawere triggered in the earthquake-affected area,and the larger landslides were located near the epicenter(Chen et al.2009;Cui et al.2011;Huang et al.2012;Sato and Harp2009; Wang et al.2010;Xu et al.2009;Zhuang et al.2010).Abundant co-seismic rock falls and landslides were deposited in gullies,which provided a large amount of loose solid mate-rials that were easily eroded and developed into debrisflows(Shieh et al.2009).Significant debrisflows were triggered during three rainy seasons after the earthquake(Tang et al. 2009,2011a,b;Ni et al.2012;Xu2010;Yu et al.2011;Zhuang et al.2010).The same happened in the Chi–Chi earthquake area(Taiwan),where also numerous co-seismic landslides were triggered,causing the initiation of a lot of debrisflows during10years after the earthquake(Chen et al.2006;Chiou et al.2007;Lin et al.2008;Liu et al.2008; Wu et al.2011).The triggering thresholds such as cumulative antecedent rainfall and1-h rainfall intensity significantly decreased after the Wenchuan and Chi–Chi earthquake events(Chen et al.2009;Liu et al.2008;Tang et al.2009).Shieh et al.(2009)pointed to the amount of loose sediments,deposited by the co-seismic landslides,which was the main reason for a lowering of the meteorological thresholds for debrisflows.Also the magnitude of debrisflows triggered by the same rainfall in the earthquake area has considerably increased due to the presence of barrier lakes caused by co-seismic landslide dams(You et al.2010).The debrisflow activity in the earthquake-affected area will be very high in thefirst5–10years period after the earthquake(Cui et al.2011;Tang et al.2009;Wu et al. 2011).Some studies emphasized that the increased debrisflow activity in the earthquake-affected area will last20–40years(Cui et al.2011;Tang et al.2009).However,it is still an open question because no detailed research was conducted on the temporal occurrence of debrisflows over a long time span after a strong earthquake.Some important questions associated with the activity,triggering thresholds and the magnitude of debrisflows in the earthquake-affected areas,need to be answered.Debrisflows in the range of106–107m3belong to the largest in volume.Only Volcanic debrisflows may have larger sizes than107m3(Jakob2005).Non-volcanic debrisflows with volumes in the range between106and107m3are often associated with glacier or earthquake activity(Du et al.1984;Zhu et al.2000).The giant debrisflow with a volume of3.19106m3in the Wenjia Gully which occurred on August13,2010is a typical example of one related to an earthquake(Fig.1).It was selected to study some issues related to the development of debrisflows in these earthquake-affected areas.Field investigation was conducted on this giant debrisflow to analyze the movement and deposition of the material and to analyze the static and dynamic characteristics.A comparison was made between the triggering conditions of debrisflows before and after the Wenchuan Earthquake.The study attempts tofind a partial answer to some questions regarding the activity,triggering thresholds and magnitude of debrisflows in the earth-quake-affected areas.It will help to get a better understanding of the generation of post-earthquake debrisflows.2The geo-scientific characteristics of the Wenjia Gully and its surroundings Qingping Town,Mianzhu City,Sichuan Province is located in the Sichuan basin char-acterized by a mild semi-tropical moist climate with abundant rainfall and four distin-guishable seasons.Due to the difference in terrain elevation,the vertical change in climate is remarkable.The average annual temperature is15.7°C,and the average annual pre-cipitation in Mianzhu City is1,086.4mm.A maximum precipitation of496.5mm in24hsince 1988occurred on August 15,1995.A maximum rainfall of 49.8mm in 1h and 24.0mm in 10min occurred on August 11,1995.Qingping Town lies 22km north of Mianzhu City.The average annual precipitation is 1,514mm,and the rainfall is concentrated in 3months,from July to September with more than 80%of the annual precipitation.The rainfall characterized by large fluctuations,high intensity and a high rainstorm frequency favors the development of flash floods and debris flows.The Wenjia Gully lies north of Qingping Town,with a catchment area of 7.81km 2and a 5.2-km-long main channel (Fig.2).The gully mouth lies at an altitude of 883m and the highest peak at an altitude 2,402m resulting in a difference in elevation of 1,519m.The average longitudinal gradient of the channel is 467.4%.The deeply incised V-shaped main channel of the Wenjia Gully has steep side walls that provide suitable topographic conditions for debris flow outbreaks.The Wenjia Gully belongs to the tectonic unit of the Taiping Decken and lies within the zone of the footwall of the central Longmen Mountain fault,which is 3.6km away from the Yinxiu-Beichuan fault.The strata exposed in the Wenjia Gully drainage area belong to the Qingping Group (Cambrian period)and the Guanwushan Group (Devonian period).The Wenchuan Earthquake produced the second largest landslide in the Wenjia Gully.A limestone rock mass of 27.59106m 3belonging to the Guanwushan group started to move as a rock slide with a high-speed downward from the top (altitude between 1,780and 2,340m).The sliding block ‘‘shoveled’’both sides of the slope and a part of crushed material with a volume of 209106m remained in the so-called main Deposition Area I (see Fig.2).Another part travelled as a rock avalanche with a high-speed further down-ward,collided against an opposite valley wall,entered the so-called 1300Platform (a platform at 1,300m altitude)and moved further in a SW direction (see Fig.2).Finally,Fig.1The deposition of debris flow material from the Wenjia Gully into the Mianyuan River on August 13,2010and the buried part of Qingping Town (photograph taken on August 16,2010).The Mianyuan River flows from the North (underside picture)to the South (top side of picture).The debris flow of the Wenjia gully flowed from East (left part of picture)to West (right part of picture).The distance between the houses located at the mouth of Wenjia Gully and the houses across the river is about 420mmost part of the rock avalanche material remained in the area between 1,400and 985m altitude and formed the main Deposition Area II with a volume of 309106m 3(Xu et al.2009)(see Figs.2,3).The Deposition Area I lies at an altitude between 1,599and 1,890m.The material is a mix of gravel and boulders consisting of limestone and dolomite.Rocks with a diameter of more than 1m are 30%.Rocks with a grain size of 20–40cm are 40%.The blocks are angular-shaped and unsorted.Sandy soil was deposited on top by flash floods during 2years.The deposits have a medium to strong density (Xu et al.2009).Debris flows were not triggered by flash floods in the Deposion area I because of the relatively large particle sizes and high density of the sediments,gentle gully gradients (\10°)and a small upstream drainage area (Xu et al.2009).Fig.2The catchment of the Wenjia Gully.1Guanwushan group (Devonian),2Qingping group (Cambrian),3main deposition areas,4Dingziya fault,5boundary of landslide source area,6dam,7deposition area of the August 13debris flow,8houses.a Wenjia Gully,b longitudinal profileThe Deposition Area II ,at an altitude between 1,400and 985m,forms the major part of the Wenjia Gully co-seismic landslide deposits.It is also the source area for the debris flow outbreaks after the earthquake.The deposits have a maximum thickness of 150m and consist mainly of broken gray angular-shaped lime stones and brown soil.They have a loose structure on the surface,and the density is increasing with depth.Material with a grain size \1cm is 30%.Material diameter between 1and 20cm is 60%,and the part of the diameter more than 20cm is 10%.The maximum diameter is above 160cm (Xu et al.2009).Undercontinuousandheavyrainfall,thesedepositsin DepositionAreaII aresusceptiblefor entrainment and debris flow development,because of the relatively small grain sizes,loose material density,a steep channel gradient and a much larger upstream catchment area.On September 24,2008,4months after the Wenchuan earthquake,a rainfall of 88mm in 24h triggered a debris flow in the Wenjia Gully,with a total volume of approximately 0.59106m 3(Xu 2010;Xu et al.2009).During the debris flow event,a channel was shaped in Deposition area II with a depth up to 20m and a bottom width up to 15m (SGEC 2010).After this event,many check dams were built to mitigate the debris flow risks.Another debris flow broke out on July 31,2010,with a rainfall amount of 60.2mm within 3h.The total volume of this debris flow was approximately 0.19106m 3.TheFig.3The giant rock slide/debris avalanche in the Wenjia Gully triggered by the Wenchuan Earthquake and the deposition of landslide debris (photograph taken on May 18,2008).a Birdview of the mass movement.The landslide and its deposits are about 2,900m in length,until 1,000m in width,and until 150m in height.The landslide went from east (top side of picture)to west (underside of picture).The photograph is obtained from the public internet site:/d?query=%CE%C4%BC%D2%B9%B5&mood=0&picformat=0&mode=1&di=0&p=40230504&dp=1&did=29.b Landslide deposits near the mouth of the Wenjia Gully.The deposits crossed the Hanqing road over a width 70m and reached a height of 3m.The landslide went from east (top side of picture)to west (underside of picture).The photograph is obtained from the public internet site:/i?ct=503,316,480&z=&tn=baiduimagedetail&word=%C7%E5%C6%BD%20%B5%D8%D5%F0%20%D5%D5%C6%AC%20%B7%A5%C4%BE%B3%A1&in=3078&cl=2&lm=-1&pn=9&rn=1&di=61379368410&ln=1963&fr=ala0&fm=ala0&fmq=1326374813140_R&ic=0&s=0&se=1&sme=0&tab=&width=&height=&face=0&is=&istype=2#pn44&-1&di91492768410&objURLhttp%3A%2F%%2Fpic%2F0%2F11%2F82%2F37%2F11823746_721341.jpg&fromURLhttp%3A%2F%%2Fwynews%2F system%2F2010%2F08%2F17%2F012525545.shtml&W825&H549&T9723&S88&TPjpgconstructed check dams have stopped this debris flow,but unfortunately,some of these dams collapsed and lost their effectiveness (Xu 2010).3MethodologyField investigation was carried out on the giant debris flow which occurred on August 13from September 23–26,2010.Also two debris flows were triggered on August 19and September 18,2010.Fortunately the sizes of these two debris flows were not large compared to the size of the debris flow on August 13,2010.Therefore,the topography of the fan of the WenjiaGully Fig.4The buried houses in the town of Qingping (photograph taken on August 14and August 16,2010,respectively).a Buried houses in the central town.The first floor of the house was buried by the debris flow.The deposition height is about 3m.The river flows from right to left in the picture.b Buried houses in the town.Some houses with two floors were buried by the debris flow.Only the roofs of these houses were still visible.The deposition height measured from the ground of house is about 6m (two floors),and the height measured from the channel bottom to the ground surface is about 9m (three floors),and thus,the maximum deposition height can be more than 15m.The river flows from the left to the right in the picturehad not changed too rmation about the historical debris flow (before Wenchuan Earthquake)in the Wenjia Gully and the flooding of the Mianyuan River was obtained by interviewing 4local citizens,who were older than 50years.The course of rainfall from noon August 12until the morning of August 13could be described by 3local citizens.The deposition area of the debris flow of August 13was investigated with the help of these local citizens.They were able to indicate the range in depth of the deposits not only on the fan of the Wenjia Gully,but also on the plain of the Mianyuan River and in Qingping town.Figure 4shows the debris flow deposits.The depth of deposition of the debris flow was estimated by the height of the floors of the houses (Fig.4a).The maximum thickness in the area of the Mianyuan River was obtained by adding the height of the deposit on the ground of house and the difference in height between the ground and the bottom of the river bed (Fig.4b).The total volume was calculated by the area and depth of the deposit.It is about 3.19106m 3.The gradient of the Mianyuan River was measured in the vicinity of the Wenjia Gully.Also the gradient on the fan of Wenjia Gully below the last broken dam (Fig.5)was measured.Samples for particle size distribution of debris flow material and of the co-seismic landslide source material were taken,and depths of debris flow deposits were measured below the broken dam (Fig.6).Fig.5The broken most down stream dam of the Wenjia gully (photograph taken on August 16).Part of the dam is still visible in this photograph over a length of 198m from left to right .The length of full dam was 215m of which 130m was broken.The dam was 5m in height.The debris flow broke the dam and eroded the channel bottom over a depth of about 13m.The photograph was taken in a downstream directionGrain size measurements of the coarse sediments were conducted on the1,300m Platform(Fig.6).Two channels were formed by theflashfloods and debrisflows in the Deposition area II:the right one was larger and more important than the left one.The source area of the right channel starts from the1,300m Platform further downstream. Fifteen cross sections were selected along this channel to measure the depth,width,the slope and the distance between each section.The lengths of some giant boulders in the channel were measured along three perpendicular axes.The coarsening layer of channel surface selected for the particle size distribution was measured by the number percentage of coarse particle(Fig.6).One cross section was measured in the left channel.The sed-iment volume in the Deposition area II taken away byflashfloods and debrisflows since the time of the Wenchuan Earthquake until September25,2010was estimated by multi-plying the areas of the cross sections with the length of channel.It is about4.869106m3.Rainfall amounts both hourly and cumulative from the noon of August12until the morning of August13were obtained from the two rainfall stations:the Xiaogangjian station that is5km away from the Wenjia Gully to the south,and the Nanmugou station that is7km away from the Wenjia Gully to the south.4The giant debrisflow in the Wenjia Gully of August13,2010Field surveys of Wenjia Gully indicated that severefloods occurred in the Qingping passage of the Mianyuan River,respectively in1934,1964,1992,1995and1998. According to the descriptions of local citizens,theflood in1934was the severest one within80years.There was heavy rainfall andflooding in the drainage area of Mianyuan River;however,in the nearby Wenjia Gully,there was no debrisflow outbreak.Before the Wenchuan Earthquake,potential source material was mainly supplied by rock falls in the catchment.Most of this material was carried away byfloods,but it seemed difficult to accumulate enough material to form a debrisflow.This explains why there were no debris flow outbreaks even under extremely heavy rainstorms.The conditions for debrisflow formation in the Wenjia Gully have been changed by the giant landslide triggered by the Wenchuan Earthquake,which deposited a lot of potential debrisflow material and made it a high-frequency debrisflow gully(Xu et al.2009).Loose sediments,about309106m3,relatively small in size were deposited at the1300Platform and downstream forming the source for debrisflows after subsequent rain storms.Figure7shows the rainfallfigures of the Xiaogangjian and Nanmugou stations,before and after the outbreak of Wenjia Gully debrisflow on August13,2010.The rainfall started on August12,2010,at2000and1900hours according to the records of the Xiangangjian and Nanmugou station,respectively.Both stations recorded heavy rainfall from2300 hours.According to both records,the rainfall nearly stopped at3o’clock in the morning of August13,2010.A peak intensity of70.6mm in1h was registered between midnight and 1o’clock at the Xiaogangjian station.This rainfall pattern was confirmed by an eyewitness in the catchment.According to him,rain started in the Wenjia Gully at2000hours on August12and was extremely intense from midnight to3o’clock when it stopped on August13.The cumulative rainfall in the Wenjia Gully was according to the Xiaogangjian station185.9mm,with a maximum rainfall in1h of70.6mm.According to an eye witness at0015hours,the last dam was completelyfilled up with sediments from theflood and the debrisflow.The foot of the dam was undermined and at0:30 a.m.the dam collapsed.The debrisflow lasted for2.5h and ended at3o’clock when the rain stopped.The right channel was widened at the bottom until90m and deepened until70m(see Fig.8).A new channel was formed at the left site with a maximum bottom width of 4m,and a maximum depth of 30m.The debris flow started to deposit its sediments 150m downstream of the last dam in the Wenjia Gully.The large volume of these deposits with a length of 1,600m and a width between 200and 500m and an average thickness of 7mFig.7Hourly and cumulative rainfall in the Wenjia Gully on August 12–13,2010.Data are from the Xiaogangjian station that is 5km away from Wenjia Gully to the south,and from the Nanmugou station that is 7km to the south a b1300m Platformthe last dam1300m Platformthe last damFig.8The right channels before and after August 13,2010.a Shallow channel (depth and bottom width maximal 20and 15m,respectively)on October 5,2008(SGEC 2010).b Deep channel (depth and bottom width maximal 70and 90m,respectively)blocked the watercourse of the Mianyuan River.The maximum thickness was more than 15m,and the total volume3.19106m3.Seven persons were killed,five persons were missing,39persons injured and479houses buried.The public facilities such as the medical clinic and the school of Qingping were heavily buried.The debrisflow deposits also destroyed farms of more than20ha and interrupted the water supply,power and communication and caused a direct economic loss of430million RMB(Fig.1).The investigated deposits of the debrisflow showed a mixed character of depositing, with obviously a reversed deposition of particle sizes,which points to a viscous rheology of theflow.From a sample taken at the side of the last broken dam,the density of the viscous debrisflow can be calculated on the basis of the particle size distribution(Fig.6) of the debrisflow deposit(Yu2008)(Eq.1):c D¼c0þP2P0:3505c Vð1ÞThe density c D(g/cm3)represents one of the important static parameters of the debris flow.The density c V(=2.0g/cm3)is the minimum density of a viscous debrisflow.The density c0(=1.5g/cm3)is the minimum density of a debrisflow(Yu2008).The per-centage P2is the weight percentage of coarse particles([2mm)in the sediment of the debrisflow.The percentage P05is the weight percentage offine particles(\0.05mm)in the sediment.The volumetric concentration of the sediment in the debrisflow can be calculated from the density of the debrisflow and the density of the solid particles and water(Eq.2):C¼c DÀc wc sÀc wð2Þin which:C=volumetric concentration of sediment in the debrisflow;c s=density of solid particles(=2.7g/cm3);c w=density of water(=1.0g/cm3).The volumetric con-centration in our case is C=0.72with a density c D=2.22g/cm3.The clay(\0.005mm) content is5.5%.In a viscous debrisflow,the yield stress is a key parameter because it controls its mobility.Yu(2010)was able to determine in thefield the yield stress of a debrisflow deposit(deposited on September18,2010)adjacent to the most downstream located broken dam according to Eq.(3):s B¼c D gh sin hð3Þin which:s B=the yield stress of the debrisflow(Pa);g=acceleration of gravity (=9.81m/s2);h=slope angle of the bottom of the deposit(=3.3°),h=maximum thickness of the debrisflow at rest(=8m).The yield stress of this deposit is s B=10,029Pa.The large yield stress of this debrisflow in the Wenjia Gully compared to what is reported in the literature of Quan(2012)as well as the strong ability to resist theflood scouring are reasons why the debrisflow blocked the Mianyuan River.This large yield stress can produce thick deposits in the plain of the Mianyuan River.Given a yield stress s B=10,029Pa and an average gradient of the river bed of0.025,the maximum accu-mulation thickness will be18m according to Eq.3.Observed thicknesses of the deposits may exceed15m.The peak discharge and the total volume of debris are two very important output parameters to evaluate the degree of risk and to prevent debrisflow hazards.The instan-taneous outburstflood,which was formed by the broken dam,can be considered as thepeak discharge of debris fling some geometric characteristics of the broken dam,the peak discharge and the total volume of the debris flow and sediment can be computed according to Eq.4–6(Zeng et al.2009;Zhang et al.2010):Q ¼8ffiffiffig p B 1=4bH 3=2ð4ÞW ¼0:2ÃQTð5ÞW S ¼WC ð6Þin which:Q =the peak discharge of the debris flow (m 3/s);B =the total length of the dam (m);b =the length of the broken dam (m);H =the height of the broken dam (m);W =the total volume of the debris blow (m 3);T =the duration of the debris flow (s);W S =the total volume of sediment in the debris flow (m 3).The calculation results are displayed in Table 1.According to Eq.5,the total volume of the debris flow on August 13is 2.759106m 3.The amount is quite close to the outcome of the field investigation,which resulted in a total volume of 3.19106m 3.Since the volume calculated with Eq.5is relatively precise,the calculated peak discharge of 1,530m 3/s (see Table 1)calculated with Eq.4can be con-sidered as a good estimate.5DiscussionAfter the occurrence of a giant debris flow in the Wenjia Gully on August 13in 2010,two new debris flows were triggered on August 19and September 18,2010in the same gully.The volumes of these two outbreaks 0.39106m 3and 0.179106m 3,respectively,were less than the August 13debris flow.The cumulative rainfall was 72.6and 52mm,respectively,and the maximum rainfall intensity was 31.9mm (in 1h)and 18.5mm (in half an hour),respectively.A comparison of the volume of the original 1,300m platform deposits,supplied by the co-seismic rock slide/debris avalanche,with the amount of material remaining after Sep-tember 18,2010,showed a decrease of 4.869106m 3due to erosion by debris flows and floods during that period.It is,however,only 16%of the total volume of the original landslide material (309106m 3)deposited on May 12,2008.One can therefore expect that in the future,a lot of new debris flows will develop in these loose deposits.A narrow deep channel developed in the 1,300m Platform deposit of the Wenjia Gully,with a maximum width of 20m at the bottom and a minimum width of 13m.The upstream part of the channel has a steep slope angle of about 20°,and the minimum angle is about 10°downstream.Sediments on top of the accumulation platform exposed by the incision of the channel have relatively small particle sizes:more than 60%of the material has a particle size between 20mm and 85mm (see Fig.6,right channel).The slope angleTable 1Calculation of discharge and volume of the August 13,2010debris flow in the Wenjia catchment B (m)b (m)H (m)Q a (m 3/s)T (s)W a (104m 3)W b (104m 3)C W S a (104m 3)21513051,5309,0002753100.72198aCalculated value b Investigated valueof the channel walls has values between 35°and 50°and is not stable.The loose material of these walls can easily collapse into the channel during heavy rainfall blocking the gully (see Fig.9).Therefore,debris flows will be triggered again in the future in the Wenjia Gully during heavy rains,and more severe or even giant debris flows will occur when the Gully is hit by a storm.There was in the last 3years a strong debris flow activity during the rainy season in the Wenjia Gully.The rainfall triggering thresholds of these debris flows are very low com-pared to the maximum rainfall figures measured in the last 23years.In that period before the earthquake,a maximum rainfall of 496.5mm in 24h,49.8mm in 1h and 24mm in 10min was measured.However,no debris flow occurred.Table 2shows the rainfall inthe Fig.9The source area for debris flows in the Wenjia Gully (photographs taken in an upstream direction).The upstream part of the 1300platform with the source area of the right channel at the lower half of the photograph downstream of 1300Platform.The channel is 36m in depth,13m in width at the bottom and 110m in width at the top.The middle part of the source area of the right channel.The largest stone in the channel is 1.4m in length,1.2m in width and 0.6m in heightTable 2Rainfall triggering debris flows in the Wenjia GullyTime Totalrainfall(mm)Maximum 1h rainfall (mm)Triggering rainfall intensity in 1h (mm)Effective cumulative precipitation (mm)Debris September 24,20088830.530.544a Yes July 31,201060.251.751.70b Yes August 13,2010185.970.670.657Yes August 19,201072.631.931.936.3a Yes September 18,20105229290b Yes August 15,1995496.549.849.8248.3a No 100yearsreturnperiod550116116275a No aThe effective cumulative precipitation was presumed to be half of the total rainfall b The effective cumulative precipitation was presumed 0because the triggering rainfall in 1h was more than half of the total rainfallWenjia Gully,including the total rainfall per event,the maximum rainfall in1h,the triggering rainfall intensity in1h and the effective cumulative precipitation(the cumu-lative precipitation before the triggering1h rainfall intensity).The triggering rainfall intensity in1h and effective cumulative precipitation are similar to the rainfall intensity and effective cumulative precipitation reported by Shieh et al.(2009).Figure10shows2 graphs relating rainfall intensity with the effective cumulative precipitation.These2lines depict the rainfall thresholds for the triggering of debrisflows in the Wenjia Gully before and after the Wenchuan Earthquake.The threshold has significantly decreased to18%of its original value after the Wenchuan Earthquake.The reasons for such a significant decrease are:(1)Even under extreme heavy rainstorms no debrisflow outbreaks were observed,because not enough loose material could accumulate in the Gully and(2)The sediment deposited in the Wenjia Gully after the earthquake is relativelyfine and very sensitive to erosion and will easily transform into debrisflows.Severe debrisflows like the one of August13may be triggered in future rainy seasons since still a great deal of the landslide debris is left.The return period for the rainfall on August13is about5years.We expect that in the future under the current conditions,a bit more than half of the sediment of the1300Platform Area will be eroded by debrisflows andfloods.Since over time,conditions for the formation of debrisflows will gradually change a great deal,the activity may decrease in the Wenjia Gully.Tang(2010)stated that the landslides and debrisflow frequency will increase in Wenchuan Earthquake areas within the next5–10years,and then,the activity will be in a recovery phase during 20–40years.It may be longer than20–40years,and therefore,these disasters should be prevented or controlled,which is a challenging and long-term task.6Conclusions1.Before the Wenchuan Earthquake,the supply of loose solid material mainly by rockfalls and regularly carried away byfloods was not enough to store sufficient material。

YUJ-17型制丸机(2)

YUJ-17型制丸机(2)

YUJ-17型制丸机再验证文件验证编号:VM-147-02验证申请及方案的审批表目录1验证的组织和职责2验证方案2.1概述2.2背景资料2.3运行确认2.4性能确认3验证实施记录、结果3.1背景资料、运行确认记录及结论3.2性能确认记录与结论4验证报告5验证合格证书1组织验证1.1组织机构验证负责人↓验证领导小组↓验证工作小组1.2职责1.2.1验证负责人:全面负责验证工作的组织和实施,审批各验证项目、验证方案、验证报告,批准验证合格证书。

1.2.2验证领导小组:负责公司验证管理工作,制定验证计划,确立验证项目,审核验证方案和验证报告,组织协调和监督各项验证工作实施,起草发放验证合格书。

1.2.3验证工作小组:负责验证方案的起草、设计、经批准后组织力量执行。

负责收集、整理验证数据,起草阶段性和最终结论文件,上报验证管理部门及验证负责人批准。

验证工作小组成员及职责2.验证方案2.1概述:“YUJ-17型制丸机”再验证目的在于检验该设备在经过几年的生产使用后,在未来使用中可能出现的各种情况下,有能力稳定地完成一定数量及质量的药丸,达到预期目的。

2.2资料背景2.2.1设备有关的仪器仪表都完成校准工作,有关具体校准证书如下:2.2.2实施本验证方案的相关文件和技术资料一览表:2.3运行确认目的:“YUJ-17型制丸机”在空载时,符合设计要求。

范围:“YUJ-17型制丸机”空载运行。

2.3.1确认制条和伺服电机能正常工作。

方法:接通电源,按“YUJ-17型制丸机标准程序”开启制调电机和伺服电机开关,调速度旋钮。

可接受标准:制条机和搓丸,送丸机均能正常调速,电压、电流表也随之发生变化,数字显示仪表能显示制条机的工作频率。

2.3.2确认减速控制器和测速发电机正常工作方法:当制条机和搓丸机在一定速度运行时,用手左右往上拔动顺条轮。

可接受标准:抬高时搓丸机构自动减速,放低时自动恢复原来速度。

2.4性能确认目的:确认YUJ-17型制丸机在负载运行时,符合设计要求。

2009星历表

2009星历表

2009年星历表时间:2012-10-14 14:29来源:未知作者:来源于网络2009年星历表2009年1月星历表下列是东八时区(UTC/GMT+08:00),即中国所在时区,中午12点时的行星星座位置:R表示行星在逆行(Retrograde)2009年01月01日12:00 太阳:摩羯座10度52分月亮:双鱼座01度48分水星:摩羯座29度41分金星:水瓶座27度25分火星:摩羯座03度38分木星:摩羯座28度57分土星:处女座21度45分R 天王星:双鱼座19度14分海王星:水瓶座22度26分幂王星:摩羯座01度15分凯龙星:水瓶座18度21分谷神星:处女座13度03分婚神星:摩羯座21度46分北交点:水瓶座10度57分R 黑月:射手座29度43分2009年01月02日12:00 太阳:摩羯座11度53分月亮:双鱼座14度12分水星:水瓶座00度56分金星:水瓶座28度31分火星:摩羯座04度23分木星:摩羯座29度11分土星:处女座21度45分R 天王星:双鱼座19度16分海王星:水瓶座22度28分幂王星:摩羯座01度17分凯龙星:水瓶座18度25分谷神星:处女座13度07分婚神星:摩羯座22度10分北交点:水瓶座10度53分R 黑月:射手座29度50分2009年01月03日12:00 太阳:摩羯座12度54分月亮:双鱼座26度52分水星:水瓶座02度07分金星:水瓶座29度36分火星:摩羯座05度09分木星:摩羯座29度25分土星:处女座21度45分R 天王星:双鱼座19度17分海王星:水瓶座22度30分幂王星:摩羯座01度19分凯龙星:水瓶座18度29分谷神星:处女座13度11分婚神星:摩羯座22度33分北交点:水瓶座10度50分R 黑月:射手座29度57分2009年01月04日12:00 太阳:摩羯座13度55分月亮:白羊座09度52分水星:水瓶座03度14分金星:双鱼座00度41分火星:摩羯座05度54分木星:摩羯座29度39分土星:处女座21度45分R 天王星:双鱼座19度19分海王星:水瓶座22度32分幂王星:摩羯座01度22分凯龙星:水瓶座18度33分谷神星:处女座13度14分婚神星:摩羯座22度57分北交点:水瓶座10度47分R 黑月:摩羯座00度03分2009年01月05日12:00 太阳:摩羯座14度56分月亮:白羊座23度16分水星:水瓶座04度15分金星:双鱼座01度46分火星:摩羯座06度39分木星:摩羯座29度53分土星:处女座21度44分R 天王星:双鱼座19度21分海王星:水瓶座22度33分幂王星:摩羯座01度24分凯龙星:水瓶座18度36分谷神星:处女座13度17分婚神星:摩羯座23度21分北交点:水瓶座10度44分R 黑月:摩羯座00度10分2009年01月06日12:00 太阳:摩羯座15度57分月亮:金牛座07度06分水星:水瓶座05度10分金星:双鱼座02度50分火星:摩羯座07度25分木星:水瓶座00度07分土星:处女座21度44分R 天王星:双鱼座19度23分海王星:水瓶座22度35分幂王星:摩羯座01度26分凯龙星:水瓶座18度40分谷神星:处女座13度19分婚神星:摩羯座23度45分北交点:水瓶座10度41分R 黑月:摩羯座00度17分2009年01月07日12:00 太阳:摩羯座16度59分月亮:金牛座21度22分水星:水瓶座05度58分金星:双鱼座03度54分火星:摩羯座08度10分木星:水瓶座00度21分土星:处女座21度43分R 天王星:双鱼座19度25分海王星:水瓶座22度37分幂王星:摩羯座01度28分凯龙星:水瓶座18度44分谷神星:处女座13度21分婚神星:摩羯座24度09分北交点:水瓶座10度38分R 黑月:摩羯座00度23分2009年01月08日12:00 太阳:摩羯座18度00分月亮:双子座06度02分水星:水瓶座06度38分金星:双鱼座04度58分火星:摩羯座08度55分木星:水瓶座00度35分土星:处女座21度42分R 天王星:双鱼座19度27分海王星:水瓶座22度39分幂王星:摩羯座01度30分凯龙星:水瓶座18度48分谷神星:处女座13度23分婚神星:摩羯座24度33分北交点:水瓶座10度34分R 黑月:摩羯座00度30分2009年01月09日12:00 太阳:摩羯座19度01分月亮:双子座21度01分水星:水瓶座07度10分金星:双鱼座06度02分火星:摩羯座09度41分木星:水瓶座00度49分土星:处女座21度42分R 天王星:双鱼座19度29分海王星:水瓶座22度41分幂王星:摩羯座01度32分凯龙星:水瓶座18度52分谷神星:处女座13度24分婚神星:摩羯座24度57分北交点:水瓶座10度31分R 黑月:摩羯座00度37分2009年01月10日12:00 太阳:摩羯座20度02分月亮:巨蟹座06度11分水星:水瓶座07度32分金星:双鱼座07度05分火星:摩羯座10度26分木星:水瓶座01度03分土星:处女座21度41分R 天王星:双鱼座19度31分海王星:水瓶座22度43分幂王星:摩羯座01度34分凯龙星:水瓶座18度56分谷神星:处女座13度25分婚神星:摩羯座25度21分北交点:水瓶座10度28分R 黑月:摩羯座00度43分2009年01月11日12:00 太阳:摩羯座21度03分月亮:巨蟹座21度23分水星:水瓶座07度43分R 金星:双鱼座08度08分火星:摩羯座11度12分木星:水瓶座01度17分土星:处女座21度40分R 天王星:双鱼座19度33分海王星:水瓶座22度45分幂王星:摩羯座01度36分凯龙星:水瓶座19度00分谷神星:处女座13度25分R 婚神星:摩羯座25度45分北交点:水瓶座10度25分R 黑月:摩羯座00度50分2009年01月12日12:00 太阳:摩羯座22度04分月亮:狮子座06度26分水星:水瓶座07度44分R 金星:双鱼座09度10分火星:摩羯座11度58分木星:水瓶座01度31分土星:处女座21度38分R 天王星:双鱼座19度35分海王星:水瓶座22度47分幂王星:摩羯座01度39分凯龙星:水瓶座19度04分谷神星:处女座13度25分R 婚神星:摩羯座26度09分北交点:水瓶座10度22分R 黑月:摩羯座00度57分2009年01月13日12:00 太阳:摩羯座23度05分月亮:狮子座21度13分水星:水瓶座07度32分R 金星:双鱼座10度12分火星:摩羯座12度43分木星:水瓶座01度45分土星:处女座21度37分R 天王星:双鱼座19度38分海王星:水瓶座22度49分幂王星:摩羯座01度41分凯龙星:水瓶座19度08分谷神星:处女座13度25分R 婚神星:摩羯座26度33分北交点:水瓶座10度19分R 黑月:摩羯座01度03分2009年01月14日12:00 太阳:摩羯座24度06分月亮:处女座05度37分水星:水瓶座07度09分R 金星:双鱼座11度14分火星:摩羯座13度29分木星:水瓶座01度59分土星:处女座21度36分R 天王星:双鱼座19度40分海王星:水瓶座22度51分幂王星:摩羯座01度43分凯龙星:水瓶座19度12分谷神星:处女座13度24分R 婚神星:摩羯座26度57分北交点:水瓶座10度15分R 黑月:摩羯座01度10分2009年01月15日12:00 太阳:摩羯座25度08分月亮:处女座19度33分水星:水瓶座06度35分R 金星:双鱼座12度15分火星:摩羯座14度15分木星:水瓶座02度13分土星:处女座21度34分R 天王星:双鱼座19度42分海王星:水瓶座22度53分幂王星:摩羯座01度45分凯龙星:水瓶座19度16分谷神星:处女座13度22分R 婚神星:摩羯座27度22分北交点:水瓶座10度12分R 黑月:摩羯座01度17分2009年01月16日12:00 太阳:摩羯座26度09分月亮:天秤座03度03分水星:水瓶座05度49分R 金星:双鱼座13度16分火星:摩羯座15度00分木星:水瓶座02度27分土星:处女座21度33分R 天王星:双鱼座19度44分海王星:水瓶座22度55分幂王星:摩羯座01度47分凯龙星:水瓶座19度21分谷神星:处女座13度20分R 婚神星:摩羯座27度46分北交点:水瓶座10度09分R 黑月:摩羯座01度23分2009年01月17日12:00 太阳:摩羯座27度10分月亮:天秤座16度06分水星:水瓶座04度53分R 金星:双鱼座14度16分火星:摩羯座15度46分木星:水瓶座02度41分土星:处女座21度31分R 天王星:双鱼座19度47分海王星:水瓶座22度57分幂王星:摩羯座01度49分凯龙星:水瓶座19度25分谷神星:处女座13度18分R 婚神星:摩羯座28度10分北交点:水瓶座10度06分R 黑月:摩羯座01度30分2009年01月18日12:00 太阳:摩羯座28度11分月亮:天秤座28度46分水星:水瓶座03度49分R 金星:双鱼座15度16分火星:摩羯座16度32分木星:水瓶座02度56分土星:处女座21度29分R 天王星:双鱼座19度49分海王星:水瓶座23度00分幂王星:摩羯座01度51分凯龙星:水瓶座19度29分谷神星:处女座13度15分R 婚神星:摩羯座28度34分北交点:水瓶座10度03分R 黑月:摩羯座01度37分2009年01月19日12:00 太阳:摩羯座29度12分月亮:天蝎座11度08分水星:水瓶座02度38分R 金星:双鱼座16度16分火星:摩羯座17度18分木星:水瓶座03度10分土星:处女座21度27分R 天王星:双鱼座19度52分海王星:水瓶座23度02分幂王星:摩羯座01度53分凯龙星:水瓶座19度33分谷神星:处女座13度12分R 婚神星:摩羯座28度59分北交点:水瓶座09度59分R 黑月:摩羯座01度43分2009年01月20日12:00 太阳:水瓶座00度13分月亮:天蝎座23度15分水星:水瓶座01度22分R 金星:双鱼座17度15分火星:摩羯座18度04分木星:水瓶座03度24分土星:处女座21度25分R 天王星:双鱼座19度54分海王星:水瓶座23度04分幂王星:摩羯座01度55分凯龙星:水瓶座19度37分谷神星:处女座13度08分R 婚神星:摩羯座29度23分北交点:水瓶座09度56分R 黑月:摩羯座01度50分2009年01月21日12:00 太阳:水瓶座01度14分月亮:射手座05度12分水星:水瓶座00度05分R 金星:双鱼座18度13分火星:摩羯座18度50分木星:水瓶座03度38分土星:处女座21度23分R 天王星:双鱼座19度57分海王星:水瓶座23度06分幂王星:摩羯座01度57分凯龙星:水瓶座19度42分谷神星:处女座13度04分R 婚神星:摩羯座29度47分北交点:水瓶座09度53分R 黑月:摩羯座01度57分2009年01月22日12:00 太阳:水瓶座02度15分月亮:射手座17度03分水星:摩羯座28度48分R 金星:双鱼座19度11分火星:摩羯座19度36分木星:水瓶座03度52分土星:处女座21度21分R 天王星:双鱼座19度59分海王星:水瓶座23度08分幂王星:摩羯座01度59分凯龙星:水瓶座19度46分谷神星:处女座13度00分R 婚神星:水瓶座00度12分北交点:水瓶座09度50分R 黑月:摩羯座02度03分2009年01月23日12:00 太阳:水瓶座03度16分月亮:射手座28度52分水星:摩羯座27度33分R 金星:双鱼座20度09分火星:摩羯座20度22分木星:水瓶座04度06分土星:处女座21度18分R 天王星:双鱼座20度02分海王星:水瓶座23度10分幂王星:摩羯座02度01分凯龙星:水瓶座19度50分谷神星:处女座12度55分R 婚神星:水瓶座00度36分北交点:水瓶座09度47分R 黑月:摩羯座02度10分2009年01月24日12:00 太阳:水瓶座04度17分月亮:摩羯座10度41分水星:摩羯座26度23分R 金星:双鱼座21度06分火星:摩羯座21度08分木星:星:水瓶座23度12分幂王星:摩羯座02度03分凯龙星:水瓶座19度54分谷神星:处女座12度49分R 婚神星:水瓶座01度01分北交点:水瓶座09度44分R 黑月:摩羯座02度17分2009年01月25日12:00 太阳:水瓶座05度18分月亮:摩羯座22度33分水星:摩羯座25度19分R 金星:双鱼座22度02分火星:摩羯座21度54分木星:水瓶座04度35分土星:处女座21度14分R 天王星:双鱼座20度07分海王星:水瓶座23度15分幂王星:摩羯座02度05分凯龙星:水瓶座19度59分谷神星:处女座12度43分R 婚神星:水瓶座01度25分北交点:水瓶座09度40分R 黑月:摩羯座02度24分2009年01月26日12:00 太阳:水瓶座06度19分月亮:水瓶座04度31分水星:摩羯座24度23分R 金星:双鱼座22度58分火星:摩羯座22度40分木星:水瓶座04度49分土星:处女座21度11分R 天王星:双鱼座20度10分海王星:水瓶座23度17分幂王星:摩羯座02度07分凯龙星:水瓶座20度03分谷神星:处女座12度37分R 婚神星:水瓶座01度50分北交点:水瓶座09度37分R 黑月:摩羯座02度30分2009年01月26日15:54 在太阳:月亮:水瓶座06度29分发生日食, 和北交点的误差度数:03度07分2009年01月27日12:00 太阳:水瓶座07度20分月亮:水瓶座16度37分水星:摩羯座23度34分R 金星:双鱼座23度53分火星:摩羯座23度26分木星:水瓶座05度03分土星:处女座21度08分R 天王星:双鱼座20度12分海王星:水瓶座23度19分幂王星:摩羯座02度08分凯龙星:水瓶座20度07分谷神星:处女座12度30分R 婚神星:水瓶座02度14分北交点:水瓶座09度34分R 黑月:摩羯座02度37分2009年01月28日12:00 太阳:水瓶座08度21分月亮:水瓶座28度52分水星:摩羯座22度55分R 金星:双鱼座24度48分火星:摩羯座24度12分木星:水瓶座05度18分土星:处女座21度05分R 天王星:双鱼座20度15分海王星:水瓶座23度21分幂王星:摩羯座02度10分凯龙星:水瓶座20度12分谷神星:处女座12度23分R 婚神星:水瓶座02度39分北交点:水瓶座09度31分R 黑月:摩羯座02度44分2009年01月29日12:00 太阳:水瓶座09度22分月亮:双鱼座11度17分水星:摩羯座22度24分R 金星:双鱼座25度41分火星:摩羯座24度59分木星:水瓶座05度32分土星:处女座21度03分R 天王星:双鱼座20度18分海王星:水瓶座23度24分幂王星:摩羯座02度12分凯龙星:水瓶座20度16分谷神星:处女座12度16分R 婚神星:水瓶座03度03分北交点:水瓶座09度28分R 黑月:摩羯座02度50分2009年01月30日12:00 太阳:水瓶座10度23分月亮:双鱼座23度54分水星:摩羯座22度02分R 金星:双鱼座26度35分火星:摩羯座25度45分木星:星:水瓶座23度26分幂王星:摩羯座02度14分凯龙星:水瓶座20度20分谷神星:处女座12度08分R 婚神星:水瓶座03度28分北交点:水瓶座09度25分R 黑月:摩羯座02度57分2009年01月31日12:00 太阳:水瓶座11度24分月亮:白羊座06度46分水星:摩羯座21度49分R 金星:双鱼座27度27分火星:摩羯座26度31分木星:水瓶座06度00分土星:处女座20度56分R 天王星:双鱼座20度23分海王星:水瓶座23度28分幂王星:摩羯座02度16分凯龙星:水瓶座20度25分谷神星:处女座12度00分R 婚神星:水瓶座03度52分北交点:水瓶座09度21分R 黑月:摩羯座03度04分2009年2月星历表2009年02月01日12:00 太阳:水瓶座12度25分月亮:白羊座19度53分水星:摩羯座21度44分金星:双鱼座28度19分火星:摩羯座27度17分木星:水瓶座06度14分土星:处女座20度53分R 天王星:双鱼座20度26分海王星:水瓶座23度30分幂王星:摩羯座02度18分凯龙星:水瓶座20度29分谷神星:处女座11度51分R 婚神星:水瓶座04度17分北交点:水瓶座09度18分R 黑月:摩羯座03度10分2009年02月02日12:00 太阳:水瓶座13度26分月亮:金牛座03度18分水星:摩羯座21度47分金星:双鱼座29度10分火星:摩羯座28度04分木星:水瓶座06度28分土星:处女座20度50分R 天王星:双鱼座20度29分海王星:水瓶座23度32分幂王星:摩羯座02度19分凯龙星:水瓶座20度33分谷神星:处女座11度42分R 婚神星:水瓶座04度42分北交点:水瓶座09度15分R 黑月:摩羯座03度17分2009年02月03日12:00 太阳:水瓶座14度27分月亮:金牛座17度00分水星:摩羯座21度57分金星:白羊座00度00分火星:摩羯座28度50分木星:水瓶座06度43分土星:处女座20度47分R 天王星:双鱼座20度32分海王星:水瓶座23度35分幂王星:摩羯座02度21分凯龙星:水瓶座20度38分谷神星:处女座11度32分R 婚神星:水瓶座05度06分北交点:水瓶座09度12分R 黑月:摩羯座03度24分2009年02月04日12:00 太阳:水瓶座15度28分月亮:双子座01度02分水星:摩羯座22度14分金星:白羊座00度50分火星:摩羯座29度36分木星:水瓶座06度57分土星:处女座20度43分R 天王星:双鱼座20度35分海王星:水瓶座23度37分幂王星:摩羯座02度23分凯龙星:水瓶座20度42分谷神星:处女座11度23分R 婚神星:水瓶座05度31分北交点:水瓶座09度09分R 黑月:摩羯座03度30分2009年02月05日12:00 太阳:水瓶座16度29分月亮:双子座15度21分水星:摩羯座22度37分金星:白羊座01度38分火星:水瓶座00度23分木星:水瓶座07度11分土星:处女座20度40分R 天王星:双鱼座20度38分海王神星:处女座11度12分R 婚神星:水瓶座05度56分北交点:水瓶座09度05分R 黑月:摩羯座03度37分2009年02月06日12:00 太阳:水瓶座17度29分月亮:双子座29度56分水星:摩羯座23度05分金星:白羊座02度26分火星:水瓶座01度09分木星:水瓶座07度25分土星:处女座20度36分R 天王星:双鱼座20度41分海王星:水瓶座23度42分幂王星:摩羯座02度26分凯龙星:水瓶座20度51分谷神星:处女座11度02分R 婚神星:水瓶座06度20分北交点:水瓶座09度02分R 黑月:摩羯座03度44分2009年02月07日12:00 太阳:水瓶座18度30分月亮:巨蟹座14度42分水星:摩羯座23度39分金星:白羊座03度12分火星:水瓶座01度56分木星:水瓶座07度39分土星:处女座20度33分R 天王星:双鱼座20度44分海王星:水瓶座23度44分幂王星:摩羯座02度28分凯龙星:水瓶座20度55分谷神星:处女座10度51分R 婚神星:水瓶座06度45分北交点:水瓶座08度59分R 黑月:摩羯座03度50分2009年02月08日12:00 太阳:水瓶座19度31分月亮:巨蟹座29度33分水星:摩羯座24度18分金星:白羊座03度58分火星:水瓶座02度42分木星:水瓶座07度53分土星:处女座20度29分R 天王星:双鱼座20度47分海王星:水瓶座23度46分幂王星:摩羯座02度30分凯龙星:水瓶座21度00分谷神星:处女座10度40分R 婚神星:水瓶座07度10分北交点:水瓶座08度56分R 黑月:摩羯座03度57分2009年02月09日12:00 太阳:水瓶座20度32分月亮:狮子座14度21分水星:摩羯座25度01分金星:白羊座04度43分火星:水瓶座03度29分木星:水瓶座08度07分土星:处女座20度25分R 天王星:双鱼座20度50分海王星:水瓶座23度48分幂王星:摩羯座02度31分凯龙星:水瓶座21度04分谷神星:处女座10度29分R 婚神星:水瓶座07度34分北交点:水瓶座08度53分R 黑月:摩羯座04度04分2009年02月09日22:48 在太阳:水瓶座20度58分-月亮:狮子座20度58分发生月食, 和北交点的误差度数:12度07分2009年02月10日12:00 太阳:水瓶座21度32分月亮:狮子座29度00分水星:摩羯座25度48分金星:白羊座05度26分火星:水瓶座04度15分木星:水瓶座08度21分土星:处女座20度22分R 天王星:双鱼座20度53分海王星:水瓶座23度51分幂王星:摩羯座02度33分凯龙星:水瓶座21度09分谷神星:处女座10度17分R 婚神星:水瓶座07度59分北交点:水瓶座08度50分R 黑月:摩羯座04度10分2009年02月11日12:00 太阳:水瓶座22度33分月亮:处女座13度22分水星:摩羯座26度38分金星:白羊座06度09分火星:水瓶座05度02分木星:水瓶座08度35分土星:处女座20度18分R 天王星:双鱼座20度56分海王神星:处女座10度05分R 婚神星:水瓶座08度24分北交点:水瓶座08度46分R 黑月:摩羯座04度17分2009年02月12日12:00 太阳:水瓶座23度34分月亮:处女座27度23分水星:摩羯座27度32分金星:白羊座06度50分火星:水瓶座05度48分木星:水瓶座08度49分土星:处女座20度14分R 天王星:双鱼座20度59分海王星:水瓶座23度55分幂王星:摩羯座02度36分凯龙星:水瓶座21度17分谷神星:处女座09度53分R 婚神星:水瓶座08度48分北交点:水瓶座08度43分R 黑月:摩羯座04度24分2009年02月13日12:00 太阳:水瓶座24度34分月亮:天秤座10度59分水星:摩羯座28度29分金星:白羊座07度30分火星:水瓶座06度35分木星:水瓶座09度03分土星:处女座20度10分R 天王星:双鱼座21度03分海王星:水瓶座23度57分幂王星:摩羯座02度37分凯龙星:水瓶座21度22分谷神星:处女座09度40分R 婚神星:水瓶座09度13分北交点:水瓶座08度40分R 黑月:摩羯座04度30分2009年02月14日12:00 太阳:水瓶座25度35分月亮:天秤座24度10分水星:摩羯座29度29分金星:白羊座08度09分火星:水瓶座07度22分木星:水瓶座09度17分土星:处女座20度06分R 天王星:双鱼座21度06分海王星:水瓶座24度00分幂王星:摩羯座02度39分凯龙星:水瓶座21度26分谷神星:处女座09度28分R 婚神星:水瓶座09度38分北交点:水瓶座08度37分R 黑月:摩羯座04度37分2009年02月15日12:00 太阳:水瓶座26度36分月亮:天蝎座06度57分水星:水瓶座00度32分金星:白羊座08度47分火星:水瓶座08度08分木星:水瓶座09度31分土星:处女座20度01分R 天王星:双鱼座21度09分海王星:水瓶座24度02分幂王星:摩羯座02度40分凯龙星:水瓶座21度30分谷神星:处女座09度15分R 婚神星:水瓶座10度03分北交点:水瓶座08度34分R 黑月:摩羯座04度44分2009年02月16日12:00 太阳:水瓶座27度36分月亮:天蝎座19度24分水星:水瓶座01度37分金星:白羊座09度23分火星:水瓶座08度55分木星:水瓶座09度45分土星:处女座19度57分R 天王星:双鱼座21度12分海王星:水瓶座24度04分幂王星:摩羯座02度42分凯龙星:水瓶座21度35分谷神星:处女座09度02分R 婚神星:水瓶座10度27分北交点:水瓶座08度31分R 黑月:摩羯座04度50分2009年02月17日12:00 太阳:水瓶座28度37分月亮:射手座01度33分水星:水瓶座02度44分金星:白羊座09度58分火星:水瓶座09度42分木星:水瓶座09度59分土星:处女座19度53分R 天王星:双鱼座21度15分海王星:水瓶座24度07分幂王星:摩羯座02度43分凯龙星:水瓶座21度39分谷神星:处女座08度48分R 婚神星:水瓶座10度52分北交点:水瓶座08度27分R 黑月:摩羯座04度57分2009年02月18日12:00 太阳:水瓶座29度37分月亮:射手座13度31分水星:水瓶座03度54分金星:白羊座10度32分火星:水瓶座10度28分木星:水瓶座10度13分土星:处女座19度49分R 天王星:双鱼座21度19分海王星:水瓶座24度09分幂王星:摩羯座02度45分凯龙星:水瓶座21度44分谷神星:处女座08度35分R 婚神星:水瓶座11度17分北交点:水瓶座08度24分R 黑月:摩羯座05度04分2009年02月19日12:00 太阳:双鱼座00度38分月亮:射手座25度22分水星:水瓶座05度05分金星:白羊座11度04分火星:水瓶座11度15分木星:水瓶座10度26分土星:处女座19度44分R 天王星:双鱼座21度22分海王星:水瓶座24度11分幂王星:摩羯座02度46分凯龙星:水瓶座21度48分谷神星:处女座08度21分R 婚神星:水瓶座11度42分北交点:水瓶座08度21分R 黑月:摩羯座05度10分2009年02月20日12:00 太阳:双鱼座01度38分月亮:摩羯座07度10分水星:水瓶座06度18分金星:白羊座11度34分火星:水瓶座12度02分木星:水瓶座10度40分土星:处女座19度40分R 天王星:双鱼座21度25分海王星:水瓶座24度13分幂王星:摩羯座02度47分凯龙星:水瓶座21度52分谷神星:处女座08度08分R 婚神星:水瓶座12度06分北交点:水瓶座08度18分R 黑月:摩羯座05度17分2009年02月21日12:00 太阳:双鱼座02度39分月亮:摩羯座19度00分水星:水瓶座07度33分金星:白羊座12度03分火星:水瓶座12度49分木星:水瓶座10度54分土星:处女座19度36分R 天王星:双鱼座21度28分海王星:水瓶座24度16分幂王星:摩羯座02度49分凯龙星:水瓶座21度57分谷神星:处女座07度54分R 婚神星:水瓶座12度31分北交点:水瓶座08度15分R 黑月:摩羯座05度24分2009年02月22日12:00 太阳:双鱼座03度39分月亮:水瓶座00度56分水星:水瓶座08度49分金星:白羊座12度31分火星:水瓶座13度36分木星:水瓶座11度08分土星:处女座19度31分R 天王星:双鱼座21度32分海王星:水瓶座24度18分幂王星:摩羯座02度50分凯龙星:水瓶座22度01分谷神星:处女座07度40分R 婚神星:水瓶座12度56分北交点:水瓶座08度11分R 黑月:摩羯座05度30分2009年02月23日12:00 太阳:双鱼座04度40分月亮:水瓶座13度02分水星:水瓶座10度07分金星:白羊座12度56分火星:水瓶座14度22分木星:水瓶座11度21分土星:处女座19度27分R 天王星:双鱼座21度35分海王星:水瓶座24度20分幂王星:摩羯座02度51分凯龙星:水瓶座22度05分谷神星:处女座07度26分R 婚神星:水瓶座13度20分北交点:水瓶座08度08分R 黑月:摩羯座05度37分2009年02月24日12:00 太阳:双鱼座05度40分月亮:水瓶座25度20分水星:水瓶座11度27分金星:白羊座13度20分火星:水瓶座15度09分木星:水瓶座11度35分土星:处女座19度22分R 天王星:双鱼座21度38分海王星:水瓶座24度22分幂王星:摩羯座02度53分凯龙星:水瓶座22度10分谷神星:处女座07度12分R 婚神星:水瓶座13度45分北交点:水瓶座08度05分R 黑月:摩羯座05度44分2009年02月25日12:00 太阳:双鱼座06度41分月亮:双鱼座07度51分水星:水瓶座12度48分金星:白羊座13度42分火星:水瓶座15度56分木星:水瓶座11度48分土星:处女座19度17分R 天王星:双鱼座21度42分海王星:水瓶座24度25分幂王星:摩羯座02度54分凯龙星:水瓶座22度14分谷神星:处女座06度58分R 婚神星:水瓶座14度10分北交点:水瓶座08度02分R 黑月:摩羯座05度50分2009年02月26日12:00 太阳:双鱼座07度41分月亮:双鱼座20度36分水星:水瓶座14度10分金星:白羊座14度02分火星:水瓶座16度43分木星:水瓶座12度02分土星:处女座19度13分R 天王星:双鱼座21度45分海王星:水瓶座24度27分幂王星:摩羯座02度55分凯龙星:水瓶座22度18分谷神星:处女座06度44分R 婚神星:水瓶座14度35分北交点:水瓶座07度59分R 黑月:摩羯座05度57分2009年02月27日12:00 太阳:双鱼座08度41分月亮:白羊座03度35分水星:水瓶座15度34分金星:白羊座14度20分火星:水瓶座17度30分木星:水瓶座12度15分土星:处女座19度08分R 天王星:双鱼座21度48分海王星:水瓶座24度29分幂王星:摩羯座02度56分凯龙星:水瓶座22度22分谷神星:处女座06度30分R 婚神星:水瓶座14度59分北交点:水瓶座07度56分R 黑月:摩羯座06度04分2009年02月28日12:00 太阳:双鱼座09度42分月亮:白羊座16度49分水星:水瓶座16度59分金星:白羊座14度36分火星:水瓶座18度17分木星:水瓶座12度29分土星:处女座19度03分R 天王星:双鱼座21度52分海王星:水瓶座24度31分幂王星:摩羯座02度57分凯龙星:水瓶座22度27分谷神星:处女座06度16分R 婚神星:水瓶座15度24分北交点:水瓶座07度52分R 黑月:摩羯座06度10分2009年3月星历表2009年03月01日12:00 太阳:双鱼座10度42分月亮:金牛座00度15分水星:水瓶座18度25分金星:白羊座14度50分火星:水瓶座19度04分木星:水瓶座12度42分土星:处女座18度59分R 天王星:双鱼座21度55分海王星:水瓶座24度34分幂王星:摩羯座02度58分凯龙星:水瓶座22度31分谷神星:处女座06度02分R 婚神星:水瓶座15度49分北交点:水瓶座07度49分R 黑月:摩羯座06度17分2009年03月02日12:00 太阳:双鱼座11度42分月亮:金牛座13度52分水星:水瓶座19度52分金星:白羊座15度02分火星:水瓶座19度50分木星:水瓶座12度56分土星:处女座18度54分R 天王星:双鱼座21度59分海王星:水瓶座24度36分幂王星:摩羯座02度59分凯龙星:水瓶座22度35分谷神星:处女座05度48分R 婚神星:水瓶座16度13分北交点:水瓶座07度46分R 黑月:摩羯座06度24分2009年03月03日12:00 太阳:双鱼座12度42分月亮:金牛座27度41分水星:水瓶座21度20分金星:白羊座15度12分火星:水瓶座20度37分木星:水瓶座13度09分土星:处女座18度49分R 天王星:双鱼座22度02分海王星:水瓶座24度38分幂王星:摩羯座03度00分凯龙星:水瓶座22度39分谷神星:处女座05度34分R 婚神星:水瓶座16度38分北交点:水瓶座07度43分R 黑月:摩羯座06度30分2009年03月04日12:00 太阳:双鱼座13度42分月亮:双子座11度40分水星:水瓶座22度50分金星:白羊座15度19分火星:水瓶座21度24分木星:水瓶座13度22分土星:处女座18度45分R 天王星:双鱼座22度05分海王星:水瓶座24度40分幂王星:摩羯座03度01分凯龙星:水瓶座22度43分谷神星:处女座05度21分R 婚神星:水瓶座17度03分北交点:水瓶座07度40分R 黑月:摩羯座06度37分2009年03月05日12:00 太阳:双鱼座14度42分月亮:双子座25度47分水星:水瓶座24度21分金星:白羊座15度24分火星:水瓶座22度11分木星:水瓶座13度35分土星:处女座18度40分R 天王星:双鱼座22度09分海王星:水瓶座24度42分幂王星:摩羯座03度02分凯龙星:水瓶座22度48分谷神星:处女座05度07分R 婚神星:水瓶座17度28分北交点:水瓶座07度37分R 黑月:摩羯座06度44分2009年03月06日12:00 太阳:双鱼座15度43分月亮:巨蟹座10度01分水星:水瓶座25度53分金星:白羊座15度27分火星:水瓶座22度58分木星:水瓶座13度49分土星:处女座18度35分R 天王星:双鱼座22度12分海王星:水瓶座24度45分幂王星:摩羯座03度03分凯龙星:水瓶座22度52分谷神星:处女座04度54分R 婚神星:水瓶座17度52分北交点:水瓶座07度33分R 黑月:摩羯座06度50分2009年03月07日12:00 太阳:双鱼座16度43分月亮:巨蟹座24度22分水星:水瓶座27度26分金星:白羊座15度27分R 火星:水瓶座23度45分木星:水瓶座14度02分土星:处女座18度30分R 天王星:双鱼座22度16分海王星:水瓶座24度47分幂王星:摩羯座03度04分凯龙星:水瓶座22度56分谷神星:处女座04度40分R 婚神星:水瓶座18度17分北交点:水瓶座07度30分R 黑月:摩羯座06度57分2009年03月08日12:00 太阳:双鱼座17度43分月亮:狮子座08度44分水星:水瓶座29度00分金星:白羊座15度24分R 火星:水瓶座24度32分木星:水瓶座14度15分土星:处女座18度25分R 天王星:双鱼座22度19分海王。

2009年2月3日的五行是什么

2009年2月3日的五行是什么

2009年2月3日的五行是什么
2009年2月3日的五行是什么八字:己丑丙寅丙申辛卯
五行:土土火木火金金木
纳音:霹雷火炉中火山下火松柏木
本命属牛,霹雷火命。

五行【缺水】,日主天干为【火】,生于【冬季】。

【同类火木,异类水金土】
2009年2月3日出生的命理分析古灵精怪的他,他本身就有着很多的未知数,甚至连自己都搞不懂。

十二星中的他,最为感性爱胡思乱想,当然要是他原愿意也是可以冷静思考,只要他愿意,所以忍耐寂寞的程度也是中等,一切全看心情。

热情率直且乐于助人的他,有时候却会表现出不近人情的冷漠一面。

他个性开朗活泼,但也有点奇特,很多时候做的事情行为相当奇葩,平常的生活也是疯疯癫癫的。

瓶座他可能不是最深沉的,但往往会给人聪明或学术型的印象,再加上他好恶分明,不喜欢虚伪做作,又好奇心强善于钻研,往往是直言不讳的新新人类的代表。

2009年2月3日出生的运势分析很爱假仙的他多半不是
原木,总是装成一副不懂他在说什么的样子好让自己可以趁机脱逃。

人们皆以为他理性而且花心,其实他多有着一颗潮湿的心——他族爱情来得很早,却不善于表达,因此他最初喜欢的异性往往会离他而去,却被他族深藏心底十几年甚至几十年。

恋爱中的他,不是一般的大他主义,他不仅极少设身他地地为女友着想,而且他为了证明女友是自己的人,还会对女友颐指气使呼来喝去,让女友沦为他的宠物,等终于有一天女友服服帖帖了,他又嫌人家没有枯燥乏味了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五星小学2008年德育工作计划
一、德育工作计划的总体要求
以党的十七大精神为指导,深入贯彻落实科学发展观,坚持育人为本,德育为先,把立德树人作为教育的根本任务。

针对我乡小学生身心成长的特点奥运会的历史,积极探索新形势下德育工作的新思路、新途径、新方法,教育和引导学生树立正确的理想信念和人生观、价值观、世界观,努力提高我乡小学生的基础文明素质,为即将建设的新城子乡九年一贯制学校做好思想和素质准备。

二、工作措施
以爱国主义为核心,深化民族精神教育;以迎接奥运会为契机,培养学生良好的道德品质和文明行为;以培训为重点,提高德育队伍素质;以创新为手段,搭建德育工作新平台。

(一)落实党的十七大精神奥运会起源,抓好“三进”工作
抓好党的十七大精神进教材、进课堂、进学生头脑的工作。

按照教育部《关于中小学学习贯彻党的十七大精神的通知》的要求,落实好“三进”工作。

结合我乡实际情况和教育局的要求,重点开展以下三方面工作:
1.开设形势教育大课堂。

我乡各校要面向学生,利用品德与生活、品德与社会课教学、班队会等时间,开设形势教育课,集中向学生宣传党的十七大精神。

各校要充分利用“农远”等教育平台奥运会的由来,将有关课时列入年度教学计划,完成形势教育内容。

2.开展校园主题教育活动。

充分利用校园广播、校园宣传栏等,营造学习氛围。

通过开展时事讲座、征文、小记者调查、座谈等活动,深化学生对十七
大精神的领会与认识。

积极参与中国教育电视台等媒体开展的宣传教育活动,展示宣传教育活动成果。

3.开展民族精神教育月活动。

9月份组织开展民族精神教育月活动。

通过加强学生以爱国主义为核心的民族精神教育和以改革创新为核心的时代精神教育鼓舞斗志奥运会开幕式,用社会主义荣辱观引领风尚。

(二)以迎奥运为契机,抓好社会文明教育
结合“迎奥运、讲文明、树新风”活动,2009年进一步深化文明养成教育工作。

在学生中大力倡导社会公德意识、社会文明意识教育,把贯彻落实《守则》和《规范》作为学校的一项常规性工作,常抓不懈。

具体开展以下教育活动:
1.“奥运火炬校校传”活动。

3月初开学以后奥运会会旗,按照市、区教育局的有关要求,统一开展火炬传递活动,让学生亲身投入到迎奥运的活动中,亲身体验奥运火炬传递的感受,营造喜迎奥运、争当城市主人的氛围,增强学生的民族自豪感。

2.“感动校园的好孩子”评选活动。

以迎奥运、讲文明为主题,以文明向上、孝敬父母、诚实守信、学有所长为主要内容,以小学生为主要对象,评选出我乡的沈北新区“感动校园的好孩子”。

(三)加强德育队伍培训,提高德育队伍素质
加大德育队伍培训的力度。

要求我乡的有关人员,按时、按要求参加专家、学者讲学活动和班主任培训等工作;参加德育主任和班主任工作论坛。

通过班主任教师外出学习,开阔视野,提高管理水平。

(四)突出德育特色,深化感恩教育
为了进一步深化感恩教育,巩固传统美德教育的成果,突出德育特色,以“感恩、关爱、责任”为主题,各校继续开展以感恩社会、感恩自然、感恩他人为重点的感恩教育,培养学生关心他人、服务社会、忠于祖国的优良品质。

(五)改革创新德育工作,创建德育工作示范校
为充分调动学校工作的积极性和创造性,创新德育载体,提升德育工作的质量,打造德育精品工程,从2009年起,沈北新区教育局将开展德育工作示范校的创建活动。

围绕五大主题开展德育示范校创建活动。

我们根据自己的特点,确定和谐校园建设为我校的项目。

通过三年的努力,形成学校特色,力争在“十一五”期间,形成自己的特色示范项目。

(六)坚持做好常规工作,促进德育工作规范化
1.针对学生特点,在学生开心、教师舒心、家长放心、社会满意的前提下,组织开展丰富多彩的假期实践活动。

2.做好优秀德育工作者、文明学生、优秀学生和优秀班级的评选活动。

做到严格评选过程、评选条件,保证评选质量。

3、搞好德育调研。

完成《新城子乡小学班主任队伍建设情况调研》和《新城子乡小学生教育成本调研》2项调研工作。

4、信息上报和稿件上交工作。

德育处和教科研室要做好《沈阳教育》《新城子教育》的稿件上交工作,党办信息、德育信息的上报工作。

5、完成好校长室临时交办的工作。

相关文档
最新文档