材料力学公式汇总(2)

合集下载

大学课程材料力学公式(全)

大学课程材料力学公式(全)

第一章 绪论和基本概念应力(全应力):2P 正应力:σ 切应力:τ 222τσ+=P线应变:l l dx du //x ∆==ε 切应变:角度的改变量α只受单向应力或纯剪的单元体:胡克:εσ⋅=E 剪切胡克:r G ⋅=τ ()E G =+ν12 第二章 杆件的内力分析 轴力N F :拉力为正扭矩T :右手螺旋,矢量方向与截面外法线方向一致为正 剪力S F :顺时针方向转动为正外力偶矩:()m N N P ·/9549m = ()m N N P ·/7024m = (K N /马力) 第三章 截面图形的几何性质 静矩:⎰=Ax ydA S 若C 为形心[质心]:A S XC/y =组合截面图形形心坐标计算:∑∑===ni i ni cii C A y A y 11/惯性矩:⎰=Ax dA y I 2惯性积:⎰=Axy xydA I 包括主轴在内的任意一对正角坐标0=xy I对O 点的极惯性矩:()y x AAP I I dA y x dA I +=+==⎰⎰222ρ 实心圆:32/224d I I I P y x π=== 圆环:()64/-12244απD I I I P y x === D d /=α平行四边/三角形:12/3bh I x =平行移轴公式:A b I I xc x ⋅+= A ab I I xcyc xy ⋅+= 转轴公式(逆转α):()()αα2s i n 2/2c o s2/1xy y x y x x I I I I I I --++=()()αα2sin 2/2cos 2/1xy y x y x y I I I I I I +--+= ()αα2cos 2sin 11xy y x y x I I I I +-= 求主轴:000=y x I ()y x xy I I I --=/22tan 0α()[]2//2a r c t a n 0y x xy I I I --=α主惯性矩:()22min max 00x 4212xy y xy x y I I II I I I I I +-±+==第四章 杆件的应力与强度计算斜面上的正应力:ασσα2cos = 切应力:2/2sin αστα=许用应力:脆性材料[]b b n /σσ= 塑性材料:[]s s n /σσ=或[]s n /5.0σσ= 拉压杆强度条件:[]σσ≤=A F N /max max 校核强度:[]()[]%5%100/max ≤⨯-σσσ 剪切强度条件:[]ττ≤=s A F /s 挤压强度条件:[]bs bs bs A F σσ≤=/bs圆轴扭转切应力:p I T /ρτρ⋅= []ττ≤=⋅=p p W T I R T //m a x 梁的弯曲:中性层曲率:()z EI M //1=ρ 等直梁在弯曲时的正应力:z I M /y =σz z W M I M //y m a x m a x ==σ矩形截面梁的弯曲切应力:()()z s z z s I y h F bI S F 2/4//22*-==τ在中性轴处:()A F bh F s s 2/32/3max ==τ 最大切应力均在中性轴上工字型截面梁:腹板:()d I S F z z s /*=τ 翼缘:()δτz z s I S F /*1=圆形截面:A F s 3/4max =τ 薄壁环形截面:A F s /2max =τ切应力强度条件:[][]ττ≤=d I S F z z s /*max max max 理想设计:[][]c t c t σσσσ//max max = 许用拉应力:[]t σ 许用压应力:[]c σ 两垂直平面内弯曲组合截面梁:z N M N I y M A F //max max +=+=σσσ偏心压缩(拉伸):截面上任意点:22max /-/-/-z F y F M N i y Fy i z Fz A F =+=σσσ2y y Ai I = 0=σ时中性轴截距:F y y y i a /2-=第五章 杆件的变形与刚度计算轴向拉(压)杆的变形:l l /∆=ε b b /'∆=ε νεε-=' ∑===∆ni ii i Ni N A E lF EA l F l 1圆轴扭转变形:()P GI Tl /=ϕ [在弹性范围之内]刚度条件:()[]rad GI l T P '/max 'max ϕϕ≤= ()[]m GI l T P /'/180max 'max ︒≤⋅⋅=ϕπϕ梁的弯曲变形:挠度:w ()x M ''=E I w θEI EIw =' ()⎰⎰++=D Cx dxdy x M EIw支承处:0=w 悬梁臂:0=w ,0=θ 连接处:21w w =,21θθ= 梁的刚度条件:[]l w l w //max ≤ []w w ≤max []θθ≤m a x第六章 应力状态分析 任意斜截面上的应力:()()ατασσσσσα2sin 2/2cos 2/xy y x y x--++=()ατασστα2cos 2/2sin xy y x +-=αασσσσ-+=︒+y x 90 ααττ-=︒+90应力圆:22min max 22xy yx y x τσσσσσσ+⎪⎪⎭⎫ ⎝⎛-±+= y x xy σστα--=22tan 0三向应力状态:()2/31max σστ-=应力应变关系:()E /90︒+-=ααανσσε ()E /9090ααανσσε-=︒+︒+ G /αβαβτγ=第七章 强度理论及其应用 强度理论:断裂失效:11r σσ=()3212r σσνσσ+-=屈服失效:313r σσσ-= ()()()[]2/2132322214r σσσσσσσ-+-+-=轴向拉压弯扭组合变形:[]στσσ≤+=223r 4[]στσσ≤+=224r 3仅圆轴弯扭:[]σσ≤+=Z W T M /223r []σσ≤+=Z W T M /5.70224r ,Z P W W 2=薄壁圆筒强度:横截面上的正应力:()24/'σσ==t PD 纵截面上的正应力:()12/''σσ==t PD 03=σ第八章 压杆稳定临界应力:欧拉公式:()()222222cr /λπμπμπσEi l E A l EI A F cr ==== A I i /= 利用欧拉公式前提条件:P P E σπλλ/2=≥不满足时用经验公式:λσb a -=cr211cr λσb a -=压杆的稳定性计算:安全因素法:st cr cr n F F n ≥==σσ//折剪因素法:[][]st cr st n A F //σσσϕσ==≤= 第九章 能量方法杆件应变能:轴向拉伸或压缩:()⎰==∆==l N N dx EAx F EA lF l F w V 22222ε扭转:()⎰====l P P dx GI x T GI l T T w V 22222ϕε弯曲:()⎰====l dx EIx M EI l m m w V 22222θε 组合变形: 2/2/2/θϕεεm T l F dV V l++∆==⎰。

材料力学基本概念及计算公式

材料力学基本概念及计算公式

材料力学基本概念及计算公式材料力学是研究物质在外力作用下的力学性质和变形规律的学科,主要研究物质的力学性质,包括弹性、塑性、稳定性等。

下面将介绍材料力学的基本概念及计算公式。

1.弹性力学:(1) 弹性模量(Young’s modulus):材料承受应力时的应变程度。

计算公式:E = σ / ε,其中 E 为弹性模量,σ 为应力,ε 为应变。

(2) 剪切模量(Shear modulus):材料抵抗剪切变形的能力。

计算公式:G = τ/ γ,其中 G 为剪切模量,τ 为剪切应力,γ 为剪切应变。

(3) 泊松比(Poisson’s ratio):材料在受力作用下沿一方向延伸时,在垂直方向上收缩的比例。

计算公式:ν = -ε_y / ε_x,其中ν 为泊松比,ε_x 为纵向应变,ε_y 为横向应变。

2.稳定性分析:(1) 屈曲载荷(Buckling load):结构在受压作用下失去稳定性的临界载荷。

计算公式:F_cr = π²EI / L²,其中 F_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,L 为结构长度。

(2) 欧拉稳定性理论(Euler’s stability theory):用于分析长杆(例如柱子)的稳定性。

计算公式:P_cr = π²EI / (KL)²,其中P_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,K 为杆件端部支撑系数,L 为杆件长度。

3.塑性力学:(1) 屈服点(yield point):材料开始发生塑性变形的点,也是材料在加强阶段的上线。

计算公式:σ_y = F_y / A_0,其中σ_y 为屈服点应力,F_y 为屈服点力,A_0 为断面积。

(2) 韧性(toughness):材料吸收能量的能力,一般由应力-应变曲线上的面积表示。

计算公式:T = ∫σ dε,其中 T 为韧性,σ 为应力,ε 为应变。

4.疲劳力学:(1) 疲劳极限(fatigue limit):材料在循环应力作用下出现裂纹的最大应力。

材料力学公式完全版

材料力学公式完全版

材料力学公式完全版材料力学是研究材料在外力作用下的力学性质和变形行为的一门学科。

在材料力学中,有很多的公式被广泛应用于计算和分析材料的力学行为。

下面是一些常见的材料力学公式:1. 应力(Stress):应力是单位面积上的力,通常用σ 表示,计算公式为:σ = F / A,其中 F 是力的大小,A 是面积。

2. 应变(Strain):应变是物体在受力作用下发生变形的程度,通常用ε 表示,计算公式为:ε = ΔL / L,其中ΔL 是长度的变化量,L 是初始长度。

3. 弹性模量(Young's modulus):弹性模量是衡量材料抵抗变形的能力的物理量,通常用 E 表示,计算公式为:E = σ / ε。

4. 剪切应力(Shear stress):剪切应力是垂直方向上的切应力,通常用τ 表示,计算公式为:τ = F / A,其中 F 是切力的大小,A 是垂直于切力方向的面积。

5. 剪切应变(Shear strain):剪切应变是物体在受剪切力作用下的变形程度,通常用γ 表示,计算公式为:γ = tanθ,其中θ 是切变角度。

6. 泊松比(Poisson's ratio):泊松比是衡量材料横向收缩相对于纵向伸长的程度的物理量,通常用ν 表示,计算公式为:ν = -ε横 /ε纵。

7. 屈服强度(Yield strength):屈服强度是材料开始产生塑性变形的临界点,通常用σy 表示。

8. 极限强度(Ultimate strength):极限强度是材料在破坏前能承受的最大应力,通常用σu 表示。

9. 可延性(Elonagation):可延性是材料在断裂前的拉伸变形量,通常用δ 表示,计算公式为:δ = (L - L0) / L0。

10. 硬度(Hardness):硬度是材料抵抗划伤或压痕的能力,常用的硬度测量方法有布氏硬度、维氏硬度等。

11. 柯尔摩根关系(Hooke's law):柯尔摩根关系是描述弹性固体在小应变下的力学行为的线性关系,计算公式为:σ = Eε,其中 E 是杨氏模量,σ 是应力,ε 是应变。

材料力学公式大全

材料力学公式大全

材料力学公式大全材料力学是研究材料在外力作用下的力学性能和变形规律的学科,是材料科学的重要组成部分。

在工程实践中,材料力学公式是工程师们设计和分析结构、零部件等工程问题时必不可少的工具。

本文将为大家介绍一些常用的材料力学公式,希望能对大家的工程实践有所帮助。

1. 应力公式。

在材料力学中,应力是指单位面积上的力的大小,通常用σ表示,其公式为:\[ \sigma = \frac{F}{A} \]其中,F为受力,A为受力面积。

2. 应变公式。

应变是指材料在受力作用下产生的变形程度,通常用ε表示,其公式为:\[ \varepsilon = \frac{\Delta L}{L} \]其中,ΔL为长度变化量,L为原始长度。

3. 弹性模量公式。

弹性模量是材料抵抗形变的能力,通常用E表示,其公式为:\[ E = \frac{\sigma}{\varepsilon} \]4. 剪切应力公式。

在材料力学中,剪切应力是指垂直于受力方向的力,通常用τ表示,其公式为:\[ \tau = \frac{F}{A} \]其中,F为受力,A为受力面积。

5. 剪切应变公式。

剪切应变是指材料在受剪切力作用下产生的变形程度,通常用γ表示,其公式为:\[ \gamma = \frac{\Delta x}{h} \]其中,Δx为位移,h为原始长度。

6. 泊松比公式。

泊松比是材料在拉伸或压缩时,在垂直方向上的收缩或膨胀程度的比值,通常用ν表示,其公式为:\[ \nu = -\frac{\varepsilon_{y}}{\varepsilon_{x}} \]其中,εy为垂直方向的应变,εx为拉伸或压缩方向的应变。

7. 弯曲应力公式。

在材料力学中,弯曲应力是指材料在受弯曲力作用下的应力,其公式为:\[ \sigma = \frac{M \cdot c}{I} \]其中,M为弯矩,c为截面到中性轴的距离,I为惯性矩。

8. 弯曲应变公式。

弯曲应变是指材料在受弯曲力作用下产生的变形程度,其公式为:\[ \varepsilon = \frac{M \cdot c}{E \cdot I} \]其中,M为弯矩,c为截面到中性轴的距离,E为弹性模量,I为惯性矩。

材料力学常用公式

材料力学常用公式

材料力学常用公式材料力学是研究材料在受力下的力学性质和变形行为的学科,它在工程领域中有着广泛的应用。

常用的材料力学公式包括应力、应变、热应变、应力-应变关系等。

下面是一些常用的材料力学公式的介绍:1. 应力(Stress)公式:应力定义为单位面积上的力,常用公式为:σ=F/A其中,σ为应力,F为受力,A为受力面积。

2. 应变(Strain)公式:应变定义为材料单位长度的变化,常用公式为:ε=ΔL/L其中,ε为应变,ΔL为长度变化,L为原始长度。

3. 霍克定律(Hooke's Law):霍克定律描述了弹性固体在小应变下应力和应变的线性关系,常用公式为:σ=Eε其中,σ为应力,ε为应变,E为材料的弹性模量。

4. 应力-应变关系(Stress-Strain Relationship):应力-应变关系用来描述材料在受力下的变形行为,通常用应力与应变的曲线来表示。

其中弹性阶段遵循霍克定律,塑性阶段存在应力和应变不再线性相关的情况。

5.等效应力(von Mises Stress):等效应力是衡量材料在多轴载荷作用下发生破坏的临界值,常用公式为:σ_eq = √(σ_x^2 + σ_y^2 + σ_z^2 - σ_xσ_y - σ_yσ_z -σ_zσ_x + 3τ^2)其中,σ_eq为等效应力,σ_x、σ_y、σ_z为主应力,τ为主应力间的剪应力。

6. 拉伸强度(Tensile Strength):拉伸强度是材料在拉伸状态下破坏前的最大抗拉应力,常用公式为:σ_u = P_max / A_0其中,σ_u为拉伸强度,P_max为最大拉伸力,A_0为原始横截面积。

7. 弯曲应力(Bending Stress):当材料受弯曲作用时,所产生的应力称为弯曲应力,常用公式为:σ_b=(M*y)/I其中,σ_b为弯曲应力,M为弯矩,y为材料中点位置,I为截面惯性矩。

8. 剪切应力(Shear Stress):剪切应力是材料在剪切载荷作用下的应力,常用公式为:τ=F/A其中,τ为剪切应力,F为剪切力,A为剪切面积。

考研材料力学公式

考研材料力学公式

考研材料力学公式
考研材料力学公式较多,部分公式如下:
1. 横截面积AA矩形=bh。

2. A圆环=π 4 \fracπ44π(D2-d2)。

3. A薄壁圆环≈2πδ。

4. Sy=Azc为形心,可用Sy=Azc来计算静矩。

5. yc三角=h 3 \frac h33h为形心。

6. 惯性积Iyz= ∫AyzdA,可正可负,y、z轴相互垂直,若有一个是对称轴,则Iyz=0。

7. 惯性矩Iz= ∫Ay2dAIzC为形心主惯性矩,且Iz≥ Izc。

8. 极惯性矩Iρ= ∫Aρ2dAIρ= ∫A(y2+z2)dA = Iy+Iz。

9. 主惯性轴无主惯性轴为一对正交坐标轴,且截面对它们的惯性积为0。

10. 主惯性矩Iz截面图形对主惯性轴的惯性矩 iz= 由I = i2A所得,iz圆=d 4 \frac d44d。

11. 平行移轴公式Iz= Izc+ a2Aa为z轴到中性轴的距离,对惯性积也有
Iyz=Iyzc+abA 用于等截面圆轴。

12. 圆环截面惯性矩I z = 1 64 I_z=\frac{1}{64}Iz=641πD4(1-α4)。

如需更多考研材料力学公式,建议查阅考研教辅或咨询考研机构老师获取。

材料力学公式大全

材料力学公式大全

材料力学公式大全一、轴向拉伸与压缩。

1. 内力 - 轴力(N)- 截面法:N = ∑ F_外(外力沿杆件轴线方向的代数和)2. 应力 - 正应力(σ)- σ=(N)/(A),其中A为杆件的横截面面积。

3. 变形 - 轴向变形(Δ l)- 胡克定律:Δ l=(NL)/(EA),其中L为杆件的原长,E为材料的弹性模量。

4. 应变 - 线应变(varepsilon)- varepsilon=(Δ l)/(l)二、剪切。

1. 内力 - 剪力(V)- 截面法:V=∑ F_外(垂直于杆件轴线方向外力的代数和)2. 应力 - 切应力(τ)- τ=(V)/(A)(A为剪切面面积)3. 剪切胡克定律。

- τ = Gγ,其中G为材料的切变模量,γ为切应变。

三、扭转。

1. 内力 - 扭矩(T)- 截面法:T=∑ M_外(外力偶矩的代数和)2. 应力 - 切应力(τ)- 对于圆轴扭转:τ=(Tρ)/(I_p),在圆轴表面ρ = R时,τ_max=(TR)/(I_p),其中R为圆轴半径,I_p=(π D^4)/(32)(对于实心圆轴,D为直径),I_p=(π(D^4 - d^4))/(32)(对于空心圆轴,d为内径)。

3. 变形 - 扭转角(φ)- φ=(TL)/(GI_p)(单位为弧度)四、弯曲内力。

1. 剪力(V)和弯矩(M)- 截面法:V=∑ F_外(垂直于梁轴线方向外力的代数和),M=∑ M_外(外力对所求截面形心的力矩代数和)- 剪力图和弯矩图的绘制规则:- 无荷载段:V为常数,M为一次函数(斜直线)。

- 均布荷载段:V为一次函数(斜直线),M为二次函数(抛物线)。

- 集中力作用处:V图有突变(突变值等于集中力大小),M图有折角。

- 集中力偶作用处:V图无变化,M图有突变(突变值等于集中力偶大小)。

五、弯曲应力。

1. 正应力(σ)- 对于梁的纯弯曲:σ=(My)/(I_z),其中y为所求点到中性轴的距离,I_z为截面对中性轴z的惯性矩。

材料力学公式

材料力学公式

材料力学公式材料力学公式是材料学研究领域中很重要的部分,运用合适的公式能够预测、描述和解释许多材料学现象。

材料力学公式是基于物理和数学原理建立的,有助于我们了解材料的性质和行为。

在这篇文章中,我们将介绍几个常见的材料力学公式,以及它们在材料学中的应用。

1. 晶体弹性常数公式晶体弹性常数通常是材料物理学的一个关键方面,它们描述了材料变形和应力之间的关系。

一些常见的晶体弹性常数公式包括:(1)杨氏模量(E)公式:E = σ/ε其中,E是杨氏模量,σ是单轴应力,ε是单轴应变。

(2)剪切模量(G)公式:G = τ/γ其中,G是剪切模量,τ是剪切应力,γ是剪切应变。

(3)泊松比(ν)公式:ν = -εx/εy其中,εx是沿着x轴的应变,εy是沿着y轴的应变。

这些公式能够帮助我们计算材料在特定应力下的变形和应变。

例如,杨氏模量是一个很重要的性质,因为我们可以通过它来计算材料的应力应变曲线。

对于一些高坚度的材料,剪切模量比杨氏模量更适合用于描述材料的特定弹性行为。

2. 应力公式应力公式是指计算在材料内部力的作用下材料产生的应力的公式。

例如,一些常见的应力公式包括:(1)等效应力(σeq)公式:σeq = ((σ1 - σ2)² + (σ2 - σ3)² + (σ3 - σ1)²)½其中,σ1、σ2和σ3分别是应力的主应力。

(2)应力分布公式:σ = F/A其中,σ是应力,F是力,A 是受力面积。

(3)柯西应力公式:σij = cijklεkl其中,σij 是第i个面上的第j个分量的应力,εkl 是第k个面上的第l个分量的应变,cijkl是材料的柯西弹性常数。

3. 强度和韧度公式强度和韧度公式涉及到材料的机械性能,是材料学中很重要的概念。

一些常见的强度和韧度公式包括:(1)屈服强度公式:σy = Fy/A其中,σy是材料的屈服强度,Fy是达到屈服点所需要的力,A是受力面积。

材料力学公式总结

材料力学公式总结

材料力学公式总结材料力学是研究材料在外力作用下的力学性能和变形规律的学科,它在工程领域中具有重要的应用价值。

在材料力学的研究中,我们常常需要运用一些公式来描述材料的力学性能和变形规律。

下面,我将对材料力学中常用的一些公式进行总结和归纳,以便大家更好地掌握和运用这些公式。

1. 应力和应变的关系公式。

在材料力学中,应力和应变是两个基本的物理量。

它们之间的关系可以用应力-应变关系公式来描述。

一般而言,线弹性材料的应力和应变之间满足线性关系,即应力等于弹性模量乘以应变。

其数学表达式为:σ = Eε。

其中,σ表示应力,E表示弹性模量,ε表示应变。

2. 杨氏模量的计算公式。

杨氏模量是描述材料抗拉伸和压缩能力的重要参数,它可以用来表征材料的硬度和刚度。

对于各向同性材料,杨氏模量的计算公式为:E = (σ/ε)。

其中,E表示杨氏模量,σ表示拉伸或压缩的应力,ε表示相应的应变。

3. 泊松比的计算公式。

泊松比是描述材料在拉伸或压缩时横向收缩或膨胀的程度的物理量,它可以用来表征材料的变形性能。

泊松比的计算公式为:ν = -ε横/ε轴。

其中,ν表示泊松比,ε横表示横向应变,ε轴表示轴向应变。

4. 屈服强度的计算公式。

材料的屈服强度是描述材料开始发生塑性变形的应力值,它可以用来评估材料的抗拉伸能力。

一般而言,材料的屈服强度可以通过材料的拉伸试验来测定,其计算公式为:σy = Fy/A0。

其中,σy表示屈服强度,Fy表示屈服点的拉伸力,A0表示原始横截面积。

5. 断裂韧性的计算公式。

断裂韧性是描述材料抗断裂能力的物理量,它可以用来评估材料的抗破坏能力。

一般而言,材料的断裂韧性可以通过材料的冲击试验来测定,其计算公式为:Kc = Yσ√(πa)。

其中,Kc表示断裂韧性,Y表示材料的弹性模量,σ表示应力,a表示裂纹长度。

以上就是我对材料力学中常用的一些公式进行的总结和归纳。

希望这些公式能够对大家在材料力学的学习和工程实践中有所帮助。

材料力学公式大全pdf

材料力学公式大全pdf

材料力学公式大全pdf
材料力学公式大全pdf
本文主要介绍材料力学中的相关公式,方便学习和应用。

以下是材料力学公式大全pdf:
1. 应力公式:
应力(σ)=受力(F)/截面积(A)
2. 应变公式:
应变(ε)=变形(ΔL)/初始长度(L)
3. 餘弦定理:
c² = a² + b² - 2ab cosC
4. 正弦定理:
a / sinA =
b / sinB =
c / sinC
其中A,B,C为三角形的内角。

5. 费马原理:
任何在保持稳定的条件下遵循最短路线的点在路线最短。

6. 钢材强度公式:
σs = Fs / A
其中,σs表示钢材的强度,Fs表示钢材的极限拉力,A表示截面积。

7. 钢材弹性模量公式:
Es = σs / εs
其中,Es表示钢材的弹性模量,σs表示钢材的强度,εs表示钢材的应变。

8. 抗弯公式:
M = σ x I / y
其中,M表示悬臂梁的弯矩,σ表示应力,I表示截面惯性矩,y 为距截面中性轴的距离。

9. 泊松比公式:
ν = -ε₂ / ε₁
其中,ν为泊松比,ε₁为轴向应变,ε₂为横向应变。

10. 拉力公式:
F = A x ε x E
其中,F表示拉力,A表示截面积,ε表示应变,E为材料的弹性模量。

以上就是材料力学公式大全pdf。

希望能对大家学习和应用材料力学有所帮助。

《材料力学》公式汇总

《材料力学》公式汇总

《材料力学》公式汇总材料力学是研究材料的力学性质和性能的一门学科。

它主要研究材料力学性质的宏观表现以及材料在外界作用下的应力和应变的关系。

以下是一些常见的材料力学公式的汇总。

1.应力和应变的关系应力是指单位面积上的力,可以通过以下公式来计算:σ=F/A其中,σ表示应力,F表示作用在材料上的力,A表示力作用的面积。

应变是指物体长度、体积或形状的变化与原始尺寸之比,可以通过以下公式来计算:ε=ΔL/L其中,ε表示应变,ΔL表示长度的变化量,L表示原始长度。

2.弹性模量弹性模量描述了固体材料在受力后恢复原始形态的能力。

可以通过以下公式计算:E=σ/ε其中,E表示弹性模量,σ表示应力,ε表示应变。

3.轴向应力轴向应力是指作用在物体纵向的应力,可以通过以下公式计算:σ₁=F/A₀其中,σ₁表示轴向应力,F表示作用在材料上的力,A₀表示初始横截面积。

4.泊松比泊松比描述了材料在一方向受拉伸时,在垂直方向上的收缩。

可以通过以下公式计算:v=-ε₂/ε₁其中,v表示泊松比,ε₁表示纵向应变,ε₂表示横向应变。

5.剪切模量剪切模量描述了固体材料抵抗剪切变形的能力。

可以通过以下公式计算:G=τ/γ其中,G表示剪切模量,τ表示剪切应力,γ表示剪切应变。

6. Hooke定律Hooke定律描述了线性弹性材料在小应力下的应力-应变关系:σ=Eε其中,σ表示应力,E表示弹性模量,ε表示应变。

7.横向应力横向应力是指作用在物体横向的应力,可以通过以下公式计算:σ₂=vσ₁其中,σ₂表示横向应力,v表示泊松比,σ₁表示轴向应力。

8.斯特莱克斯公式斯特莱克斯公式描述了固体材料的切变模量和弹性模量的关系:G=E/2(1+v)其中,G表示剪切模量,E表示弹性模量,v表示泊松比。

9.薄壁压力容器的应力对于薄壁压力容器,其轴向应力和周向应力可以通过以下公式计算:σ₈=Pd/2tσ₆=Pd/4t其中,σ₈表示轴向应力,σ₆表示周向应力,P表示内压力,d表示容器的直径,t表示容器的壁厚。

材料力学基本公式

材料力学基本公式

材料力学基本公式材料力学是研究物质在外力作用下的力学性能和变形规律的学科,是工程学科中的基础学科之一、在材料力学中,有许多基本公式被广泛应用于解决各种工程问题。

以下是材料力学中的一些基本公式。

1.杨氏模量公式:杨氏模量是材料刚度的度量,表示单位应变下单位应力的比例关系。

杨氏模量(E)的计算公式为:E = stress/strain其中stress为应力,strain为应变。

2.材料的胡克定律:胡克定律描述了物质在小应变条件下的弹性变形。

根据胡克定律,应力与应变之间的关系可以表示为:stress = E * strain其中E为杨氏模量。

3.线性弹性模量公式:线性弹性模量也是材料的刚度度量指标,用于描述材料在线弹性阶段的变形特性。

计算线性弹性模量(E)的公式为:E = (stress2 - stress1) / (strain2 - strain1)其中stress1和strain1为初始应力和应变,stress2和strain2为最终应力和应变。

4.泊松比公式:泊松比是一个描述材料在拉伸或压缩过程中沿着一维方向收缩或膨胀的程度的无量纲物理常数。

泊松比(v)的计算公式为:v = - (lateral strain) / (axial strain)其中lateral strain为横向应变,axial strain为轴向应变。

5.拉伸和压缩弹性模量公式:拉伸弹性模量(E)和压缩弹性模量(Ec)是描述材料在拉伸和压缩条件下的弹性变形能力的指标。

计算拉伸弹性模量的公式为:E = (stress2 - stress1) / (strain2 - strain1)计算压缩弹性模量的公式为:Ec = (stress2 - stress1) / (strain2 - strain1)其中stress1和strain1为初始应力和应变,stress2和strain2为最终应力和应变。

6.剪切模量公式:剪切模量用于描述材料在剪切应力作用下的抗剪切能力,是衡量材料的剪切刚度的指标。

材料力学常用基本公式

材料力学常用基本公式

材料力学常用基本公式材料力学是研究材料在外力作用下的变形和破坏行为的学科。

在材料力学中,有一些常用的基本公式被广泛应用于力学分析和设计中。

以下是一些常用的基本公式:1. 应力(Stress)公式:应力是材料内部单位面积上的力。

常用的应力公式包括:- 正应力(Normal Stress)公式:σ = F/A,其中σ表示应力,F 表示作用力,A表示面积。

- 切应力(Shear Stress)公式:τ = F/A,其中τ表示切应力。

2. 应变(Strain)公式:应变是材料的形变量,用来描述材料的变形程度。

常用的应变公式包括:-线性应变公式:ε=(L-L0)/L0,其中ε表示应变,L表示受力前的长度,L0表示受力后的长度。

- 非线性应变公式:ε = ln(L/L0),其中ln表示自然对数。

3. 弹性模量(Young's Modulus)公式:弹性模量是描述材料在弹性变形范围内的刚性程度的量。

常用的弹性模量公式为:E=σ/ε,其中E表示弹性模量,σ表示应力,ε表示应变。

4. 剪切模量(Shear Modulus)公式:剪切模量是描述材料在剪切应力下的变形程度的量。

常用的剪切模量公式为:G=τ/ε,其中G表示剪切模量,τ表示切应力,ε表示剪切应变。

5. 泊松比(Poisson's Ratio)公式:泊松比是描述材料在拉伸或压缩过程中横向变形和纵向变形之间的比例关系的量。

常用的泊松比公式为:ν=-ε横向/ε纵向,其中ν表示泊松比,ε横向表示横向应变,ε纵向表示纵向应变。

6. 弹性能量(Elastic Energy)公式:弹性能量是材料在弹性变形过程中所具有的能量,可通过力和变形之间的关系求得。

常用的弹性能量公式为:U=(1/2)Fε,其中U表示弹性能量,F表示作用力,ε表示应变。

7. 延伸长度(Elongation)公式:延伸长度是材料拉伸变形后的长度增加量,可通过应变和长度之间的关系求得。

材料力学的基本计算公式

材料力学的基本计算公式

材料力学的基本计算公式TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-材料力学的基本计算公式外力偶矩计算公式(P功率,n转速)1.弯矩、剪力和荷载集度之间的关系式2.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)3.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)4.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)5.6.纵向线应变和横向线应变7.8.泊松比9.胡克定律10.受多个力作用的杆件纵向变形计算公式11.承受轴向分布力或变截面的杆件,纵向变形计算公式12.轴向拉压杆的强度计算公式13.许用应力,脆性材料,塑性材料14.延伸率15.截面收缩率16.剪切胡克定律(切变模量G,切应变g )17.拉压弹性模量E、泊松比和切变模量G之间关系式18.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆19.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)20.圆截面周边各点处最大切应力计算公式21.扭转截面系数,(a)实心圆(b)空心圆22.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式23.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式24.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或25.等直圆轴强度条件26.塑性材料;脆性材料27.扭转圆轴的刚度条件或28.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,29.平面应力状态下斜截面应力的一般公式,30.平面应力状态的三个主应力, ,31.主平面方位的计算公式32.面内最大切应力33.受扭圆轴表面某点的三个主应力,,34.三向应力状态最大与最小正应力 ,35.三向应力状态最大切应力36.广义胡克定律37.38.四种强度理论的相当应力39.一种常见的应力状态的强度条件,40.组合图形的形心坐标计算公式,41.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式42.截面图形对轴z和轴y的惯性半径43.,44.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)45.纯弯曲梁的正应力计算公式46.横力弯曲最大正应力计算公式47.矩形、圆形、空心圆形的弯曲截面系数,,48.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)49.矩形截面梁最大弯曲切应力发生在中性轴处50.工字形截面梁腹板上的弯曲切应力近似公式51.轧制工字钢梁最大弯曲切应力计算公式52.圆形截面梁最大弯曲切应力发生在中性轴处53.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处54.弯曲正应力强度条件55.几种常见截面梁的弯曲切应力强度条件56.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,57.梁的挠曲线近似微分方程58.梁的转角方程59.梁的挠曲线方程60.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式61.偏心拉伸(压缩)62.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,63.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为64.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式65.弯拉扭或弯压扭组合作用时强度计算公式66.剪切实用计算的强度条件67.挤压实用计算的强度条件68.等截面细长压杆在四种杆端约束情况下的临界力计算公式69.压杆的约束条件:(a)两端铰支μ=l70.(b)一端固定、一端自由μ=271.(c)一端固定、一端铰支μ=72.(d)两端固定μ=73.压杆的长细比或柔度计算公式,74.细长压杆临界应力的欧拉公式75.欧拉公式的适用范围76.压杆稳定性计算的安全系数法77.压杆稳定性计算的折减系数法78.关系需查表求得。

材料力学常用公式

材料力学常用公式

- 1 - 材料力学常用公式1、胡克定律:EA l F l N ⋅=∆或εσ⋅=E 2、杆件轴向拉、压强度条件:[]σσ≤=⋅AFN nax max 3、剪切强度条件:[]ττ≤=AF S;挤压强度条件:[]bc bc bc bc F A σσ=≤4、外力偶矩计算公式:min/||||9550||r kWm N n P M =⋅5、圆轴扭转切应力:pI T ρτρ⋅=;扭转强度条件:[]max max t T W ττ=≤6、圆轴扭转变形:p I G lT ⋅⋅=ϕ;扭转刚度条件:[]θπθ≤⋅=0max max 180p GI T7、极惯性矩:Dd,)1(32;32444=-==ααππD I D I p p 空心实心; 扭转截面系数:)1(16;16433αππ-==D W D W p p 空心实心8、梁弯曲正应力:z I yM ⋅=σ;弯曲正应力强度条件:[]σσ≤=zW M max max 9、惯性矩:1212;)1(64;6433444hb I bh I D I D I y z z z ==-==或矩形空心圆实心圆αππ 10、弯曲截面系数:66)1(32;3222433hb W bh W ;D W D W y z z z ==-==或矩形空心圆实心圆αππ11、拉压-弯曲组合变形强度条件:[]][,max max ,max max ,c zN c t z N t W M A F W M A F σσσσ≤-=≤+=12、圆轴弯扭组合变形强度条件:[][]σσσσ≤+=≤+=zr z r W T M W T M 22422375.0或13、压杆临界应力公式:欧拉公式()2222;cr cr EI EF L ππσλμ==;直线公式λσb a cr -= 14、柔度i l μλ=;惯性半径:AI i = 15、压杆的稳定条件:[]cr cr st st A Fn n F F σ==≥ 16、平面应力状态下斜截面应力的一般公式 cos 2sin 222sin 2cos 22x y x yαxy x y xy σσσσσσσαατατατα+-⎧=+-⎪⎪⎨-⎪=+⎪⎩- 2 -17、最大最小正应力:18、主平面方位计算公式:19、面内最大切应力: 20、20、三向应力状态最大切应力:21、胡克定律:21四大强度理论:max 13()2τσσ=-max min 2x y σσσσ+⎫=±⎬⎭132σσσ⎫=±⎬⎭()11231E εσμσσ=-+⎡⎤⎣⎦()22311E εσμσσ=-+⎡⎤⎣⎦()33121Eεσμσσ=-+⎡⎤⎣⎦,11[]r σσσ=≤,313[]r σσσσ=-≤,2123()[]r σσμσσσ=-+≤,4[]r σσ=≤。

材料力学基本概念和公式

材料力学基本概念和公式

材料力学基本概念和公式材料力学是研究材料在受到外力作用下的变形和破坏行为的一门学科。

下面将简要介绍材料力学的基本概念和公式。

1.伸长量(ε):伸长量是材料在受到拉伸力作用下的长度变化与原始长度之比,可以表示为ε=ΔL/L0,其中ΔL是材料受力后的长度变化,L0是材料的原始长度。

2.弹性模量(E):弹性模量是材料表征其抵抗拉伸或压缩变形能力的物理量,定义为材料受应力作用下的应力与应变之比,可以表示为E=σ/ε,其中σ是材料受到的应力。

3.屈服强度(σy):屈服强度是材料在受力过程中产生塑性变形的应力阈值,物理上可以看作是材料从弹性到塑性变形的过程。

屈服强度可以表示为σy=Fy/A,其中Fy是材料引起塑性变形的应力,A是材料的横截面积。

4.断裂强度(σf):断裂强度是材料在受到应力作用下发生破坏的最大阈值,表示材料的抗拉抗压能力。

断裂强度可以表示为σf=Ff/A,其中Ff是材料破坏时受到的应力。

5. 牛顿第二定律(F = ma):材料力学中的牛顿第二定律与经典物理学中的类似,描述了材料在受到外力作用下的加速度与作用力之间的关系。

6.雪松方程(σ=Eε):雪松方程是描述线性弹性材料受力变形关系的基本公式,其中σ为材料受到的应力,E为弹性模量,ε为材料的应变。

7.线性弹性材料的胡克定律(σ=Eε):对于线弹性材料来说,应力和应变之间的关系可以遵循胡克定律。

即材料的应力是弹性模量和应变的乘积。

8.悬臂梁挠度公式(δ=(Fl^3)/(3EI)):悬臂梁的挠度可以通过公式计算,其中F为外力作用在梁上的力,l为悬臂梁的长度,E为横截面的弹性模量,I为横截面关于挠曲轴的转动惯量。

9.铰接梁挠度公式(δ=(Fl^3)/(48EI)):铰接梁的挠度可以通过公式计算,其中F为外力作用在梁上的力,l为铰接梁的长度,E为横截面的弹性模量,I为横截面关于挠曲轴的转动惯量。

10.压缩应力(σc):压缩应力是材料在受到压缩力作用下的应力,可以表示为σc=F/A,其中F为材料受到的压缩力。

(完整版)材料力学公式汇总,推荐文档

(完整版)材料力学公式汇总,推荐文档

( y
x )
6、三向应力状态的广义胡克定律
z 0
xy G xy
x
1 E
x
y
z
x, y, z
xy
xy G
xy, yz, zx
2
7、强度理论
(1) r1 1 1
r2 1 2 3
(2) r3 1 3
r4
1 2
1
2 2
2
3 2
cnax
③max
QmaxSz* max Iz b
5、斜弯曲
max
Mz Wz
My Wy
max
6、拉(压)弯组合
max
NM A Wz
max
t max
N Mz A Iz
y t max
t
c max
Mz Iz
yc max
N A
c
注意:“5”与“6”两式仅供参考
7、圆轴弯扭组合:①第三强度理论
3、弯曲
(1)积分法: EIy'' (x) M (x) EIy' (x) EI (x) M (x)dx C EIy(x) [ M (x)dx]dx Cx D
(2)叠加法: f P1, P2 …= f P1 f P2 +…, P1, P2 = P1 P2 …
(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)
12
五、动载荷(只给出冲击问题的有关公式)
能量方程 T V U
冲击系数
Kd 1
1 2h st
(自由落体冲击)
Kd
六、截面几何性质
1、 惯性矩(以下只给出公式,不注明截面的形状)
I P

材料力学公式大全

材料力学公式大全

材料力学公式大全1. 应力(stress)公式:应力是单位面积上的力,常用符号表示为σ。

在一维情况下,应力公式可以表示为:σ=F/A其中,σ是应力,F是作用力,A是力作用的面积。

2. 应变(strain)公式:应变是用于描述物体形变的量,常用符号表示为ε。

在一维情况下,应变公式可以表示为:ε=ΔL/L0其中,ε是应变,ΔL是变形长度,L0是原始长度。

3. 弹性模量(elastic modulus)公式:弹性模量是衡量材料对外力作用下变形能力的指标,常用符号表示为E。

在一维情况下,弹性模量公式可以表示为:E=σ/ε其中,E是弹性模量,σ是应力,ε是应变。

4. 屈服强度(yield strength)公式:屈服强度是材料在变形过程中开始发生塑性变形的临界应力,常用符号表示为σy。

屈服强度公式可以表示为:σy=Fy/A其中,σy是屈服强度,Fy是屈服点的作用力,A是力作用的面积。

5. 拉伸强度(tensile strength)公式:拉伸强度是材料在拉伸过程中最大的抗拉应力,常用符号表示为σts。

拉伸强度公式可以表示为:σts = Fmax / A其中,σts是拉伸强度,Fmax是最大作用力,A是力作用的面积。

6. 断裂强度(fracture strength)公式:断裂强度是材料在破坏前的最大抗拉应力,常用符号表示为σf。

断裂强度公式可以表示为:σf=Ff/A其中,σf是断裂强度,Ff是破坏点的作用力,A是力作用的面积。

以上是一些常用的材料力学公式,这些公式在材料力学的研究和实际应用中有着重要的作用。

通过对这些公式的使用和理解,我们可以更好地了解材料在受力下的性能和行为,对于材料的设计和实际应用有着重要的指导意义。

材料力学基本公式

材料力学基本公式

材料力学基本公式(1)外力偶矩计算公式(P功率,n转速)(2)弯矩、剪力和荷载集度之间的关系式(3)轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力,横截面面积A,拉应力为正)(4)轴向拉压杆斜截面上的正应力与切应力计算公式(夹角α从x轴正方向逆时针转至外法线的方位角为正)(5)纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)(6)纵向线应变和横向线应变,(7)泊松比(8)胡克定律(9)受多个力作用的杆件纵向变形计算公式(10)承受轴向分布力或变截面的杆件,纵向变形计算公式(11)轴向拉压杆的强度计算公式(12)延伸率(13)截面收缩率(14)剪切胡克定律(切变模量G,切应变g )(15)拉压弹性模量E、泊松比和切变模量G之间关系式(16)圆截面对圆心的极惯性矩()(17)圆轴扭转时横截面上任一点切应力计算公式(扭矩,所求点到圆心距离)(18)圆截面周边各点处最大切应力计算公式(19)扭转截面系数,(a)实心圆(b)空心圆(20)圆轴扭转角与扭矩、杆长l、扭转刚度的关系式(21)等直圆轴强度条件(22)扭转圆轴的刚度条件:或(23)平面应力状态下斜截面应力的一般公式(24)平面应力状态的三个主应力(25)主平面方位的计算公式(26)平面内剪应力最大值和最小值(27)三向应力状态最大与最小正应力,(28)三向应力状态最大切应力(29)广义胡克定律(30)四种强度理论的相当应力(31)一种常见的应力状态的强度条件,(32)组合图形的形心坐标计算公式, ,(33)平面图形对x轴,y轴,z轴的静矩, ,(34)任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式(35)截面图形对z轴和y轴的惯性半径,(36)矩形、圆形、空心圆形对中性轴的惯性矩, ,(37)平行移轴公式(形心轴zc与平行轴z1的距离为a,图形面积为A)(38)纯弯曲梁的正应力计算公式(39)矩形、圆形、空心圆形的弯曲截面系数,,(40)几种常见截面的最大弯曲切应力计算公式(为横截面上的剪力;b为截面宽度;为整个横截面对中性轴的惯性矩;为截面上距中性轴为y的横线以外部分截面对中性轴的静矩)(41)矩形截面梁最大弯曲切应力发生在中性轴处(42)弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,(43)梁的转角方程(M(x)为弯矩方程)(44)梁的挠曲线方程(45)斜弯曲:在任意界面上任一点(y,z)处的正应力(,分别为主惯性平面y,z 内的弯矩)(46)偏心拉伸(压缩)(47)弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式(M为弯矩,M x为扭矩)(48)圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为(49)弯拉扭或弯压扭组合作用时强度计算公式(50)剪切实用计算的强度条件(51)挤压实用计算的强度条件(52)等截面细长压杆在四种杆端约束情况下的临界力计算公式(欧拉公式)(53)压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.5(54)压杆的长细比或柔度计算公式,(55)细长压杆临界应力的欧拉公式(56)欧拉公式的适用范围(57)直线公式(58)直线公式最小柔度值(59)直线公式适用范围,的压杆称为短粗杆或小柔度杆,短粗杆的临界应力(60)超过比例极限时压杆的临界力(61)压杆稳定性计算的安全系数法。

材料力学的基本计算定律公式

材料力学的基本计算定律公式

材料力学的基本计算定律公式材料力学是研究材料在外力作用下的力学性质和变形规律的科学,其中包含了许多基本的计算定律和公式。

以下是材料力学中一些重要的计算定律和公式。

1. 胡克定律(Hooke's Law):胡克定律是描述弹性固体在小变形范围内的应力-应变关系的一种基本定律。

根据胡克定律,弹性固体在弹性变形时应变与应力是线性相关的。

数学表达式为:σ=Eε其中,σ是材料的应力,E是材料的弹性模量,ε是材料的应变。

2.应力-应变关系:除了胡克定律之外,还有一些其他的应力-应变关系,如材料的压缩应力-应变关系、材料的剪切应力-应变关系等。

这些关系可以用不同的数学公式表示,例如材料的体积弹性模量、剪切弹性模量、泊松比等参数。

3.应力:应力是指单位面积内的力,通常用σ表示。

常见的应力有拉应力、压应力和剪应力等。

数学表达式为:σ=F/A其中,F是作用在材料上的力,A是力作用的面积。

4.应变:应变是材料单位长度变化的量,可表示为物体的变形程度。

应变分为线性应变和非线性应变两种情况。

线性应变通常用ε表示。

数学表达式为:ε=δL/L其中,δL是材料长度的变化量,L是材料的初始长度。

5.材料的延性和脆性:材料的延性和脆性是表示材料的破坏形式的两个概念。

延性材料在受力作用下会发生一定程度的塑性变形,能够吸收较大的能量,如钢材。

脆性材料在受力作用下会发生突然的断裂,能量吸收能力较差,如陶瓷材料。

6.餘弦定律:余弦定律是描述力的分解情况的定律之一,适用于平面力系统。

根据余弦定律,力的合力可以通过分解成两个分力在水平和垂直方向上来计算。

数学表达式为:F² = F₁² + F₂² - 2F₁F₂cosθ其中,F₁和F₂是力的分力,θ是两个力之间的夹角。

7.力的平衡:力的平衡是指在静止状态下,物体上的合力和合力矩均为零的状态。

根据力的平衡,我们可以得到一些重要的公式,如受力条件和杆件的力平衡等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学重点及其公式材料力学的任务变形固体的基本假设外力分类:(1)强度要求;(2)刚度要求;(3)稳定性要求。

(1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。

表面力、体积力;静载荷、动载荷。

内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2 )在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。

(3)根据平衡条件,列平衡方程,求解截面上和内力。

应力:P Hm —E 兰正应力、切应力。

应变。

杆件变形的基本形式(1)拉伸或压缩;(2)剪切;(3)扭转;静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷变化的载荷为动载荷。

失效原因:脆性材料在其强度极限b破坏,塑性材料在其屈服极限变形与应变:线应变、切(4)弯曲;(5)组合变形。

动载荷:载荷和速度随时间急剧s时失效。

二者统称为极限应力理想情形。

塑性材料、脆性材料的许用应力分别为: n3bnb,强度条件:maxmax ,等截面杆max A轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为: l l1 l,沿轴线方向的应变和横截面上的应力分别为:l N P 站b。

横向应变为:l 'A A b关系为:。

胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即为弹性模量。

将应力与应变的表达式带入得:l 皿EAE ,这就是胡克定律。

E静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。

圆轴扭转时的应力变形几何关系一圆轴扭转的平面假设—。

物理关系-------- 胡克定律dxmax G —。

力学关系T dx 2d d 2dAA GJ Gy A dA圆轴扭转时的应力:TW t圆轴扭转的强度条件: maxTW t[],可以进行强度校核、截面设计和确®-,横向应变与轴向应变的b定许可载荷。

Q 、M 图与外力间的关系a ) 梁在某一段内无载荷作用,剪力图为一水平直线,弯矩图为一斜直线。

b ) 梁在某一段内作用均匀载荷,剪力图为一斜直线,弯矩图为一抛物线。

d )由集中力作用截面的左侧和右侧,剪力 Q 有一突然变化,弯矩图的斜率也发生突然变化形成一个转折点。

提高弯曲强度的措施:梁的合理受力(降低最大弯矩M ma x ,合理放置支座,合理布置载荷,合理设 计截面形状塑性材料:t c ,上、下对称,抗弯更好,抗扭差。

脆性材料:t c ,采用T 字型或 上下不对称的工字型截面。

等强度梁:截面沿杆长变化,恰使每个截面上的正应力都等于许用应力,这样的变截面梁称为等强 度梁。

用叠加法求弯曲变形:当梁上有几个载荷共同作用时,可以分别计算梁在每个载荷单独作用时的变形,然后进行叠加,即可求得梁在几个载荷共同作用时的总变形。

简单超静定梁求解步骤:(1 )判断静不定度;(2)建立基本系统(解除静不定结构的内部和外部多 余约束后所得到的静定结构);(3)建立相当系统(作用有原静不定梁载荷与多余约束反力的基本系 统);(4)求解静不定问题。

二向应力状态分析一解析法xycos 2圆轴扭转时的变形等直杆:Tl GI圆轴扭转时的刚度条件d T dx GIpTmaxmaxGI p弯曲内力与分布载荷 q 之间的微分关系 dQ 凶dxq(x) ;dMdxd 2M x dx 2dQ x IT qxc )在梁的某一截面。

dM x dx0,剪力等于零,弯矩有一最大值或最小值。

梁的正应力和剪应力强度条件maxmaxmax(1) 任意斜截面上的应力-cos2xysin 2(2 )极值应力正应力:tg2 0xymax min2 xyx y2y )2x y max2 ,xymin(3)主应力所在的平面与剪应力极值所在的平面之间的关系杆的稳定条件:PI * IN. Jrt.謝1.外力偶严矩计算公式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力 FN,横截面面积 A,拉应力为正)切应力:tg2 1与1之间的关系为:2 12 °, 12,即:最大和最小剪应力所在的平面与主平4面的夹角为45°扭转与弯曲的组合(1)外力向杆件截面形心简化 并建立强度条件(2)画内力图确定危险截面(3)确定危险点按第三强度理论,强度条件为:,对于圆轴,W t 2W ,! 2 2其强度条件为:—T []。

W按第四强度理论,强度.'1 2 2 1 2,经化简得出: ,对于圆轴,其强度条件为:I 22M 20.75T 2W欧拉公式适用范围 (1)大柔度压杆(欧拉公式) :即当1,其中12E 时,Pcr¥( 2)中等柔度压杆(经验公式):即当21,其中cra b(3) 小柔度压杆(强度计算公式) 即当2时,cr压杆的稳定校核 (1)压杆的许用压力:P Lnst为许可压力,n st 为工作安全系数。

(2)压提高压杆稳定性的措施:选择合理的截面形状, 改变压杆的约束条件,合理选择材料2.弯矩、剪力和荷载集度之间的关系式(P 功率,n 转速)轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x 轴正方向逆时针转至外法线的方位角为正)T =p Bin or = £TC ns or sin or = — sin 2 orS * B —~I ,拉伸后试样标距11 ;拉伸前试样直径d ,拉伸后试样直径d1)纵向线应变和横向线应变泊松比受多个力作用的杆件纵向变形计算公式轴向拉压杆的强度计算公式叽;5"截面收缩率4.5.6.7.8.9.10.11.12.13.14. 15. 16.剪切胡克定律 (切变模量 G,切应变g ) 拉压弹性模量E 、泊松比卜和切变模量G 之间关系式2卩卜叨纵向变形和横向变形(拉伸前试样标距胡克定律承受轴向分布力或变截面的杆件,纵向变形计算公式许用应力,脆性材料°丄fl ',塑性材料延伸率<5 =^—^xlQO%1圆截面对圆心的极惯性矩(a )实心圆(b) 空心圆圆截面周边各点处最大切应力计算公式(b )空心圆薄壁圆管(壁厚R o /10 , R )为圆管的平均半径)扭转切应力计算公式77炉= -------圆轴扭转角匸与扭矩T 、杆长I 、扭转刚度GH 的关系式5同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时塑性材料I 订脆性材料[订(o.s-i.o)M扭转圆轴的刚度条件?或受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式17. 18.19.20.21.22.23.24. 25.26. 27.圆轴扭转时横截面上任一点切应力计算公式(扭矩T ,所求点到圆心距离扭转截面系数,(a )实心圆爭皿和或等直圆轴强度条件 nn"丄平面应力状态下斜截面应力的一般公式碍-CT- w in2住十r, CDS 2£T 2 x受扭圆轴表面某点的三个主应力阿二T £T Z =0 巧二三向应力状态最大与最小正应力三向应力状态最大切应力z叼二云【巧+°3)1广义胡克定律叼专【巧—"(巧+还)1与二丘I 巧—叫巧+0!)!= °1J 二旺一叭压4巧) 耳3 = °\一 0*一种常见的应力状态的强度条件.28. 29.30.31.32.33.34.35.36.37.^4四种强度理论的相当应力半[呵-巧尸+-碍F-阿円十平面应力状态的三个主应力主平面方位的计算公式十云2面内最大切应力2—=2任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式F = /+莊£ A平行移轴公式(形心轴 Z C 与平行轴z 1的距离为a ,图形面积为 AMy CT- —纯弯曲梁的正应力计算公式f矩形、圆形、空心圆形的弯曲截面系数轧制工字钢梁最大弯曲切应力计算公式圆形截面梁最大弯曲切应力发生在中性轴处圆环形薄壁截面梁最大弯曲切应力发生在中性轴处38. 39.40.41.42.43.44. 45.46.47.48.49.50.组合图形的形心坐标计算公式 2地在运—迟可截面图形对轴z 和轴y 的惯性半径?几种常见截面的最大弯曲切应力计算公式 为中性轴一侧的横截面对中性轴Z 的静矩,b 为横截面矩形截面梁最大弯曲切应力发生在中性轴处工字形截面梁腹板上的弯曲切应力近似公式bh+675严 <[a]几种常见截面梁的弯曲切应力强度条件 弯曲梁危险点上既有正应力b 又有切应力T 作用时的强度条件□」川'41 7叫或+3T 2[oj=还 F%4梁的转角方程山轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式C^rin .偏心拉伸(压缩)-弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式圆截面杆横截面上有两个弯矩 和三同时作用时,合成弯矩为 圆截面杆横截面上有两个弯矩,1/-'和3’ -同时作用时强度计算公式占=£j 眄+闰+严勻例51.52. 53.54.55.56.57.58. 59.60. 61.62.=弯曲正应力强度条件JliLW梁的挠曲线近似微分方程thM{x) EI梁的挠曲线方程?d.xdbc 4- q 工 + Z)j% = Vy+3? = 7(°M +ct n )?+3t| <[o\剪切实用计算的强度条件挤压实用计算的强度条件T P E /等截面细长压杆在四种杆端约束情况下的临界力计算公式压杆的约束条件:(a )两端铰支卩=1(b ) —端固定、一端自由 卩=2(c) 一端固定、一端铰支 卩=0.7(d) 两端固定 卩=0.5压杆稳定性计算的安全系数法压杆稳定性计算的折减系数法许关系需查表求得63.64.65.66.67. 68.69.70.71.72.73.弯拉扭或弯压扭组合作用时强度计算公式 % = 2 十卅 =J 血 +血)'+妬型0]压杆的长细比或柔度计算公式细长压杆临界应力的欧拉公式欧拉公式的适用范围。

相关文档
最新文档