LTV356T-C中文资料
300W车载逆变器电路图与原理分析.pptx
SS8550为目前市场上较为常见、易购的三极管,价格也比较便宜,单只售价仅0.3元左右。
KSP44为T。・92形式封装的NPN型三极管。其引脚电极的识别方法是,当面对三极管的印字标识面时,其引 脚1为放射极E、2为基极B、3为集电极C。
KSP44的主要参数指标为:BVCB。=500V,BVCE。=400V,VCE(三)=。.5V,VBE(。N)=。 .75V,ICM=300mA,PCM=。.625W,TJ=150oC,hFE=40~2000
IRF740A为T。∙220形式封装的N沟道增加型MoS快速功率开关管。其引脚电极排序1为栅极G、2为漏极D、3为 源极S。
IRF740A的主要参数指标为:VDSS=400V,ID=I。A,Ptot=120W,RDS(。N)S55。m。
当IRF740A损坏无法买到时,可用封装形式和引脚电极排序完全相同的N沟道增加型M。S开关管IRF740B、 IRF740或IRF730进行代换。IRF740、IRF740B的主要参数与IRF740A完全相同。IRF730的主要参数为 VDSS=400V,ID=5.5A,RDS(。N)31。其中IRF730的参数虽然与IRF740系列的相比略差,但对于150W以下功率的逆 变器来说,其参数指标已经是绰绰有余了。
LTST-C155KGJRKT-2A数据手册 中文资料 参数
CORPORATION
Parameter
Luminous Intensity
Symbol
MIN.
IV
TYP.
MAX.
LTST-C155KGJRKT-2A
Green
Red
1.8
1.8
2.5
2.5
Unit Test Condition
mcd
IF =2mA Note 1
Viewing Angle
CORPORATION
Parameter Power Dissipation
LTST-C155KGJRKT-2A
Unit
Green
Red
75
75
mW
Peak Forward Current
80
(1/10 Duty Cycle, 0.1ms Pulse Width)
DC Forward Current
30
80
mA
30
mA
Derating Linear From 25°C
0.4
0.4
mA/°C
Reverse Voltage
5
5
V
Operating Temperature Range
-55°C to + 85°C
Storage Temperature Range
-55°C to + 85°C
Wave Soldering Condition
single wavelength which defines the color of the device.
Part No. : LTST-C155KGJRKT-2A BNS-OD-C131/A4
STM32F107VCT6 微控制器用户手册说明书
Open107V用户手册目录1. 硬件介绍 (2)1.1.资源简介 (2)2. 例程分析 (4)2.1. 8Ios (4)2.2. ADC+DMA (4)2.3. ADC+DMA+KEYPAD (5)2.4. CAN- Normal (5)2.5. DAC (6)2.6. ETH_LwIP (6)2.7. GPIO LED JOYSTICK (7)2.8. I2C (7)2.9. LCD (8)2.10. OneWire (9)2.11. PS2 (9)2.12. RTC (9)2.13. FATFS V0.08A-SD Card (10)2.14. SL811 USB (10)2.15. AT45DB-SPI (11)2.16. TouchPanel (11)2.17. uCOSII2.91+UCGUI3.90A (12)2.18. USART (13)2.19. USB_Host_HID_KBrd_Mouse (13)2.20. USB_ Host_MSC(efsl) (13)2.21. USB_Host_MSC(FATFS) (14)2.22. USB-JoyStickMouse (15)2.23. USB-Mass_Storage-MCU Flash (15)2.24. VS1003B (16)3. 版本修订 (16)1.硬件介绍1.1. 资源简介[ 芯片简介 ]1.STM32F107VCT6STM32功能强大,下面仅列出STM32F107VCT6的核心资源参数:内核:Cortex-M3 32-bit RISC;工作频率:72MHz,1.25 DMIPS/MHz;工作电压:2-3.6V;封装:LQFP100;I/O口:80;存储资源:256kB Flash,64kB RAM;接口资源:3 x SPI,3 x USART,2 x UART,2 x I2S,2 x I2C;1 x Ethernet MAC,1 x USB OTG,2 x CAN;模数转换:2 x AD(12位,1us,分时16通道),[ 其它器件简介 ]3."5V DC"或"USB"供电选择开关切换到上面,选择5V DC供电;切换到下面,选择USB供电。
中特威车用电调CAR ESC中文说明书
中特威科技竞赛级车用无刷电子调速器说明书尊敬的用户:感谢您使用中特威科技有限公司设计、制造的竞赛级车用无刷电子调速器。
ZTW 车模用调速器专门针对竞赛级车模用而开发的有感,无感无刷马达专用电子调速器。
我们强烈建议您在使用之前阅读本使用手册中特威公司有权不经通知变更其产品,包括其外观和性能参数及使用要求;对其产品是否适合特定用途不作任何保证、申明或承诺。
不承担因第三方产品相关修改所造成的任何责任,中特威科技有限公司亦不承担因应用或使用任何产品或电路而引起的任何责任,包括但不限于对附带损失或间接损失的赔偿责任。
一、车用无刷电子调速器主要特性:● 快速的油门响应、强劲的加速度、比例式的刹车与优异的油门线性 ● 可用电脑编程菜单设置和软件升级,还有操作简单方便的编程卡 ● 可用电脑编程油门线性设置,根据油门曲线图,您可任意设置油门点状态 ● 可用电脑,编程盒编程前进与倒车输出功率大小 ● 可用电脑,编程盒编程刹车比● 多重保护功能:电池低压保护、温度保护、油门失控保护、马达堵转保护 ● 有感电调兼容NOV AK LRP ORION 等品牌的有感无刷马达 ● 按键设置功能;一键式复位功能二、首次使用车用无刷电子调速器:在使用全新的车用无刷电子调速器前请您仔细检查各个连接是否正确可靠。
检查一切正常后,请按以下顺序启动您的电子调速器。
(出厂没有接线或您需要配其它品牌马达,请按图示连接)连接有感马达时,请注意三根电调马达线颜色蓝色线( A )、 黄色线( B )、 橙色线( C )、一定要对应有感马达外壳标示A 、 B 、 C 连接。
马达传感线要顺应插头位置连接。
图示:集合有感与无感车用电调功能指示灯说明: 有感与无感车用电调功能转换电调连接电源后,会自动检测马达类型,并通过LED 灯指示,不用人为设置。
当您电调使用有感功能时,马达传感线掉落后,电调会自动转换为无感工作模式运行。
SET 键马达橙色线( C ) 马达黄色线( B ) 马达蓝色线( A ) 电池线( + )电池线( – )电调开关连接接收机马达传感线插座LED灯亮与闪烁指示相应功能说明有感/无感集成电调指示灯说明功能状态功能状态LED灯功能状态LED灯指示电池低压红色LED 闪烁电调与马达过热(95℃)红色橙色LED 长亮配用有感马达红色橙色LED 长亮配用无感马达橙色LED 长亮有感电调指示灯说明功能状态功能状态LED灯功能状态LED灯指示电池低压红色LED 闪烁电调与马达过热(95℃)红色橙色LED 长亮配用有感马达红色橙色LED 长亮正向模式. 红色 LED 长亮双向模式橙色LED 长亮无感电调指示灯说明功能状态功能状态LED灯功能状态LED灯指示电池低压红色LED 闪烁电调过热(95℃) 红色橙色LED 长亮配用无感马达橙色LED 长亮正向模式. 红色 LED 长亮正向模式. 红色 LED 长亮1.油门行程设定:首先关闭电调开关,连接电池,再打开您的车用发射机电源,将油门通道方向设置为(REV),油门微调设置为(0),油门通道的EPA/ATV正反向均设置为最大按下SET键不松开,将电调开关打到ON位,等待4秒左右,电调橙色LED亮,这时把SET键松开,同时把您的发射机油门拉杆拉最大,红色LED闪烁3秒左右长亮,马达滴响后;再把油门拉杆推到最小,橙色LED闪烁3秒左右长亮,马达滴滴响后;把发射机油门拉杆置自然位,红色LED、橙色LED、同时闪烁3秒左右长亮,马达滴滴响后,2个LED熄灭;油门行程设定OK, 关闭电调开关2.打开电调开关,您的电调现在可以工作了三. 可编程的车用无刷电子调速器功能说明与出厂默认图示:功能值编程项目1 2 3 4 5 6 7 8 91.低电压关断值2.6V/节 2.8V/节3.0V/节 3.2V/节 3.4V/节不保护2.运行模式单向带刹车双向带刹车3.马达进角2度4度6度8度12度4.启动加速度低中高最高5. 反向工作输出功率比20% 30% 40% 50% 60% 70% 80% 90%100%6.正向工作输出功率比0% 20% 30% 40% 50% 60% 70% 80%90%7.刹车力比10% 20% 30% 40% 50% 60% 70% 80%100%8.拖刹力比4% 8% 12% 15% 20% 25% 30%9.电调工作频率8KHz 16KHz10.油门自然位宽度2% 3% 4% 5% 6%四.可编程的车用无刷电子调速器功能说明:我们的车用无刷电子调速器允许您针对自身需求来编程所有功能,充分体现了产品以用户为本的特点1. 低电压关断值●自动检测电池节数.出厂默认3.0V/节关断根据您使用的电池,通过电脑软件或编程盒设置您的电池类型与低压关断值;这样可使电调工作时随时监测电池电压,一旦电池电压低于设置低压点,电调将停止工作.●当使用镍氢.镍隔电池时,您不需要设置关断电压来保护电池。
LTC1163CS8#PBF;LTC1165CN8;LTC1165CN8#PBF;LTC1165CS8;LTC1165CS8#PBF;中文规格书,Datasheet资料
MOSFET DriversSFEATUREs Operates from 1.8V to 6Vs0.01µA Standby Currents95µA Operating Current per Channel at 3.3Vs Fully Enhances N-Channel Switchess No External Charge Pump Componentss Built-In Gate Voltage Clampss Easily Protected Against Supply Transientss Controlled Switching ON and OFF Timess Compatible with 5V, 3V and Sub-3V Logic Families s Available in 8-Pin SOIC D UESCRIPTIOThe LTC1163/LTC1165 triple low voltage MOSFET drivers make it possible to switch supply or ground referenced loads through inexpensive, low R DS(ON) N-channel switches from as little as a 1.8V supply. The LTC1165 has inverting inputs and makes it possible to directly replace P-channel MOSFET switches while maintaining system drive polar-ity. The LTC1163 has noninverting inputs. Micropower operation, with 0.01µA standby current and 95µA operating current, coupled with a power supply range of 1.8V to 6V, make the LTC1163/LTC1165 ideally suited for 2- to 4-cell battery-powered applications. The LTC1163/LTC1165 are also well suited for sub-3V, 3.3V and 5V nominal supply applications.The LTC1163/LTC1165 internal charge pumps boost the gate voltage 8V above a 3.3V rail, fully enhancing inexpen-sive N-channels for high- or low-side switch applications. The LTC1163/LTC1165 are available in both an 8-pin DIP and an 8-pin SOIC.SUPPLY VOLTAGE (V)GATEOUTPUTVOLTAGE(V)26810418LTC1163/65 • TA02426121416315MOSFET Switch Gate Voltage 2-Cell Triple High-Side SwitchU SA OPPLICATIs PCMCIA Card 3.3V/5V Switchs2-Cell High-Side Load Switchings Boost Regulator Shutdown to Zero Standby Currents Replacing P-Channel Switchess Notebook Computer Power Managements Palmtop Computer Power Managements Portable Medical Equipments Mixed 3.3V and 5V Supply SwitchingUA OPPLICATITYPICAL12LTC1163/LTC1165SYMBOL PARAMETER CONDITIONSMIN TYP MAXUNITS I QQuiescent Current OFFV S = 1.8V, V IN1 = V IN2 = V IN3 = V OFF (Note 1,2)0.011µA V S = 3.3V, V IN1 = V IN2 = V IN3 = V OFF (Note 1,2)0.011µA V S = 5V, V IN1 = V IN2 = V IN3 = V OFF (Note 1,2)0.011µA Quiescent Current ONV S = 1.8V, V IN = V ON (Note 2,3)60120µA V S = 3.3V, V IN = V ON (Note 2,3)95200µA V S = 5V, V IN = V ON (Note 2,3)180400µA V INH Input High Voltage 1.8V < V S < 2.7V q 80% × V S V 2.7V < V S < 6V q 70% × V SVV INL Input Low Voltage 1.8V < V S < 6V q 15% × V SV I IN Input Current 0V ≤ V IN ≤ V Sq±1µA C IN Input Capacitance 5pF V GATE – V SGate Voltage Above SupplyV S = 1.8V, V IN = V ON (Note 2)q 3.5 4.1 6.0V V S = 2V, V IN = V ON (Note 2)q 4.0 4.6 7.0V V S = 2.2V, V IN = V ON (Note 2)q 4.5 5.2 8.0V V S = 3.3V, V IN = V ON (Note 2)q 6.08.0 9.5V V S = 5V, V IN = V ON (Note 2)q5.09.013.0V t ONTurn-ON TimeV S = 3.3V, C GATE = 1000pF Time for V GATE > V S + 1V 40120400µs Time for V GATE > V S + 2V 60180600µs V S = 5V, C GATE = 1000pF Time for V GATE > V S + 1V 3095300µs Time for V GATE > V S + 2V40130400µsA UG WA WUW A R BSOLUTEXI TI SOperating Temperature RangeLTC1163C/LTC1165C........................... 0°C to 70°C Storage Temperature Range................ –65°C to 150°C Lead Temperature (Soldering, 10 sec)................. 300°CSupply Voltage ......................................................... 7V Any Input Voltage.......................... 7V to (GND – 0.3V)Any Output Voltage....................... 20V to (GND – 0.3V)Current (Any Pin)................................................. 50mAWUUPACKAGE/ORDER I FOR ATIOV S = 1.8V to 6V, T A = 25°C, unless otherwise noted.ELECTRICAL C C HARA TERISTICSLTC1163C/LTC1165C /3LTC1163/LTC1165ELECTRICAL C C HARA TERISTICSV S = 1.8V to 6V, T A = 25°C, unless otherwise noted.SYMBOL PARAMETER CONDITIONSMIN TYP MAX UNITSt OFFTurn-OFF TimeV S = 3.3V, C GATE = 1000pFTime for V GATE < 0.5V 2065200µs V S = 5V, C GATE = 1000pF Time for V GATE < 0.5V1545150µsLTC1163C/LTC1165C The q denotes specifications which apply over the full operating temperature range.Note 1: Quiescent current OFF is for all channels in OFF condition.Note 2: LTC1163: V OFF = 0V, V ON = V S . LTC1165: V OFF = V S , V ON = 0V Note 3: Quiescent current ON is per driver and is measured independently.Gate Voltage Above SupplySupply Current per Driver ONStandby Supply CurrentC C HARA TERISTICSU WA TYPICAL PERFOR CE SUPPLY VOLTAGE (V)0SU P P L Y C U R R E N T (µA )5 4 3 2 1 0 –11234LTC1163/65 • TPC0156SUPPLY VOLTAGE (V)V G A T E – V S (V )1210 8 6 4 2 01234LTC1163/65 • TPC0356SUPPLY VOLTAGE (V)0S U PP L Y C U R R E N T (µA )600 500 400 300 200 100 01234LTC1163/65 • TPC0256Input Threshold VoltageTurn-ON TimeTurn-OFF TimeSUPPLY VOLTAGE (V)0I N P U T T H R E S H O L DV O L T A G E (V )65 4 3 2 1 01234LTC1163/65 • T PC0456SUPPLY VOLTAGE (V)T U R N -O N T IM E (µs )600500 400 300 200 100 01234LTC1163/65 • TPC0556SUPPLY VOLTAGE (V)0T U R N -OF F T I M E (µs )300250 200 150 100 50 01234LTC1163/65 • TA06564LTC1163/LTC1165C C HARA TERISTICSU WA TYPICAL PERFOR CE PI FU CTIO SU U U Input PinsThe LTC1163 is noninverting; i.e., the MOSFET gate is driven above the supply when the input pin is held high.The LTC1165 is inverting and drives the MOSFET gate high when the input pin is held low. The inverting inputs of the LTC1165 allow P-channel switches to be replaced by lower resistance/cost N-channel switches while maintain-ing system drive polarity.The LTC1163/LTC1165 logic inputs are high impedance CMOS gates with ESD protection diodes to ground and therefore should not be forced below ground. The inputs can however, be driven above the power supply rail as there are no clamping diodes connected between the input pins and supply pin. This facilitates operation in mixed 5V/3V systems.Output PinsThe output pin is either driven to ground when the switch is turned OFF or driven above the supply rail when the switch is turned ON. The output is clamped to about 14V above ground by a built-in Zener clamp. This pin has a relatively high impedance when driven above the rail (the equivalent of a few hundred k Ω). Care should be taken to minimize any loading of this pin by parasitic resistance to ground or supply.Supply PinA 150Ω resistor should be inserted in series with the ground pin or supply pin if negative supply voltage tran-sients are anticipated. This will limit the current flowing from the power source into the LTC1163/LTC1165 to tens of milliamps during reverse battery conditions.OPERATIOUThe LTC1163/LTC1165 are triple micropower MOSFET drivers designed for operation over the 1.8V to 6V supply range and include the following functional blocks:3V Logic Compatible InputsThe LTC1163/LTC1165 inputs have been designed to accommodate a wide range of 3V and 5V logic families.The input threshold voltage is set at roughly 50% of the supply voltage and approximately 200mV of input hyster-esis is provided to ensure clean switching.The input enables all of the following circuit blocks: the bias generator, the high frequency oscillator and gate charge pump. Therefore, when the input is turned off, the entire circuit powers down and the supply current drops below 1µA.Standby Supply CurrentTEMPERATURE (°C)0S U P P L Y C U R R E N T (µA )5 4 3 2 1 0 –110203040LTC1163/65 • TPC07506070MOSFET Gate Drive CurrentGATE VOLTAGE ABOVE SUPPLY (V)1G A T E D R I V E C U R R E N T (µA )1010010004680.1210LTC1163/65 • TPC09Supply Current per Driver ONTEMPERATURE (°C)0S U P P L Y C U R R E N T (µA )300 250200150 100 50 010203040LTC1163/65 • TPC08506070/5LTC1163/LTC1165OPERATIOUGate Charge PumpGate drive for the power MOSFET is produced by an internal charge pump circuit which generates a gate volt-age substantially higher than the power supply voltage.The charge pump capacitors are included on chip and therefore no external components are required to generate gate drive.Controlled Gate Rise and Fall TimesWhen the input is switched ON and OFF, the gate is charged by the internal charge pump and discharged in a controlled manner. The charge and discharge rates have been set to minimize RFI and EMI emissions.BLOCK DIAGRA W(One Channel)APPLICATIO S I FOR ATIOW UU U Logic-Level MOSFET SwitchesThe LTC1163/LTC1165 are designed to operate with logic-level N-channel MOSFET switches. Although there is some variation among manufacturers, logic-level MOSFET switches are typically rated with V GS = 4V with a maximum continuous V GS rating of ±10V. R DS(ON) and maximum V DS ratings are similar to standard MOSFETs and there is generally little price differential. Logic-level MOSFETs are frequently designated by an “L” and are usually available in surface mount packaging. Some logic-level MOSFETs are rated with V GS up to ±15V and can be used in applications which require operation over the entire 1.8V to 6V range.Powering Large Capacitive LoadsElectrical subsystems in portable battery-powered equip-ment are typically bypassed with large filter capacitors to reduce supply transients and supply induced glitching. If not properly powered however, these capacitors may themselves become the source of supply glitching.For example, if a 100µF capacitor is powered through a switch with a slew rate of 0.1V/µs, the current during start-up is:I START = C(∆V/∆t)= (100 × 10–6)(1 × 105)= 10AObviously, this is too much current for the regulator (or output capacitor) to supply and the output will glitch by as much as a few volts.The startup current can be substantially reduced by limit-ing the slew rate at the gate of an N-channel as shown in Figure 1. The gate drive output of the LTC1163/LTC1165is passed through a simple RC network, R1 and C1, which substantially slows the slew rate of the MOSFET gate to approximately 1.5 × 10–4V/µs. Since the MOSFET is operating as a source follower, the slew rate at the source is essentially the same as that at the gate, reducing the startup current to approximately 15mA which is easilyGATEINPUT6LTC1163/LTC1165APPLICATIO S I FOR ATIOW UU U Figure 1. Powering a Large Capacitive Loadon a 3.3V supply which is compatible with 5V TTL and CMOS logic. (The LTC1163/LTC1165 cannot however, be driven by 3V logic when powered from a 5V supply because the threshold is approximately 2.5V.)TYPICAL APPLICATIO SUPCMCIA Card 3.3V/5V V CC SwitchNOTE: USE LTC1163 WITH NONINVERTING PCMCIA CONTROLLERSmanaged by the system regulator. R2 is required to eliminate the possibility of parasitic MOSFET oscillations during switch transitions. It is a good practice to isolate the gates of paralleled MOSFETs with 1k resistors to decrease the possibility of interaction between switches.Mixed 5V/3V SystemsBecause the input ESD protection diodes are referenced to ground instead of the supply pin, it is possible to drive the LTC1163/LTC1165 inputs from 5V CMOS or TTL logic even though the LTC1163/LTC1165 are powered from a 3.3V supply as shown in Figure 2. The input threshold voltage is approximately 50% of the supply voltage or 1.6VReverse Battery ProtectionThe LTC1163/LTC1165 can be protected against reverse battery conditions by connecting a 150Ω resistor in series with the ground pin or supply pin. The resistor limits the supply current to less than 24mA with –3.6V applied.Because the LTC1163/LTC1165 draw very little currentwhile in normal operation, the drop across the resistor is minimal. The 3.3V µP (or control logic) can be protected by adding 10k resistors in series with the input pins.Figure 2. Direct Interface to 5V LogicV IN/7LTC1163/LTC1165Information furnished by Linear Technology Corporation is believed to be accurate and reliable.However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.TYPICAL APPLICATIO SU2-Cell to 3.3V, 5V and 12V High-Side Switch/Converterwith 0.01µA Standby Current3.3VµF3.3VUltra-Low Drop Triple 3.3V High-Side SwitchPCMCIA Card Socket V PP Switch/ReglatorV CC MMDF3N02HDPP = 0V, 3.3V,EN0 0 1 0 1EN1 0 0 1 1OUTPUT 0V 12V V CC HI-Z8LTC1163/LTC1165Linear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7487(408) 432-1900 qFAX : (408) 434-0507 qTELEX : 499-3977© U SA OPPLICATITYPICAL S8 Package 8-Lead Plastic SOICPACKAGE DESCRIPTIO U3-Cell to 3.3V Ultra-Low Drop Regulator with 2 Ramped SwitchesµFMixed Voltage High- and Low-Side SwitchesN8 Package 8-Lead Plastic DIPDimensions in inches (millimeters) unless otherwise noted.–0.3818.2550.053 – 0.069 BSC/分销商库存信息:LINEAR-TECHNOLOGYLTC1163CS8#PBF LTC1165CN8LTC1165CN8#PBF LTC1165CS8LTC1165CS8#PBF LTC1163CS8LTC1165CS8#TR LTC1165CS8#TRPBF LTC1163CS8#TR LTC1163CS8#TRPBF LTC1163CN8LTC1163CN8#PBF。
数字集成电路
用于处理数字信号的集成电路
01 基本介绍
03 逻辑功能
目录
02 型号组成 04 内部设计
05 类别说明
07 注意事项
目录
06 一般特性
数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统。根据数字集成电路 中包含的门电路或元、器件数量,可将数字集成电路分为小规模集成(SSI)电路、中规模集成MSI电路、大规模 集成(LSI)电路、超大规模集成VLSI电路和特大规模集成(ULSI)电路。
·输入端信号幅度不能大于VDD和小于0V;
·消除电源上的干扰;
·在条件允许的情况下,尽可能降低电源电压,如果电路工作频率比较低,用+5V电源供电最好;
·对使用的电源加限流措施,看
②电源电压的极性千万不能接反,电源正负极颠倒、接错,会因为过大电流而造成器件损坏。
③CM0S电路要求输人信号的幅度不能超过VDD~VSS,即满足VSS=V1=VDD。当 CM0S电路输入端施加的电压过 高(大于电源电压)或过低(小于0V),或者电源电压突然变化时,电路电流可能会迅速增大,烧坏器件,这种 现象称为可控硅效应。预防可控硅效应的措施主要有:
从功能上来看,数字集成电路内部可以分为数据通路(Data-path,也称为数据路径)和控制逻辑两大部分。 这两大部分都是由大量的时序逻辑电路集成的,而且绝大部分都是同步的时序电路,因为时序电路被多个触发器 或寄存器分成若干节点,而这些触发器在时钟的控制下会按同样的节拍来工作,可以简化设计。在长期的设计过 程中,已经积累了很多标准的通用单元,比如选择器(也叫多路器,可以从多个输入数据中选一个输出)、比较 器(用于比较两个数的大小)、加法器、乘法器、移位寄存器等等,这些单元电路形状规则,便于集成(这也是 数字电路在集成电路中得到更好的发展的原因)。这些单元按设计要求连接在一起,形成数据通路,待处理的数 据从输入端经过这条通路到输出端,便得到处理后的结果。同时,还需要由专门设计的控制逻辑,控制数据通路 的各组成部件,按各自的功能要求和特定的时序关系和来配合工作。
atc中文手册
AT24C256中文资料2009-11-1509:43特性与1MHzI2C总线兼容1.8到6.0伏工作电压范围低功耗CMOS技术写保护功能当WP为高电平时进入写保护状态64字节页写缓冲器自定时擦写周期100,000编程/擦写周期可保存数据100年8脚DIPSOIC封装温度范围商业级工业级和汽车级概述CAT24WC256是一个256K位串行CMOSE2PROM内部含有32768个字节每字节为8位CATALYST公司的先进CMOS技术实质上减少了器件的功耗CAT24WC256有一个64字节页写缓冲器该器件通过I2C总线接口进行操作极限参数工作温度工业级-55+125商业级0+75贮存温度-65+150各管脚承受电压-2.0VVcc+2.0VVcc管脚承受电压-2.0V+7.0V封装功率损耗Ta=251.0W焊接温度(10秒)300口输出短路电流100mA功能描述CAT24WC256支持I2C总线数据传送协议I2C总线协议规定任何将数据传送到总线的器件作为发送器任何从总线接收数据的器件为接收器数据传送是由产生串行时钟和所有起始停止信号的主器件控制的CAT24WC256是作为从器件被操作的主器件和从器件都可以作为发送器或接收器但由主器件控制传送数据发送或接收的模式管脚描述SCL串行时钟CAT24WC256串行时钟输入管脚用于产生器件所有数据发送或接收的时钟这是一个输入管脚SDA串行数据/地址双向串行数据/地址管脚用于器件所有数据的发送或接收SDA是一个开漏输出管脚可与其它开漏输出或集电极开路输出进行线或wire-ORWP写保护当WP脚连接到Vcc所有内存变成写保护只能读当WP引脚连接到Vss或悬空允许器件进行读/写操作A0A1器件地址输入这些管脚为硬连线或者不连接对于单总线系统最多可寻址4个CAT24WC256器件参阅器件寻址当这些引脚没有连接时其默认值为0I2C总线协议I2C总线协议定义如下1只有在总线空闲时才允许启动数据传送2在数据传送过程中当时钟线为高电平时数据线必须保持稳定状态不允许有跳变时钟线为高电平时数据线的任何电平变化将被看作总线的起始或停止信号起始信号时钟线保持高电平期间数据线电平从高到低的跳变作为I2C总线的起始信号停止信号时钟线保持高电平期间数据线电平从低到高的跳变作为I2C总线的停止信号器件寻址主器件通过发送一个起始信号启动发送过程然后发送它所要寻址的从器件的地址8位从器件地址的高5位固定为10100见图5接下来的2位A1A0为器件的地址位最多可以连接4个器件到同一总线上这些位必须与硬连线输入脚A1A0相对应从器件地址的最低位作为读写控制位1表示对从器件进行读操作0表示对从器件进行写操作在主器件发送起始信号和从器件地址字节后CAT24WC256监视总线并当其地址与发送的从地址相符时响应一个应答信号通过SDA线CAT24WC256再根据读写控制位R/W的状态进行读或写操作应答信号I2C总线数据传送时每成功地传送一个字节数据后接收器都必须产生一个应答信号应答的器件在第9个时钟周期时将SDA线拉低表示其已收到一个8位数据CAT24WC256在接收到起始信号和从器件地址之后响应一个应答信号如果器件已选择了写操作则在每接收一个8位字节之后响应一个应答信号当CAT24WC256工作于读模式时在发送一个8位数据后释放SDA线并监视一个应答信号一旦接收到应答信号CAT24WC256继续发送数据如主器件没有发送应答信号器件停止传送数据并等待一个停止信号写操作字节写在字节写模式下主器件发送起始信号和从器件地址信息R/W位置0给从器件在从器件送回应答信号后主器件发送两个8位地址字写入CAT24WC256的地址指针主器件在收到从器件的应答信号后再发送数据到被寻址的存储单元CAT24WC256再次应答并在主器件产生停止信号后开始内部数据的擦写在内部擦写过程中CAT24WC256不再应答主器件的任何请求页写在页写模式下单个写周期内CAT24WC256最多可以写入64个字节数据页写操作的启动和字节写一样不同在于传送了一字节数据后主器件允许继续发送63个字节每发送一个字节后CAT24WC256将响应一个应答位且内部低6位地址加1高位地址保持不变如果主器件在发送停止信号之前发送大于64个字节地址计数器将自动翻转先前写入的数据被覆盖当所有64字节接收完毕主器件发送停止信号内部编程周期开始此时所有接收到的数据在单个写周期内写入CAT24WC256应答查询可以利用内部写周期时禁止数据输入这一特性一旦主器件发送停止位指示主器件操作结束时CAT24WC256启动内部写周期应答查询立即启动包括发送一个起始信号和进行写操作的从器件地址如果CAT24WC256正在进行内部写操作将不会发送应答信号如果CAT24WC256已经完成了内部写操作将发送一个应答信号主器件可以继续对CAT24WC256进行下一次读写操作写保护写保护操作特性可使用户避免由于不当操作而造成对存储区域内部数据的改写当WP管脚接高时整个寄存器区全部被保护起来而变为只可读取CAT24WC256可以接收从器件地址和字节地址但是装置在接收到第一个数据字节后不发送应答信号从而避免寄存器区域被编程改写读操作CAT24WC256读操作的初始化方式和写操作时一样仅把R/W位置为1有三种不同的读操作方式立即/当前地址读选择/随机读和连续读立即/当前地址读的地址计数器内容为最后操作字节的地址加1也就是说如果上次读/写的操作地址为N则立即读的地址从地址N+1开始如果N=E此处E=32767则计数器将翻转到0且继续输出数据CAT24WC256接收到从器件地址信号后R/W位置1它首先发送一个应答信号然后发送一个8位字节数据主器件不需发送一个应答信号但要产生一个停止信号选择/随机读选择/随机读操作允许主器件对寄存器的任意字节进行读操作主器件首先通过发送起始信号从器件地址和它想读取的字节数据的地址执行一个伪写操作在CAT24WC256应答之后主器件重新发送起始信号和从器件地址此时R/W位置1CAT24WC256响应并发送应答信号然后输出所要求的一个8位字节数据主器件不发送应答信号但产生一个停止信号连续读连续读操作可通过立即读或选择性读操作启动在CAT24WC256发送完一个8位字节数据后主器件产生一个应答信号来响应告知CAT24WC256主器件要求更多的数据对应每个主机产生的应答信号CAT24WC256将发送一个8位数据字节当主器件不发送应答信号而发送停止位时结束此操作从CAT24WC256输出的数据按顺序由N到N+1输出读操作时地址计数器在CAT24WC256整个地址内增加这样整个寄存器区域在可在一个读操作内全部读出当读取的字节超过E此处E=32767计数器将翻转到零并继续输出数据字节。
LTV-357T中文资料
Fig.4 Forward Current vs. Forward Voltage
500 Ta= 75 C 50 C
o o
Forward current I F(mA)
200 100 50 20 10 5 2
25 C 0C -25 C
o o
o
0 0 5 10$ +
% "
%,- !+ ." +$ -
- - , /0+$"+
( ' $ ,1 ! 2$ &'()
&× × < < < #
=
× 5
0 &'()
0 !
6
元器件交易网
Fig.3 Collector-emitter Saturation Voltage vs. Forward Current
1mA 3mA 5mA Collecotr-emitter saturation voltage VCE (sat) (V) Ic= 0.5mA 7mA
6 5 4 3 2 1 Ta= 25 C
- "
# 27 5., %
0 &'()
0 !
; 6
元器件交易网
)
*+
$+-./01.2
-/3
1 %+1-4.
0.5-5
4%+1-4.
珠海泰芯半导体有限公司 TX8C126x 用户手册说明书
珠海泰芯半导体有限公司Zhuhai Taixin Semiconductor Co.,Limited 珠海市高新区港湾一号科创园港11栋3楼ISO9001:2015质量管理体系受控文件TX8C126x 用户手册珠海泰芯半导体有限公司保密文件,请勿外传。
目录TX8C126x 用户手册............................................................................................................................11.产品概述.. (13)1.1.说明...................................................................................................................................131.2.特性...................................................................................................................................132.中央处理器. (16)2.1.累加器(ACC )................................................................................................................162.2.寄存器(B ).....................................................................................................................162.3.堆栈指针寄存器(SP )...................................................................................................162.4.堆栈指针寄存器(SPH )................................................................................................172.5.数据指针寄存器(DPTR0/DPTR1)................................................................................172.6.数据指针控制寄存器(DPCFG )....................................................................................182.7.程序状态寄存器(PSW ).................................................................................................12.8.PCON1...................................................................................................................................12.9.程序计数器(PC ).............................................................................................................23.存储器.. (3)3.1.程序存储器.........................................................................................................................33.2.XDATA 数据存储器..............................................................................................................43.3.IDATA .....................................................................................................................................43.4.SFR 空间...............................................................................................................................64.时钟系统. (7)4.1.时钟系统概述.....................................................................................................................74.2.时钟系统主要功能.............................................................................................................74.3.时钟系统框图.....................................................................................................................84.4.系统振荡器. (9)4.4.1.内部低速RC 振荡器..............................................................................................94.4.2.内部高速RC 振荡器..............................................................................................94.4.3.外部晶体振荡器. (10)5.复位系统 (10)5.1.上电复位...........................................................................................................................105.2.掉电复位...........................................................................................................................105.3.看门狗复位.. (10)5.3.1.WDT_CON.............................................................................................................115.3.2.WDT_KEY..............................................................................................................125.4.低电检测复位. (12)5.4.1.LVD_CON0.............................................................................................................135.4.2.LVD_CON1.............................................................................................................145.4.3.LVD_CON2.............................................................................................................155.4.4.LVD_CON3. (15)6.低功耗管理 (17)6.1.Idle Mode 及唤醒..............................................................................................................176.2.Stop Mode 及唤醒.............................................................................................................176.3.Sleep Mode 及唤醒...........................................................................................................176.4.低功耗唤醒单元结构图...................................................................................................186.5.寄存器详细说明 (18)6.5.1.WKUP_CON0.........................................................................................................196.5.2.WKUP_PND...........................................................................................................206.5.3.LP_CON (21)7.系统控制模块 (22)7.1.功能概述...........................................................................................................................227.2.寄存器列表.. (22)珠海泰芯半导体有限公司保密文件,请勿外传。
356tb级和c级光耦参数
356tb级和c级光耦参数356TB级和C级光耦参数光耦是一种将电信号转换为光信号或将光信号转换为电信号的器件,广泛应用于通讯、计算机、家电等领域。
其中,356TB级和C级光耦是两种常见的产品类型,下面将详细介绍它们的参数。
一、356TB级光耦参数1. 额定工作电压:3.3V356TB级光耦通常采用3.3V的额定工作电压,这使得它们能够在低功耗设备中广泛应用。
2. 最大工作频率:15Mbps该型号的最大工作频率为15Mbps,这意味着它们可以快速地传输数据,并且适用于高速通讯系统。
3. 典型输出容限:0.4V~2.4V356TB级光耦具有较大的输出容限范围,可适应不同系统的输入电平要求。
4. 工作温度范围:-40℃~85℃该型号的工作温度范围非常广泛,可以在极端环境下使用。
5. 封装形式:SOP-4、SOP-6、DIP-4等根据不同需求,356TB级光耦可以采用不同的封装形式,如SOP-4、SOP-6、DIP-4等。
二、C级光耦参数1. 额定工作电压:5VC级光耦通常采用5V的额定工作电压,这使得它们可以在大多数电路中使用。
2. 最大工作频率:1Mbps该型号的最大工作频率为1Mbps,虽然不如356TB级光耦高速,但足以满足一些低速数据传输系统的需求。
3. 典型输出容限:0.2V~0.8VC级光耦具有较小的输出容限范围,适用于对输入电平要求不高的系统。
4. 工作温度范围:-40℃~100℃该型号的工作温度范围也非常广泛,可适应各种环境下的使用需求。
5. 封装形式:SOP-4、DIP-6等同样地,C级光耦也可以采用不同的封装形式,如SOP-4、DIP-6等。
三、两种光耦参数比较虽然356TB级和C级光耦在某些方面存在差异,但它们都是非常重要且广泛应用于通讯和计算机领域的器件。
下面是它们之间的一些比较:1. 工作电压356TB级光耦通常采用3.3V的额定工作电压,而C级光耦则采用5V。
这意味着,在选择适合自己的光耦时,需要考虑到所使用电路的工作电压。
356tb级和c级光耦参数解析
356tb级和c级光耦参数解析356Tb级和C级光耦参数解析篇章一:光耦介绍和背景【观点和理解】对于现代电子设备和通信系统而言,高速数据传输是至关重要的。
而在高速数据传输中,光纤扮演着重要的角色。
光耦作为光纤通信的关键组件之一,能够实现光电信号的转换,其参数对光通信系统的性能和可靠性起到决定性的影响。
在本篇文章中,我们将深入探讨356Tb级和C级光耦的参数,并分析其在高速数据传输中的作用。
篇章二:356Tb级光耦参数解析【观点和理解】356Tb级光耦是目前通信领域中的热门话题,它主要应用于大容量高速数据传输系统。
其参数主要包括增益、速度和带宽等。
在增益方面,356Tb级光耦通常采用高精度和低噪音的放大器,以增强信号强度。
速度方面,高速数据传输要求光耦具有较快的响应时间,以实现实时和高效的数据传输。
而带宽则是衡量光耦传输能力的重要指标,它决定了光信号的传输速率和容量。
篇章三:C级光耦参数解析【观点和理解】C级光耦是一类通信应用中常见的光耦,它主要应用于中等容量和速度要求的数据传输系统。
与356Tb级光耦相比,C级光耦的参数可能相对较低,但仍然满足大部分普通应用的需求。
在增益方面,C级光耦通常采用中等放大器,以提供适量的信号增强。
速度方面,C级光耦的响应时间相对较慢,适合中等速度数据传输。
带宽方面,C级光耦的传输能力通常较低,但仍能满足常见数据传输需求。
篇章四:参数的影响和应用比较【观点和理解】对于高速数据传输系统而言,选择合适的光耦参数至关重要。
在356Tb级和C级光耦之间进行比较时,我们需要根据具体的应用场景和需求来做出选择。
如果系统需要高速高容量的数据传输,那么选择356Tb级光耦可能更为合适;而如果系统要求较低速度和容量,那么选择C级光耦可能更为经济实惠。
还需要考虑成本、可靠性、能耗等因素对比较进行综合评估。
篇章五:总结和回顾【观点和理解】本文通过深度解析356Tb级和C级光耦的参数,探讨了它们在高速数据传输中的作用和应用。
356tb级和c级光耦参数
356tb级和c级光耦参数标题:探究356TB级和C级光耦参数的重要性与应用引言:光电耦合器(Opto-coupler)在电子领域中起着重要的作用,被广泛应用于数据传输、隔离、电压调节等领域。
而在选择光电耦合器时,我们经常会遇到两个常见的参数:356TB级和C级。
本文将对这两个参数的含义、作用以及其在不同应用中的优势进行分析与论述。
一、356TB级光耦参数的解析1. 356TB级的含义和背景- 356TB级代表了光电耦合器的传输速率,即每秒可以传输的数据量的大小。
- 356TB级的光耦合器可以实现每秒传输3.56万亿位的数据,是一种高速传输的设备。
2. 356TB级光耦参数的重要性- 在高速数据传输领域,速度是关键因素之一。
356TB级的光耦合器能够满足大规模数据传输的需求。
- 它的高速传输能力可以提高数据传输的效率和可靠性,使得数据的接收与处理更加迅速和稳定。
3. 356TB级光耦参数的应用场景- 高频交易系统:在金融领域的高频交易中,对数据传输速度要求极高,使用356TB级光耦合器可以实现快速的数据传输,提高交易效率。
- 数据中心:在大规模数据传输、存储和处理中,使用356TB级光耦合器可以加快数据的传输速度,提升数据中心的整体性能。
二、C级光耦参数的解析1. C级的含义和特点- C级是光电耦合器的耐压等级,指的是光电耦合器能够承受的最高电压。
- C级光电耦合器具有较高的耐压能力,能够在电压波动较大的环境下稳定工作。
2. C级光耦参数的重要性- 在工业控制系统和电压调节器等领域,稳定性和可靠性至关重要。
C级光电耦合器能够承受较高的电压,保证系统的稳定运行。
- 它的高耐压特性可以避免电压波动导致的设备损坏,提高系统的可靠性和安全性。
3. C级光耦参数的应用场景- 工业自动化设备:在工厂自动化控制系统中,电压波动是普遍存在的问题,使用C级光耦合器可以保护设备免受电压干扰的影响,确保系统的稳定性。
SIMATIC HMI IPC577C 产品数据表说明书
Product Data SheetPanel PC SIMATIC HMI IPC577CRugged, expandable industry PC for demanding tasks in the area of PC-based automation with various control units (front panels):•Rugged and compact design for industrial use•Full PC openness-Touch screen control units with 12", 15" and 19" TFT display -12" and 15" TFT Key•Expandable using a PCI slot•Optionally PROFIBUS DP or PROFINET (RT/IRT) onboard •Installation-compatible with Panel PC 577B•High degree of investment protectionDesignThe SIMATIC HMI IPC is equipped as follows:Computing unit•Processor:-Intel Core2 Duo processor/1.86 GHz or-Intel Core2 Solo 1.2 GHz or-Intel Celeron M 1.2 GHz•Main memory configuration:- 1 GB, 2 GB or 4 GB (SO-DIMM DDR3)•Retentive memory•Mass storage-Solid State Disc (SSD) ≥ 50 GB for maximum shock toler-ance since there are no rotating parts, or-Hard disk HDD ≥ 250 GB (3.5" SATA) with vibration-absor-bent hard disk holder, which ensures reliable operationeven under conditions of high mechanical stress, and/or-CF card (2 GB, 4 GB, or 8 GB)•Onboard graphics•Interfaces:- 2 x LAN 10/100/1000 Mbit/s Ethernet interface (RJ45), with PROFINET only 1 x LAN- 4 x USB 2.0 interfaces on rear + 1 x USB 2.0 interface on front; all high current (500 mA)- 1 x serial V.24 (9-pin)•Free slots for expansions:- 1 x PCI (slots with card retainer)- 1 x slot for Compact Flash Card (externally accessible) •Power supply:24 V DC or 100/240 V AC (autorange), 50/60 Hz•Drive (optional)-DVD ±RW ±R combo drive•Fieldbus onboard (optional)-11 x PROFIBUS DP/MPI (CP5611 compatible)- 1 x PROFINET onboard, 3 x RJ45 (CP1616 compatible) Operating unitOperating units are available in the following sizes/resolutions:•12" Key: 12.1" TFT color display, 800 x 600 pixels •Membrane keyboard with tactile feedback and integral mouse •12" Touch: 12.1" TFT color display, 800 x 600 pixels (SVGA) •15" Key: 15.1" TFT color display, 1024 x 768 pixels •Membrane keyboard with tactile feedback and integral mouse •15" Touch: 15.1" TFT color display, 1024 x 768 pixels (XGA) •19" Touch: 19.1" TFT color display, 1280 x 1024 pixels (SXGA) The operating units have the following functionality:•Analog resistive touch screen or tactile membrane keyboard with system keys and 36 user-configurable function keys •Degree of protection IP65 and NEMA 4•USB 2.0 interface on the front for connecting external periph-erals such as mouse or keyboardExpansion components (accessories)SIMATIC IPC DiagMonitor•PC diagnostics/alarm software for the early detection and di-agnosis of PC problemsSIMATIC IPC Image & Partition Creator•Software tool for preventive data back-up of the contents of bulk storage (CF cards, hard disks)•High-speed restoring of system and data partitions with bit ac-curacy; user software and special installations are also backed up•Software tool for adaptation of mass storage partitioning. SIMATIC IPC USB FlashDrive•Mobile memory medium for SIMATIC IPC/PGSIMATIC IPC Service USB FlashDrive•Mobile memory medium provides security and is capable of restoring mass memory•Pre-installed Image & Partition Creator V3.0•Ultra compact and robustIndustrial USB Hub 4•Industry-standard USB 2.0 hub, front IP65Additional accessories•Touch pen (cannot be lost) for operating the touch devices •Protective membranes to protect the touch screen against dirt/scratches•Labeling membranes for labeling the user-configurable func-tion keys of the key devicesTechnical specifications Panel PC SIMATIC HMI IPC577C1) Multi-Language means:German/English/French/Italian/Spanish/Chinese traditional/Chinese simplified/Korean/Japanese2) 61000-6-2 replaces 50082-2; 61000-6-4 replaces 50081-23) Valid with CF or SSD; with HDD: 5 g /0.5 g4) Valid with CF or SSD; with HDD: +5 °C to 45 °CProcessorsIntel Celeron M 1.2 GHz, Intel Core2 Solo 1.2 GHz, or Intel Core2 Duo 1.86 GHz Memory type DDR3-RAMMain memory 1 GB, 2 GB or 4 GBFree slots1x CF card slot (externally accessible) 1 x PCI slotOperating systemWindows Embedded Standard 2009 (EN/DE), Windows XP Professional Multi-Language 1), Windows Embedded Stan-dard 7, Windows 7 Ultimate Additional OS information Languages: English / GermanSIMATIC SoftwareOptionally with preinstalled bundle soft-ware SIMATIC WinCC flexible 2008 SP1 and/or WinAC RTX 2009SIMATIC WinCC as web client or stan-dard clientFloppy drive Optional via external USB floppy driveOptical drivesOptional DVD ±RW ±R combination drive or external drive via USBHard disk/mass storageSSD (Solid State Disk) with 50 GB (SATA, SLC) and/or HDD with 250 GB and/or Compact Flash with 2, 4 or 8 GBExternal graphics inter-faceDVI-I for additional display unit: Color depth 32 bits Connection for key-board/mouse USB / USBSerial interface COM1: 1 x V .24 (RS232)PROFIBUS/MPIOptionally onboard, isolated, max. 12 Mbit/s, no plug-in card required, CP5611-compatible, not upgradable PROFINET (IRT)Optional onboard, 3 x RJ 45, CP 1616-compatible, not upgradeablePROFINET (IE), EthernetOnboard, 2 x 10/100/1000 Mbit (RJ45 without/with PROFIBUS), 1 x 10/100/1000 Mbit (RJ45 withPROFINET), no plug-in card necessary USB1 x on front, 4 x on rear, USB 2.0 (500 mA)Audio Possible via USB (external)MultimediaNoSupply voltage24 V DC or 100/240 V ACTemperatureYes Watchdog YesDiagBit (similar to S.M.A.R.T.)Yes (for CF cards, HDD and SSD)Front side according to EN 60529IP65 (on the front), tested according to EN 60529 and NEMA4Vibration load during operationTested according toDIN IEC 60068-2-6: 10 to 58 Hz:0.075mm, 58 to 200 Hz: 10 m/s² (1 g ) 3)Shock loading during operationTested according toDIN IEC 60068-2-27: 50 m/s² (5 g ), 30 ms, 100 shocksRelative humidityTested according toDIN IEC 60068-78, DIN IEC 60068-2-30: 5% to 80% at 25 °C (no condensation)Maximum permissible installation angle +/-45° over verticalAmbient temperature during operation0 °C … +50 °C in maximum configurationApprovals CE, cULus(508)EMCCE, FCC A, 55022A, EN 61000-6-42), EN 61000-6-2Front panel12" TFT Touch12" TFT Key15" TFT Touch15" TFT Key19" TFT Touch Resolution (W x H in pix-els)800 x 600800 x 6001024 x 7681024 x 7681280 x 1024MTBF backlit display (at 25 °C)50000 h at 24 h con-tinuous operation,temperature-depen-dent50000 h at 24 h con-tinuous operation,temperature-depen-dent50000 h at 24 hcontinuous opera-tion, temperature-dependent50000 h at 24 h con-tinuous operation,temperature-depen-dent50000 h at 24 h con-tinuous operation,temperature-depen-dentFunction keys No Yes No Yes No Alphanumeric keyboard No Yes No Yes NoTouch screen (ana-log/resistive)Yes No Yes No YesMouse on the front No Yes No Yes NoCentralized configuration Yes Yes Yes Yes Yes Distributed configuration No No No No NoMounting dimensions incentralized configuration(W x H x D, without opticaldrive) in mm368 x 290 x 84450 x 290 x 84450 x 290 x 87450 x 321 x 87450 x 380 x 94Operator control unit(W x H) in mm400 x 310483 x 310483 x 310 483 x 355483 x 4008.0 kg8.0 kg9.0 kg9.0 kg11.5 kgAccessories Touch protectivemembranes Keyboard slide-inlabelsTouch protectivemembranesKeyboard slide-inlabelsTouch protectivemembranesPower loss in maximum configuration 24 V DC: max. 55 W 24 V DC: max. 55 W 24 V DC: max.57 W24 V DC: max. 57 W 24 V DC: max. 84 WDimensional drawingsSIMATIC HMI IPC577C 12" Key versionSIMATIC HMI IPC577C 12" Touch versionSIMATIC HMI IPC577C 15" Key versionSIMATIC HMI IPC577C 15" Touch versionSIMATIC HMI IPC577C 19" Touch versionThe optimum configuration for your application:/ipc-configuratorIn-depth information is available in the SIMATIC manuals:/simatic-doku Information material for download:/simatic/printmaterial Technical documentation is available in our Service & Support/automation/support portal:Your personal contact partner is listed at: /automation/partner Electronic ordering via the Internet with the Mall: /automation/mall Online Service Tool PED – for fast information on the equipment/pedof your SIMATIC PC and the management of your fieldinventory:Additional information in the Internet:/panel-pc。
LT3652_4.95-32V宽范围
13652faT YPICAL APPLICATIOND ESCRIPTION Charger for Solar PowerThe LT ®3652 is a complete monolithic step-down bat-tery charger that operates over a 4.95V to 32V inputvoltage range. The LT3652 provides a constant-current/constant-voltage charge characteristic, with maximum charge current externally programmable up to 2A. The charger employs a 3.3V fl oat voltage feedback reference, so any desired battery fl oat voltage up to 14.4V can be programmed with a resistor divider.The LT3652 employs an input voltage regulation loop, which reduces charge current if the input voltage falls below a programmed level, set with a resistor divider. When the LT3652 is powered by a solar panel, the input regulation loop is used to maintain the panel at peak output power.The LT3652 can be confi gured to terminate charging when charge current falls below 1/10 of the programmed maximum (C/10). Once charging is terminated, the LT3652 enters a low-current (85μA) standby mode. An auto-re-charge feature starts a new charging cycle if the battery voltage falls 2.5% below the programmed fl oat voltage. The LT3652 also contains a programmable safety timer, used to terminate charging after a desired time is reached. This allows top-off charging at currents less than C/10.2A Solar Panel Power Manager With 7.2V LiFePO 4 Batteryand 17V Peak Power TrackingF EATURESA PPLICATIONS nInput Supply Voltage Regulation Loop for Peak Power T racking in (MPPT) Solar Applicationsn Wide Input Voltage Range: 4.95V to 32V (40V Abs Max)n Programmable Charge Rate Up to 2An User Selectable Termination: C/10 or On-Board Termination Timern Resistor Programmable Float Voltage Up to 14.4V Accommodates Li-Ion/Polymer , LiFePO 4, SLA, NiMH/NiCd Chemistriesn No V INBlocking Diode Required for Battery Voltages ≤ 4.2Vn 1MHz Fixed Frequencyn 0.5% Float Voltage Reference Accuracy n 5% Charge Current Accuracy n 2.5% C/10 Detection Accuracyn Binary-Coded Open-Collector Status Pins n 3mm × 3mm DFN12 PackagenSolar Powered Applications n Remote Monitoring Stationsn LiF ePO 4(Lithium Phosphate) Applications n Portable Handheld Instruments n 12V to 24V Automotive SystemsSolar Panel Input Voltage Regulation, Tracks Max Power Point to Greater Than 98%SOLAR PANEL INPUT (<40V OC VOL TAGE)3652 TA01aCHARGER OUTPUT CURRENT (A)0.2I N P U T R E G U L A T I O N V O L T A G E (V )1012142018160.61 1.23652 TA01b220.40.8 1.61.421.8L , L T , L TC, L TM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.LT365223652faP IN CONFIGURATIONA BSOLUTE MAXIMUM RATINGS Voltages:V IN ........................................................................40V V IN_REG , SHDN , CHRG , FAUL T ............V IN + 0.5V , 40V SW ........................................................................40V SW-V IN .................................................................4.5V BOOST ...................................................SW+10V , 50V BAT , SENSE ...........................................................15V BAT-SENSE .........................................–0.5V to +0.5V NTC, TIMER, ........................................................2.5V V FB ..........................................................................5V Operating Junction Temperature Range(Note 2) .........................................–40°C to 125°C Storage Temperature Range ..............–65°C to 150°C(Note 1)E LECTRICAL CHARACTERISTICSSYMBOL PARAMETER CONDITIONS MIN TYPMAX UNITSV IN V IN Operating RangeV IN Start Voltage V BAT = 4.2 (Notes 3, 4)V BAT = 4.2 (Note 4)l l 4.957.532V V V IN(OVLO)OVLO Threshold OVLO Hysteresis V IN Rising l3235140V V V IN(UVLO)UVLO Threshold UVLO Hysteresis V IN Rising 4.60.24.95V V V FB(FL T)Float Voltage Reference (Note 6)l 3.2823.263.3 3.3183.34V V ΔV RECHARGE Recharge Reference Threshold Voltage Relative to V FB(FL T) (Note 6)82.5mV V FB(PRE)Reference Precondition Threshold V FB Rising (Note 6)2.3V V FB(PREHYST)Reference Precondition Threshold HysteresisVoltage Relative to V FB(PRE) (Note 6)70mV V IN_REG(TH)Input Regulation Reference V FB = 3V; V SENSE – V BAT = 50mV l 2.652.7 2.75V I IN_REG Input Regulation Reference Bias Current V IN_REG = V IN_REG(TH)l 35100nA I VINOperating Input Supply CurrentCC/CV Mode, I SW = 0Standby ModeShutdown (SHDN = 0)l 2.585153.5mA μA μAORDER INFORMATIONLEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION TEMPERATURE RANGE LT3652EDD#PBF LT3652EDD#TRPBF LFHT 12-Lead Plastic DFN 3mm × 3mm –40°C to 125°C LT3652IDD#PBFLT3652IDD#TRPBFLFHT12-Lead Plastic DFN 3mm × 3mm–40°C to 125°CConsult LTC Marketing for parts specifi ed with wider operating temperature ranges.Consult LTC Marketing for information on non-standard lead based fi nish parts.For more information on lead free part marking, go to: /leadfree/ For more information on tape and reel specifi cations, go to: /tapeandreel/TOP VIEWDD PACKAGE12-LEAD (3mm × 3mm) PLASTIC DFN1211891045321SW BOOST SENSE BAT NTCV FBV IN V IN_REG SHDN CHRG FAUL T TIMER6713T JMAX = 125°C, θJA = 43°C/W , θJC = 3°C/WEXPOSED PAD (PIN 13) IS GND, MUST BE SOLDERED TO PCBThe l denotes the specifi cations which apply over the full operating temperature range, otherwise specifi cations are at T A = 25°C. V IN = 20V, Boost – SW = 4V, SHDN = 2V, V FB = 3.3V, C TIMER = 0.68μF.LT365233652faNote 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.Note 2: The L T3652EDD is guaranteed to meet performance specifi cations from 0°C to 125°C junction temperature. Specifi cations over the –40°C to 125°C operating junction temperature range are assured by design, characterization, and correlation with statistical process controls. The L T3652IDD specifi cations are guaranteed over the full –40°C to 125°C operating junction temperature range. High junction temperatures degrade operating lifetimes.Note 3: V IN minimum voltages below the start threshold are only supported if (V BOOST -V SW ) > 2V .SYMBOL PARAMETER CONDITIONSMIN TYP MAX UNITS I BOOST BOOST Supply Current Switch On, I SW = 0,2.5 < V (BOOST – SW) < 8.520mA I BOOST/I SW BOOST Switch Drive I SW = 2A30mA/A V SW(ON)Switch-On Voltage Drop V IN – V SW , I SW = 2A350mV I SW(MAX)Switch Current Limit l2.53A V SENSE(PRE)Precondition Sense Voltage V SENSE – V BAT ; V FB = 2V 15mVV SENSE(DC)Maximum Sense Voltage V SENSE – V BAT ; V FB = 3V (Note 7)l 95100105mV V SENSE(C/10)C/10 T rigger Sense Voltage V SENSE – V BAT , Falling l7.51012.5mV I BAT BAT Input Bias Current Charging Terminated 0.11μA I SENSE SENSE Input Bias Current Charging Terminated0.11μA I REVERSE Charger Reverse CurrentI BAT + I SENSE + I SW V IN = 0; V BAT = V SENSE = V SW = 4.2V 1μA I VFB V FB Input Bias Current Charging Terminated 65nA I VFB V FB Input Bias Current CV Operation (Note 5)110nAV NTC(H)NTC Range Limit (High)V NTC Rising l 1.25 1.36 1.45V V NTC(L)NTC Range Limit (Low)V NTC Falling l 0.270.290.315V V NTC(HYST)NTC Threshold Hysteresis % of threshold 20%R NTC(DIS)NTC Disable Impedance Impedance to ground l 250500kΩI NTC NTC Bias Current V NTC = 0.8V l 47.55052.5μA V SHDN Shutdown Threshold Risingl 1.151.2 1.25V V SHDN(HYST)Shutdown Hysteresis 120mV I SHDN SHDN Input Bias Current –10nAV CHRG , V FAUL T Status Low Voltage 10mA Load l 0.4V I TIMER Charge/Discharge Current 25μA V TIMER(DIS)Timer Disable Threshold l0.10.25V t TIMERFull Charge Cycle Timeout 3hr Precondition Timeout 22.5min Timer Accuracyl –1010%f O Operating Frequency 1MHz DCDuty Cycle RangeContinuous Operationl 1590%E LECTRICAL CHARACTERISTICS Note 4: This parameter is valid for programmed output battery fl oat voltages ≤ 4.2V . V IN operating range minimum is 0.75V above the programmed output battery fl oat voltage (V BAT(FL T) + 0.75V). V IN Start Voltage is 3.3V above the programmed output battery fl oat voltage (V BAT(FL T) + 3.3V).Note 5: Output battery fl oat voltage (V BAT(FL T)) programming resistor divider equivalent resistance = 250k compensates for input bias current. Note 6: All V FB voltages measured through 250k series resistance.Note 7: V SENSE(DC) is reduced by thermal foldback as junction temperature approaches 125°C.The l denotes the specifi cations which apply over the full operating temperature range, otherwise specifi cations are at T A = 25°C. V IN = 20V, Boost – SW = 4V, SHDN = 2V, V FB = 3.3V, C TIMER = 0.68μF.LT365243652faT YPICAL PERFORMANCE CHARACTERISTICS Switch Forward Drop (V IN – V SW ) vs TemperatureCC/CV Charging; SENSE Pin Bias Current vs V SENSEC/10 Threshold (V SENSE –V BAT ) vs TemperatureV FB Reference Voltage vs TemperatureV IN Standby Mode Current vs TemperatureSwitch Drive (I SW /I BOOST ) vs Switch CurrentT J = 25°C, unless otherwise noted.TEMPERATURE (°C)–50V F B (F L T )3.2963.2983.3003.302050753652 G01a3.304–2525100125TEMPERATURE (°C)–5065I V I N C U R R E N T (μA )70758010090050753652 G029585–2525100SWITCH CURRENT (A)I S W /I B O O S T18243036 1.6126021273315930.40.8 1.20.2 1.80.6 1.0 1.4 2.03652 G03TEMPERATURE (°C)–50320V S W (O N ) (m V )340360380480420050753652 G04440460400–2525100125V SENSE (V)–350I S E N S E (μA )–250–150–5010050–300–200–10003652 G05TEMPERATURE (°C)–508V S E N S E (C /10) (m V )9101112050753652 G06–2525100125TEMPERATURE (°C)–50V I N _R E G (T H ) (V )2.6802.6852.6902.7152.7102.7052.7002.695050753652 G012.720–2525100125V IN_REG Thresholdvs Temperature: I CHG at 50%LT365253652faTYPICAL PERFORMANCE CHARACTERISTICSMaximum Charge Current (V SENSE –V BAT ) vs TemperatureThermal Foldback – Maximum Charge Current (V SENSE –V BAT ) vs TemperatureCC/CV Charging; BAT Pin Bias Current vs V BATT A = 25°C, unless otherwise noted.TEMPERATURE (°C)–5099.0V S E N S E (D C ) (m V )99.299.699.8100.0101.0100.4050753652 G0799.4100.6100.8100.2–2525100125TEMPERATURE (°C)V S E N S E (D C )(m V )4080206010012045658510512535135255575951153652 G08V BAT (V)–0.4I B A T (m A )0.00.40.82.21.62.01.2–0.20.20.61.01.81.43652 G09V IN_REG (V)2.65V S E N S E (D C ) (m V )208060402.67 2.692.73652 G101002.662.68 2.722.71 2.732.742.75V BAT(FL T) (V)020I R F B (μA )861012163652 G1142648101214TIME (MINUTES)EFFICIENCY (%)C H A R G E C U R R E N T (A ); P OW E R L O S S (W )0.52.02.51.51.040801003652 G123.0354575655595852060140120160180200Maximum Charge Current(V SENSE –V BAT ) vs V IN_REG VoltageV FLOAT Programming Resistor Current vs V FLOAT for 2-Resistor NetworkCharge Current, Effi ciency, and Power Loss vs Time(I CHG(MAX) = 2A; V FLOAT = 8.2V)Charger Effi ciency vs Battery Voltage (I CHG= 2A)V BAT (V)70E F F I C I E N C Y (%)7680828486887472789057911134141536810123652 G13LT365263652faP IN FUNCTIONS V IN (Pin 1): Charger Input Supply. V IN operating range is 4.95V to 32V. V IN must be 3.3V greater than the pro-grammed output battery fl oat voltage (V BAT(FLT)) for reli-able start-up. (V IN – V BAT(FLT)) ≥ 0.75V is the minimum operating voltage, provided (V BOOST – V SW ) ≥ 2V. I VIN ~ 85μA after charge termination.V IN_REG (Pin 2): Input Voltage Regulation Reference. Maximum charge current is reduced when this pin is below 2.7V. Connecting a resistor divider from V IN to this pin enables programming of minimum operational V IN voltage. This is typically used to program the peak power voltage for a solar panel. The LT3652 servos the maximum charge current required to maintain the programmed operational V IN voltage, through maintaining the voltage on V IN_REG at or above 2.7V. If the voltage regulation feature is not used, connect the pin to V IN .SHDN (Pin 3): Precision Threshold Shutdown Pin. The enable threshold is 1.2V (rising), with 120mV of input hysteresis. When in shutdown mode, all charging functions are disabled. The precision threshold allows use of the SHDN pin to incorporate UVLO functions. If the SHDN pin is pulled below 0.4V, the IC enters a low current shutdown mode where V IN current is reduced to 15μA. Typical SHDN pin input bias current is 10nA. If the shutdown function is not desired, connect the pin to V IN .CHRG (Pin 4): Open-Collector Charger Status Output; typically pulled up through a resistor to a reference volt-age. This status pin can be pulled up to voltages as high as V IN when disabled, and can sink currents up to 10mA when enabled. During a battery charging cycle, if required charge current is greater than 1/10 of the programmed maximum current (C/10), CHRG is pulled low. A tem-perature fault also causes this pin to be pulled low. After C/10 charge termination or, if the internal timer is used for termination and charge current is less than C/10, the CHRG pin remains high-impedance.FAULT (Pin 5): Open-Collector Charger Status Output; typically pulled up through a resistor to a reference volt-age. This status pin can be pulled up to voltages as high as V IN when disabled, and can sink currents up to 10mA when enabled. This pin indicates fault conditions during a battery charging cycle. A temperature fault causes this pinto be pulled low. If the internal timer is used for termina-tion, a bad battery fault also causes this pin to be pulled low. If no fault conditions exist, the FAULT pin remains high-impedance.TIMER (Pin 6): End-Of-Cycle Timer Programming Pin. If a timer-based charge termination is desired, connect a capacitor from this pin to ground. Full charge end-of-cycle time (in hours) is programmed with this capacitor following the equation: t EOC = C TIMER • 4.4 • 106A bad battery fault is generated if the battery does not achieve the precondition threshold voltage within one-eighth of t EOC , or: t PRE = C TIMER • 5.5 • 105A 0.68μF capacitor is typically used, which generates a timer EOC at three hours, and a precondition limit time of 22.5 minutes. If a timer-based termination is not desired, the timer function is disabled by connecting the TIMER pin to ground. With the timer function disabled, charging terminates when the charge current drops below a C/10 threshold, or I CHG(MAX)/10V FB (Pin 7): Battery F loat Voltage F eedback Reference. The charge function operates to achieve a fi nal fl oat voltage of 3.3V on this pin. Output battery fl oat voltage (V BAT(FLT)) is programmed using a resistor divider. V BAT(FLT) can be programmed up to 14.4V.The auto-restart feature initiates a new charging cyclewhen the voltage at the V FB pin falls 2.5% below the float voltage reference.The V FB pin input bias current is 110nA. Using a resistor divider with an equivalent input resistance at the V FB pin of 250k compensates for input bias current error.Required resistor values to program desired V BAT(FLT) follow the equations:R1 = (V BAT(FLT) • 2.5 • 105)/3.3 (Ω) R2 = (R1 • 2.5 • 105)/(R1 - (2.5 • 105))(Ω)R1 is connected from BAT to V FB , and R2 is connected from V FB to ground.LT365273652faNTC (Pin 8): Battery Temperature Monitor Pin. This pin is the input to the NTC (Negative Temperature Coeffi cient) thermistor temperature monitoring circuit. This function is enabled by connecting a 10kΩ, B = 3380 NTC thermistor from the NTC pin to ground. The pin sources 50μA, and monitors the voltage across the 10kΩ thermistor. When the voltage on this pin is above 1.36 (T < 0°C) or below 0.29V (T > 40°C), charging is disabled and the CHRG and FAULT pins are both pulled low. If internal timer termina-tion is being used, the timer is paused, suspending the charging cycle. Charging resumes when the voltage on NTC returns to within the 0.29V to 1.36V active region. There is approximately 5°C of temperature hysteresis associated with each of the temperature thresholds. The temperature monitoring function remains enabled while the thermistor resistance to ground is less than 250k, so if this function is not desired, leave the NTC pin unconnected.BAT (Pin 9): Charger Output Monitor Pin. Connect a 10μF decoupling capacitance (C BAT ) to ground. Depend-ing on application requirements, larger value decoupling capacitors may be required. The charge function operates to achieve the programmed output battery fl oat voltage (V BAT(FLT)) at this pin. This pin is also the reference for the current sense voltage. Once a charge cycle is termi-nated, the input bias current of the BAT pin is reduced to < 0.1μA, to minimize battery discharge while the charger remains connected.SENSE (Pin 10): Charge Current Sense Pin. Connect the inductor sense resistor (R SENSE ) from the SENSE pin to the BAT pin. The voltage across this resistor sets the averagecharge current. The maximum charge current (I CHG(MAX)) corresponds to 100mV across the sense resistor. This resistor can be set to program maximum charge cur-rent as high as 2A. The sense resistor value follows the relation:R SENSE = 0.1/I CHG(MAX) (Ω)Once a charge cycle is terminated, the input bias current of the SENSE pin is reduced to < 0.1μA, to minimize battery discharge while the charger remains connected.BOOST (Pin 11): Bootstrapped Supply Rail for Switch Drive. This pin facilitates saturation of the switch transistor. Connect a 1μF or greater capacitor from the BOOST pin to the SW pin. Operating range of this pin is 0V to 8.5V, referenced to the SW pin. The voltage on the decoupling capacitor is refreshed through a rectifying diode, with the anode connected to either the battery output voltage or an external source, and the cathode connected to the BOOST pin.SW (Pin 12): Switch Output Pin. This pin is the output of the charger switch, and corresponds to the emitter of the switch transistor. When enabled, the switch shorts the SW pin to the V IN supply. The drive circuitry for this switch is bootstrapped above the V IN supply using the BOOST supply pin, allowing saturation of the switch for maximum effi ciency. The effective on-resistance of the boosted switch is 0.175Ω.SGND (Pin 13): Ground Reference and Backside Exposed Lead Frame Thermal Connection. Solder the exposed lead frame to the PCB ground plane.P IN FUNCTIONSLT365283652faB LOCK DIAGRAM+–LT365293652faA PPLICATIONS INFORMATION OverviewL T3652 is a complete monolithic, mid-power , multi-chem-istry buck battery charger , addressing high input voltageapplications with solutions that require a minimum of exter-nal components. The IC uses a 1MHz constant frequency,average-current mode step-down architecture.The L T3652 incorporates a 2A switch that is driven by a bootstrapped supply to maximize efficiency during charging cycles. Wide input range allows operation to fullcharge from voltages as high as 32V . A precision thresholdshutdown pin allows incorporation of UVLO functionalityusing a simple resistor divider . The IC can also be put intoa low-current shutdown mode, in which the input supplybias is reduced to only 15μA.The L T3652 employs an input voltage regulation loop, which reduces charge current if a monitored input volt-age falls below a programmed level. When the L T3652 ispowered by a solar panel, the input regulation loop is usedto maintain the panel at peak output power .The L T3652 automatically enters a battery precondition mode if the sensed battery voltage is very low. In this mode,the charge current is reduced to 15% of the programmed maximum, as set by the inductor sense resistor , R SENSE . Once the battery voltage reaches 70% of the fully charged float voltage, the IC automatically increases maximum charge current to the full programmed value.The L T3652 can use a charge-current based C/10 termina-tion scheme, which ends a charge cycle when the battery charge current falls to one tenth of the programmed maximum charge current. The L T3652 also contains an internal charge cycle control timer , for timer-based termina-tion. When using the internal timer , the IC combines C/10 detection with a programmable time constraint, during which the charging cycle can continue beyond the C/10 level to top-off a battery. The charge cycle terminates when a specific time elapses, typically 3 hours. When the timer-based scheme is used, the IC also supports bad battery detection, which triggers a system fault if a battery stays in precondition mode for more than one eighth of the total charge cycle time.Once charging is terminated, the L T3652 automaticallyenters a low-current standby mode where supply biascurrents are reduced to 85μA. The IC continues to monitorthe battery voltage while in standby, and if that voltagefalls 2.5% from the full-charge float voltage, the L T3652engages an automatic charge cycle restart. The IC alsoautomatically restarts a new charge cycle after a bad bat-tery fault once the failed battery is removed and replaced with another battery.The L T3652 contains provisions for a battery temperaturemonitoring circuit. This feature monitors battery tempera-ture using a thermistor during the charging cycle. If thebattery temperature moves outside a safe charging rangeof 0°C to 40°C, the IC suspends charging and signals afault condition until the temperature returns to the safecharging range.The L T3652 contains two digital open-collector outputs,which provide charger status and signal fault conditions.These binary-coded pins signal battery charging, standbyor shutdown modes, battery temperature faults, and badbattery faults.General Operation (See Block Diagram)The L T3652 uses average current mode control loop architecture, such that the IC servos directly to average charge current. The L T3652 senses charger output voltage through a resistor divider via the V FB pin. The difference between the voltage on this pin and an internal 3.3V volt-age reference is integrated by the voltage error amplifier (V-EA). This amplifier generates an error voltage on its output (I TH ), which corresponds to the average current sensed across the inductor current sense resistor , R SENSE , which is connected between the SENSE and BAT pins. The I TH voltage is then divided down by a factor of 10, and imposed on the input of the current error amplifier (C-EA). The difference between this imposed voltage and the current sense resistor voltage is integrated, with the resulting voltage (V C ) used as a threshold that is compared against an internally generated ramp. The output of this comparison controls the charger’s switch.LT3652103652faA PPLICATIONS INFORMATION The I TH error voltage corresponds linearly to average current sensed across the inductor current sense resistor , allowing maximum charge current control by limiting the effective voltage range of I TH . A clamp limits this voltage to 1V which, in turn, limits the current sense voltage to 100mV . This sets the maximum charge current, or the current delivered while the charger is operating in con-stant-current (CC) mode, which corresponds to 100mV across R SENSE . The I TH voltage is pulled down to reduce this maximum charge current should the voltage on the V IN_REG pin falls below 2.7V (V IN_REG(TH)) or the die tem-perature approaches 125°C.If the voltage on the V FB pin is below 2.3V (V FB(PRE)), the LT3652 engages precondition mode. During the precondition interval, the charger continues to operate in constant-current mode, but the maximum charge current is reduced to 15% of the maximum programmed value as set by R SENSE .When the charger output voltage approaches the float volt-age, or the voltage on the V FB pin approaches 3.3V (V FB(FL T)), the charger transitions into constant-voltage (CV) mode and charge current is reduced from the maximum value. As this occurs, the I TH voltage falls from the limit clamp and servos to lower voltages. The IC monitors the I TH volt-age as it is reduced, and detection of C/10 charge current is achieved when I TH = 0.1V . If the charger is configured for C/10 termination, this threshold is used to terminate the charge cycle. Once the charge cycle is terminated, the CHRG status pin becomes high-impedance and the charger enters low-current standby mode.The L T3652 contains an internal charge cycle timer that terminates a successful charge cycle after a programmed amount of time. This timer is typically programmed to achieve end-of-cycle (EOC) in 3 hours, but can be con-figured for any amount of time by setting an appropriate timing capacitor value (C TIMER ). When timer termination is used, the charge cycle does not terminate when C/10 is achieved. Because the CHRG status pin responds tothe C/10 current level, the IC will indicate a fully-charged battery status, but the charger continues to source low currents into the battery until the programmed EOC time has elapsed, at which time the charge cycle will terminate. At EOC when the charging cycle terminates, if the battery did not achieve at least 97.5% of the full float voltage, charging is deemed unsuccessful, the L T3652 re-initiates, and charging continues for another full timer e of the timer function also enables bad-battery detec-tion. This fault condition is achieved if the battery does not respond to preconditioning, such that the charger remains in (or enters) precondition mode after 1/8th of the programmed charge cycle time. A bad battery fault halts the charging cycle, the CHRG status pin goes high-impedance, and the FAUL T pin is pulled low.When the L T3652 terminates a charging cycle, whether through C/10 detection or by reaching timer EOC, the average current mode analog loop remains active, but the internal float voltage reference is reduced by 2.5%. Because the voltage on a successfully charged battery is at the full float voltage, the voltage error amp detects an over-voltage condition and I TH is pulled low. When the voltage error amp output drops below 0.3V , the IC enters standby mode, where most of the internal circuitry is dis-abled, and the V IN bias current is reduced to 85μA. When the voltage on the V FB pin drops below the reduced float reference level, the output of the voltage error amp will climb, at which point the IC comes out of standby mode and a new charging cycle is initiated.V IN Input SupplyThe L T3652 is biased directly from the charger input supply through the V IN pin. This supply provides large switched currents, so a high-quality, low ESR decoupling capacitor is recommended to minimize voltage glitches on V IN . The V IN decoupling capacitor (C VIN ) absorbs all input switchingripple current in the charger , so it must have an adequate ripple current rating. RMS ripple current (I CVIN(RMS)) is: I CVIN(RMS) ≅ I CHG(MAX) • (V BAT / V IN )•([V IN / V BAT ] – 1)1/2,where I CHG(MAX) is the maximum average charge current (100mV/R SENSE ). The above relation has a maximum at V IN = 2 • V BAT , where: I CVIN(RMS) = I CHG(MAX)/2.The simple worst-case of ½ • I CHG(MAX) is commonly used for design.Bulk capacitance is a function of desired input ripple volt-age (ΔV IN ), and follows the relation:C IN(BULK) = I CHG(MAX) • (V BAT /V IN ) / ΔV IN (μF)Input ripple voltages above 0.1V are not recommended. 10μF is typically adequate for most charger applica-tions.Charge Current ProgrammingThe L T3652 charger is configurable to charge at average currents as high as 2A. Maximum charge current is set by choosing an inductor sense resistor (R SENSE ) such that the desired maximum average current through that sense resistor creates a 100mV drop, or: R SENSE = 0.1 / I CHG(MAX)where I CHG(MAX) is the maximum average charge current. A 2A charger , for example, would use a 0.05Ω sense resistor .BOOST SupplyThe BOOST bootstrapped supply rail drives the internal switch and facilitates saturation of the switch transistor . Operating range of the BOOST pin is 0V to 8.5V , as refer-A PPLICATIONS INFORMATION Figure 1. Programming Maximum Charge Current Using R SENSESENSEenced to the SW pin. Connect a 1μF or greater capacitor from the BOOST pin to the SW pin.The voltage on the decoupling capacitor is refreshed through a diode, with the anode connected to either the battery output voltage or an external source, and the cathode connected to the BOOST pin. Rate the diode average current greater than 0.1A, and reverse voltage greater than V IN(MAX).To refresh the decoupling capacitor with a rectifying diode from the battery with battery float voltages higher than 8.4V , a >100mA Zener diode can be put in series with the rectifying diode to prevent exceeding the BOOST pin operating voltage range.。
MEMORY存储芯片LTV-356T-B中文规格书
Photocoupler LTV-356T series3.TAPING DIMENSIONS3.1 LTV-356T-TP3.2 LTV-356T-TP13.3 Quantities Per ReelDescription Symbol Dimension in mm (inch)Tape wide W 12±0.3 (0.472) Pitch of sprocket holes P 04±0.1 (0.157) Distance of compartment F 5.5±0.1 (0.217) P 2 2±0.1 (0.079) Distance of compartment tocompartmentP 18±0.1 (0.315)Package Type LTV-356T seriesQuantities (pcs)3000Photocoupler LTV-356T series4.RATING AND CHARACTERISTICS4.1 Absolute Maximum Ratings at Ta=25°CInputForward Current I F 50 mA Reverse VoltageV R 6 V Power Dissipation P 70 mWJunction Temperature T J 125 oCOutputCollector - Emitter Voltage V CEO 80 V Emitter - Collector VoltageV ECO 6 V Collector Current I C 50 mA Collector Power Dissipation P C 150 mWJunction Temperature T J 125 oCTotal Power DissipationP tot 170 mW 1.Isolation Voltage V iso 3750 V rmsOperating Temperature T opr -55 ~ +110o C Storage TemperatureT stg -55 ~ +150o C 2.Soldering TemperatureT sol260oCPhotocoupler LTV-356T series4.2 ELECTRICAL OPTICAL CHARACTERISTICS at Ta=25°C InputForward Voltage V F — 1.2 1.4 V I F =20mA Reverse CurrentI R——10µAV R =4VTerminal Capacitance C t — 30 250 pF V=0, f=1KHzOutputCollector Dark Current I CEO — — 100 nA V CE =20V, I F =0Collector-EmitterBreakdown Voltage BV CEO 80 — — V I C =0.1mA, I F =0Emitter-Collector Breakdown Voltage BV ECO 6 — — V I E =10µA, I F =0TRANSFER CHARACTERISTICSCollector Current I C 2.5 — 30 mA I F =5mA V CE =5V 1.Current Transfer Ratio CTR50—600%Collector-Emitter Saturation VoltageV CE(sat) — — 0.2 VI F =20mA I C =1mA Isolation ResistanceR iso5×1010 1×1011— ΩDC500V, 40 ~ 60% R.H.Floating Capacitance Cf — 0.6 1 pF V=0, f=1MHzResponse Time (Rise) tr—418µsV CE =2V, I C =2mAR L =100Ω,Response Time (Fall) tf — 3 18 µs1.100%I I CTR FC ×=Photocoupler LTV-356T series6.CHARACTERISTICS CURVES (TYPICAL PERFORMANCE)Fig.4 Forward Current vs. ForwardFig.5 Current Transfer Ratio vs.Forward CurrentFig.6 Collector Current vs.Collector-emitter VoltageC o l l e c t o r c u r r e n t I c (m A )Fig.3 Collector-emitter SaturationVoltage vs. Forward CurrentC E C o l l e c o t r -e m i t t e r s a t u r a t i o n v o l t a g e V (s a t ) (V )Voltage0100151234560.5 1.0 1.5 2.0 2.5 3.02510205010020050001234567891030501052040Collector-emitter voltage V CE (V)Forward current I F (mA)Forward voltage V F (V)F o r w a r d c u r r e n t I F (m A )Fig.1 Forward Current vs.Fig.2 Collector Power Dissipation vs.Ambient Temperature0C o l l e c t o r p o w e r d i s s i p a t i o n P c (m W )Ambient temperature Ta ( C)Ambient temperature Ta ( C)60050100150200Ambient Temperature5040302010F o r w a r d c u r r e n t I F (m A )Photocoupler LTV-356T seriesFig.8 Collector-emitter Saturation VoltageFig.9 Collector Dark Current vs.Ambient TemperatureFig.10 Response Time vs. LoadFig.11 Frequency Response C E vs. Ambient TemperatureAmbient temperature Ta ( C)Ambient temperature Ta ( C)Frequency f (kHz)R e s p o n s e t i m e ( s )V o l t a g e g a i n A v (d B )C o l l e c t o r -e m i t t e r s a t u r a t i o n v o l t a g e V (s a t ) (V )0.20.05204060801000.10.20.5125100.51251020501002005000.52010210100500ResistanceFig.7 Relative Current Transfer Ratiovs. Ambient Temperature152050Test Circuit for Response TimeTest Circuit for Frequency ResponseOutputVccLoad resistance R L (k )C o l l e c t o r d a r k c u r r e n t I C E O (n A )1101000010001002040801000.020.040.060.080.1060120120。
Altronic EPC-200C 引擎性能控制器说明书
Altronic, LLC – A Member of the HOERBIGER GroupEPC SERIESEngine Performance Controllern Improve engine performance and efficiencyn Electronic control of ignition timing and air/fuel ratio n User-configurable for any enginen Fail-safe design features and fault annunciation n Seven discrete outputs for sequence controln 8-digit LCD display of status and operating parameters n RS422 communications interfacen CSA-Certified for Class I, Division 2, Group DHazardous AreasThe Altronic EPC-200C Engine Performance Controller is de-signed to maximize engine performance and efficiency. Micro-processor-based, the EPC electronically controls ignition timing and air/fuel ratio replacing the traditional pneumatic control system for these functions. Engine RPM plus up to four other analog inputs can be used as control variables; typically, these would include fuel manifold pressure, air manifold pressure and air manifold temperature. The four inputs and two analog outputs are in the form of 1–5 volt or 4–20 ma signals for easy interfacing with available transducers. The EPC is specially designed to operate in conjunction with Altronic II-CPU and Altronic III-CPU.In addition to the two analog control functions (ignition timing and air/fuel ratio), the EPC-200C also has six user-programma-ble solid-state relay outputs related to the common start-up se-quencing functions such as purge, overcrank, crank disconnect, flooding, etc. A seventh discrete output provides a signal in the event of overspeed, overload or loss of any input; if this occurs, timing and air/fuel ratio are set to preset values. In addition, there is a manual override mode to allow changing and checking of program data while the engine is running.The EPC-200C has a RS422 interface for communications capability with other process or control computers.CERTIFIEDCLASS I, DIVISION 2,GROUP DTypical ApplicationExample: Turbocharged Gas Engine with Wastegate Controllerfor Air Manifold PressureThe chart indicates the most common input variables used. The fifth input channel gives additional flexibility and capability for more sophisticated control programs.For Ignition Timing control, the user chooses one input (for exam-ple, RPM) as the primary control factor. Other factors are used to appropriately modify the timing curves for load and temperature. For Air/Fuel Ratio control, fuel pressure is the primary control factor with air manifold temperature as a modifier. Other control strategies are possible, for example, based on different inputs such as fuel BTU value or exhaust oxygen content.EPC-200 FeaturesGeneral Operation — The EPC-200C performs the functions of a typical pneumatic control system for a gas engine with exhaust-driven turbocharger. The outputs are controlled by RPM and up to four other variables. Response to the inputs is controlled by entries through the the EPC’s dealed membrane keyboard, giving the user total access to the operating parameters.Keyboard Entry by User — Operating curves are entered inj (x,y) coordinate format: other data is entered and displayed in com-mon engineering units (RPM, psi, degrees F., etc.). No algebra or computer programming knowledge is required. Access to critical control variables is password-protected so that accidental contact with the keyboard has no effect.Diagnostic Capability — Diagnostic messages warn of various ab-normal conditions while the engine is in operation or the first-out fault cause for the error output which can be used to alarmk or shut down the engine. Loss of any specific input or out-of-range conditions are examples of the factors which are specifically an-nunciated.Rs422 Communications Capability — Communications capability is provided for interfacing to process control computers. The data on any channel can be read, including the ignition timing and wa-stegate position values. All setpoints can be read and/or altered remotely. RS422 signals have the capability for long distance transmission. In addition, software for direct, readable display and control from a remote IBM-compatible PC will be available.4-20mA Outputs — The two major contol outputs, Ignition Timing Retard and Wastegate Position, are output as 4-20mA (1-5 V.) signals. Additionally, the user has control over the Proportional Band and Reset Time Response values. These determine how the EPC responds to changes in input data; an important feature for any control device interfacing with a large, mechanical machine. The EPC-200C performs the functions of a typical pneumatic control system for a gas engine with exhaust-driven turbocharger. The outputs are controlled by RPM and up to four other variables. Response to the inputs is controlled by entries through the the EPC’s dealed membrane keyboard, giving the user total access to the operating parameters.Display Capabilityn Display value of all analog input signalsn Display the output value for ignition timing, air manifold pressure and waste gate positionn Display all (x,y) coordinate valuesn Display PI response valuesn Diagnostic channels for error messages when operating or first-out fault Data Entered by User1. Scale input channels for specific transducers used2. Enter overriding constant values such as start-up retard, full advance timing, default values, etc.3. The (x,y) coordinates for ignition timing curves4. The (x,y) coordinates for air/fuel ratio curves5. The PI response characteristics for the 4–20mAcontrol outputs6. The specific values controlling the 7 discrete12/24 VDC OR110 VACSTARTForm EPC 11-12 ©2012 Altronic, LLC712 Trumbull Avenue, Girard, Ohio 44420(330) 545-9768 / Fax: (330) 545-3231Email:***********************************General SpecificationsOUTPUTS2 analog .......................Ignition timing 4-20mA Air/fuel ratio 4-20mA 7 discrete .....................Solid-state relays 10–32 VDC,3 Amps INPUTS1 magnetic pick-up ........Engine RPM 4 analog .......................1.5 V. or 4-20mA 1 discrete .....................Start signal DISPLAY ..........................8-digit, 0.5” LCDPOWER ...........................12 VDC, 24 VDC, 110 VAC, 20 watts PACKAGE ........................NEMA 4, weatherproof enclosure 12” H. x 10” W. x 6” D.FIELD CONNECTIONS .......Plug-in terminal stripPanel OptionAltronic can furnish the EPC-200C Engine Performance Control-ler in a complete NEMA 12 panel board package together with the required interface transducers and other desired instru-ments. Prices for a complete system are furnished upon submis-sion of detailed specification requirements.DimensionsNOTE: Panel cut-out is 10.12 x 12.12All dimensions in inches。
CanTrol WC - 智能蜂鸟 lights 和警报系统说明书
1CanTrol ® WC - Intelligent Light and Siren SystemThe best way to connect you with your vehicle and the world around you is CanTrol—intelligent technology that makes every day on the job safer, whether you’re inside or outside your vehicle. CanTrol is fully customizable and intuitive, making your vehicle the partner you never knew you could have.Every element of CanTrol is designed to maintain situational awareness of the officer and houses numerous innovations you can’t find anywhere else, including virtual inputs, analog inputs, Traffic Advisor ™ outputs, CANport ™, and conditional programming.CanTrol features situation based integration, a concept first introduced with Whelen’s B-Link ™ System in 1993. Scene specific functions can be created utilizing various vehicle components. CanTrol takes this innovation even further with conditional programming. Innovation At Your Command Conditional Programming CanTrol can be programmed using advanced situational based integration, known as Conditional Programming. Create multiple user defined rules for specific scenarios and depending on the state of your vehicle—increasing officer and public safety. • Activate Howler ™ with the brake pedal when siren and warning lights are active • Automatically sound an alarm when the temperature inside the vehicle reaches a certain degree • Trigger lights and sirens to activate at a designated speed • Automatically turn on cruise lights at night • Alternate Traffic Advisor flash patterns with warning flash patterns for added contrast and visibility at a traffic stop • Dim the lightbar and establish vehicle perimeters when it is dark and your vehicle is placed in park CanTrol ®WC Intelligent Light and Siren SystemWARNING: These products may contain chemicals known to the State ofCalifornia to cause cancer and birth defects or other reproductive harm. For moreinformation, visit /regulatory .2CanTrol ® WC - Intelligent Light and Siren System • Configure and control warning lights, siren, and Traffic Advisor ™ functions from a single keypad • Priorities are fully configurable • Various control heads available • Software allows for simplistic programing of configurations via USB 2.0• Fully supports all WeCan ® Series products • Supports WeCan dual amplifier option and 2 of the following: Inner Edge ® FST ™, Inner Edge RST ™, or remote 16 output module • 3 analog inputs and 8 logic inputs for customer-supplied external switches Design Features• 43 fully protected and/or fused outputs (included in the main box)• Supports one or two 100 watt speakers • Full set of programmable flash patterns, all synchronizable with variable-phase and variable delay • Easily accessible fuses and connections • Heavy-duty power and output connectors • Includes CANport ™ OBDII Interface • Meets or exceeds all applicable SAE and California Title XIII requirements with various Whelen speakers • Five year warrantyWARNING: This product may contain chemicals known to the State of California to cause cancer and birth defects or other reproductive harm. For more information, visit /regulatory.3CanTrol® WC - Intelligent Light and Siren System4CanTrol ® WC - Intelligent Light and Siren SystemWARNING: These products may contain chemicals known to the State ofCalifornia to cause cancer and birth defects or other reproductive harm. For moreinformation, visit /regulatory .5CanTrol ® WC- Intelligent Light and Siren System Models are now available with the CANport OBDII Interface, a simple plug-in connection to your vehicle. Using the CANport, CAN bus signals are easily applied to automate warning system functions.• Straightforward and easy installation • Saves money on wires and connectors• Eliminates labor costs • Helps maintain the integrity of the vehicle warrantyNew CANport ™OBDII Interface *Vehicle signals may vary for each make/model/year, see CanTrol ® software for a complete list.Select from a series of vehicle signals*:• Headlight • Low Beams • High Beams • Park Lamps • Left Turn Signal • Right Turn Signal • Hazard Lights • Brake • Park Brake • Park • Reverse • Neutral • Drive • Transmission Range • Vehicle Speed • Throttle Position • Engine RPM • Engine Running • Fuel Level • A/C Clutch • Key Switch ACC • Key Switch IGN • Key Switch Off • Key Switch Position • Key Switch RUN • Any Front Door • Any Back Door • Front Driver Door • Front Passenger Door • Rear Driver Door • Rear Passenger Door WARNING: These products may contain chemicals known to the State of California to causecancer and birth defects or other reproductive harm. For more information, visit /regulatory .Ergonomically designed for situational awareness of the officer, various control heads are compatible with CanTrol®. Completely configurable by the user, these control heads are designed with features such as tick marks, raised surfaces, and recessed areas for ease of use, allowing officers to focus on the road.Control HeadsCANCTL6CANCTL5CANCTL7WARNING: These products may contain chemicals known to the State of California to causecancer and birth defects or other reproductive harm. For more information, visit /regulatory .6CanTrol® WC- Intelligent Light and Siren SystemModel Description CANWCT2Includes standard amplifier/control module with thirty-two 2-1/2 amp outputs, three low current 1/4 amp outputs, eight programmable 10 amp positive/negative outputs, and control head of choice. Traffic Advisor module and three Diagnostix ™ indicators CANWCT2A Same as CANWCT2, except with 8 (Positive or Negative) Input Expansion Module, 12 total inputs CANWCT3Same as CANWCT2, except with CANport OBDII Interface Module CCSRN4DA WeCan External Amplifier, for use with CanTrol, for Dual Amplifier applications CC5K1Installation kit for CANWCT3 Series for 2016-2018 Ford Interceptor Utility, Interceptor Sedan and F-150, 2018 Ford F-250/F-350/F-450/F-550, Expedition and Transit, 2017 Ford Fusion and 2016-2017 Dodge Charger, no charge when purchased with Amplifier Control module CC5K2Installation kit For CANWCT3 Series for 2016-2017 Chevy Tahoe, no charge when purchased with Amplifier Control Module CC5K3Installation kit for CANWCT3 Series for 2018 Dodge Charger, Durango and Ram 1500, no charge when purchased with Amplifier Control module CANCTL5Includes a handheld combination microphone and controller, 5-position progressive light/sire control, nine push-buttons, and microphone extension cable CANCTL6Includes 3 section control head and 8 push-buttons, 4-position slide switch with a 7-position rotary knob. manual, airhorn plus 3 Traffic Advisor switches and microphone with extension cable CANCTL7Includes 3 section control head and 21 push-buttons, 4-position slide switch, microphone with extension cable CANEM1616 Output Expansion Module CANLITEB Optional Light Sensor, Black housing CANLITEC Optional Light Sensor, Chrome housing CANTEMPB Optional Temperature Sensor, Black housing CANTEMPC Optional Temperature Sensor, Chrome housing W h e l e n E N G 51 Winthrop Road, Chester, CT Whelen Engineering reserves the right to upgrade and improve products without notice.© 2019 Whelen Engineering Company, Inc. Printed in U.S.A.NASCAR® is a registered trademark of the National Association for Stock Car Auto Racing, Inc.Code No. 13167C - 10/10/2019All products proudly designed, manufactured, and assembled in the U.S.A. • ISO 9001 Registered QMS Outputs • 32 2-1/2 amp outputs• 3 low current 1/4 amp outputs• 8 programmable 10 amp outputs (4 positive or ground switched, 4 positive switched only)• All outputs have both short circuit/overcurrent protection • Each output has diagnostic indicatorInputs • 3 analog inputs• 8 inputs for customer-supplied external switches: 4 for use on positive or ground switching, and 4 for use on positive switching only • Optional 8 input expansion positive or negative switched Siren • Supports one or two 100 watt speakers• Full set of programmable siren tones• Includes PA and radio repeat functionsExpansion Modules • 2 optional expansion modules allow for 16 additional 2-1/2 amp outputs per module and plugs directly into the WeCan ® port, for a total of 75 outputsIntegrated Features • Integrated Load Manager turns off outputs, lightbars, and accessories as battery voltage decreases and is software configurable. As battery voltage increases, the Integrated Load Manager can turn on outputs that control the docking station and printer• Diagnostic indicators display the state of the Amplifier Control Module • Integrated auto-off timer maintains critical warning functions even when the key is out of the ignition• CANport ™ OBDII Interface is a simple plug-in connection to your vehicle. Using the CANport, CAN bus signals are easily applied to automate warning system functionsAdditional Features • WeCan lightbar plugs directly into the amplifier/control module and is programmed by the CanTrol software• Includes I/O Pigtails• Easily clone your custom program and transfer it to other vehicles • Micro USB port in the amplifier control module for programming • Traffic Advisor ™ module utilizes a 9 conductor cable, eliminating the use of a separate controller• WeCan lightbar, Inner Edge ® RST ™, and Traffic Advisor can be synchronized with remote Traffic Advisors that use a 9 conductor cable WARNING: These products may contain chemicals known to the State of California to cause cancer and birth defects or other reproductive harm. For more information, visit /regulatory .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FEATURES* Current transfer ratio( CTR : MIN. 50% at I F =5mA, V CE =5V )* High input-output isolation voltage( V iso =3,750Vrms )* High collector-emitter voltage( V CEO = 80V )* Employs double transfer mold technology* Subminiature type( The volume is smaller than that of conventional DIP type by as far as 30% ) * Mini-flat package :2.0mm profile : LTV-356T* UL approved ( No. E113898 )* CUL approved ( No. E113898 , 01SC19287 )* CSA approved ( No. 1243207 )* FIMKO approved ( No. FI-16420 )* NEMKO approved ( No. P0******* )* DEMKO approved ( No. 310475-01 )* SEMKO approved ( No. 0109173 / 01-08 )* VDE approved ( No. 094722 )* RoHS complianceAPPLICATIONS* Hybrid substrates that require high density mounting.* Programmable controllersABSOLUTE MAXIMUM RATING( Ta = 25°C ) PARAMETER SYMBOL RATING UNITForward Current I F50 mA INPUTReverse Voltage V R 6 VPower Dissipation P 70 mWCollector - Emitter Voltage V CEO80 VEmitter - Collector Voltage V ECO 6 V OUTPUTCollector Current I C50 mACollector Power Dissipation P C150 mW Total Power Dissipation P tot170 mW*1 Isolation Voltage V iso3,750 Vrms Operating Temperature T opr-55 ~ +110 °CStorage Temperature T stg-55 ~ +150 °C*2 Soldering Temperature Tsol 260 °C Junction Temperature Tj 125 °C*1. AC For 1 Minute, R.H. = 40 ~ 60%Isolation voltage shall be measured using the following method.(1) Short between anode and cathode on the primary side and between collector andemitter on the secondary side.(2) The isolation voltage tester with zero-cross circuit shall be used.(3) The waveform of applied voltage shall be a sine wave.*2. For 10 SecondsRANK TABLE OF CURRENT TRANSFER RATIO CTRMODEL NO. RANK MARK CTR ( % )A 80 ~ 160B 130 ~ 260C 200 ~ 400D 300 ~ 600LTV-356TA orB orC orD or No mark 50 ~ 600CONDITIONS I F = 5 mA V CE = 5 V Ta = 25 °Ctr Fig.9 Collector Dark Current vs.Ambient TemperatureFig.10 Response Time vs. LoadFig.11 Frequency Response 0C E Ambient temperature Ta ( C)Ambient temperature Ta ( C)Ambient temperature Ta ( C)Frequency f (kHz)e ( s )R e l a t i v e c u r r e n t t r a n s f e r r a t i o (%)V o l t a g e g a i n A v (d B )C o l l e c t o r -e m i t t e r s a t u r a t i o n v o l t a g e V (s a t ) (V )ooooo2040608010050100150 02040801002040608010020501002005000.52010210100500Resistance0.020.040.060.080.1015205060C o l l e c t o r d a r k c u r r e n t I C E O (n A )V CE =20VI F =5mAV CE =2V I F =20mA I C =1mA V CE =2V I C =2mA Ta=25 CR L =10k Ω1k Ω100ΩV CE =2V I C =2mA Ta=25 C1101000010001000Ambient temperature T a ( C)R e l a t i v e c u r r e n t t r a n s f e r r a t i o (%)o2040608010050100150I F =5mA V CE =2VC E Ambient temperature Ta ( C)V (s a t ) (V )o 02040801000.020.040.060.080.1060I F =20mA I C =1mATEMPERATURE PROFILE OF SOLDERING REFLOW(1)One time soldering reflow is recommended within the condition of temperature and timeprofile shown below.LITE-ON TECHNOLOGY CORPORATIONProperty of LITE-ON OnlyNotes:- Lite-On is continually improving the quality, reliability, function or design andLite-On reserves the right to make changes without further notices.- The products shown in this publication are designed for the general use in electronicapplications such as office automation equipment, communications devices,audio/visual equipment, electrical application and instrumentation.- For equipment/devices where high reliability or safety is required, such as spaceapplications, nuclear power control equipment, medical equipment, etc, pleasecontact our sales representatives.- When requiring a device for any ”specific” application, please contact our sales inadvice.- If there are any questions about the contents of this publication, please contact us atyour convenience.- The contents described herein are subject to change without prior notice.Do not immerse unit’s body in solder paste.Part No. :LTV-357T-P (FOR POWER ONLY) Page : 11 of 11 BNS-OD-C131/A4。