高考数学基础选择填空每日一练9-12
数学每日一题高考热点问题
数学每日一题高考热点问题全文共四篇示例,供读者参考第一篇示例:数学是一门被广泛认可为机械学科的学科。
它是人类思维的一项技能,但它又不是一门科学。
数学是实现工科技术,经济、商业、金融、统计、数理逻辑、天文学、物理学等等的辅助工具。
其中的问题在中文翻译中被称为“每日一题数学”。
这些问题是一系列的难度逐渐增加的练习,作为对学生日常学习的检测和摸底。
在高考的时候,数学题目是必考科目,所以每个考生都要认真对待。
高考数学考试是每个高中学生毕业的重要一环。
从初中开始,学生就每天要做一些数学练习来提升自己的解题能力。
而这种练习方法在高考之前被称为“每日一题数学”,用来检测学生的潜力和掌握的程度。
正是这种日积月累、扎扎实实的练习,才能在高考中取得优异的成绩。
在高考数学考试中,有一些题目是非常热门的,也是考生最为头疼的。
下面就来列举一些高考热点问题:1. 高考数学中的代数问题代数作为高考数学的一个重要组成部分,经常出现在高考试卷上。
方程式和不等式问题是进阶代数的基础。
代数问题解决的方法有很多种,其中常用的方法包括代换、因式分解、等式转化等等。
2. 高考数学中的几何问题几何题目是高考数学试卷中的另一个关键部分。
高考数学几何问题要求学生熟练运用几何知识,解决实际问题。
几何问题需要学生熟悉各种几何形状的性质,如三角形、四边形等等。
3. 高考数学中的概率与统计问题高考数学试卷中的概率与统计问题需要考生熟练掌握概率论和统计学的基本知识,解决一些实际问题。
通常概率与统计的问题需要考生掌握的知识有:样本空间、事件、概率、随机变量、概率分布、数据整理和分析等等。
4. 高考数学中的函数问题函数问题在高考数学试卷中也是一个重要的部分。
高考数学中的函数问题要求考生掌握函数的性质及其运算法则,解决一些实际问题。
学生需要熟悉常用函数的图像、性质和应用,如常见的线性函数、二次函数、指数函数、对数函数等。
5. 高考数学中的解题方法在高考数学试卷中,解题方法是至关重要的,考生需要灵活运用各种解题方法,快速解决问题。
高考数学每日一练(4)-人教版高三全册数学试题
高三数学每日一练(8)——集合(2)1.已知集合}2{<=x x A ,}012{>+=x xB ,则B A =( ) A .Φ B .}21{<<-x xC .}12{-<<-x xD .12{<<-x x 或}2>x 2.[2014·某某高考]设全集为R ,集合A ={x |x 2-9<0},B ={x |-1<x ≤5},则)(B C A R =( )A .(-3,0)B .(-3,-1)C .(-3,-1]D .(-3,3) 3.设集合2{|21},{|10}x A x B x x -=<=-≥,则A B 等于( )A .{|1}x x ≤B .{|12}x x ≤<C .{|01}x x <≤D .{|01}x x <<4.已知集合{}2,0xM y y x ==>,{})2lg(2x x y x N -==,则N M 为( )A .()2,1B .()+∞,1C .[)+∞,2D .[)+∞,15.(选做)设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,则实数a 的取值X 围是( )A .⎝ ⎛⎭⎪⎫0,34B .⎣⎢⎡⎭⎪⎫34,43C .⎣⎢⎡⎭⎪⎫34,+∞ D .(1,+∞)高三数学每日一练(9)——导数(4)1.已知曲线1ln 342+-=x x y 的一条切线的斜率为21,则切点的横坐标为( ) A .3B .2C .1D .212.设函数()f x 的导函数为()f x ',如果()f x '是二次函数, 且()f x '的图象开口向上,顶点坐标为 , 那么曲线()y f x =上任一点的切线的倾斜角α的取值X 围是( ) A .π(0,]3 B .π2π(,]23 C .ππ[,)32D .π[,π)3 3.函数x e x f xln )(=在点))1(,1(f 处的切线方程是( ) A .)1(2-=x e y B .1-=ex y C .)1(-=x e y D .e x y -=4.直线(1)y k x =+与曲线()ln f x x ax b =++相切于点(1,2)P ,则2a b +=.5.曲线:12323-+-=x x x y 的切线的斜率的最小值是。
高考数学选择填空压轴题45道(附答案)
,
D.
1,
27 e4
21.已知方程
e x 1
x
e2 x1 x aex1
有三个不同的根,则实数
a
的
取值范围为( )
A. 1,e
B.
e,
1 2
C. 1,1
D.
1,
1 2
22.函数 f (x) ex1 ex1 a sin (x x R ,e 是自然对数的底数,
a 0 )存在唯一的零点,则实数 a 的取值范围为( )
38.若不等式 x e2x a x ln x 1恒成立,则实数 a 的取值范
围是__________.
39.已知函数 f x ln x e a x b ,其中 e 为自然对数的底
数.若不等式
f
x
0
恒成立,则
b a
的最小值为_______.
40.已知函数
f
(x)
x
2 cos
x
,在区间上
0,
4
A.
0,
2
B.
0,
2
C. (0,2]
D. (0,2)
23.已知 a 0 ,b R ,且 ex a(x 1) b 对 x R 恒成立,则 a2b 的 最大值为( )
A. 1 e5
2
B. 1 e5
3
C. 1 e3
2
D. 1 e3
3
k
24.若关于
x
的不等式
1 x
x
1 27
有正整数解,则实数
16 12
7
4
x
x
3y 6 y
的最小值为________.
8
参考答案,仅供参考
【每日一练】经典高考数学基础训练(1)(含参考答案)
【每日一练】经典高考数学基础训练(1)(含参考答案)一.选择题:1.复数i 1i,321-=+=z z ,则21z z z ⋅=在复平面内的对应点位于A .第一象限B .第二象限C .第三象限D .第四象限2.在等比数列{an }中,已知,11=a 84=a ,则=5aA .16B .16或-16C .32D .32或-32 3.已知向量a =(x ,1),b =(3,6),a ⊥b ,则实数x 的值为A .12B .2-C .2D .21-4.经过圆:C 22(1)(2)4x y ++-=的圆心且斜率为1的直线方程为A .30x y -+=B .30x y --=C .10x y +-=D .30x y ++=5.已知函数()f x 是定义在R 上的奇函数,当0>x 时,()2x f x =,则(2)f -=( )A .14 B .4- C .41-D .46.图1是某赛季甲.乙两名篮球运动员每场比赛得分的茎叶图, 则甲.乙两人这几场比赛得分的中位数之和是A .62B .63C .64D .65 7.下列函数中最小正周期不为π的是A .x x x f cos sin )(⋅=B .g (x )=tan (2π+x )C .x x x f 22cos sin )(-=D .x x x cos sin )(+=ϕ8.命题“,11a b a b >->-若则”的否命题是A .,11a b a b >-≤-若则B .若b a ≥,则11-<-b aC .,11a b a b ≤-≤-若则D .,11a b a b <-<-若则 9.图2为一个几何体的三视图,正视图和侧视图均为矩形,俯视 图为正三角形,尺寸如图,则该几何体的侧面积为A .6B .24C .123D .3210.已知抛物线C 的方程为212x y =,过点A ()1,0-和点()3,t B 的直线与抛物线C 没有公共点,则实数t 的取值范围是A .()()+∞-∞-,11,B .⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛-∞-,2222, C .()()+∞-∞-,,2222D .()()+∞-∞-,,22二.填空题:11.函数22()log (1)f x x =-的定义域为 .12.如图所示的算法流程图中,输出S 的值为 .13.已知实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y =-的最大值为_______.14.已知c x x x x f +--=221)(23,若]2,1[-∈x 时,2)(c x f <恒成立,则实数c 的取值范围______. 三.解答题:已知()sin f x x x =∈x (R ). (1)求函数)(x f 的最小正周期;(2)求函数)(x f 的最大值,并指出此时x 的值.答案11.()11,- 12.52 13.7 14.1-<c 或2>c 三.解答题:解:(1)∵()x x x f cos 3sin +=⎪⎪⎭⎫⎝⎛+=x x cos 23sin 212 …… 2分 ⎪⎭⎫⎝⎛+=3sincos 3cossin 2ππx x …… 4分 ⎪⎭⎫⎝⎛+=3sin 2πx . …… 6分 ∴2T π=. …… 8分 (2) 当13sin =⎪⎭⎫⎝⎛+πx 时, )(x f 取得最大值, 其值为2 . ……10分 此时232x k πππ+=+,即26x k ππ=+∈k (Z ). ……12分。
【每日一练】经典高考数学基础训练(8)(含参考答案)
【每日一练】经典高考数学基础训练(8)(含参考答案)一、选择题:1.已知集合{}10,1,-=M ,{}N x x a b a b A a b ==∈≠,,且,则集合M 与集合N 的关系是 A .M =N B .M N C .M N D .M ∩N =∅ 2.设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, A .0 B .1 C .2 D .33.已知命题;25sin ,:=∈∃x R x p 使.01,:2>++∈∀x x R x q 都有命题给出下列结论: ①命题“q p ∧”是真命题②命题“q p ⌝∧”是假命题 ③命题“q p ∨⌝”是真命题;④命题“q p ⌝∨⌝”是假命题 其中正确的是A .②④B .②③C .③④D .①②③ 4.已知α∈(2π,π),sin α=53,则tan(4πα+)等于 A .71 B .7 C .- 71 D .-7 5.下面是一个算法的程序框图,当输入的x 值为3时, 输出y 的结果恰好是31,则?处的关系式是 A .3x y = B .x y -=3 C .x y 3= D .31x y = 6.“a =1”是“直线0=+y x 和直线0=-ay x 互相垂直”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件7.在ABC ∆中,AB=3,AC=2,BC=10,则AB AC ⋅=A .23-B .32-C .32D .23 8.为得到函数πcos 3y x ⎛⎫=+⎪⎝⎭的图象,只需将函数sin y x =的图像A .向左平移π个长度单位B .向右平移π个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.函数|lg |)(x x x f -=在定义域上零点个数为A .1B .2C .3D .410.如图是一个空间几何体的主视图、侧视图、俯视图,如果直角三角形的直角边长均为1,那么这个几何体的体积为A .1B .21C .31D .61 11.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=12.已知抛物线1)0(222222=->=b y a x p px y 与双曲线)0,0(>>b a 有相同的焦点F ,点A 是两曲线的交点,且AF ⊥x 轴,则双曲线的离心率为A .215+B .12+C .13+D .2122+ 二、填空题:13.已知向量和的夹角为120°,且||=2,||=5,则(2-)·=_____14.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 .15.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}c a n +(0≠c )也是等比数列,则n S 等于 .16.关于直线,m n 与平面,αβ,有以下四个命题:①若//,//m n αβ且//αβ,则//m n ; ②若,m n αβ⊥⊥且αβ⊥,则m n ⊥; ③若,//m n αβ⊥且//αβ,则m n ⊥; ④若//,m n αβ⊥且αβ⊥,则//m n ; 其中正确命题的序号是 。
【每日一练】经典高考数学基础训练(9)(含参考答案)
【每日一练】经典高考数学基础训练(9)(含参考答案)一、选择题:1.已知命题,则的否定形式为( )A .B .C .D .2.已知,则的值等于( )A .B .C .D .3.函数的零点所在的大致区间是( )A .B .C .D .4.已知函数,则的值是( )A .B .C .D .5.已知向量,若,则实数的值是( )A .B .C .D .6.在等差数列中,若,则的值为( )A .24B .22C .20D .18 7.若,则下列不等式:①;②;③;④中,正确的不等式是( )A .①②B .②③C .①④D .③④8.若函数在内有极小值,则实数的取值范围是( )A .B .C .D .9.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经3分钟漏完.已知圆柱中液面上升的速度是一个常量,H 是圆锥形漏斗中液面下落的距离,则H 与下落时间(分)的函数关系表示的图象只可能是()10.若实数满足,则的最大值是( )A .0B .1C .D . 9二、填空题:11.准线方程为的抛物线的标准方程是 .12. 已知△ABC 中,角A 、B 、C 的对边分别为,且,那么 .13.过点的直线将圆分成两段弧,其中的劣弧最短时,直线 的方程为 .14.已知函数,在下列四个命题中:①的最小正周期是;②的图象可由的图象向右平移个单位得到;③若,且,则;④直线是函数图象的一条对称轴。
其中正确命题的序号是 (把你认为正确命题的序号都填上).三、解答题:记函数的定义域为集合A,函数的定义域为集合B.(1)求A∩B和A∪B;(含参考答案)一、选择题:1.已知命题,则的否定形式为( )(2)若,求实数的取值范围.答案一、选择题:CABCC ACDBD二、选择题:11.;12.;13.;14.③④三、解答题17.解:(1)依题意,得,………2分,……………………………………………4分∴A∩B,…………………………………………6分A∪B=R.……………………………………………………………………………8分(2)由,得,而,∴,∴.……12分。
【每日一练】经典高考数学基础训练(3)(含参考答案)
【每日一练】经典高考数学基础训练(3)(含参考答案)一、选择题:1.设集合{ EMBED Equation.DSMT4 |{2,1,0,1,2},{|12},()S T x R x S T =--=∈+≤= S 则CA .B .C .D .2.已知向量,若与共线,则等于A .B .C .D .43.函数在=1处的导数等于A .2B .3C .4D .54.设:,:关于的方程有实数根,则是的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.已知函数的最小正周期为,则该函数的图象A .关于点对称B .关于直线对称C .关于点对称D .关于直线对称6.一个四边形的四个内角成等差数列,最小角为,则最大角为A .B .C .D .7.函数的零点所在的区间是A .B .C .D .8.函数的值域是A .B .C .D .9.如果我们定义一种运算: 已知函数,那么函数的大致图象是10.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定二、填空题:11.函数的单调减区间是;12.定义在R上的奇函数f(x)满足,若则________;13.知抛物线和双曲线都经过点,它们在轴上有共同焦点,抛物线的顶点为坐标原点,则双曲线的标准方程是.14.设是等比数列的前项和,对于等比数列,有真命题若成等差数列,则成等差数列。
请将命题补充完整,使它也是真命题,命题若成等差数列,则成等差数列(只要一个符合要求的答案即可) 三、解答题已知数列是等差数列,且,是数列的前项和.() 求数列的通项公式及前项和;() 若数列满足,且是数列的前项和,求与.答案一、选择题1.B2.A3.C4.A5.B 6。
A 7.B 8.D 9.B 10.A10.设每支笔x元,每本书y元,有二、填空题:11.(-1,1)12. -1 13.14.案不唯一三、解答题:解:()设数列的公差为,由题意可知:,解得:…………………………3分∴……………………………………5分…………………………………………7分() ………………………………9分……12分。
【每日一练】经典高考数学基础训练(2)(含参考答案)
【每日一练】经典高考数学基础训练(2)(含参考答案)一.选择题:1.在等差数列{}n a 中, 284a a +=,则 其前9项的和S9等于A .18B .27C .36D .92.函数()()sin cos sin f x x x x =-的最小正周期为A .4πB .2πC .πD .2π 3.已知命题p: {}4A x x a =- ,命题q :()(){}230B x x x =-- ,且⌝p 是⌝q 的充分条件,则实数 a 的取值范围是:A .(-1,6)B .[-1,6]C .(,1)(6,)-∞-⋃+∞D .(,1][6,)-∞-⋃+∞ 4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,。
,153~160号)。
若第16组应抽出的号码为126,则第一组中用抽签方法确定的号码是A .4B .5C .6D .75.已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是323π,则这个三棱柱的体积是A .B .C .D . 6.在右图的程序框图中,改程序框图输出的结果是28,则序号①应填入的条件是A . K>2B . K>3C .K>4D .K>57.已知直线l 与圆C :221x y +=相切于第二象限,直线l与两坐标轴所围城的三角形的面积为A .23B .12 C .1或3D .1322或 8.设a β、是两个平面,l .m是两条直线,下列命题中,可以判断||a β的是A .,,||||l a m a l m ββ⊂⊂且,B .,,||l a m m ββ⊂⊂且C .||a ||l m β,且l||mD .,,||l a m l m β⊥⊥且 .9.若定义在R上的函数()f x 图像关于点(-34,0)成中心对称,对任意的实数x 都有3()()2f x f x =-+,且()11f -=,()02f =-,则()()()()1232008f f f f +++⋅⋅⋅的值为A .-2B .-1C .0D .110.函数 ()()log 310,1n y x a a =+-≠ 的图像恒过定点A,若A在直线mx+ny+1=0上,其中m,n 均为正数,则12m n+的最小值为 A .2B .4C .6D .8 二.填空题:11.在复平面内,复数1+i与-1+3i分别对应向量OA OB 和其中O为坐标原点,则|AB |= 12.设等比例{}n a 的前n项和为12161,,4n S S S S S =48且则= 13.在△ABC 中,角A .B .C 所对的边分别为a .b .c,若)cos cos ,c A a C -=则cosA=14.已知F1 F2是双曲线22221x y a b-=(a>0,b>0)的两个焦点,以线段F1 F2为边作正△M F1 F2,若边MF1的中点在双曲线上,则双曲线的离心率e=三.解答题:若函数()sin sin cos (0)f x x x x ωωωω=->的图像的任意两条对称轴之间的距离的最小值为2π. (1)当[0,]4x π∈时,求f(x)的减区间;(2)若将函数f(x)的图像向右平移φ(0<φ<2π)个单位后所得函数为g(x),若g(x)为偶函数,求φ答案一.选择题:1.A 由 19284a a a a +=+=,S9=199()2a a +=18 2.C11cos 21sin 2)2242x y x x π-=-=+- T π= 3.B (4,4),A a a =-+ q=(2,3),p q ⌝⌝是的充分条件,即q 是p 的充分条件, -42,\-1643a a a ≤⎧∴≤≤⎨+≤⎩ 4.C 1268156,=⨯+∴ 第一组中抽中的号码是65.D 由343233R π= π ,2,4,R h ∴=∴=设底面长为a,则132a =24V ∴== 6.B 由 k=110,k=219,328,k 43,S S k S →=→==→==>∴应选k>3 7.A 设直线l :1,x y a b +=既bx+ay-ab=0,222221,()2,a b a b a b ab ∴=∴+==+- 设t=ab<0,2230a b t t +=∴+-= ,(t+3)(t-1)=0,13322t S ab ∴=∴== 8.D 由条件A , 若l||m ,可能a 与β为相交;由条件B 和C ,都有可能得a 与β相交; 而由条件D ,当l ⊥a 且l||m 时,m ,||m αβαβ⊥⊥∴又9.D 由f(x)的图像关于点3(,0)4-成中心对称, ()f x ∴33的周期T=3,且f(--x)=f(x+)22,即f(-t)=f(t),∴f(x)为偶函数, (2)(1)(1)1,(3)(0)2,(1)(2)(3)0,2008=36691f f f f f f f f ∴=-====-∴+==⨯+又∴原式=f(1)=110. D 函数y=loga(x+3)-1的图像过定点A (-2,-1),∴-2m-n+1=0,即2m+n=1∴124()(2)4 448n m u m n m n m n=++=+++= 二.填空(每小题4分,共16分)33()()0,()(),22f x f x f x f x ∴+--==-+又11.A B (13)(1)22,22i i i A B =-+-+=-+∴ 12.1340 设S4=a,由488481,4a,3a,4S S S S S =∴=∴-=由等比数列a ,3a ,9a ,27a 得S12=13a , S16=40,12161340S S ∴=13.cos sin cos cos sin sin()sin ,cos 33B A A C A C A C B A =+=+=∴=1 12MF F ∆ 为正△,边长为2c ,p 为F1M 的中点,21PF ,PF ,c ∴==点p 在双曲线上,2,1c c a e a -=∴===三.解答题解:(1) 1cos 211()sin 2sin(2)22242x f x x x ωπωω-=-=-++,22T π= ∴ T=π,由22ππω=,∴1ω=,∴1())42f x x π=++ ∵3[0,],2,4444x x ππππ∈≤+≤∴ 2442x πππ≤+≤∴得08x π≤≤, 即f(x)在[0,4π]上的减区间为[0,8π](2)依题得g(x)= 12)242x πφ--++,∴g(x)为偶函数,∴sin(22)14x πφ-+=±, ∵02πφ<<,∴32444πππφ-<<-<,∴242ππφ-=,∴38πφ=。
高考数学选择填空专项
选择填空专题一一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的。
1.设全集,{|(2)0},{|ln(1)}U R A x x x B x y x ==-<==-,则右图中阴影部分表示的集合为A .{|1}x x ≥B .{|12}x x ≤<C .{|01}x x <≤D .{|1}x x ≤2.在复平面内,复数20102(1)i ii -+-对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.已知,a b为非零向量,则“0a b ⋅> ”是“向量a b 与的夹角为锐角”的 A .充分必要条件B .必要不充分条件C .充分不必要条件D .即不充分也不必要条件 4.下列曲线存在互相垂直的切线的曲线是A .()x f x e =B .3()f x x =C .()ln f x x =D .()sin f x x = 5.已知||1,|||2|a b a b ==-=,则向量a b与的夹角为A .4πB .-4πC .4π或-4πD .4π或74π6.设()s i n ()4f x x π=+,若在[0,2]x π∈上关于x 的方程()f x m =有两个不等的实根1212,,x x x x +则等于A .2πB .2π或52π C .πD .π或3π7.函数2ln 2,(0)()21,(0)x x x x f x x x ⎧-+>=⎨+≤⎩的零点的个数A .1B .2C .3D .48.已知函数()sin[(1)](1)]33f x x x ππ=+-+则(1)(2)(2011)f f f +++ =A.B.- C .0 D .-9.已知函数122,1(),1log x x f x x x ⎧≤⎪=>⎨⎩,则函数(1)y f x =-的大致图象是10.已函数()f x 的对称轴方程是1x =,则函数(21)f x +对称轴方程是 、A .0x =B .1x =C .2x =D .3x =11.点P 从周长为l 的封闭曲线上的点O 出发,按逆时针方向沿图形运动一周,O 与P 两点的距离y 与点P 走过的路程x 的函数如右图所示,则点P 走过的图形可以是以下的 ( )12.设定义域为R 的函数()f x 满足下列条件:①对任意,()()x R f x f x ∈+-=0;②对任意12,[1,]x x a ∈,当21x x >时,都有21()()0f x f x >>,则下列不等式一定成立的是A .()(0)f a f > B.1(2a f f +>C .15()()1a f f a a->-+D .13()()1a f f a a->-+二、填空题:本大题共4小题,每小题5分,共20分。
【每日一练】经典高考数学基础训练(7)(含参考答案)
【每日一练】经典高考数学基础训练(7)(含参考答案)一、选择题: 1.复数2(1)i i +=A .1i +B .1i -+C .2-D .22.已知全集U =R ,集合{|22}A x x =-<<,2{|20}B x x x =-≤,则A B =A .(0,2)B .(0,2]C .[0,2]D .[0,2)3.已知)(x f 是定义在R 上的奇函数,且当0>x 时,()23xf x =-,则(2)f -=A .1B .41 C .1- D .411- 4.已知平面向量a =(1,3)-,(4,2)b =-,若a b λ- 与a 垂直,则λ=A . 1-B . 1C . 2-D . 2 5.若曲线x x x f -=4)(在点P 处的切线平行于直线30x y -=,则点P 的坐标为 A .(1,3) B .(1,3)- C .(1,0) D .(1,0)- 6.1-=m 是直线01)12(=+-+y m mx 和直线033=++my x 垂直的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件7.方程x x 2)4(log 2=+的根的情况是 A .仅有一根B .有两个正根C .有一正根和一负根D .有两个负根8.在ABC ∆中,已知B C B C cos )sin(2sin +=,那么ABC ∆一定是A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形9.已知βα,是平面,m ,n 是直线,给出下列命题:①若βαβα⊥⊂⊥,则m m ,;②若βαββαα//,////,,则,n m n m ⊂⊂; ③如果ααα与是异面直线,那么、n n m n m ,,⊄⊂相交; ④若,//,////.m n m n n n n αβαβαβ=⊄⊄ ,且,则且 其中正确命题的个数是A .4B .3C .2D .110.圆心在抛物线)0(22>=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是( )A .041222=---+y x y x B .01222=+-++y x y x C .01222=+--+y x y x D .041222=+--+y x y x二、填空题:11.已知||3u = ,||4v =,以u 与v 同向,则u v ⋅= .12.如图所示的算法流程图中,输出S 的值为 .13.若在区域34000x y x y +-≤⎧⎪≥⎨⎪≥⎩内任取一点P , 则点P 落在单位圆221x y +=内的概率为 .14.给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即 {}x m =. 在此基础上给出下列关于函数|}{|)(x x x f -=的四个命题: ①函数)(x f y =的定义域是R ,值域是[0,21]; ②函数)(x f y =的图像关于直线2k x =(k ∈Z)对称;③函数)(x f y =是周期函数,最小正周期是1;④ 函数()y f x =在⎥⎦⎤⎢⎣⎡-21,21上是增函数;则其中真命题是__ . 三.解答题:已知数列x y a a n a a n n n =-=+在直线点中)2,(,21,}{11上,其中n=1、2、3…。
高考数学练习一(每日一练)
练习一1.复数z =i 2(1+i)的虚部为___ _ __.2.已知3(,0),sin ,25παα∈-=-,则cos()πα-=_________. 3.若曲线x x x f -=4)(在点P 处的切线平行于直线3x -y =0,则点P 的坐标为 .4.如图所示,墙上挂有一边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为2a 的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是__ ___.5.设⎩⎨⎧<+-≥--=0,620,12)(2x x x x x x f ,若2)(>t f ,则实数t 的取值范围是 . 6.若椭圆)0(12222>>=+b a by a x 的左、右焦点分别为21,F F ,线段21F F 被抛物线bx y 22=的焦点F 分成5﹕3的两段, 则此椭圆的离心率为 .7.左面伪代码的输出结果为 .8.公差为)0(≠d d 的等差数列{}n a 中,n S 是{}n a 的前n 项和,则数列304020301020,,S S S S S S ---也成等差数列,且公差为d 100,类比上述结论,相应地在公比为)1(≠q q 的等比数列{}n b 中,若n T 是数列{}n b 的前n项积,则有 .9.将一枚骰子抛掷两次,若先后出现的点数分别为c b ,,则方程02=++c bx x 有实根的概率为 .10.将正奇数排列如下表其中第i 行第j 个数表示ij a ),(**N j N i ∈∈,例如932=a ,若2009ij a =,则=+j i . 11.已知点O 为ABC ∆24==,则=∙ .12.在一个密封的容积为1的透明正方体容器内装有部分液体,如果任意转动该正方体,液面的形状都不可能是三角形,那么液体体积的取值范围是 .135 7 9 11 13 15 17 19……13.对于函数)(x f ,在使)(x f ≥M 恒成立的所有常数M 中,我们把M 中的最大值称为函数)(x f 的“下确界”,则函数22)1(1)(++=x x x f 的下确界为 . 14.三位同学合作学习,对问题“已知不等式222xy ax y ≤+对于[][]1,2,2,3x y ∈∈恒成立,求a 的取值范围”提出了各自的解题思路.甲说:“可视x 为变量,y 为常量来分析”.乙说:“不等式两边同除以x 2,再作分析”. 丙说:“把字母a 单独放在一边,再作分析”.参考上述思路,或自已的其它解法,可求出实数a 的取值范围是 .。
高考数学-立体几何选择填空
高考立体几何选择填空专练班别:__________ 姓名:_________ 一、选择题:(只有一个选项是正确) 1、表面积为23 的正八面体的各个顶点都在同一个球面上,则此球的体积为AA .23πB .13πC .23π D .223π 2、平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是A(A )一条直线 (B )一个圆(C )一个椭圆 (D )双曲线的一支3、过平行六面体ABCD-A 1B 1C 1D 1任意两条棱的中点作直线,其中与平面DBB 1D 1平行的直线有DA.4条B.6条C.8条D.12条4、棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图1, 则图中三角形(正四面体的截面)的面积是CA.22B.322 3 5、过半径为2的球O 表面上一点A 作球O 的截面,若OA 与该截面所成的角是60°则该截面的面积是AA .π B. 2π C. 3π D. π326、如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题...是B A .等腰四棱锥的腰与底面所成的角都相等B .等腰四棱锥的侧面与底面所成的二面角都相等或互补C .等腰四棱锥的底面四边形必存在外接圆D .等腰四棱锥的各顶点必在同一球面上7、给出下列四个命题:①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行. ③若直线12,l l 与同一平面所成的角相等,则12,l l 互相平行.④若直线12,l l 是异面直线,则与12,l l 都相交的两条直线是异面直线.其中假.命题的个数是D (A)1 (B)2 (C)3 (D)48、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是CA .16πB .20πC .24πD .32π9、过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为A(A )316 (B )916 (C )38 (D )93210、如图,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6,过A 、B 分别作两平面交线的垂线,垂足为A ′、B ′,则AB ∶A ′B ′=A(A )2∶1 (B )3∶1 (C )3∶2 (D )4∶311、已知平面α外不共线的三点A,B,C 到α的距离都相等,则正确的结论是DA.平面ABC 必平行于αB.平面ABC 必与α相交C.平面ABC 必不垂直于αD.存在△ABC 的一条中位线平行于α或在α内12、若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的 A(A )充分非必要条件;(B )必要非充分条件;(C )充要条件;(D )非充分非必要条件13、已知球O 的半径是1,A 、B 、C 三点都在球面上,A 、B 两点和A 、C 两点的球面距离都是4π,B 、C 两点的球面距离是3π,则二面角B OA C --的大小是C (A )4π B )3π (C )2π (D )23π 14、正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,如果163P ABCD V -=,则球O 的表面积是D (A )4π (B )8π (C )12π (D )16π15、对于任意的直线l 与平同α , 在平面a 内必有直线m , 使m 与l C(A)平行 (B )相交 (C)垂直 (D)互为异面直线16、正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与面ACC 1A 1所成角的正弦等于A(A) 4 (B)4 (C) 2 (D) 217、已知三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于AA B C .2 D 18、设n m l ,,均为直线,其中n m ,在平面α内,则“l ⊥α”是“l m l n ⊥⊥且”的A (A)充分不必要条件 (B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件19、把边长为2的正方形ABCD 沿对角线AC 折成直二面角, 折成直二面角后, 在A ,B ,C ,D 四点所在的球面上, B 与D 两点之间的球面距离为 C (A)22π (B)π (C)2π (D)3π 20、半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为C(A ))33arccos(- (B ))36arccos(- (C ))31arccos(-(D ))41arccos(- 21、棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别 是棱AA ,1DD 的中点,则直线EF 被球O 截得的线段长为DA .2 B .1 C .12+ D 22、正方体1AC 的棱长为1,过点A 作平面1A BD 的垂线,垂足为H ,则下列命题中错误..的命D A .点H 是1A BD △的垂心 B .AH 垂直平面11CB DC .AH 的延长线经过点1CD .直线AH 和1BB 所成角为4523、四面体ABCD 的外接球球心在CD 上,且2CD =,AB =A B ,间的球面距离是CA .π6B .π3C .2π3D .5π624、在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为DA.3B.22C.32λ D.5525、一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为h 1,h 2,h 3,则h 1:h 2:h 3= BA .3:1:1B .3:2:2C .3:2:2D .3:2:326、已知三棱锥S ABC -的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,2AC r =,则球的体积与三棱锥体积之比是DA .πB .2πC .3πD .4π 27、若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成CA .5部分 B.6部分 C.7部分 D.8部分28、设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且二面角B OA C --的大小是3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是C (A )76π (B )54π (C )43π (D )32π 29、一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是C(A )433 (B)33 (C) 43 (D) 123. 30、已知二面角α-l -β为60 ,动点P 、Q 分别在面α、β内,P 到β3Q 到α的距离为23P 、Q 两点之间距离的最小值为C(A) (B)2 (C) 23 (D)431、在半径为3的球面上有C B A 、、三点,ABC ∠=90°,BC BA =, 球心O 到平面ABC 的距离是223,则C B 、两点的球面距离是B A. 3π B. π C. π34 D.2π 32、正六棱锥P -ABCDEF 中,G 为PB 的中点,则三棱锥D -GAC 与P -GAC 体积之比为C (A )1:1 (B) 1:2 (C) 2:1 (D) 3:2 33、如果把地球看成一个球体,则地球上的北纬060纬线长和赤道长的比值为C(A )0.8 (B )0.75 (C )0.5 (D )0.2534、已知二面角l αβ--的大小为050,P 为空间中任意一点,则过点P 且与平面α和平面β所成的角都是025的直线的条数为BA .2B .3C .4D .535、在正四棱柱1111ABCD A B C D -中,顶点1B 到对角线1BD 和到平面11A BCD 的距离分别为h 和d ,则下列命题中正确的是CA .若侧棱的长小于底面的变长,则h d的取值范围为(0,1) B .若侧棱的长小于底面的变长,则h d的取值范围为223()23 C 若侧棱的长大于底面的变长,则h d 的取值范围为23(2)3 D 若侧棱的长大于底面的变长,则h d 的取值范围为23()3+∞二、填空题36、在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围是 .(1/2,1)37、直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 。
【每日一练】经典高考数学基础训练(4)(含参考答案)
【每日一练】经典高考数学基础训练(4)(含参考答案)一、选择题1.函数x x f 21)(-=的定义域为A .]0,(-∞B .),0[+∞C .)0,(-∞D .),(+∞-∞2.已知集合{}{}032,422<--=<=x x x N x x M ,则集合=N MA .{}2-<x xB .{}3>x x C .{}32<<x xD .{}21<<-x x3.函数lg ||x y x=的图象大致是A .B .C .D .4.已知定义域为)1,1(-的奇函数)(x f y =又是减函数,且0)9()3(2<-+-a f a f ,则a 的取值范围是A .)3,22(B .)10,3(C .)4,22(D .)3,2(-5.m 、n 是不同的直线,γβα,,是不同的平面,有以下四个命题①γβγαβα//////⇒⎩⎨⎧ ②βαβα⊥⇒⎩⎨⎧⊥m m //③βαβα⊥⇒⎩⎨⎧⊥//m m④αα////m n nm ⇒⎩⎨⎧⊂其中为真命题的是A .①④B .①③C .②③D .②④6.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是A .34000cm 3B.38000cm 3C .32000cmD .34000cm正视图侧视图 俯视图7.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是A .34k ≥B .324k ≤≤ C .324k k ≥≤或 D .2k ≤8.下列说法的正确的是 A .经过定点()P x y 000,的直线都可以用方程()y y k x x -=-00表示 B .经过定点()b A ,0的直线都可以用方程y kx b =+表示 C .不经过原点的直线都可以用方程x a yb+=1表示D .经过任意两个不同的点()()222111y x P y x P ,、,的直线都可以用方程 ()()()()y y x x x x y y --=--121121表示 9.下列说法错误的是A .在统计里,把所需考察对象的全体叫作总体B .一组数据的平均数一定大于这组数据中的每个数据C .平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D .一组数据的方差越大,说明这组数据的波动越大10.从装有2个红球和2个黒球的袋内任取2个球,那么互斥而不对立的两个事件是 A .至少有一个黒球与都是黒球 B .至多有一个黒球与都是黒球 C .至少有一个黒球与至少有1个红球 D .恰有1个黒球与恰有2个黒球二、填空题:11.函数)34(log 221+-=x x y 的递减区间为______________.12.如果数据x 1、x 2、…、x n 的平均值为x ,方差为S 2 ,则3x 1+5、3x 2+5、…、3x n +5 的平均值为 ,方差为 .13.有3张奖券,其中2张可中奖,现3个人按顺序依次从中抽一张,小明最后抽,则他抽到中奖券的概率是 . 14.在圆x 2+y 2-5x=0内,过点(23,25)有n 条长度成等到差数列的弦,最小弦长为a 1,最大弦长为a n.若公差d ]31,61[∈,那么n 的取值集合是 三、解答题:已知圆C :()2219x y -+=内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点.(1) 当l 经过圆心C 时,求直线l 的方程; (2) 当弦AB 被点P 平分时,写出直线l 的方程; (3) 当直线l 的倾斜角为45º时,求弦AB 的长.答案一、选择题:二、填空题答案:11.(3,+∞) .12.3x +5,9S 2 13.3214.{4,5,6,7}三、解答题: 17.解:(1)已知圆C :()2219x y -+=的圆心为C (1,0),因直线过点P 、C ,所以直线l 的斜率为2,直线l的方程为y=2(x-1),即 2x-y-2=0. 4分(2)当弦AB 被点P 平分时,l ⊥PC, 直线l 的方程为12(2)2y x -=--, 即x+2y-6=0 8分 (3)当直线l 的倾斜角为45º时,斜率为1,直线l 的方程为y-2=x-2 ,即 x-y=0圆心C 到直线l3,弦AB 12分。
高考数学选择填空精选模拟真题(附解析)
高考数学选择填空精选模拟真题(附解析)一、单项选择题1.(2021·山东潍坊一模)已知集合A={-2,0},B={x|x 2-2x=0},则下列结论正确的是( )A.A=BB.A ∩B={0}C.A ∪B=AD.A ⊆B 2.(2021·广东广州二模)已知集合P={x|-3≤x ≤1},Q={y|y=x 2+2x },则P ∪(∁R Q )=( )A.[-3,-1)B.[-1,1]C.(-∞,-1]D.(-∞,1]3.(2021·河北保定一模)设a ,b ∈R ,则“|a+b i |=|1+i |”是“a=b=1”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件4.(2021·福建福州一中模拟)在复平面内,复数z=a+b i(a ∈R ,b ∈R )对应向量OZ⃗⃗⃗⃗⃗ (O 为坐标原点),设|OZ⃗⃗⃗⃗⃗ |=r ,以x 轴的非负半轴为始边,射线OZ 为终边的角为θ,则z=r (cos θ+isin θ).法国数学家棣莫佛发现棣莫佛定理:z n =[r (cos θ+isin θ)]n =r n (cos n θ+isin n θ),则(-1+√3i)10=( ) A.1 024-104√3i B.-1 024+1 024√3i C.512-512√3iD.-512+512√3i5.(2021·东北三校第一次联考)土楼具体有圆形、方形、五角形、八角形、日字形、回字形、吊脚楼等类型.现有某大学建筑系学生要重点对这七种主要类型的土楼依次进行调查研究.要求调查顺序中,圆形要排在第一个或最后一个,方形、五角形相邻,则共有( )种不同的排法. A.480B.240C.384D.1 4406.(2021·河北唐山一模)记(x +12x)4展开式的偶数项之和为P ,则P 的最小值为( )A.1B.2C.3D.47.(2021·江苏南京三模)在正方形ABCD 中,O 为两条对角线的交点,E 为边BC 上的动点.若AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ +μDO ⃗⃗⃗⃗⃗⃗ (λ>0,μ>0),则2λ+1μ的最小值为( ) A.2B.5C.92D.1438.(2021·山东日照一中月考)已知f (x )=x 2+4x+1+a ,且对任意x ∈R ,f (f (x ))≥0恒成立,则实数a 的取值范围为( ) A.[√5-12,+∞) B.[2,+∞) C.[-1,+∞)D.[3,+∞)二、多项选择题9.(2021·河北张家口一模)如果平面向量a =(2,-4),b =(-6,12),那么下列结论正确的是( ) A.|b |=3|a |B.a ∥bC.a 与b 的夹角为30°D.a ·b =-6010.(2021·河北唐山二模)已知a>b>0,且ab=4,则( )A.2a-b >1B.log 2a-log 2b>1C.2a +2b >8D.log 2a ·log 2b<111.(2021·山东临沂模拟)下列四个条件中,能成为x>y 的充分不必要条件的是( ) A.xc 2>yc 2 B.1x<1y<0 C.|x|>|y|D.ln x>ln y12.(2021·广东茂名模拟)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.这是因为阿基米德认为这个“圆柱容球”是他最为得意的发现,于是留下遗言:他死后,墓碑上要刻上一个“圆柱容球”的几何图形.如图,设圆柱的体积与球的体积之比为m ,圆柱的表面积与球的表面积之比为n ,若f (x )=(mn x 3-1x )8,则( )A.f (x )的展开式中的常数项是56B.f (x )的展开式中的各项系数之和为0C.f (x )的展开式中的二项式系数最大值是70D.f (i)=-16,其中i 为虚数单位三、填空题13.(2021·福建厦门双十中学月考)设复数z 满足z=4i 1+i,则z 的共轭复数z 在复平面内对应的点位于第象限.14.(2021·上海嘉定二模)将(x √x)7的二项展开式的各项重新随机排列,则有理项互不相邻的概率为 .15.(2021·浙江嘉兴二模)为满足某度假区游客绿色出行需求,某电力公司在该度假区停车楼建设了集中式智慧有序充电站,充电站共建设901个充电桩,其中包括861个新型交流有序充电桩、37个直流充电桩以及3个专门满足新能源大巴快速补电需求的大功率直流充电桩.现有A ,B ,C ,D ,E ,F 六辆新能源大巴,需要安排在某周一的上午或下午在甲、乙、丙3个新能源大巴大功率直流充电桩充电,每个充电桩在上午和下午均只安排一辆大巴充电,若要求A ,B 两大巴不能同时在上午充电,而C 大巴只能在下午充电,且F 大巴不能在甲充电桩充电,则不同的充电方案一共有 种.(用数字作答) 16.(2021·辽宁葫芦岛一模)在边长为2的正三角形ABC 中,D 是BC 边的中点,AE ⃗⃗⃗⃗⃗ =2EB⃗⃗⃗⃗⃗ ,CE 交AD 于点F.若BF ⃗⃗⃗⃗⃗ =x BC ⃗⃗⃗⃗⃗ +y BA ⃗⃗⃗⃗⃗ ,则x+y= ;BF ⃗⃗⃗⃗⃗ ·DE ⃗⃗⃗⃗⃗ = .参考解答1.B 解析 由题设得B={0,2},所以A ≠B ,A ∩B={0},A ∪B ≠A ,A 不是B 的子集.2.D 解析 因为Q={y|y=x 2+2x }={y|y=(x+1)2-1}={y|y ≥-1},所以∁R Q={y|y<-1},又P={x|-3≤x ≤1},所以P ∪(∁R Q )={x|x ≤1}. 3.B 解析 ∵|a+b i |=|1+i |,∴√a 2+b 2=√12+12,即a 2+b 2=2.∵a 2+b 2=2a=b=1,而a=b=1⇒a 2+b 2=2,∴“a 2+b 2=2”是“a=b=1”的必要不充分条件,即“|a+b i |=|1+i |”是“a=b=1”的必要不充分条件.4.D 解析 由题意,得(-1+√3i)10=210cos (10×2π3)+isin 10×2π3=1 024cos 20π3+isin 20π3=1 024(-12+√32i)=-512+512√3i .5.A 解析 当圆形排在第一个时,有A 55A 22=240种不同的排法.同理,当圆形排在最后一个时,有A 55A 22=240种不同的排法.综上,圆形要排在第一个或最后一个,方形、五角形相邻,则共有480种不同的排法.6.B 解析 由已知得x ≠0,则x 2>0,所以P=C 41x 3·12x+C 43x ·(12x )3=2x 2+12x 2≥2√1=2,当且仅当2x 2=12x 2即x=±√22时等号成立. 7.C 解析 如图所示,以A 为原点,AB ,AD 所在直线分别为x 轴、y 轴建立平面直角坐标系.设正方形的边长为1,则A (0,0),B (1,0),C (1,1),D (0,1),于是可得O (12,12). 设点E 的坐标为(1,m )(0≤m ≤1),则由AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ +μDO ⃗⃗⃗⃗⃗⃗ (λ>0,μ>0),可得(1,m )=λ(1,1)+μ(12,-12)(λ>0,μ>0),所以1=λ+12μ(λ>0,μ>0),则2λ+1μ=(2λ+1μ)(λ+12μ)=2+12+μλ+λμ≥52+2√μλ·λμ=92,当且仅当{ λμ=μλ,1=λ+12μ,λ>0,μ>0,即λ=μ=23时取等号,此时2λ+1μ的最小值为92.经检验,此时m=13∈[0,1]符合题意.8.B解析由题意,函数f(x)=x2+4x+1+a,令t=f(x),则t=x2+4x+1+a=(x+2)2-3+a≥a-3,又对任意x∈R,f(f(x))≥0恒成立,即f(t)≥0对任意t≥a-3恒成立,当a-3≤-2时,即a≤1时,f(t)min=f(-2)=a-3≥0,解得a≥3,此时无解;当a-3>-2时,即a>1时,f(t)min=f(a-3)=a2-a-2≥0,解得a≥2或a≤-1,所以a≥2.综上可得,实数a的取值范围为[2,+∞).9.ABD解析因为a=(2,-4),b=(-6,12),所以b=-3a.所以|b|=3|a|,a∥b,a与b的夹角为180°,a·b=2×(-6)+(-4)×12=-60,故选项A,B,D正确,选项C错误.10.ACD解析因为a>b>0,且ab=4,对A,a-b>0,所以2a-b>20=1,故A正确;对B,取a=83,b=32,则log2a-log2b=log2ab=log2169<log22=1,故B错误;对C,2a+2b≥2√2a·2b=2√2a+b,当且仅当a=b时取等号,又因为a+b≥2√ab=4,当且仅当a=b=2时取等号,所以2a+2b≥2√2a+b≥2√24=8,当且仅当a=b=2时取等号,因为a>b>0,所以不能取等号,故C正确;对D,当a>1>b>0时,log2a>0,log2b<0,所以log2a·log2b<1;当a>b>1时,log2a>0,log2b>0,所以log2a·log2b≤(log2a+log2b)24=[log2(ab)]24=1,当且仅当a=b时取等号,因为a>b>0,所以不能取等号,故D正确.11.ABD解析对于A选项:若xc2>yc2,则c2≠0,于是x>y,而当x>y,c=0时xc2=yc2,所以“xc2>yc2”是“x>y”的充分不必要条件,故A符合题意;对于B选项:由1x<1y<0可得y<x<0,即能推出x>y;但x>y不能推出1x<1y<0(因为x,y的正负不确定),所以“1x<1y<0”是“x>y”的充分不必要条件,故B符合题意;对于C选项:由|x|>|y|可得x2>y2,则(x+y)(x-y)>0,不能推出x>y;由x>y也不能推出|x|>|y|(如x=1,y=-2),所以“|x|>|y|”是“x>y”的既不充分也不必要条件,故C不符合题意;对于D选项:若ln x>ln y,则x>y,而由x>y不能推出ln x>ln y,所以“ln x>ln y”是“x>y”的充分不必要条件.故选项D符合题意.12.BC解析设内切球的半径为r(r>0),则圆柱的高为2r.于是m=πr2·2r43πr3=32,n=2πr2+2πr·2r4πr2=32,所以mn=1,所以f(x)=(x3-1x)8.对于A,f(x)展开式通项为T r+1=C8r x24-3r·(-1x)r=(-1)r C8r x24-4r,令24-4r=0,解得r=6,所以f(x)展开式中的常数项为(-1)6C86=28,A错误;对于B,f (1)=0,即f (x )展开式的各项系数之和为0,B 正确;对于C,f (x )展开式中二项式系数最大值为C 84=70,C 正确;对于D,f (i)=(i 3-1i )8=(-i +i)8=0,D 错误. 13.四 解析 因为z=4i1+i =4i (1-i )(1+i )(1-i )=4i (1-i )2=2i(1-i)=2i -2i 2=2+2i,所以z =2-2i,所以共轭复数z 在复平面内对应的点位于第四象限.14.114解析 (x+1√x )7的展开式的通项为T r+1=C 7r x 7-r ·x -12r =C 7rx 7-32r ,当r=0,2,4,6时,对应的项为有理项,一共4项,当r=1,3,5,7时,对应的项为无理项,一共4项,要使得有理项互不相邻,采用插空法,先把无理项排好,再把有理项插到无理项的5个空档中,共有A 44A 54=2 880种情况,全部的情况有A 88=40 320种,故所求概率P=A 44A 54A 88=2 88040 320=114.15.168 解析 先排F 大巴,第一种方案,F 大巴在上午充电,有C 21种可能情况,此时再排C大巴,C 大巴在下午充电,有C 31种可能情况,再排A ,B 大巴,又分A ,B 大巴同在下午和一个上午、一个下午两种情况,有(A 22+C 21C 21C 21)种可能情况;第二种方案,F 大巴在下午充电,有C 21种可能情况,此时再排C 大巴,C 大巴在下午充电,有C 21种可能情况,再排A ,B 大巴,只能一个上午、一个下午,有C 21C 31种可能情况.最后再排剩下的两辆大巴,有A 22种可能情况,故共有[C 21C 31(A 22+C 21C 21C 21)+C 21C 21C 21C 31]A 22=168种不同的充电方案. 16.35 -715解析 如图,过点E 作EM ∥AD 交BC 于点M ,由AE ⃗⃗⃗⃗⃗ =2EB ⃗⃗⃗⃗⃗ ,得EM=13AD ,BM=13BD ,MD=23BD ,又D 是BC 边的中点,得DC=35MC ,∴FD=35EM ,故FD=15AD ,即AF=45AD ,所以AF⃗⃗⃗⃗⃗ =45AD ⃗⃗⃗⃗⃗ =45(BD ⃗⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ )=45(12BC ⃗⃗⃗⃗⃗ -BA ⃗⃗⃗⃗⃗ )=25BC ⃗⃗⃗⃗⃗ −45BA ⃗⃗⃗⃗⃗ , 所以BF ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ =15BA ⃗⃗⃗⃗⃗ +25BC ⃗⃗⃗⃗⃗ ,故x+y=35. 易知DE ⃗⃗⃗⃗⃗ =BE ⃗⃗⃗⃗⃗ −BD ⃗⃗⃗⃗⃗⃗ =13BA ⃗⃗⃗⃗⃗ −12BC ⃗⃗⃗⃗⃗ , 由已知得BA=BC=2,<BC ⃗⃗⃗⃗⃗ ,BA ⃗⃗⃗⃗⃗ >=60°,所以|BA ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |=2,BA ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ =2×2×cos 60°=2.所以BF ⃗⃗⃗⃗⃗ ·DE ⃗⃗⃗⃗⃗ =(15BA ⃗⃗⃗⃗⃗ +25BC ⃗⃗⃗⃗⃗ )·(13BA ⃗⃗⃗⃗⃗ -12BC ⃗⃗⃗⃗⃗ )=115BA ⃗⃗⃗⃗⃗ 2−15BC ⃗⃗⃗⃗⃗ 2+130BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =115×4-15×4+130×2=-715.。
理科高考数学立体几何选择填空压轴题专练
立体几何选择填空压轴题专练A 组一、选择题1.(2018全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 ABCD【答案】A【解析】记该正方体为''''-ABCD A B C D ,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱'A A ,''A B ,''A D 与平面α所成的角都相等,如图,连接'AB ,'AD ,''B D ,因为三棱锥'''-A AB D 是正三棱锥,所以'A A ,''A B ,''A D 与平面''AB D 所成的角都相等,分别取''C D ,''B C ,'BB ,AB ,AD ,'DD 的中点E ,F ,G ,H ,I ,J ,连接EF ,FG .GH ,IH ,IJ ,IE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面''AB D 平行,且截正方体所得截面的面积最大,又2======EF FG GH IH IJ JE ,所以该正六边形的面积为26434⨯⨯=,所以α截此正方体所得截面面积的最大值为4,故选A . 2.如图,矩形ABCD 中, 2AB AD =, E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆(1A ∉平面ABCD ).若M 、O 分别为线段1A C 、DE 的中点,则在ADE ∆翻转过程中,下列说法错误的是( )A. 与平面1A DE 垂直的直线必与直线BM 垂直B. 异面直线BM 与1A E 所成角是定值C. 一定存在某个位置,使DE MO ⊥D. 三棱锥1A ADE -外接球半径与棱AD 的长之比为定值【答案】C【解析】取CD 的中点F ,连BF,MF,如下图:可知面MBF// 1A DE ,所以A 对。
【每日一练】经典高考数学基础训练(5)(含参考答案)
【每日一练】经典高考数学基础训练(5)(含参考答案)一、选择题:1.已知全集U=R ,集合}{|A x y ==,集合{|0B x =<x <2},则()U C A B ⋃=A .[1,)+∞B .()1+∞,C .[0)∞,+D .()0∞,+ 2.设复数121212z i z bi z =+=+⋅,,若z 为实数,则b= A .2 B .1 C .-1 D .-2 3.在等比数列{}n a 中,如果12344060a a a a +=+=,,那么78a a += A .135 B .100 C .95 D .804.在边长为1的等边△ABC 中,设,,BC a CA b AB c a b b c c a ===⋅+⋅+⋅= ,则A .32-B .0C .32D .35.在△ABC 中,222b c a +=,则A ∠等于 A .6πB .3πC .23π D .56π 6.已知直线l m n ,,及平面α,下列命题中是假命题的是 A .若l ∥m ,m ∥n ,则l ∥n ; B .若l ∥α,n ∥α,则l ∥n . C .若l m ⊥,m ∥n ,则l n ⊥;D .若,l n α⊥∥α,则l n ⊥;7.已知函数2()f x x x c =++,若(0)f >0,()f p <0,则必有 A .(1)f p +>0 B .(1)f p +<0C .(1)f p +=0D .(1)f p +的符号不能确定8.曲线32y x x =-在横坐标为-1的点处的切线为l ,则点(3,2)P 到直线l 的距离为A .2 B .2C .2 D 9.已知{}(,)|6,0,0x y x y x y Ω=+≤≥≥,{}(,)|4,0,20A x y x y x y =≤≥-≥,若向区域Ω上随机投一点P ,则点P 落在区域A 的概率为 A .13B .23 C .19D .2910.对于函数①()|2|f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在(,2)-∞上是减函数,在(2,)+∞上是增函数;能使命题甲、乙均为真的所有函数的序号是A .①②B .①③C .②D .③ 二、填空题:11.在),(41,,,,,,222a cb Sc b a C B A ABC -+=∆若其面积所对的边分别为角中A ∠则= 。
2023年新高考数学选择填空专项练习题六(附答案解析)
∴1= an
1- 1 an an-1
+
1-1 an-1 an-2
+…+
1-1 a2 a1
+1 a1
第2页共7页
=2n-1+2n-2+…+2+1=2n-1=2n-1. 2-1
∴an=2n-1 1.故选 B.] 8.甲、乙、丙三人中,一人是教师,一人是记者,一人是医生.已知:丙 的年龄比医生大;甲的年龄和记者不同;记者的年龄比乙小.根据以上情况,下 列判断正确的是( ) A.甲是教师,乙是医生,丙是记者 B.甲是医生,乙是记者,丙是教师 C.甲是医生,乙是教师,丙是记者 D.甲是记者,乙是医生,丙是教师 C [由甲的年龄和记者不同与记者的年龄比乙小可以推得丙是记者,再由丙 的年龄比医生大,可知甲是医生,故乙是教师,故选 C.] 9.已知抛物线 C:y2=8x 与直线 y=k(x+2)(k>0)相交于 A,B 两点,F 为 抛物线 C 的焦点,若|FA|=2|FB|,则 AB 的中点的横坐标为( ) A.5 B.3 C.5 D.6
i
i
虚数,则 a-2=0,a+2≠0.
∴“a=2”是“复数 z=a+2i-1+i(a∈R)为纯虚数”的充要条件.故选 i
C.] 3.已知平面向量 a,b 满足|a|=3,|b|=2,且(a+b)(a-2b)=4,则向量 a,
b 的夹角为( )
A.π B.π C.π D.2π 643 3
D [∵(a+b)(a-2b)=4,∴a2-a·b-2b2=4,
2 A [根据题意,设 AB 的中点为 G, 抛物线 C:y2=8x 的准线为 l:x=-2,焦点为 F(2,0), 直线 y=k(x+2)恒过定点 P(-2,0). 如图过 A、B 分别作 AM⊥l 于 M,BN⊥l 于 N, 由|FA|=2|FB|,则|AM|=2|BN|, 即点 B 为 AP 的中点.连接 OB,则|OB|=1|AF|,
高考数学选择填空
高考数学选择填空1. 设函数 f(x) = 2x^2 - 3x + 1, 其中 x ∈ R,则 f(a + b) 的值等于 ___________.2. 若一次函数 y = kx + 2 与另一次函数 y = 2x^2 + 3 在点 (1, 5) 处相切,则 k 的值为 ___________.3. 若两个正整数 a 和 b 满足 a^2 + b^2 = 10,那么 a + b 的最大值是 ___________.4. 在平面直角坐标系中,点 A(3,4) 和点 B(8,6) 的斜率为___________.5. 若正方形 ABCD 的边长为 a,且点 E 在 AB 边上,点 F 在AD 边上,且 AE = 2EF,则正方形 ADEF 的面积为___________.6. 已知函数 f(x) = 3x^3 + 2x^2 + cx + d 是一个升函数,且经过点 (1, 6),则常数 c 和 d 的值分别为 ___________.7. 若函数 f(x) = ax^2 + bx + c 在点 (1, 2) 处的切线方程为 y = 4x - 2,那么 a, b 和 c 的值分别为 ___________.8. 若函数 y = ax^2 + bx + c 在点 (2, 5) 处的切线与直线 y = 3x + 1 平行,则 a, b 和 c 的值分别为 ___________.9. 若 a + b = 2 和 a - b = 4 成立,则 a 的值为 ___________.10. 若函数 y = 5x - c 在点 (3, 2) 处的切线方程为 y = 5x - 13,那么 c 的值为 ___________.11. 若平行四边形 ABCD 的对角线交于点 E,则△AED 和△BEC 的面积比为 ___________.12. 若直线 y = 2x + a 和 y = x^2 + 2x + 1 相交于点 P,则 a 的值为 ___________.13. 一条钢材的长度为 2m,放在一个均匀的水平线桌上,两端分别悬空。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知函数,2)(2
+-=x x x f 则⎰
=10
)(dx x f ( )
A
.2 D .3 2.执行如图所示的程序框图,则输出的结果是( )
A .29
B .30
C .31
D .32
3.某节假日,校办公室随机安排从一号至六号由六位领导参加的值班表.每一位领导值班一天,则校长甲与校长乙不相邻且主任丙与主任丁也不能相邻的概率为( ) A
4. 如图是某工厂对一批新产品长度(单位:mm )检测结果的频率分布直方图.估计
这批产品的中位数为(
)
A .20
B .25
C .22.5
D .22.75
5.52
)1(+-x x
的展开式中,3x 项的系数为_____.
6.已知随机变量
X 服从正态分布()
20,N σ,且()200.4P X -≤≤=,则
()2P X >=________.
1.设函数()y f x =的定义域为R ,则“(0)0f =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件(B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件
2.设复数21,z z 在复平面内的对应点关于虚轴对称,i z +=21,则=⋅21z z ( ) A .5- B .5 C .i +-4 D .i --4 3.已知数列{}n a 满足:2
1=a ,
231+=+n n a a ,则{}n a 的通项公式为( )
A .12-=n a n
B .13-=n n a
C .122-=n n a
D .46-=n a n
4. 某几何体的三视图如图所示,且该几何体的体积为3,则正视图中的
x 的值为
( )
A
.2 B
.3 D 5.
某射手射击所得环数ξ的分布如下:
已知ξ的期望8.9E ξ=,则y 的值为是________.
6.在锐角
A B C ∆中,角C B A 、、所对的边分别为c b a 、、,若
C ab a b cos 622=+,则
_______.
1.等差数列{}n a 满足:296a a a +=,则9S =( ) A .-2 B .0 C .1 D .2
2.设函数()3cos f x x b x =+,x ∈R ,则“0b =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件(B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件
3.阅读如图所示的程序框图,运行相应的程序,若输出的S 为11
12
,则判断框中填写的内容可以是( )
A .6?n =
B .6?n <
C .6?n ≤
D .8?n ≤
4. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小
组的可能性相同,则这两位同学不在同一个兴趣小组的概率为( ) A
5.
()()
2
11n
x x x -++ 的展开式的各项系数和为64,则展开式中5
x 项的系数等
于 .
6.已知随机变量X 的方差V (X )=1,设随机变量Y=2X+3,则V (Y )= .
1.在复平面内,复数2
i z i
-=
的对应点位于(
) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.某几何体的三视图如图所示,则它的表面积为( ).
A .6π
B .5π C
.4π D .3π
3.从某高中随机选取5名高三男生,其身高与体重的数据如下表所示:
根据上表可得回归直线方程为 0.56y x a
=+,据此模型预报身高为172cm 的高三男生体重为 ( )
A .70.09kg
B .70.12kg
C .70.55kg
D .71.05kg
4. 数列
23
,45-,87,16
9-,…的一个通项公式为( )
A .n n n
n a 212)1(+⋅-= B .n n n n a 2
1
2)1(+⋅-=
C .n n n n a 212)
1(1
+⋅-=+ D .n n n n a 2
12)1(1+⋅-=
+ 5.若△ABC 的内角满足sin A =
2sin C ,则cos C 的最小值是________.
6128,则展开式中x 的系数为______________.(用数字作答)。