高中数学 3.4.1基本不等式导学案 人教A版必修5

合集下载

2021年高中数学《 3.4 基本不等式 》导学案 新人教A版必修5

2021年高中数学《 3.4 基本不等式 》导学案 新人教A版必修5

2021年高中数学《 3.4 基本不等式 》导学案2 新人教A 版必修5
班级: 组名: 姓名: 设计人:赵帅军 魏帅举 领导审批:
一.:自主学习,明确目标
1.知识与技能:进一步掌握基本不等式;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题
2.过程与方法:通过两个例题的研究,进一步掌握基本不等式,并会用此定理求某些函数的最大、最小值。

教学重点:基本不等式的应用
教学难点:利用基本不等式求最大值、最小值。

教学方法:探究,讨论
二.研讨互动,问题生成
1.重要不等式:
2.算术平均数、几何平均数

ab b
a a
b b a ≥+≥+2222和成立的条件?
三.合作探究,问题解决
例1(1)用篱笆围成一个面积为100m的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。

最短的篱笆是多少?
(2)段长为36 m的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
例2 某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为3m,如果池底每1m2的造价为150元,池壁每1m2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?
归纳:用均值不等式解决此类问题时,应按如下步骤进行:
(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;
(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值
问题;
(3)在定义域内,求出函数的最大值或最小值;
(4)正确写出答案.
练习
1.已知x≠0,当x取什么值时,x2+的值最小?最小值是多少?
自我评价同伴评价小组长评价。

新人教A版必修5高中数学第三章3.4基本不等式(一)导学案

新人教A版必修5高中数学第三章3.4基本不等式(一)导学案
答案B
解析x2+ax+1≥0在x∈上恒成立
⇔ax≥-x2-1⇔a≥max.
∵x+≥2,∴-≤-2,∴a≥-2.
二、填空题
7.若a<1,则a+有最______值,为________.
答案大 -1
解析∵a<1,∴a-1<0,
∴-=(1-a)+≥2(a=0时取等号),
∴a-1+≤-2,∴a+≤-1.
8.若lgx+lgy=1,则+的最小值为________.
3.设a,b∈R,且a≠b,a+b=2,则必有()
A.1≤ab≤B.ab<1<
C.ab<<1 D.<ab<1
答案B
解析∵ab≤2,a≠b,∴ab<1,
又∵>>0,
∴>1,∴ab<1<.
4.已知正数0<a<1,0<b<1,且a≠b,则a+b,2,2ab,a2+b2,其中最大的一个是()
A.a2+b2B.2C.2abD.a+b
答案2
解析∵lgx+lgy=1,∴xy=10,x>0,y>0,
A.B.bC.2abD.a2+b2
答案B
解析∵ab<2,∴ab<,∴2ab<.
∵>>0,∴>,
∴a2+b2>.
∵b-(a2+b2)=(b-b2)-a2=b(1-b)-a2
=ab-a2=a(b-a)>0,∴b>a2+b2,∴b最大.
6.若不等式x2+ax+1≥0对一切x∈恒成立,则a的最小值为()
A.0 B.-2C.-D.-3
3.基本不等式的常用推论
(1)ab≤2≤(a,b∈R);
(2)当x>0时,x+≥2;当x<0时,x+≤-2.

人教A版高中数学高二版必修五3.4.1 基本不等式 导学案

人教A版高中数学高二版必修五3.4.1 基本不等式 导学案

3.4 基本不等式:2b a ab +≤(第1课时)一.【学习目标】1、知识与技能1.探索并了解基本不等式的证明过程;2.了解基本不等式的代数及几何背景;3.会用基本不等式解决简单的最大(小)值问题。

2、过程与方法通过实例探究抽象基本不等式,体会特殊到一般的数学思想方法。

3、情感态度与价值观通过对基本不等式成立条件的分析,培养分析问题的能力及严谨的数学态度。

二.【重点难点】1、重点:应用数形结合的思想理解基本不等式,并掌握基本不等式的证明过程;2、难点:应用基本不等式2a b ab +≤求最值 三.【学习新知】基本不等式2a b ab +≤的几何背景: 探究:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。

【合作探究】(1)问题 1:这会标中含有怎样的几何图形?你能在这个图案中找出一些相等关系或不等关系吗?问题2:我们把“风车”造型抽象成图在正方形ABCD 中有4个全等的直角三角形.设直角 三角形的长为a 、b ,那么正方形的边长为多少?面积S 为多少呢?问题3:那4个直角三角形的面积和S ’呢?问题4:根据观察4个直角三角形的面积和正方形的面积,我们可得容易得到一个不等 式( )?什么时候这两部分面积相等呢?结论:一般地,对于任意实数 a 、b ,我们有222a b ab +≥,当且仅当a b = 时,等号成立。

问题5:你能给出它的证明吗? ▲注意强调(1)当且仅当a b =时, 222a b ab +=(2)特别地,如果0,0,,a b a b a b a b ab >>+≥用和分别代替、可得2, 也可写成(0,0)2a b ab a b +≤>>,引导学生利用不等式的性质推导。

(板书,请学生上台板演):要证: (0,0)2a b ab a b +≥>> ① 即证 a b +≥ ② 要证②,只要证 a b +- 0≥ ③ 要证③,只要证 ( - )2 0≥ ④ 显然, ④是成立的,当且仅当a b =时, ④的等号成立(3)观察右图,得到不等式①的几何解释探究:课本中的“探究”在右图中,AB 是圆的直径,点C 是AB 上的一点,AC=a,BC=b 。

新人教A版必修5高中数学《3.4 基本不等式》导学案(3)

新人教A版必修5高中数学《3.4 基本不等式》导学案(3)

高中数学《3.4 基本不等式》导学案(3)新人教A 版必修5学习目标1.理解并掌握基本不等式及变形应用. 2.会用基本不等式求最值问题 ※ 学习重点、难点:1.利用基本不等式求最值.(重点)2.利用基本不等式求最值时的变形转化(难点)1、若x >0,则34x x+的最小值为 2、若a,b 均为大于1的正数,且ab =100,则lga ·lgb 的最大值是3、设0<x<32,求函数y =x(3-2x)的最大值;一层练习 4、若a <1,则a +1a -1有最___值,为________.5、设0>x ,求xx y 133--=的最大值二层练习 6、求)0(112<-+=x xx y 的最大值7、求)0(123≠+=x xx y 的值域8、求函数y =x +1x的值域.9、求)1(1622>-++=x x x x y 的最小值求函数y =x 2+3x 2+2的最小值.二、合作探究题型四 利用基本不等式解有条件的最值问题1、已知,0,0>>b a 且,4=ab 求b a 23+的最小值2、已知,0,0>>b a 且,14=+b a 求ab 的最大值3、已知x>0,y>0,且 1x +9y =1,求x +y 的最小值.4、已知,0,0>>y x 且124++=y x xy 求xy 的最小值5、设x ,y 都是正数,且1x +2y=3求2x +y 的最小值;6、若正数b a ,满足3++=b a ab ,则ab 的取值范围是 .(3)设x>0,y>0,且2x +8y =xy ,求x +y 的最小值.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最大值52B .最小值54C .最大值1D .最小值1已知x <54,求函数f (x )=4x -2+14x -5的最大值.1.函数y =log 2⎝⎛⎭⎪⎫x +1x -1+5 (x >1)的最小值为( ) A .-3 B .3 C .4 D .-42.已知点P (x ,y )在经过A (3,0),B (1,1)两点的直线上,则2x +4y的最小值为( ) A .2 2 B .4 2 C .16 D .不存在6.函数y =log a (x +3)-1 (a >0,a ≠1)的图象恒过点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则1m +2n的最小值为________.(2)设x >-1,求y =x +x +x +1的最小值.4.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为( )A .0B .-2C .-52D .-36.若lg x +lg y =1,则2x+5y的最小值为________.8.设正数x ,y 满足x +y ≤a ·x +y 恒成立,则a 的最小值是______. 2已知2a +b =1,a >0,b >0,则11a b+的最小值是( )A .B .3-C .3+D .33(2011·安徽合肥一模)若M =24a a+(a ∈R ,a ≠0),则M 的取值范围为( )A .(-∞,-4]∪[4,+∞)B .(-∞,-4]C .[4,+∞)D .[-4,4]1函数y =3x +32-x的最小值为__________.4. 若14<<-x ,则22222-+-x x x 的最小值为( )(1).11120,0的最小值,求且yx y x y x +=+>> ; (2) 设x 、y 是正实数,且x+y=5,则lgx+lgy 的最大值是_______________________. 2、已知正数a ,b 满足ab =a +b +3.求a +b 的最小值.达标练习课后练习。

高中数学 3.4基本不等式(一)全册精品教案 新人教A版必修5

高中数学 3.4基本不等式(一)全册精品教案 新人教A版必修5

3.4 基本不等式第一课时 基本不等式(一)一、教学目标(1)知识与技能:理解两个实数的平方和不小于它们之积的2倍的不等式的证明;理解两个正数的算术平均数不小于它们的几何平均数的证明以及它的几何解释(2)过程与方法 :本节学习是学生对不等式认知的一次飞跃。

要善于引导学生从数和形两方面深入地探究不等式的证明,从而进一步突破难点。

变式练习的设计可加深学生对定理的理解,并为以后实际问题的研究奠定基础。

两个定理的证明要注重严密性,老师要帮助学生分析每一步的理论依据,培养学生良好的数学品质(3)情感与价值:培养学生举一反三的逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力二、教学重点、难点教学重点:两个不等式的证明和区别教学难点:理解“当且仅当a=b 时取等号”的数学内涵三、教学过程提问1:我们把“风车”造型抽象成图3.4-2.在正方形ABCD 中有4个全等的直角三角形.设直角三角形的长为a 、b ,那么正方形的边长为多少?面积为多少呢?22a b +) 提问2:那4个直角三角形的面积和是多少呢? (2ab )提问3:根据观察4个直角三角形的面积和正方形的面积,我们可得容易得到一个不等式,222a b ab +≥。

什么时候这两部分面积相等呢?(当直角三角形变成等腰直角三角形,即a b =时,正方形EFGH 变成一个点,这时有222a b ab +=)1、一般地,对于任意实数 a 、b ,我们有222a b ab +≥,当且仅当a b =时,等号成立。

提问4:你能给出它的证明吗?证明:222)(2b a ab b a +=-+ 0)(2>-≠b a ,b a 时当 0)(2=-=b a ,b a 时当所以 222a b ab +≥注意强调 (1) 当且仅当a b =时, 222a b ab += (2)特别地,如果,0,0>>b a 用a 和b 代替a 、b ,可得ab b a 2≥+,(0,0)2a b a b +≤>>,引导学生利用不等式的性质推导提问5:观察图形3.4-3,你能得到不等式0,0)2a b a b +≥>>的几何解释吗? 的算术平均数,为称b a b a ,2 .2+ . , 的几何平均数为b a ab 为两两不相等的实数,已知例c b a ,,1. . 222ca bc ab c b a ++>++求证:练习、已知:,0,0,0>>>c b a 求证:c b a cab b ac a bc ++≥++ , ,,, 2. 都是正数已知例d c b a .4 ))(( abcd bd ac cd ab ≥++求证: 例3、若1>>b a ,b a P lg lg ⋅=,)lg (lg 21b a Q +=,2lg b a R += 比较R P 、、Q 、的大小 例4、当1->x 时,求函数113)(2++-=x x x x f 的值域。

317.高中数学 (3.4.1 基本不等式 的证明)示范教案 新人教A版必修5

317.高中数学 (3.4.1 基本不等式 的证明)示范教案 新人教A版必修5

3.4 基本不等式:2ba ab +≤3.4.1 基本不等式2ba ab +≤的证明从容说课在前两节课的研究当中,学生已掌握了一些简单的不等式及其应用,并能用不等式及不等式组抽象出实际问题中的不等量关系,掌握了不等式的一些简单性质与证明,研究了一元二次不等式及其解法,学习了二元一次不等式(组)与简单的线性规划问题.本节课的研究是前三大节学习的延续和拓展.另外,为基本不等式的应用垫定了坚实的基础,所以说,本节课是起到了承上启下的作用.本节课是通过让学生观察第24届国际数学家大会的会标图案中隐含的相等关系与不等关系而引入的.通过分析得出基本不等式:2ba ab +≤,然后从三种角度对基本不等式展开证明及对基本不等式展开一些简单的应用,进而更深一层次地从理性角度建立不等观念.教师应作好点拨,利用几何背景,数形结合做好归纳总结、逻辑分析,并鼓励学生从理性角度去分析探索过程,进而更深层次理解基本不等式,鼓励学生对数学知识和方法获得过程的探索,同时也能激发学生的学习兴趣,根据本节课的教学内容,应用观察、类比、归纳、逻辑分析、思考、合作交流、探究,得出基本不等式,进行启发、探究式教学并使用投影仪辅助.教学重点1.创设代数与几何背景,用数形结合的思想理解基本不等式;2.从不同角度探索基本不等式的证明过程;3.从基本不等式的证明过程进一步体会不等式证明的常用思路.教学难点1.对基本不等式从不同角度的探索证明;2.通过基本不等式的证明过程体会分析法的证明思路.教具准备多媒体及课件三维目标一、知识与技能1.创设用代数与几何两方面背景,用数形结合的思想理解基本不等式;2.尝试让学生从不同角度探索基本不等式的证明过程;3.从基本不等式的证明过程进一步体会不等式证明的常用思路,即由条件到结论,或由结论到条件.二、过程与方法1.采用探究法,按照联想、思考、合作交流、逻辑分析、抽象应用的方法进行启发式教学;2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;3.将探索过程设计为较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣.三、情感态度与价值观1.通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行归纳、抽象,使学生感受数学、走进数学,培养学生严谨的数学学习习惯和良好的思维习惯;2.学习过程中,通过对问题的探究思考,广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;3.通过对富有挑战性问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘、数学的简洁美、数学推理的严谨美,从而激发学生的学习兴趣.教学过程导入新课探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗?(教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情) 推进新课师 同学们能在这个图中找出一些相等关系或不等关系吗?如何找?(沉静片刻)生 应该先从此图案中抽象出几何图形.师 此图案中隐含什么样的几何图形呢?哪位同学能在黑板上画出这个几何图形? (请两位同学在黑板上画.教师根据两位同学的板演作点评)(其中四个直角三角形没有画全等,不形象、直观.此时教师用投影片给出隐含的规范的几何图形)师 同学们观察得很细致,抽象出的几何图形比较准确.这说明,我们只要在现有的基础上进一步刻苦努力,发奋图强,也能作出和数学家赵爽一样的成绩.(此时,每一位同学看上去都精神饱满,信心百倍,全神贯注地投入到本节课的学习中来) [过程引导]师 设直角三角形的两直角边的长分别为a 、b ,那么,四个直角三角形的面积之和与正方形的面积有什么关系呢?生 显然正方形的面积大于四个直角三角形的面积之和.师 一定吗?(大家齐声:不一定,有可能相等)师 同学们能否用数学符号去进行严格的推理证明,从而说明我们刚才直觉思维的合理性? 生 每个直角三角形的面积为ab 21,四个直角三角形的面积之和为2ab .正方形的边长为22b a ,所以正方形的面积为a 2+b 2,则a 2+b 2≥2ab .师这位同学回答得很好,表达很全面、准确,但请大家思考一下,他对a2+b2≥2ab证明了吗?生没有,他仍是由我们刚才的直观所得,只是用字母表达一下而已.师回答得很好.(有的同学感到迷惑不解)师这样的叙述不能代替证明.这是同学们在解题时经常会犯的错误.实质上,对文字性语言叙述证明题来说,他只是写出了已知、求证,并未给出证明.(有的同学窃窃私语,确实是这样,并没有给出证明)师请同学们继续思考,该如何证明此不等式,即a2+b2≥2ab.生采用作差的方法,由a2+b2-2ab=(a-b)2,∵(a-b)2是一个完全平方数,它是非负数,即(a-b)2≥0,所以可得a2+b2≥2ab.师同学们思考一下,这位同学的证明是否正确?生正确.[教师精讲]师这位同学的证明思路很好.今后,我们把这种证明不等式的思想方法形象地称之为“比较法”,它和根据实数的基本性质比较两个代数式的大小是否一样.生实质一样,只是设问的形式不同而已.一个是比较大小,一个是让我们去证明.师这位同学回答得很好,思维很深刻.此处的比较法是用差和0作比较.在我们的数学研究当中,还有另一种“比较法”.(教师此处的设问是针对学生已有的知识结构而言)生作商,用商和“1”比较大小.师对.那么我们在遇到这类问题时,何时采用作差,何时采用作商呢?这个问题让同学们课后去思考,在解决问题中自然会遇到.(此处设置疑问,意在激发学生课后去自主探究问题,把探究的思维空间切实留给学生)[合作探究]师请同学们再仔细观察一下,等号何时取到.生当四个直角三角形的直角顶点重合时,即面积相等时取等号.(学生的思维仍建立在感性思维基础之上,教师应及时点拨)师从不等式a2+b2≥2ab的证明过程能否去说明.生当且仅当(a-b)2=0,即a=b时,取等号.师这位同学回答得很好.请同学们看一下,刚才两位同学分别从几何图形与不等式两个角度分析等号成立的条件是否一致.(大家齐声)一致.(此处意在强化学生的直觉思维与理性思维要合并使用.就此问题来讲,意在强化学生数形板书:一般地,对于任意实数a、b,我们有a2+b2≥2ab,当且仅当a=b时,等号成立.[过程引导]师这是一个很重要的不等式.对数学中重要的结论,我们应仔细观察、思考,才能挖掘出它的内涵与外延.只有这样,我们用它来解决问题时才能得心应手,也不会出错.(同学们的思维再一次高度集中,似乎能从不等式a2+b2≥2ab中得出什么.此时,教师应及时点拨、指引)师当a>0,b>0时,请同学们思考一下,是否可以用a、b代替此不等式中的a、b.生完全可以.师 为什么? 生 因为不等式中的a 、b ∈R.师 很好,我们来看一下代替后的结果.板书:ab b a ≥+2即2b a ab +≤ (a >0,b >0). 师 这个不等式就是我们这节课要推导的基本不等式.它很重要,在数学的研究中有很多应用,我们常把2b a +叫做正数a 、b 的算术平均数,把ab 叫做正数a 、b 的几何平均数,即两个正数的算术平均数不小于它们的几何平均数.(此处意在引起学生的重视,从不同的角度去理解)师 请同学们尝试一下,能否利用不等式及实数的基本性质来推导出这个不等式呢? (此时,同学们信心十足,都说能.教师利用投影片展示推导过程的填空形式) 要证:ab b a ≥+2,① 只要证a +b ≥2ab ,②要证②,只要证:a +b -2ab ≥0,③要证③,只要证:,0)(2≥-b a ④显然④是成立的,当且仅当a =b 时,④中的等号成立,这样就又一次得到了基本不等式. (此处以填空的形式,突出体现了分析法证明的关键步骤,意在把思维的时空切实留给学生,让学生在探究的基础上去体会分析法的证明思路,加大了证明基本不等式的探究力度) [合作探究]老师用投影仪给出下列问题.如图,AB 是圆的直径,点C 是AB 上一点,A C=a ,B C=b .过点C 作垂直于AB 的弦DD′,连结A D 、B D.你能利用这个图形得出基本不等式的几何解释吗?(本节课开展到这里,学生从基本不等式的证明过程中已体会到证明不等式的常用方法,对基本不等式也已经很熟悉,这就具备了探究这个问题的知识与情感基础)[合作探究]师 同学们能找出图中与a 、b 有关的线段吗?生 可证△A CD ∽△B CD,所以可得ab CD =. 生 由射影定理也可得ab CD =.师 这两位同学回答得都很好,那ab 与2b a +分别又有什么几何意义呢?生ab 表示半弦长,2b a +表示半径长. 师 半径和半弦又有什么关系呢? 生 由半径大于半弦可得ab b a ≥+2. 师 这位同学回答得是否很严密?生 当且仅当点C 与圆心重合,即当a =b 时可取等号,所以也可得出基本不等式2b a ab +≤ (a >0,b >0).课堂小结师 本节课我们研究了哪些问题?有什么收获?生 我们通过观察分析第24届国际数学家大会的会标得出了不等式a 2+b 2≥2ab .生 由a 2+b 2≥2ab ,当a >0,b >0时,以a 、b 分别代替a 、b ,得到了基本不等式2b a ab +≤ (a >0,b >0).进而用不等式的性质,由结论到条件,证明了基本不等式. 生 在圆这个几何图形中我们也能得到基本不等式.(此处,创造让学生进行课堂小结的机会,目的是培养学生语言表达能力,也有利于课外学生归纳、总结等学习方法、能力的提高)师 大家刚才总结得都很好,本节课我们从实际情景中抽象出基本不等式.并采用数形结合的思想,赋予基本不等式几何直观,让大家进一步领悟到基本不等式成立的条件是a >0,b >0,及当且仅当a =b 时等号成立.在对不等式的证明过程中,体会到一些证明不等式常用的思路、方法.以后,同学们要注意数形结合的思想在解题中的灵活运用.布置作业活动与探究:已知a 、b 都是正数,试探索b a 112+,ab ,2b a +,222b a +的大小关系,并证明你的结论.分析:(方法一)由特殊到一般,用特殊值代入,先得到表达式的大小关系,再由不等式及实数的性质证明.(方法二)创设几何直观情景.设A C=a ,B C=b ,用a 、b 表示线段CE、OE、CD、DF的长度,由CE>OE>CD>DF可得.基本不等式2b a ab +≤的证明 一、实际情景引入得到重要不等式 课时小结a 2+b 2≥2ab二、定理若a >0,b >0,课后作业则ab b a ≥+2证明过程探索:〖1.2〗函数及其表示【1.2.1】函数的概念 (1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a xa xb x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.。

高中数学 3.4 基本不等式导学案 新人教A版必修5

高中数学 3.4 基本不等式导学案 新人教A版必修5

广东省化州市实验中学2014高中数学 3.4 基本不等式导学案 新人教A版必修5【教学目标】1、利用基本不等式求最值.2、利用基本不等式证明不等式.【知识要点】1.基本不等式(1)重要不等式:对于任意实数,a b ,,都有22___2a b ab +,当且仅当__________时,等号成立.(2)均值不等式①形式:_________________;②成立的前提条件:_________________;③等号成立的条件:当且仅当__________时取等号;④对任意两个正实数a 、b ,a +b 2叫做a ,b 的_______________,ab 叫做a ,b 的________________.2.应用基本不等式求最值如果,x y 都是正数,那么(1)若积xy 是定值p ,那么当__________时,和x y +有最__________值.(2)若和x y +是定值S ,那么当_______时,积xy 有最______值.例1、(1)用篱笆围一个面积为1002m 的矩形菜园,问这个矩形的长、宽各是多少时,所用的篱笆最短,最短的篱笆是多少?(2)一段长为36m 的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大的面积是多少?例2、(1)若x >0,求函数y =x +4x 的最小值,并求此时x 的值;(2)设0<x <32,求函数y =4x (3-2x )的最大值;(3)已知x >2,求x +4x -2的最小值;(4)已知x >0,y >0,且1x +9y =1,求x +y 的最小值.【小结】 在利用基本不等式求最值时要注意三点:一是各项为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理发现拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件.即为“一正二定三相等”【变式训练1】 (1) 120,()3x f x x x >=+若求的最小值. (2)120,()3x f x x x <=+若求的最大值.(3)已知0<x <13,求函数y =x (1-3x )的最大值;【变式训练3】(2011·高考北京卷)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x 8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件【课后训练】511.4445x y x x >=+ - 已知,则函数的最小值是()A.-3 B.2 C.5 D.7222112.(1)12;(2)22;(4)11a a x x x x +> +≥≥ +≥+有下列式子:;,其中正确的个数是()A.0B.1C.2D.33.0,0,4,124a b a b ab a b a b >>+= ≥ ≥2 ≤已知则下列各式中正确的不等式是()41111A.1 B.+ D.+4. 若正实数x , y 满足2x +y +6=xy ,则xy 的最小值是________.21(0)x y x x+ => 5.求的值域______________. 6 . (本题满分12分)某渔业公司今年年初用98万元购进一艘渔船用于捕捞,第一年需要各种费用12万元.从第二年起,包括维修费在内每年所需费用比上一年增加4万元.该船每年捕捞总收入50万元.(1)问捕捞几年后总盈利最大,最大是多少?(2)问捕捞几年后的平均利润最大,最大是多少?。

高中数学 3.4基本不等式 精品导学案 新人教A版必修5

高中数学 3.4基本不等式 精品导学案 新人教A版必修5

湖南省邵阳市隆回县第二中学高中数学 3.4基本不等式导学案 新人教A 版必修5【学习目标】1学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 2.通过实例探究抽象基本不等式;3.通过本节的学习,体会数学来源于生活,提高学习数学的兴趣 【自主学习】阅读教材P97—98,找出疑惑之处。

问题1: 对于任意实数 a 、b ,我们有22b a + ab 2,当且仅当 时,等号成立。

你能给出它的证明吗?问题2:对于任意正实数 a 、b ,我们有b a + ab 2,当且仅当 时,等号成立。

(的算术平均数,为正数称b a ba ,2+ . , 的几何平均数为正数b a ab ) 你能给出它不同的证明方法吗?问题3:0x >时,当x 取何值时,1x x+的值最小?最小值是多少?【合作探究】例1、(1)用篱笆围一个面积为1002m 的矩形菜园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少?(2)一段长为36m 的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大。

最大面积是多少?【目标检测】(A 级、全体学生做)1、已知x >0,若xx 81+的值最小,则x 为 2、若实数a 、b 满足,2=+b a 则ba33+的最小值为3、已知直角三角形的面积等于50,两条直角边各为多少时,两条直角边的和 最小,最小是多少?4、用20cm 长的铁丝折成一积个面最大的矩形,应当怎样折?(B 级选做题)当1->x 时,求函数113)(2++-=x x x x f 的值域。

学习反思:本节课我学到了什么?本节课我的学习效率如何?本节课还有哪些没学懂?3.4基本不等式2ba ab +≤(第二课时) 【学习目标】1 、会应用基本不等式求某些函数的最值,能够解决一些简单的实际问题;2 、能综合运用函数关系,不等式知识解决一些实际问题. 【自主学习】任务一:回顾基本不等式ab 2ba +)0,0(>>b a ,当 时等号成立。

高中数学人教A版必修5导学案设计:3.4基本不等式(学生版)

高中数学人教A版必修5导学案设计:3.4基本不等式(学生版)

安阳县二中分校“四步教学法”导学案
A nya ngxian erzhong fenxiao sibujiaoxuefa daoxuean
课题:基本不等式(二)
设计人: 审核人:高二数学组
班级:________ 组名:________姓名:________ 时间:________
一、 自主学习:(8分钟完成)
学习目标:1 会应用基本不等式求某些函数的最值,能够解决一些简单的实际问题;
2 本节课是基本不等式应用举例。

整堂课要围绕如何引导学生分析题意、设未知量、找出 数量关系进行求解这个中心。

3 能综合运用函数关系,不等式知识解决一些实际问题.
重点:正确运用基本不等式解决一些简单的实际问题
难点:注意运用不等式求最大(小)值的条件
自学指导:阅读课本99页—100页内容,解决以下问题:
自学检测:
1如果xy 是定值p ,那么当y x =时,和y x +有最
2如果和y x +是定值s ,那么当y x =时,积有最
3若1->x ,则x =_____时,1
1++x x 有最小值,最小值为_____. 4.若实数a 、b 满足a+b =2,则3a +3b 的最小值是_____.
二、 合作交流:(12分钟完成)
阅读课本99页例一、例二,完成下面的变式训练:
1、用长为4a 的铁丝围成矩形,怎样才能使所围的矩形面积最大?。

2020版数学人教A版必修5学案:第三章 3.4 第1课时 基本不等式 Word版含解析

2020版数学人教A版必修5学案:第三章 3.4 第1课时 基本不等式 Word版含解析

§3.4 基本不等式:ab ≤a +b2第1课时 基本不等式学习目标 1.理解基本不等式的内容及证明.2.能熟练运用基本不等式来比较两个实数的大小.3.能初步运用基本不等式证明简单的不等式.知识点一 算术平均数与几何平均数一般地,对于正数a ,b ,a +b2为a ,b 的算术平均数,ab 为a ,b 的几何平均数.两个正数的算术平均数不小于它们的几何平均数,即ab ≤a +b2. 几何解释 如图,AB 是圆O 的直径,点Q 是AB 上任一点,AQ =a ,BQ =b ,过点Q 作PQ 垂直于AB 且交圆O 于点P ,连接AP ,PB .则PO =AB 2=a +b2.易证Rt △APQ ∽Rt △PBQ ,那么PQ 2=AQ ·QB ,即PQ =ab .知识点二 基本不等式常见推论由公式a 2+b 2≥2ab (a ,b ∈R )和a +b2≥ab (a >0,b >0)可得以下结论:①a b +ba ≥2(a ,b 同号); ②21a +1b≤ab ≤a +b2≤a 2+b 22(a >0,b >0).1.对于任意a ,b ∈R ,a 2+b 2≥2ab .( √ ) 2.n ∈N *时,n +2n ≥2 2.( √ )3.x ≠0时,x +1x≥2.( × )4.a >0,b >0时,1a +1b ≥4a +b.( √ )题型一 常见推论的证明例1 证明不等式a 2+b 2≥2ab (a ,b ∈R ). 证明 ∵a 2+b 2-2ab =(a -b )2≥0, ∴a 2+b 2≥2ab . 引申探究1求证a +b 2≥ab (a >0,b >0).证明 方法一a +b 2-ab =12[(a )2+(b )2-2a ·b ]=12·(a -b )2≥0,当且仅当a =b ,即a =b 时,等号成立. 方法二 由例1知,a 2+b 2≥2ab .∴当a >0,b >0时有(a )2+(b )2≥2a b , 即a +b ≥2ab , a +b2≥ab . 引申探究2证明不等式⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R ). 证明 由例1,得a 2+b 2≥2ab , ∴2(a 2+b 2)≥a 2+b 2+2ab ,两边同除以4,即得⎝⎛⎭⎫a +b 22≤a 2+b 22,当且仅当a =b 时,取等号. 反思感悟 (1)作差法与不等式性质在证明中常用,注意培养应用意识.(2)不等式a 2+b 2≥2ab 和基本不等式ab ≤a +b 2成立的条件是不同的,前者要求a ,b 都是实数,后者要求a ,b 都是正数.跟踪训练1 当a >0,b >0时,求证:21a +1b ≤ab .证明 ∵a >0,b >0, ∴a +b ≥2ab >0, ∴1a +b ≤12ab,∴2ab a +b ≤2ab2ab=ab . 又∵2ab a +b =21a +1b ,∴21a +1b ≤ab (当且仅当a =b 时取等号). 题型二 用基本不等式证明不等式 例2 已知x ,y 都是正数. 求证:(1)y x +xy≥2;(2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3. 证明 (1)∵x ,y 都是正数, ∴x y >0,yx >0, ∴y x +x y≥2 y x ·x y =2,即y x +xy≥2, 当且仅当x =y 时,等号成立. (2)∵x ,y 都是正数, ∴x +y ≥2xy >0,x 2+y 2≥2x 2y 2>0,x 3+y 3≥2x 3y 3>0, ∴(x +y )(x 2+y 2)(x 3+y 3) ≥2xy ·2x 2y 2·2x 3y 3=8x 3y 3, 即(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3, 当且仅当x =y 时,等号成立.反思感悟 利用基本不等式证明不等式的策略与注意事项(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”. (2)注意事项:①多次使用基本不等式时,要注意等号能否成立;②同向不等式相加是不等式证明中的一种常用方法,证明不等式时注意使用;③对不能直接使用基本不等式证明的可重新组合,形成基本不等式模型,再使用.跟踪训练2 已知a ,b ,c 都是正实数,求证:(a +b )(b +c )·(c +a )≥8abc . 证明 ∵a ,b ,c 都是正实数,∴a +b ≥2ab >0,b +c ≥2bc >0,c +a ≥2ca >0, ∴(a +b )(b +c )(c +a )≥2ab ·2bc ·2ca =8abc ,即(a +b )(b +c )(c +a )≥8abc , 当且仅当a =b =c 时,等号成立. 题型三 用基本不等式比较大小例3 某工厂生产某种产品,第一年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x (a ,b ,x 均大于零),则( ) A .x =a +b2B .x ≤a +b2C .x >a +b2D .x ≥a +b2答案 B解析 第二年产量为A +A ·a =A (1+a ),第三年产量为A (1+a )+A (1+a )·b =A (1+a )(1+b ). 若平均增长率为x ,则第三年产量为A (1+x )2. 依题意有A (1+x )2=A (1+a )(1+b ), ∵a >0,b >0,x >0, ∴(1+x )2=(1+a )(1+b )≤⎣⎡⎦⎤(1+a )+(1+b )22,∴1+x ≤2+a +b 2=1+a +b 2,∴x ≤a +b2(当且仅当a =b 时,等号成立).反思感悟 基本不等式a +b2≥ab 一端为和,一端为积,使用基本不等式比较大小要擅于利用这个桥梁化和为积或者化积为和.跟踪训练3 设a >b >1,P =lg a ·lg b ,Q =lg a +lg b 2,R =lg a +b2,则P ,Q ,R 的大小关系是( ) A .R <P <Q B .P <Q <R C .Q <P <R D .P <R <Q答案 B解析 ∵a >b >1,∴lg a >lg b >0, ∴lg a +lg b2>lg a ·lg b ,即Q >P .① 又a +b2>ab >0, ∴lga +b 2>lg ab =12(lg a +lg b ),即R >Q .② 综合①②,有P <Q <R .演绎:条件不等式的证明典例 (1)当x >0,a >0时,证明x +ax ≥2a ;(2)当x >-1时,证明x 2+7x +10x +1≥9.证明 (1)∵x >0,a >0,∴ax >0.由基本不等式可知,x +ax≥2x ·ax=2a . 当且仅当x =a 时,等号成立. (2)x 2+7x +10x +1=(x +1)2+5(x +1)+4x +1=(x +1)+4x +1+5.∵x >-1,∴x +1>0. ∴(x +1)+4x +1≥24=4,∴(x +1)+4x +1+5≥9,即x 2+7x +10x +1≥9.当且仅当x =1时,等号成立.[素养评析] 逻辑推理主要有两类:从特殊到一般,从一般到特殊,演绎就是从一般到特殊的一种推理形式.在本例中,“一般”指基本不等式a +b 2≥ab .当我们对a ,b 赋予特殊值.如令a =x ,b =ax ,就有x +ax≥2a ;①再令①中的x =x +1,a =4,就有x +1+4x +1≥2 4.基本不等式的应用关键就是给a ,b 赋予什么样的值.1.若0<a <b ,则下列不等式一定成立的是( ) A .a >a +b 2>ab >bB .b >ab >a +b2>aC .b >a +b 2>ab >aD .b >a >a +b2>ab答案 C解析 ∵0<a <b ,∴2b >a +b ,∴b >a +b2>ab .∵b >a >0,∴ab >a 2,∴ab >a .故b >a +b2>ab >a .2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.2xx 2+1≤1 D .x +1x≥2答案 C解析 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立;对于C ,x 2+1≥2x ,∴2xx 2+1≤1恒成立.故选C. 3.若四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d 2>bcB.a +d2<bcC.a +d 2=bcD.a +d 2≤bc答案 A解析 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d 2=b +c2>bc .4.lg 9×lg 11与1的大小关系是( ) A .lg 9×lg 11>1 B .lg 9×lg 11=1 C .lg 9×lg 11<1 D .不能确定 答案 C解析 ∵lg 9>0,lg 11>0, ∴lg 9×lg 11<⎝⎛⎭⎫lg 9+lg 1122=⎣⎡⎦⎤lg (9×11)22=⎝⎛⎭⎫lg 9922<⎝⎛⎭⎫lg 10022=1, 即lg 9×lg 11<1.5.设a >0,b >0,给出下列不等式: ①a 2+1>a ;②⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥4; ③(a +b )⎝⎛⎭⎫1a +1b ≥4;④a 2+9>6a . 其中恒成立的是 .(填序号)答案 ①②③解析 由于a 2+1-a =⎝⎛⎭⎫a -122+34>0,故①恒成立; 由于a +1a ≥2,b +1b≥2,∴⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥4,当且仅当a =b =1时,等号成立,故②恒成立; 由于a +b ≥2ab ,1a +1b≥21ab, 故(a +b )⎝⎛⎭⎫1a +1b ≥4,当且仅当a =b 时,等号成立,故③恒成立; 当a =3时,a 2+9=6a ,故④不恒成立. 综上,恒成立的是①②③.1.两个不等式a 2+b 2≥2ab 与a +b 2≥ab 都是带有等号的不等式,对于“当且仅当…时,取等号”这句话的含义要有正确的理解.一方面:当a =b 时,a +b 2=ab ;另一方面:当a +b2=ab 时,也有a =b .2. 在利用基本不等式证明的过程中,常需要把数、式合理地拆成两项或多项或把恒等式变形配凑成适当的数、式,以便于利用基本不等式.一、选择题1.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( ) A .a 2+b 2≥2|ab | B .a 2+b 2=2|ab | C .a 2+b 2≤2|ab | D .a 2+b 2>2|ab |答案 A解析 ∵a 2+b 2-2|ab |=(|a |-|b |)2≥0,∴a 2+b 2≥2|ab |(当且仅当|a |=|b |时,等号成立). 2.若a ,b ∈R 且ab >0,则下列不等式中恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2ab D.b a +a b≥2 答案 D解析 ∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误; 对于B ,C ,当a <0,b <0时,显然错误;对于D ,∵ab >0,∴b a +ab ≥2b a ·ab=2, 当且仅当a =b 时,等号成立.3.已知m =a +1a -2(a >2),n =⎝⎛⎭⎫1222x - (x <0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =n D .m ≤n 答案 A解析 ∵m =(a -2)+1a -2+2≥2(a -2)·1a -2+2=4,n =222x -<22=4,∴m >n ,故选A.4.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( ) A .q =r <p B .p =r <q C .q =r >p D .p =r >q答案 B解析 因为0<a <b ,所以a +b2>ab .又因为f (x )=ln x 在(0,+∞)上单调递增, 所以f ⎝⎛⎭⎫a +b 2>f (ab ),即p <q .而r =12(f (a )+f (b ))=12(ln a +ln b )=12ln(ab )=ln ab , 所以r =p ,故p =r <q ,故选B.5.已知a ,b ∈(0,+∞),则下列不等式中不成立的是( ) A .a +b +1ab≥2 2 B .(a +b )⎝⎛⎭⎫1a +1b ≥4 C.a 2+b 2ab ≥2abD.2ab a +b>ab 答案 D 解析 a +b +1ab ≥2ab +1ab ≥ 22, 当且仅当a =b =22时,等号成立,A 成立; (a +b )⎝⎛⎭⎫1a +1b ≥2ab ·21ab=4, 当且仅当a =b 时,等号成立,B 成立; ∵a 2+b 2≥2ab >0,∴a 2+b 2ab ≥2ab ,当且仅当a =b 时,等号成立,C 成立;∵a +b ≥2ab ,且a ,b ∈(0,+∞), ∴2ab a +b ≤1,2aba +b≤ab , 当且仅当a =b 时,等号成立,D 不成立. 6.下列说法正确的是( )A .若x ≠k π,k ∈Z ,则⎝⎛⎭⎫sin 2x +4sin 2x min =4 B .若a <0,则a +4a≥-4C .若a >0,b >0,则lg a +lg b ≥2lg a ·lg bD .若a <0,b <0,则b a +a b ≥2答案 D解析 对于A ,x ≠k π,k ∈Z ,则sin 2x ∈(0,1].令t =sin 2x ,则y =t +4t ,函数y 在(0,1]上单调递减,所以y ≥5,即sin 2x +4sin 2x ≥5,当sin 2x =1时,等号成立.对于B ,若a <0,则-a >0,-4a >0.∴a +4a =-⎣⎡⎦⎤(-a )+⎝⎛⎭⎫-4a ≤-4, 当且仅当a =4a ,即a =-2时,等号成立.对于C ,若a ∈(0,1),b ∈(0,1), 则lg a <0,lg b <0,不等式不成立. 对于D ,a <0,b <0,则b a >0,ab >0,∴b a +ab≥2b a ·ab=2, 当且仅当b a =ab ,即a =b 时,等号成立.二、填空题7.设正数a ,使a 2+a -2>0成立,若t >0,则12log a t log a t +12.(填“>”“≥”“≤”或“<”) 答案 ≤解析 ∵a 2+a -2>0,∴a >1或a <-2(舍), ∴y =log a x 是增函数, 又t +12≥ t ,∴log a t +12≥log a t =12log a t . 8.设a ,b 为非零实数,给出不等式:①a 2+b 22≥ab ;②a 2+b 22≥⎝⎛⎭⎫a +b 22;③a +b 2≥ab a +b ;④a b +b a ≥2.其中恒成立的不等式是 . 答案 ①②解析 由重要不等式a 2+b 2≥2ab ,可知①正确;a 2+b 22=2(a 2+b 2)4=(a 2+b 2)+(a 2+b 2)4≥a 2+b 2+2ab 4=(a +b )24=⎝⎛⎭⎫a +b 22,可知②正确; 当a =b =-1时,不等式的左边为a +b 2=-1,右边为ab a +b =-12,可知③不正确;当a =1,b =-1时,可知④不正确.9.已知a >b >c ,则(a -b )(b -c )与a -c2的大小关系是 .答案(a -b )(b -c )≤a -c2解析 因为a >b >c ,所以a -b >0,b -c >0,所以a -c 2=(a -b )+(b -c )2≥(a -b )(b -c ),当且仅当a -b =b -c 时,等号成立.10.设a >1,m =log a (a 2+1),n =log a (a +1),p =log a (2a ),则m ,n ,p 的大小关系是 .(用“>”连接) 答案 m >p >n解析 ∵a >1,∴a 2+1>2a >a +1,∴log a (a 2+1)>log a (2a )>log a (a +1),故m >p >n . 三、解答题11.设a ,b ,c 都是正数,求证:bc a +ca b +abc ≥a +b +c .证明 ∵a ,b ,c 都是正数, ∴bc a ,ca b ,abc也都是正数, ∴bc a +ca b ≥2c ,ca b +ab c ≥2a ,bc a +abc ≥2b , 三式相加得2⎝⎛⎭⎫bc a +ca b +ab c ≥2(a +b +c ), 即bc a +ca b +abc≥a +b +c ,当且仅当a =b =c 时,等号成立.12.已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab≥8;(2)⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9. 证明 (1)1a +1b +1ab =1a +1b +a +b ab=2⎝⎛⎭⎫1a +1b , ∵a +b =1,a >0,b >0,∴1a +1b =a +b a +a +b b =2+a b +b a≥2+2=4, ∴1a +1b +1ab ≥8(当且仅当a =b =12时,等号成立). (2)方法一 ∵a >0,b >0,a +b =1,∴1+1a =1+a +b a =2+b a, 同理,1+1b =2+a b, ∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝⎛⎭⎫2+b a ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9,∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9(当且仅当a =b =12时,等号成立). 方法二 ⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab. 由(1)知,1a +1b +1ab≥8, 故⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab ≥9,当且仅当a =b =12时,等号成立.13.设0<a <1<b ,则一定有( )A .log a b +log b a ≥2B .log a b +log b a ≥-2C .log a b +log b a ≤-2D .log a b +log b a >2答案 C解析 ∵0<a <1<b ,∴log a b <0,log b a <0,-log a b >0,-log b a >0,∴(-log a b )+(-log b a )=(-log a b )+⎝⎛⎭⎫-1log a b ≥2,当且仅当ab =1时,等号成立,∴log a b +log b a ≤-2.14.设x ,y 为正实数,且xy -(x +y )=1,则( )A .x +y ≥2(2+1)B .xy ≤2+1C .x +y ≤(2+1)2D .xy ≥2(2+1) 答案 A解析 ∵x ,y 为正实数,且xy -(x +y )=1,xy ≤⎝⎛⎭⎫x +y 22,∴⎝⎛⎭⎫x +y 22-(x +y )-1≥0,解得x +y ≥2(2+1),当且仅当x =y =1+2时取等号.。

人教A版高中数学必修5第三章 不等式3.4 基本不等式导学案(1)

人教A版高中数学必修5第三章 不等式3.4 基本不等式导学案(1)

基本不等式中不等式在各种题型中均有出现,渗透在各类考试试卷中;基本不等式是不等式中高频考点之一,其应用、变形等是考试热点.本节将针对于基本不等式及其常见母题进行解答技巧的讲解与归纳.1.基本不等式ab ≤a +b2基本不等式的使用条件:① 一正:a >0,b >0,即:所求最值的各项必须都是正值;② 二定:ab 或a +b 为定值,即:含变量的各项的和或积必须是常数; ③ 三相等:当且仅当a =b 时取等号;即:等号能否取得.在应用基本不等式求最值时,要把握不等式成立的三个条件,若忽略了某个条件,就会出现错误. 2.由公式a 2+b 2≥2ab 和ab ≤a +b2可以引申出的常用结论(1)b a +a b ≥2(a ,b 同号); (2)b a +a b≤-2(a ,b 异号); (3)21a +1b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0) ⎝ ⎛⎭⎪⎫或ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a >0,b >0).3.利用基本不等式求最大、最小值问题(1)如果x >0,y >0,且xy =P (定值).那么当x =y 时,x +y 有最小值2P .(简记:“积定和最小”) (2)如果x >0,y >0,且x +y =S (定值).那么当x =y 时,xy 有最大值S 24.(简记:“和定积最大”)类型一、直接应用类此类问题较为基础,利用基本不等式求最值时应注意:①非零的各数(或式)均为正;②和或积为定值;③等号能否成立,即“一正、二定、三相等”,这三个条件缺一不可.解答技巧一:直接应用【母题一】若x >0,y >0,且x +y =18,则xy 的最大值是________. 【解析】由于x >0,y >0,则x +y ≥2xy ,所以xy ≤⎝⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时,xy 取到最大值81.【答案】81 【变式】1.已知f (x )=x +1x-2(x <0),则f (x )有 ( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4【解析】∵x <0,∴f (x )=-⎣⎢⎡⎦⎥⎤-x +1-x -2≤-2-2=-4,当且仅当-x =1-x ,即x =-1时取等号.【答案】C2.已知0<x <1,则x (3-3x )取得最大值时x 的值为 ( ) A .13 B .12 C .34D .23【解析】∵0<x <1,∴1-x >0.∴x (3-3x )=3x (1-x )≤3⎝ ⎛⎭⎪⎫x +1-x 22=34.当x =1-x ,即x =12时取等号.【答案】B3.(2014·成都诊断)已知定义在(0,+∞)上的函数f (x )=3x,若f (a +b )=9,则f (ab )的最大值为__________.【解析】∵3a +b=9,∴a +b =2≥2ab ,得ab ≤1,∴f (ab )=3ab≤3.【答案】34.已知a ,b ∈R ,且ab =50,则|a +2b |的最小值是________.【解析】依题意得a ,b 同号,于是有|a +2b |=|a |+|2b |≥2|a |·|2b |=22|ab |=2100=20,当且仅当|a |=|2b |=10时取等号,因此|a +2b |的最小值是20.【答案】20类型二、配凑定值类(恒等变形类)此类问题一般不能直接使用基本不等式,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,凑项,凑系数等.不论条件怎么变形,都需要根据条件:凑和为定值时求积最大、凑积为定值求和最小.解答技巧二:拆项【母题二】已知t >0,则函数y =t 2-4t +1t的最小值为________.【解析】∵t >0,∴y =t 2-4t +1t =t +1t-4≥2-4=-2,且在t =1时取等号.【答案】-2解答技巧三:凑项【母题三】若x >2,则函数y =x +1x -2的最小值为________. 【解析】∵x >2,∴y =(x -2)+1x -2+2≥2+2=4,当且仅当x =3时取等号. 【答案】4 解答技巧四:凑系数【母题四】若0<x <83,则函数y =x (8-3x )的最大值为________.【解析】∵x >2,∴y =13(3x )(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163,当且仅当x =43时取等号. 【答案】163【变式】1.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2【解析】∵x >1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2x -1+3x -1=x -12+2x -1+3x -1=x -1+3x -1+2≥2x -1⎝ ⎛⎭⎪⎫3x -1+2=23+2.当且仅当x -1=3x -1,即x =1+3时,取等号.【答案】A2.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的最大值为________. 【解析】∵x >1,∴x -1>0.又x +1x -1=x -1+1x -1+1≥2+1=3,当且仅当x =2时等号成立.则a ≤3,所以a 的最大值为3.【答案】33.(2014·潍坊一模)已知a >b >0,ab =1,则a 2+b 2a -b的最小值为________.【解析】a 2+b 2a -b =a -b 2+2ab a -b =a -b 2+2a -b =(a -b )+2a -b≥22.当且仅当a -b =2时,取等号.【答案】2 2 4.已知函数f (x )=2xx 2+6. (1)若f (x )>k 的解集为{x |x <-3,或x >-2},求k 的值; (2)对任意x >0,f (x )≤t 恒成立,求t 的取值范围. 【解】(1)f (x )>k ⇔kx 2-2x +6k <0.由已知{x |x <-3,或x >-2}是其解集,得kx 2-2x +6k =0的两根是-3,-2. 由根与系数的关系可知(-2)+(-3)=2k ,即k =-25.(2)因为x >0,f (x )=2x x 2+6=2x +6x≤226=66,当且仅当x =6时取等号. 由已知f (x )≤t 对任意x >0恒成立,故t ≥66,即t 的取值范围是⎣⎢⎡⎭⎪⎫66,+∞.类型三、条件最值类利用基本不等式求最值的方法及注意点(1)知和求积的最值:求解此类问题的关键:明确“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:明确“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.技巧五:换衣(“1”)(或整体代换)【母题五】已知a >0,b >0,a +b =1,则1a +1b 的最小值为________.【解析】∵a >0,b >0,a +b =1,∴1a +1b =a +b a+a +b b =2+b a +ab≥2+2b a ·ab=4, 即1a +1b 的最小值为4,当且仅当a =b =12时等号成立. 【答案】4 【变式】1.本例的条件不变,则⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b 的最小值为________.【解析】⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b =⎝⎛⎭⎪⎫1+a +b a ⎝⎛⎭⎪⎫1+a +b b =⎝⎛⎭⎪⎫2+b a ·⎝⎛⎭⎪⎫2+a b =5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9.当且仅当a =b =12时,取等号. 【答案】92.本例的条件和结论互换即:已知a >0,b >0,1a +1b=4,则a +b 的最小值为________.【解析】由1a +1b =4,得14a +14b =1.∴a +b =⎝ ⎛⎭⎪⎫14a +14b (a +b )=12+b 4a +a 4b ≥12+2b 4a +a4b=1.当且仅当a =b =12时取等号.【答案】13.若本例条件变为:已知a >0,b >0,a +2b =3,则2a +1b的最小值为________.【解析】由a +2b =3得13a +23b =1,∴2a +1b =⎝ ⎛⎭⎪⎫13a +23b ⎝ ⎛⎭⎪⎫2a +1b =43+a 3b +4b 3a ≥43+2a 3b ·4b 3a =83.当且仅当a =2b =32时,取等号.【答案】834.本例的条件变为:已知a >0,b >0,c >0,且a +b +c =1,则1a +1b +1c的最小值为________.【解析】∵a >0,b >0,c >0,且a +b +c =1,∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +ca+a b +c b +a c +b c =3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9.当且仅当a =b =c =13时,取等号. 【答案】95.若本例变为:已知各项为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n ,使得a m ·a n =22a 1,则1m +4n的最小值为________.【解析】设公比为q (q >0),由a 7=a 6+2a 5⇒a 5q 2=a 5q +2a 5⇒q 2-q -2=0(q >0)⇒q =2.a m ·a n =22a 1⇒a 12m -1·a 12n -1=8a 21⇒2m -1·2n -1=8⇒m +n -2=3⇒m +n =5,则1m +4n =15⎝ ⎛⎭⎪⎫1m +4n (m +n )=15⎣⎢⎡⎦⎥⎤5+⎝ ⎛⎭⎪⎫n m +4m n ≥15(5+24)=95,当且仅当n =2m =103时等号成立.【答案】956.(2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A .245B .285C .5D .6【解析】∵x >0,y >0,由x +3y =5xy 得15⎝ ⎛⎭⎪⎫1y +3x =1.∴3x +4y =15(3x +4y )⎝ ⎛⎭⎪⎫1y +3x =15⎝ ⎛⎭⎪⎫3xy +4+9+12y x =135+15⎝ ⎛⎭⎪⎫3x y +12y x ≥135+15×23x y ·12yx=5(当且仅当x =2y 时取等号).【答案】C7.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值是( )A .2B .4C .6D .8【解析】(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y≥1+a +2a ,∴当1+a +2a ≥9时不等式恒成立,故a +1≥3,a ≥4.【答案】B技巧六:构造一元二次不等式在运用该方式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a 2+b 22;a +b2≥ab (a ,b >0)逆用就是ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.思考方式还能以保留“和(a +b )”还是“积(ab )”来确定公式的运用方向.【变式】1.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3 B .4 C .92D .112【解析】依题意,得2xy =-(x +2y )+8≤⎝ ⎛⎭⎪⎫x +2y 22,当且仅当⎩⎪⎨⎪⎧x =2y ,x +2y +2xy =8,即⎩⎪⎨⎪⎧x =2,y =1时等号成立.∴(x +2y )2+4(x +2y )-32≥0,解得x +2y ≥4或x +2y ≤-8(舍去),∴x +2y 的最小值是4.【答案】B2.若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是( ) A .23B .223C .33D .233【解析】对于x 2+3xy -1=0可得y =13(1x -x ),∴x +y =2x 3+13x ≥229=223(当且仅当2x 3=13x,即x =22时等号成立). 【答案】B3.若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是________. 【解析】x 2+y 2+xy =1⇔(x +y )2-xy =1⇔(x +y )2-1=xy ≤(x +y2)2,解得-233≤x +y ≤233. 【答案】233类型四、基本不等式的应用1.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与仓库到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________公里处.【解析】设x 为仓库与车站距离,由已知y 1=20x,y 2=0.8x .费用之和y =y 1+y 2=0.8x +20x≥20.8x ·20x =8,当且仅当0.8x =20x,即x =5时等号成立.【答案】52.创新题规定记号“⊙”表示一种运算,即a ⊙b =ab +a +b (a ,b 为正实数).若1⊙k =3,则k 的值为________,此时函数f (x )=k ⊙xx的最小值为________.【解析】1⊙k =k +1+k =3,即k +k -2=0,∴k =1或k =-2(舍),∴k =1.f (x )=k ⊙x x =x +x +1x =1+x +1x ≥1+2=3,当且仅当x =1x,即x =1时等号成立.【答案】1;33.设OA →=(1,-2),OB →=(a ,-1),OC →=(-b ,0)(a >0,b >0,O 为坐标原点),若A ,B ,C 三点共线,则2a +1b的最小值是( )A .4B .92C .8D .9【解析】∵AB →=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).若A ,B ,C 三点共线,则有AB →∥AC →, ∴(a -1)×2-1×(-b -1)=0,∴2a +b =1,又a >0,b >0,∴2a +1b =⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=5+2b a +2ab≥5+22b a ×2a b=9,当且仅当⎩⎪⎨⎪⎧2b a =2a b ,2a +b =1,即a =b =13时等号成立.【答案】D4.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z取得最大值时,2x +1y -2z的最大值为( )A .0B .1C .94D .3【解析】由已知得z =x 2-3xy +4y 2(*),则xy z =xy x 2-3xy +4y 2=1x y +4yx-3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2,所以2x +1y -2z =1y +1y -1y2=-⎝ ⎛⎭⎪⎫1y -12+1≤1.【答案】B5.已知x >0,y >0,x +y +3=xy ,且不等式(x +y )2-a (x +y )+1≥0恒成立,则实数a 的取值范围是________.【解析】要使(x +y )2-a (x +y )+1≥0恒成立,则有(x +y )2+1≥a (x +y ),即a ≤(x +y )+1x +y恒成立.由x +y +3=xy ,得x +y +3=xy ≤⎝ ⎛⎭⎪⎫x +y 22,即(x +y )2-4(x +y )-12≥0,解得x +y ≥6或x +y ≤-2(舍去).设t =x +y ,则t ≥6,(x +y )+1x +y =t +1t .设f (t )=t +1t,则在t ≥6时,f (t )单调递增,所以f (t )=t +1t 的最小值为6+16=376,所以a ≤376,即实数a 的取值范围是⎝⎛⎦⎥⎤-∞,376. 【答案】⎝⎛⎦⎥⎤-∞,376【总结】对使用基本不等式时等号取不到的情况,可考虑使用对勾函数y =x +mx(m >0)的单调性.1.小王从甲地到乙地的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( ) A .a <v <abB .v =abC .ab <v <a +b2D .v =a +b2【解析】设甲、乙两地之间的距离为s .∵a <b ,∴v =2s s a +s b=2sab a +b s =2ab a +b <2ab2ab=ab .又v -a =2ab a +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a . 【答案】A2.函数y =x 4+3x 2+3x 2+1的最小值是( )A .2 3B .2C .3D .5【解析】y =x 4+3x 2+3x 2+1=(x 2+1)2+(x 2+1)+1x 2+1=(x 2+1)+1 x 2+1+1≥2+1=3,当且仅当(x 2+1)=1x 2+1,即x =0时,取等号. 【答案】C3.(2011·湖南)设x ,y ∈R ,且xy ≠0,则⎝ ⎛⎭⎪⎫x 2+1y 2·⎝ ⎛⎭⎪⎫1x2+4y 2的最小值为________.【解析】⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时,等号成立. 【答案】94.(2014·贵阳适应性监测)已知向量m =(2,1),n =(1-b ,a )(a >0,b >0).若m ∥n ,则ab 的最大值为__________.【解析】依题意得2a =1-b ,即2a +b =1(a >0,b >0),因此1=2a +b ≥22ab ,即ab ≤18,当且仅当2a =b =12时取等号,因此ab 的最大值是18.【答案】185.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值.【解】(1)由2x +8y -xy =0,得8x +2y=1,又x >0,y >0,则1=8x +2y≥28x ·2y=8xy,得xy ≥64,当且仅当x =16,y =4时,等号成立. ∴xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x≥10+22x y ·8yx=18.当且仅当x =12且y =6时等号成立, ∴x +y 的最小值为18.1.(2012·福建)下列不等式一定成立的是 ( )A .lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R ) D .1x 2+1>1(x ∈R ) 【解析】当x >0时,x 2+14≥2·x ·12=x ,所以lg ⎝⎛⎭⎪⎫x 2+14≥lg x (x >0),故选项A 不正确;而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确;当x =0时,有1x 2+1=1,故选项D 不正确. 【答案】C2.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A .72 B .4 C .92D .5【解析】依题意,得1a +4b =12⎝ ⎛⎭⎪⎫1a +4b ·(a +b )=12[5+(b a +4a b )]≥12(5+2b a ·4a b )=92,当且仅当⎩⎪⎨⎪⎧a +b =2,b a =4a b,即a =23,b =43时取等号,即1a +4b 的最小值是92.【答案】C3.若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是 ( )A .43 B .53 C .2D .54【解析】由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2.【答案】C4.已知a >b >0,则a 2+16ba -b的最小值是________. 【解析】∵a >b >0,∴b (a -b )≤⎝ ⎛⎭⎪⎫b +a -b 22=a 24,当且仅当a =2b 时等号成立.∴a 2+16b a -b ≥a 2+16a 24=a 2+64a2≥2a 2·64a 2=16,当且仅当a =22时等号成立.∴当a =22,b =2时,a 2+16b a -b取得最小值16.【答案】165.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?【解】(1)由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80 000x-200≥212x ·80 000x-200=200, 当且仅当12x =80 000x,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为 200元. (2)不获利.设该单位每月获利为S 元,则S =100x -y =100x -⎝ ⎛⎭⎪⎫12x 2-200x +80 000=-12x 2+300x -80 000=-12(x -300)2-35 000,因为x ∈[400,600],所以S ∈[-80 000,-40 000].故该单位每月不获利,需要国家每月至少补贴40 000元才能不亏损.1.函数y =x 2+7x +10x +1(x >-1)的最小值是( )A .9B .2 3C .10D .2【解析】∵x >-1,∴x +1>0.∴y =x 2+7x +10x +1=(x +1)2+5(x +1)+4x +1=(x +1)+4x +1+5≥2x +1⎝ ⎛⎭⎪⎫4x +1+5=9.当且仅当x +1=4x +1,即x =1时,取等号.【答案】A2.(2015·金华十校模拟)已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b,则m +n 的最小值是( )A .3B .4C .5D .6【解析】由题意知:ab =1,∴m =b +1a =2b ,n =a +1b=2a ,∴m +n =2(a +b )≥4ab =4.【答案】B3.(2015·西安模拟)设x ,y ∈R ,a >1,b >1,若a x =b y=3,a +b =23,则1x +1y的最大值为( )A .2B .32 C .1D .12【解析】由a x =b y=3,得x =log a 3,y =log b 3,则1x +1y =1log a 3+1log b 3=lg a +lg b lg 3=lg ab lg 3.又a >1,b >1,所以ab ≤(a +b 2)2=3,所以lg ab ≤lg 3,从而1x +1y ≤lg 3lg 3=1,当且仅当a =b =3时等号成立.【答案】C4.已知x >0,y >0,且2x +y =1,则1x +2y的最小值是_____________.【解析】∵1x +2y=(2x +y )⎝ ⎛⎭⎪⎫1x +2y =4+y x +4x y≥4+2y x ·4x y =8,当且仅当y =12,x =14时,等号成立. 【答案】C5.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y的最小值.【解】(1)∵x >0,y >0,由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝ ⎛⎭⎪⎫7+25yx ·2x y =7+21020, 当且仅当5y x =2xy时,等号成立.由⎩⎪⎨⎪⎧2x +5y =20,5y x=2xy,解得⎩⎪⎨⎪⎧x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020.1.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3 B .4 C .92D .112【解析】依题意,得(x +1)(2y +1)=9,∴(x +1)+(2y +1)≥2x +12y +1=6,即x +2y ≥4.当且仅当⎩⎪⎨⎪⎧x +1=2y +1,x +2y +2xy =8,即⎩⎪⎨⎪⎧x =2,y =1时等号成立. ∴x +2y 的最小值是4.【答案】B2.若a ,b 均为大于1的正数,且ab =100,则lg a ·lg b 的最大值是( ) A .0 B .1 C .2D .52【解析】∵a >1,b >1,∴lg a >0,lg b >0.lg a ·lg b ≤lg a +lg b24=lg ab 24=1.当且仅当a =b =10时取等号.【答案】B3.已知不等式x +2x +1<0的解集为{x |a <x <b },点A (a ,b )在直线mx +ny +1=0上,其中mn >0,则2m+1n的最小值为( ) A .4 2 B .8 C .9D .12【解析】易知不等式x +2x +1<0的解集为(-2,-1),所以a =-2,b =-1,2m +n =1,2m +1n =(2m +n )(2m+1n )=5+2m n +2n m ≥5+4=9(当且仅当m =n =13时取等号),所以2m +1n的最小值为9. 【答案】C4.(2014·成都诊断)函数f (x )=lgx2-x,若f (a )+f (b )=0,则3a +1b的最小值为_________.【解析】依题意得0<a <2,0<b <2,且lg ⎝ ⎛⎭⎪⎫a 2-a ·b 2-b =0,即ab =(2-a )(2-b ),a +b 2=1,3a +1b =a +b 2⎝ ⎛⎭⎪⎫3a +1b =12⎝ ⎛⎭⎪⎫4+3b a +a b ≥12(4+23)=2+3,当且仅当3b a =ab ,即a =3-3,b =3-1时取等号,因此3a +1b的最小值是2+3.【答案】2+ 35.(2014·泰安期末考试)小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x )万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)【解】(1)设大货车到第x 年年底的运输累计收入与总支出的差为y 万元,则y =25x -[6x +x (x -1)]-50(0<x ≤10,x ∈N ), 即y =-x 2+20x -50(0<x ≤10,x ∈N ),由-x 2+20x -50>0,解得10-52<x <10+52.而2<10-52<3,故从第3年开始运输累计收入超过总支出.(2)因为利润=累计收入+销售收入-总支出,所以销售二手货车后,小王的年平均利润为y =1x [y +(25-x )]=1x (-x 2+19x -25)=19-⎝⎛⎭⎪⎫x +25x ,而19-⎝⎛⎭⎪⎫x +25x ≤19-2x ·25x=9,当且仅当x =5时等号成立,即小王应当在第5年将大货车出售,才能使年平均利润最大.1.若a ,b ∈R 且ab >0,则下列不等式中,恒成立的是( ) A .a +b ≥2abB .1a +1b>2abC .b a +ab≥2D .a 2+b 2>2ab【解析】∵ab >0,∴b a >0,a b >0.由基本不等式得b a +a b ≥2,当且仅当b a =a b,即a =b 时等号成立. 【答案】C2. 函数y =log a (x +3)-1 (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n的最小值为( )A .2B .4C .8D .16【解析】点A (-2,-1),所以2m +n =1.所以1m +2n=(2m +n )⎝ ⎛⎭⎪⎫1m +2n =4+n m +4m n≥8,当且仅当n =2m ,即m =14,n =12时等号成立.【答案】C3.若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值为________.【解析】由x 2+y 2+xy =1,得(x +y )2-xy =1,即xy =(x +y )2-1≤(x +y )24,所以34(x +y )2≤1,故-233≤x +y ≤233,当x =y 时等号成立,所以x +y 的最大值为233. 【答案】2334.已知x >0,y >0,且满足x 3+y4=1,则xy 的最大值为________.【解析】∵x >0,y >0且1=x 3+y 4≥2xy12,∴xy ≤3,当且仅当x 3=y4时取等号.【答案】35.(2014·重庆卷)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是__________.【解析】由log 4(3a +4b )=log 2ab ,得3a +4b =ab ,且a >0,b >0,∴4a +3b =1,∴a +b =(a +b )·(4a+3b)=7+(3ab+4ba)≥7+23ab·4ba=7+43,当且仅当3ab=4ba时取等号.【答案】7+4 3。

最新人教A版必修5高中数学 3.4 基本不等式教案3(精品)

最新人教A版必修5高中数学 3.4 基本不等式教案3(精品)

《基本不等式》一、内容与内容解析本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中3.4节《基本不等式》的第一课时,主要内容是探索基本不等式的生成和证明过程及其简单的应用.本节内容具有变通性、应用性的特点,它与线性规划呈并列结构,可用来求某些函数的值域和最值,也可解决实际生活中的最优化配置问题.本节内容由两部分构成,其一是利用“一正、二定、三相等”的七字条件求函数最值并用来解决实际问题,其二是对基本(重要)不等式的探究过程,并在探究过程中学会研究某些数学问题的过程与方法.作为本节内容的第一课时,重点在后者.特别是,本节课内容是体现新课程让学生积极动手实践、自主探索、合作交流学习方式的良好素材.本节课蕴含了丰富的数学思想及方法,尤其是在两个不等式的发现和对基本不等式的几何解释的学习过程中突出体现了数形结合思想,在基本不等式与重要不等式的关系及其应用中都突显换元的方法.在对教材深入挖掘的基础上,本节内容中含有多个德育教育点.教材引入赵爽的弦图,是体现数学文化价值、对学生进行以爱国主义为核心的民族精神教育的好机会.在探究不等式的过程中,不等式中等号成立的条件是体会量变与质变的辩证关系的较好素材.利用对教材例1的反思,可使学生树立科学的节能减排意识、环保意识.通过教师创设的问题情境,还可使学生树立现代社会的诚信观.本节课教学重点:1.学生在经历基本(重要)不等式的生成及证明过程中初步学会“实验(几何)——猜想(代数)——证明——结论(定理、概念)——应用”的探索数学问题的方法.2.会运用基本(重要)不等式解决简单的比较大小和求某些函数最值的简单问题.二、目标和目标解析(一)教学目标(1)通过拼图、折纸的几何实验,经历基本(重要)不等式的发现过程,初步学会在类似的问题情境下,尝试运用 “实验——猜想——证明——结论(定理、概念)——应用”的方法探究数学问题.(2)了解基本(重要)不等式证明过程,能在证明过程中分析不等式成立的条件.(3)会运用基本(重要)不等式比较大小.(4)知道基本不等式成立的条件,并会求()0,0>>+=b a xb ax y 类型的函数在0>x 时的最小值,初步认识 “=”成立的作用.(5)通过对基本不等式的探究及几何解释的理解,体会数形结合思想的作用.(6)在认识赵爽弦图的过程中,了解中国数学文化,增强民族自豪感. 在探究不等式的过程中,体会量变与质变的辩证关系.通过教师对基本不等式例题的设置,帮助学生树立现代社会诚信意识及科学的节能减排理念.(二)教学目标解析(1)新课标中对经历知识的发生过程提出了较高的要求,强调使用 “经历”、“感受”、“探索”等体现目标要求的行为动词,学生要体验数学的发现与创造的过程.本节课是学生经历“学数学、做数学、用数学”的一次机会,因此将经历基本(重要)不等式的发现过程作为重要的教学目标之一,在此过程中学会数学地思考问题的方法,培养学生良好的学习态度和习惯.(2)教学中设置两条主线,一是知识与技能的主线,采用层层递进的呈现方式,使学生学会初步运用基本(重要)不等式解决简单问题的方法.二是感受过程与方法的主线,即学生经历“了解研究方法——感受研究方法——自主研究”的过程.(3)基本(重要)不等式的证明过程有很多种方法,如比较法、综合法、分析法等,在此处证明过程只要求学生能用已有知识证出即可,不作过多的说明和证明方法罗列.以往经验告诉我们,学生在解题中易忽视基本不等式成立的条件,因此设计了在证明的过程中学生自己发现成立条件的教学目标.(4)基本(重要)不等式的主要应用是求函数的最值或值域,由于本课时是本节的第一课时,主要还是以学生掌握不等式内容和探究过程为主,只要会比较大小和会求()0,0>>+=b a xb ax y 型的函数在0>x 时的最小值即可,为第二课时求最值的“一正二定三相等”的一般方法作准备.(5)通过对基本不等式的几何解释的理解,养成用数形相结合思想分析数学问题的习惯,提高学生提出、分析和解决问题的能力.(6)教材用赵爽的弦图作为本节课的导入,借此可增强学生的民族自豪感,通过了解中国数学文化,培养学生爱祖国、爱科学的精神.通过图形探究重要不等式时,必然要经历不等到相等的过渡,而此过程正能体现马克思主义哲学原理中量变与质变的辩证关系.基本不等式在实际生活中应用较广泛,通过设置学生感兴趣的动画情境,对学生进行明理诚信教育,通过设置生活化的问题情境,使学生树立科学生态价值观.(三)学习结果分析通过本节课的学习,学生认知系统中增加两个恒成立的不等式,并将其作为求某些特定函数最值的重要方法.学生在通过基本不等式的探究和几何解释过程中,体会到数形结合的作用.学生初步学会动手做些简单的数学实验并尝总结、应用结论.在学习的过程中,学生受到了民族精神的熏陶和明理诚信的道德教育,并树立了科学的节能减排的意识.三、教学问题诊断分析(一)问题诊断分析(1)个别同学在动手实验时会存在不知所措或不会从几何图形中提炼出代数形式的不等关系,其原因是学生重解题轻过程的现状使此方面能力较弱,教学中以小组合作探究式的学习方式来弥补这一不足.(2)在基本不等式几何解释的教学环节中,学生可能会把几何解释作为一种“负担”被动地接受,因为用几何变化的现象解释变量变化的结果学生是非常陌生的,所以教学中通过帮助学生构造直角三角形并引导学生在其中寻找“平均数”的几何表示,为学生“排忧解难”,培养学生数与形相结合思考问题的习惯.(3)在两个不等式的证明过程中学生会出现困难,因为在3.1节不等式性质只是要求学生了解比较法证明简单不等式,学生也没有接触综合法、分析法证明,虽然教材运用了分析法,教学中没有必要刻意追求此方法,而是要根椐学生实际,采用学生想到的证明方法,让学生知道证明的必要性和可行性,在探究的基础上体会证明的思路即可.(4)基本不等式的应用向来是难点,首先解题中的换元法给学生带来了一定的障碍,其次使用条件易忽视.为此教学中采用小步子的引导渗透的方法,简化题目难度,为后面学习作为铺垫.教学难点:1.运用“实验(几何)——猜想(代数)——证明——结论(定理、概念)——应用”解决数学问题的方法的形成过程.2. 基本(重要)不等式证明过程及应用.(二)学习新知所需条件分析(1)学生具有动手操作数学的意识和基本的观察能力和提取数据的能力.(2)学生具有初步用数形结合思想独立分析问题的能力.(3)学生具有利用比较法证明不等式和函数最小值概念的知识基础.四、教法分析及教学支持条件本节课以数学实验为抓手,以问题为载体,为学生提供动手做、动眼看、动脑想和动口说的机会,引导学生积极思考、合作探究,体现“重过程、重情感、重生活”的理念.教学中在动手折纸的基础上辅以几何画板的动态演示,通过学生动手实践、动脑思考等方法探究数学知识获取直接经验,进而培养学生学会数学地思考问题的能力,增进应用意识和问题意识.利用学生感兴趣的数学文化知识和生活中的问题,实现情感、态度、价值观目标.五、教学过程(一)感知问题,指明研究方法1.观察直角三角形,提出问题1. 问题1:在直角三角形的边的关系中有哪些不等关系,你能提炼出怎样的不等式?师生活动:学生利用直角三角形的性质总结不等式:a b a >+22、22b a b a +>+等,并感受取值范围的重要性、b a .学生体验由几何图形中的不等关系容易得出一些恒成立的不等式,并感受数形结合的作用及事物间普遍联系的观点.2.点明本节课要通过几何图形中的不等关系探索出一些重要的、有用的恒成立的不等式.b北京国际数学家大会的会标,学生将数学文化融入内心世界,内化成学习动力.【设计意图】作为本节课第一个实验,其目的在于使学生经历数学实验的过程,增强学好数学的信心.同时通过了解中国数学文化,增强学生的民族自豪感和爱国主义精神,增强学生对国家发展的信心.通过对”会标”的了解,感受中国人的智慧和华夏民族热情好客的优良传统.【课件开发】利用PPT 逐个出示图片,学生通过图片直观感受,增强以爱国主义为核心的民族精神.赵爽弦图问题3:如果我们仍利用赵爽的弦图,你能发现其中的不等关系吗?从几何图形中的不等关系可提炼出怎样的代数形式的不等式呢?在同学们摆出的图形中有没有二者相等的情况?什么样的三角形会使不等关系变为相等?师生活动:学生通过观察图形,容易找到不等式,也容易得出二者相等的条件.教师借助几何画板进行动态演示,验证不等关系.通过由不等向相等过渡,使学生感受由量变到质变的变化过程.从而指明“=”成立的条件,解释“当且仅当”的含义,并总结出一般情况.【设计意图】学生体会如何从实验中发现问题,如何从特殊到一般地猜想问题.感受到由“形”到“数”的逐步提炼的过程,感受由量变到质变的数学问题中的辩证关系.【课件开发】根椐学生的回答,配合幻灯片展示(如图2).拖动利用几何画板中的控制点(如图3),使b 、a 的长度不断变化,通过观察b 、a 的值和图形中的不等关系,以及不等到相等的过渡,体会当且仅当的含义,感受当量变积累到一定程度必然会质变的道理. 图1问题9:从基本不等式的内容上看,只说明了算术平均数大于等于几何平均数,何时大的多一些,何时少一些呢?为解释这一问题可利用基本不等式的几何解释,在学习的过程中体会以(动态的)形助(变化的)数方法对理解代数式的作用.师生活动:教师总结两个不等式的研究过程,即经历了“实验(几何图形)——猜想(代数式)——证明——结论——应用”的过程,强调这是研究自然科学的一般方法,指明学会知识的同时还要学会方法.组织小组讨论,鼓励学生将动手操作与计算相结合,探索新结论.并提出课后学生自己探究、证明其它情况.图10辨别真伪灰太狼用不等臂天平为喜羊羊称重,第一次称得物体重量为,第二次称得物体重量为,灰太狼说此物体重量为,你能帮助喜羊羊揭穿灰太狼吗?1G 2G 221G G +1l 1l 2l 2l问题15:本节课主要学习了什么?在本节课学习的过程中,你有何体会?能否求函数的最小值的最大值和212)210()21(22+++=<<-=x x y x x x y ?师生活动:先由学生总结学习的内容,教师作补充说明,尤其指出本节课所经历的知识探究过程和数形结合的思想,强调数学文化及用不等式解决生活问题时给我们带来的启示,提出思考问题为下节课作准备.【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识及方法纳入已有的认知结构,提升情感、态度、价值观目标.通过两个思考问题为下节课的学习埋下伏笔.《基本不等式》教学反思依据课程标准,在充分挖掘教材知识、方法与德育内容的基础上,我执教了人教A版必修五第三章第四节基本不等式中的第一课时.课堂上通过为学生创设探究情境、生活情境,组织学生展开讨论,引导学生亲身感受,呈现了一节以“学生动手实验,自主探究新知”为主线的探究课.反思准备过程和课堂实施过程的点滴,在数学教学中的德育渗透和开展动手实验的活动等方面,我有了一些新的思考.一、在新课标理念的指引下深入挖掘教材是上好一堂课的前提《高中数学新课程标准》(以下简称《课标》)指出,教师应倡导“自主、合作、探究”的学习方式.为此我们应鼓励学生积极参与教学活动,要创设适当的问题情境,鼓励学生发现数学规律和问题解决的途径,使他们经历知识形成的过程.对于本节教材中简短的篇幅很难直接找到为学生搭设探究平台的素材,这就需要我们有对教材加工的能力,有组织“探究式”课堂的经验.教学中本着这一理念,我开展了三次以学生为中心的数学实验活动,做到从教师引导到教师参与最后完全放手,为学生经历过程、学会方法搭设好平台,实现了学生从感知方法到经历研究过程最后能独立解决问题的目标.这些活动的设计源自教材中的赵爽的弦图,对其进行适当的加工.另外在教材处理上,我将两个平均数的定义提前介绍,改变了教材的顺序,为学生创设了探究基本不等式探究过程的情境.我体会到充分挖掘教材的优势和潜能,大胆创新教法,灵活使用教材,能努力实现“教与学”的和谐统一.《课标》中指出,教学要体现数学文化价值.我抓住教材中赵爽的弦图,有意识地开展以爱国主义为核心的民族精神教育,弘扬中国的数学文化,赞扬华夏民族热情好客的优良传统.我认为对数学文化价值的体现可以落实在日常教学中,我们只要留心与所学知识相关的数学家故事、数学研究过程中的一些可贵的精神,并与学生共享,一定能提升学生科学的态度和良好的学习品质,定能将民族精神渗透到日常的教学中.《课标》中指出,教学要发展学生的数学应用意识.本节课我立足于教材中例1,利用题后反思的形式,使学生亲身感受数学的作用,对学生形成和发展数学应用意识起到一定促进作用.课标教材各部分都十分重视生活化的例题,我们要利用好这一优势,对每个题目认真推敲,教学中既能体现所学新知的应用,又要体现数学与人类社会的关系,要善于以例题的生活背景为素材,对学生进行德育教育.二、数学课堂会因潜移默化的德育内容而更加精彩课堂教学是将社会主义核心价值体系融入教育的主渠道,因此知识教学和德育教育二者不能偏执其一,我们既要挖掘德育教育的“点”,还要把握德育教育的“量”和“度”,追求学科教学中知识学习和德育教育的融合.本节课我结合教学内容设计了多个自然的学科德育点,德育目标的落实不是单靠老师平铺直叙的说教,而是融入到知识的生长点处,融入到学生对知识的内化的过程之中.比如通过学生动手操作、观察、猜想、证明等活动培养学生观察问题、分析问题、解决问题的科学探究能力,通过开展组间合作学习,培养学生合作交流的意识,通过学生利用所学知识帮助别人辨别真伪的情境,感受社会诚信的重要性,进而对学生进行精神文明教育,通过对教材例1的题后反思,使学生树立科学的节能减排意识,通过基本(重要)不等式的探究过程,感悟量变与质变的辩证关系的马克思主义原理.纵观整堂课,我认为德育点还是比较多的,但教学中并没有占用过多的时间,是将其完全渗透在知识教学之中,切实找到德育内容与知识教学的结合点.从教学效果上看,德育内容的充实使数学课堂更“厚实”,更符合新课改的理念.从德育效果上看,学生自己“悟”出来的道理要远远好于“说教”的效果.三、对学生合理适度的评价是实现良好教学效果的催化剂《课标》指出,教学中应将评价贯穿数学学习的全过程,要重视对学生数学学习过程的评价.反思本节课在此方面的做法,有一些不足之处.课堂上我采用了小组合作学习的方式,组织了几次讨论,但我只是从个体角度给予评价,轻视了小组的评价,我只关注学习成果评价而轻视了合作意识、合作方法的评价.课堂上我听到的大多是正确的答案,对数学能力较弱的学生没有及时给予关注.今后在此方面,我还要加强理论的学习和实践的探索.总之,上完本节课收获颇丰,我不但认识了寓德育于学科教学之中的重要性,还探索出一些教学方法,提升了课堂教学中落实教学育人功能的能力.。

高中数学 3.4基本不等式(1)导学案新人教A版必修5

高中数学 3.4基本不等式(1)导学案新人教A版必修5

§3.42a b+≤ (1)学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”复习1:重要不等式:对于任意实数,a b ,有22____2a b ab +,当且仅当________时,等号成立.复习2:基本不等式:设,(0,)a b ∈+∞,则2a b +____时,不等式取等号.二、新课导学※ 学习探究探究12a b +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客. 你能在这个图案中找出一些相等关系或不等关系吗?将图中的“风车”抽象成如图,结论:一般的,如果,R a b ∈,我们有222a b ab +≥-当且仅当a b =时,等号成立. 探究2:你能给出它的证明吗?探究:课本第98页的“探究”在右图中,AB 是圆的直径,点C 是AB 上的一点,AC=a ,BC=b. 过点C 作垂直于AB 的弦DE ,连接AD 、BD. 2a b +的几何解释吗?结论2a b +≤几何意义是“半径不小于半弦”※ 典型例题例1 (1)用篱笆围成一个面积为100m 2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短. 最短的篱笆是多少?(2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?.※动手试试练1. 0x>时,当x取什么值时,1xx+的值最小?最小值是多少?练2. 已知直角三角形的面积等于50,两条直角边各为多少时,两条直角边的各最小,最小值是多少?三、总结提升※学习小结在利用基本不等式求函数的最值时,应具备三个条件:一正二定三取等号.两个正数,x y1.如果和x y +为定值S 时,则当x y =时,积xy 有最大值214S .2. 如果积xy 为定值P 时,则当x y =时,和x y +有最小值1. 已知x >0,若x +81x的值最小,则x 为( ). A . 81 B . 9 C . 3 D .162. 若01a <<,01b <<且a b ≠,则a b +、2ab 、22a b +中最大的一个是( ).A .a b +B ..2ab D .22a b +3. 若实数a ,b ,满足2a b +=,则33a b +的最小值是( ).A .18B .6C .D .4. 已知x ≠0,当x =_____时,x 2+281x的值最小,最小值是________. 5. 做一个体积为323m ,高为2m 的长方体纸盒,底面的长为_______,宽为________时,用纸最少.1. (1)把36写成两个正数的积,当这两个正数取什么值时,它们的和最小?(2)把18写成两个正数的和,当这两个正数取什么值时,它们的积最大?2. 一段长为30m 的篱笆围成一个一边靠墙的矩形菜园,墙长18m ,问这个矩形的长、宽各为多少时,菜园的面积最大?最大面积是多少?。

高二人教A版必修5系列教案:3.4基本不等式1

高二人教A版必修5系列教案:3.4基本不等式1

第一课时 3.4基本不等式 2a b ab +≤(一) 教学要求:通推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 教学重点:应用数形结合的思想理解不等式并从不同角度探索不等式2a b ab +≤的证明过程;教学难点:理解“当且仅当a=b 时取等号”的数学内涵教学过程:一、复习准备:1. 回顾:二元一次不等式(组)与简单的线形规划问题。

2. 提问:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。

你能在这个图案中找出一些相等关系或不等关系吗?二、讲授新课:1. 教学:基本不等式 2a b ab +≤①探究:图形中的不等关系,将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。

设直角三角形的两条直角边长为a,b 那么正方形的边长为22a b +。

这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。

由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。

当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。

(教师提问→学生思考→师生总结)②思考:证明一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a③基本不等式:如果a>0,b>0,我们用分别代替a 、b ,可得2a b ab +≥,通常我们把上式写作:(a>0,b>0)2a b ab +≤ ④从不等式的性质推导基本不等式2a b ab +≤: 用分析法证明:要证 2a b ab +≥(1), 只要证 a+b ≥ (2), 要证(2),只要证 a+b- ≥0(3)要证(3), 只要证( - )2(4), 显然,(4)是成立的。

人教A版数学必修五 3.4《基本不等式》 (1) 导学案

人教A版数学必修五 3.4《基本不等式》 (1) 导学案

高中数学必修5 3.4《基本不等式: (1) 》导学案姓名: 班级: 组别: 组名:【学习目标】1﹑知道基本不等式及其变形形式;2﹑能运用基本不等式解决有关问题.【重点难点】▲ 重点;基本不等式的灵活应用▲ 难点:基本不等式的灵活应用【知识链接】由不等式的性质可知,对任意2)(,,b a R b a -∈______0,因此22b a +______ab 2,则“=”什么时候成立呢?【学习过程】阅读课本第97页至第98页的内容,尝试回答以下问题:知识点一: 基本不等式:2b a ab +≤的推导 问题1、如果0,0>>b a ,我们用b a ,代替知识链接ab b a 222≥+中的b a ,,我们可以得到什么式子呢?(注意“=”成立的条件哟)问题3、设b a ,为正数,记A 为b a ,的等差中项,G 为b a ,的正的等比中项,你能比较A 与G 的大小吗?问题4、你能证明下列不等式吗?(1)2≥+ba ab (b a ,同号);(2)2)2(222b a b a ab +≤+≤; (3)2211222b a b a ab ba +≤+≤≤+(+∈Rb a ,).知识点2: 基本不等式:2b a ab +≤的应用 例1、(1)若36=+y x ,且0,0>>y x ,求xy 的最大值.(2)若81=xy ,且0,0>>y x ,求y x +的最小值.练习:依据上面两个类型来完成下列各题:(1)求函数21-+=x x y )2(>x 的最小值. (2)设1,0,022=+≥≥b a b a ,求21b a +的最大值例2、某单位建造一间背面靠墙的小房,地面面积为212m ,房屋正面每平方米造价为1200元,房面侧面每平方米造价为800元,屋顶的造价为5800元,如果墙高为3m ,且不计背面和地面费用,问怎样设计房屋能使总造价最低,最低总造价是多少?提示:根据题意,先列出函数解析式,再探求解的最佳方案.【基础达标】A1、,0>x 当x 取什么值时,x x 1+的值最小?最小值是多少?A2、已知310<<x ,求函数)31(x x y -=的最大值.B3、(1)设0,0>>y x ,则)41)((yx y x ++的最小值是多少? (2)已知0,0>>y x ,满足12=+y x 时,求y x 12+的最小值.C4、求xx y 22sin 94sin +=的最小值.D5、某种汽车购车费用是10万元,每年使用的保险费、养路费、汽油费约为9.0万元,年维修费第一年是2.0万元,以后每年递增2.0万元,问这种汽车使用多少年时,它的平均费用最少?【小结】【当堂检测】A1、设0,0>>b a ,若3是ba 33与的等比中项,则ba 11+的最小值为( ) A 、8 B 、4 C 、1 D 、41【课后反思】本节课我最大的收获是 我还存在的疑惑是 我对导学案的建议是。

人教A版数学必修五《基本不等式》复习课导学案

人教A版数学必修五《基本不等式》复习课导学案

高中数学必修5《基本不等式》复习课导学案 姓名: 班级: 组别: 组名: 【学习目标】 1、能够熟练运用基本不等式解决不等式的证明和最值问题. 2、培养学生的观察能力、分析问题能力的转化意识. 【重点难点】 重点:基本不等式的理解与运用.难点:应用基本不等式解决实际问题时条件的把握. 【学习过程】知识归纳1.基本不等式:对任意∈b a , ,有ab b a ≥+2成立,当仅且当b a =时取等号. ⑴),0(,+∞∈y x ,且P xy =(定值),那么当y x =时,y x +有最 值P 2.⑵),0(,+∞∈y x ,且S y x =+(定值),那么当y x =时,xy 有最 值42S . 2.基本不等式的常见变式及有关结论:⑴),(2122222+∈+≥≥+≥+R b a ba ab b a b a ⑵),(222R b a ab b a ∈≥+; ),(222R b a b a ab ∈+≤ 22b a + ),(2)(2R b a b a ∈+; ab ),()2(2R b a b a ∈+ ⑶当0>a 时,≥+a a 1 ; 当0<a 时,≤+a a1 . 基础自测 1.已知0≠ab ,R b a ∈,,则下列式子总能成立的是 ( )A .2≥+b a a b B .2-≥+b a a b C .2-≤+b a a b D .2||≥+ba ab 2.已知两正数a ,b 满足1=+b a ,b a 21+ 的最小值为 .3.已知)2(21>-+=a a a m ,)0()21(22<=-x n x ,则m ,n 之间的大小关系为 .例2 已知两正数b a ,满足1=+b a⑴求1212+++b a 的最大值. ⑵求)1)(1(bb a a ++的最小值.小结:知识点二:利用基本不等式证明不等式例3 已知R c b a ∈,,,求证:222222444a c c b b a c b a ++≥++.小结:【课堂小结】【当堂检测】 在区间]2,21[上),()(2R c b c bx x x f ∈++=与x x x x g 1)(2++=在同一点取得相同的最小值,求)(x f 在]2,21[上的最大值 .【课后反思】本节课我最大的收获是 我还存在的疑惑是 我对导学案的建议是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4.1 基本不等式
【学习目标】
1.能够叙述发现基本不等式的过程;会用多种方法证明基本不等式;
2.能够举例说明基本不等式在解决简单的最值、不等式证明、比较大小、求取值范围等问题方面的应用;
3.通过运用基本不等式解决实际应用性问题,提高应用数学手段解决实际问题的能力与意识.
【重点难点】
基本不等式的证明与应用.
【学习过程】
一、自主学习:
如图3-4-1-1是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客.你能在这个图案中找出一些相等关系或不等关系吗?
二、合作探究归纳展示
(一).命题的探究
图3.4-1-1观察图3-4-1-1思考:
(1)上图中有几个直角三角形?它们全等吗?图中有几个正方形?
大小如何?
(2)假设直角三角形直角边分别为a、b则外正方形边长=__________;4个直角三角形面积之和=__________;外正方形面积=__________;四个直角三角形面积之和与外正方形面积大小关系如何?用不等式表示为:_______ ___;(教材P97)
(3)假设直角三角形变为等腰直角三角形即直角边a=b时,图形内部小正方形变成什么?此时外正方形边长=__________;4个直角三角形面积之和=__________;外正方形面积=__________;四个直角三角形面积之和与外正方形面积大小关系如何?用等式表示为:__________;
(4)综上,四个直角三角形面积之和与外大正方形面积的大小关系如何?用一个不等式表示:__________
(5)如果 a >0且 b >0 用 a 和b 代替不等式中的a 、b 上不等式可变形为 _____ _____; (*)
我们称b a b a ,2
为+的算术平均数,称b a ab ,为的几何平均数,因而,此不等式又可叙述为:______________________________.
对于不等式(*)我们是几何图形的面积关系得出的,我们再从图3.4-1-2 观察它的几
何意义。

●观察思考
图3.4-1-2是以长为a +b 的线段为直径作圆,在直径AB 上取点C ,使AC=a ,CB=b 过点
C 作垂直于直径AB 的弦D
D ′.
思考:
1.圆的半径r=__________;
2. 连接AD 、BD ,则△ABD 是直角三角形吗?△ACD 与
△BCD 相似吗?
用a 、b 表示半弦CD=_________;
3. 圆的半径r 与半玹CD 大小关系如何?什么时候才能
相等?
用一个不等式表示:_________;
4.用一句话描述半径与半玹的不等关系:______________________________。

5.如果把2
b a +看作是正数a 、b 的等差中项,ab 看作是正数a 、b 的等比中项,那么该定理可以叙述为:______________________________。

●归纳概括
由上面的探究,一般的,当a >0且b >0时有不等式:_________________,我们把这
个不等式叫做基本不等式(又叫均值不等式).(教材p98公式(*))
(二).命题的证明
证法一:x ,y ∈R ,(x -y)0, 当且仅当________时,等号成立. 令 x=, y=, 所以 xy _____________
,当且仅当________时,等号成立.
[评析] 证明一是从一个已知成立的不等式x ,y ∈R ,(x -y)0出发推导出要证的2
≥xy y x ≥+⇒22
2a b 22
2y x +≥⇒2

不等式,这种证明的方法叫做“综合法”。

你能从哪个已知成立的不等式出发来证明这个不等式?
三、讨论交流点拨提升
想一想:与ab b a ≥+2
适用的范围,a,b 有什么不同?______________ 练一练:
★1.正数a=1,b=9则a 、b 的算术平均数__________;几何平均数_________;大小如何? ★2.正数a=6,b=6则a 、b 的算术平均数_________;几何平均数_________;大小如何? ★3.正数a=1,b=9则a 、b 的等差中项__________;等比中项_________;大小如何? ★4.正数a=4,b=4则a 、b 的等差中项__________;_________;大小如何?
★5.试根据均值不等式写出下列变形形式,并注明所需条件.
(1)22b a + ( ) (2)2
a b + ( ) (3)b a a b +
( ) (4)ab ≤ ( ) (5)1x x + ( )(x<0) (6)1x x
+ ( )(x>0) 基本不等式的拓展
2
0,0112a b a b a b +>>≤≤≤+当时,
命题的应用
★例1.(直接利用基本不等式) 教材P99例1,例2
四、学能展示课堂闯关
(1),x y 都是正数,求证:y
x x y +≥2
(2),,6b c c a a b a b c a b c
+++++≥设都是正数,求证:
222a b ab +≥
(3) 222
,,,a b c R ab bc ca ∈≥++求证:a +b +c
五、学后反思
1.本节课推导并证明均值不等式的方法是什么?
2.运用均值不等式的条件有哪些?均值不等式有哪些变形?
3.本节均值不等式解决了哪些问题?需要注意什么?
【课后作业】
习题3.4 1 2 3 4。

相关文档
最新文档