圆的易错题汇编
圆的易错题汇编及答案
形纸帽的表面 1 2 60 12 720 (cm2 ) .
2
13
13
故选: C .
【点睛】 本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点 的半径,构造定理图,得出垂直关系.也考查了圆锥的计算.
5.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为 O, 三角尺的直角顶点 C 落在直尺的 10cm 处,铁片与直尺的唯一公共点 A 落在直尺的 14cm 处,铁片与三角尺的唯一公共点为 B,下列说法错误的是( )
圆的易错题汇编及答案
一、选择题
1.如图,以 Rt△ABC 的直角边 AB 为直径作⊙O 交 BC 于点 D,连接 AD,若∠DAC=30°, DC=1,则⊙O 的半径为( )
A.2
B. 3
C.2﹣ 3
D.1
【答案】B 【解析】
【分析】 先由圆周角定理知∠BDA=∠ADC=90°,结合∠DAC=30°,DC=1 得 AC=2DC=2,∠C=60°,再
∴由圆周角定理得:∠BAD= 1 ∠DOB=20°, 2
故选:A. 【点睛】 本题考查了圆和三角形的问题,掌握三角形内角和定理、等边对等角、圆周角定理是解题 的关键.
11.如图,在⊙O 中,OC⊥AB,∠ADC=26°,则∠COB 的度数是( )
A.52°
B.64°
C.48°
D.42°
【答案】A
【解析】
∴∠C=90°﹣48°=42°,
故选:B.
【点睛】
考查了切线的性质,圆周角定理,三角形内角和定理,解此题的关键是求出∠AOC 的度
数,题目比较好,难度适中.
15.如图, ABC 是 O 的内接三角形,且 AB AC , ABC 56, O 的直径 CD 交 AB 于点 E ,则 AED的度数为( )
初中数学圆的易错题汇编含答案解析
初中数学圆的易错题汇编含答案解析一、选择题1.如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过的图形面积为()A.32πB.83πC.6πD.以上答案都不对【答案】D【解析】【分析】从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.【详解】阴影面积=() 603616103603π⨯-=π.故选D.【点睛】本题的关键是理解出,线段AB扫过的图形面积为一个环形.2.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°【答案】D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.3.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则⊙O的半径为()A.3B.23C.32D.23【答案】A【解析】连接OC,∵OA=OC,∠A=30°,∴∠OCA=∠A=30°,∴∠COB=∠A+∠ACO=60°,∵PC是⊙O切线,∴∠PCO=90°,∠P=30°,∵PC=3,∴OC=PC•tan30°3故选A4.如图,已知AB是⊙O是直径,弦CD⊥AB,AC2,BD=1,则sin∠ABD的值是()A .22B .13C .223D .3【答案】C【解析】【分析】 先根据垂径定理,可得BC 的长,再利用直径对应圆周角为90°得到△ABC 是直角三角形,利用勾股定理求得AB 的长,得到sin ∠ABC 的大小,最终得到sin ∠ABD【详解】解:∵弦CD ⊥AB ,AB 过O ,∴AB 平分CD ,∴BC =BD ,∴∠ABC =∠ABD ,∵BD =1,∴BC =1,∵AB 为⊙O 的直径,∴∠ACB =90°,由勾股定理得:AB =()22222213AC BC +=+=, ∴sin ∠ABD =sin ∠ABC =223AC AB = 故选:C .【点睛】本题考查了垂径定理、直径对应圆周角为90°、勾股定理和三角函数,解题关键是找出图形中的直角三角形,然后按照三角函数的定义求解5.如图,点I 为△ABC 的内心,AB=4,AC=3,BC=2,将∠ACB 平移使其顶点与I 重合,则图中阴影部分的周长为( )A .4.5B .4C .3D .2【答案】B【解析】【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB 的长.【详解】连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选B.【点睛】本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.6.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作»PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交»PQ于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN,则∠AOB=20°C.MN∥CD D.MN=3CD【答案】D【解析】【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【详解】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=13∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=12∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.7.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则图中阴影部分的面积是()A .224π--B .224π-+ C .142π+ D .142π- 【答案】B【解析】【分析】先根据正方形的边长,求得CB 1=OB 1=AC-AB 1=2-1,进而得到211(21)2OB C S =-V ,再根据S △AB1C1=12,以及扇形的面积公式即可得出图中阴影部分的面积. 【详解】连结DC 1,∵∠CAC 1=∠DCA =∠COB 1=∠DOC 1=45°,∴∠AC 1B 1=45°,∵∠ADC =90°,∴A ,D ,C 1在一条直线上,∵四边形ABCD 是正方形,∴AC 2OCB 1=45°,∴CB 1=OB 1∵AB 1=1,∴CB 1=OB 1=AC ﹣AB 12﹣1,∴211111(21)22OB C S OB CB ∆=⋅⋅=, ∵1111111111222AB C S AB B C =⋅=⨯⨯=V , 2245(2)11(21)22224ππ⨯⨯--=-+ 故选B .【点睛】本题考查了旋转的性质,正方形性质、勾股定理以及扇形面积的计算等知识点的综合应用,主要考查学生运用性质进行计算的能力.解题时注意:旋转前、后的图形全等.8.如图,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )A.532π-B.532π+C.23π-D.432π-【答案】A【解析】【分析】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,利用∠A的正切值求出∠A=30°,继而可求得OH、AH长,根据圆周角定理可求得∠BOC =60°,然后根据S阴影=S△ABC-S△AOD-S扇形BOD进行计算即可.【详解】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,tan∠A=3323BCAB==,∴∠A=30°,∴OH=12OA=32,AH=AO•cos∠A=33322⨯=,∠BOC=2∠A=60°,∴AD=2AH=3,∴S阴影=S△ABC-S△AOD-S扇形BOD=()26031132323222360π⨯⨯⨯-⨯⨯-=532π-,故选A.【点睛】本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.9.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A.B.C.D.【答案】B【解析】【分析】根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案.【详解】∵直径所对的圆周角等于直角,∴从直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B.故选B.【点睛】本题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.10.如图,7×5的网格中的小正方形的边长都为1,小正方形的顶点叫格点,△ABC的三个顶点都在格点上,过点C作△ABC外接圆的切线,则该切线经过的格点个数是()A.1 B.2 C.3 D.4【答案】C【解析】【分析】作△ABC的外接圆,作出过点C的切线,两条图象法即可解决问题.【详解】如图⊙O即为所求,观察图象可知,过点C 作△ABC 外接圆的切线,则该切线经过的格点个数是3个,选:C .【点睛】考查三角形的外接圆与外心,切线的判定和性质等知识,解题的关键是理解题意.11.如图,O e 中,若66OA BC AOB ⊥∠=o 、,则ADC ∠的度数为( )A .33°B .56°C .57°D .66°【答案】A【解析】【分析】 根据垂径定理可得»»ACAB =,根据圆周角定理即可得答案. 【详解】∵OA ⊥BC ,∴»»ACAB =, ∵∠AOB=66°,∠AOB 和∠ADC 分别是»AB和»AC 所对的圆心角和圆周角, ∴∠ADC=12∠AOB=33°, 故选:A .【点睛】 本题考查垂径定理及圆周角定理,垂直于弦的直径平分弦,并且平分这条弦所对的两条弧;在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;熟练掌握相关定理是解题关键.12.如图,在矩形ABCD 中,6AB =,对角线10AC =,O e 内切于ABC ∆,则图中阴影部分的面积是( )A .24π-B .242π-C .243π-D .244π-【答案】D【解析】【分析】 先根据勾股定理求出BC ,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设O e 的半径为r ,利用面积法求出r=2,再利用三角形ABC 的面积减去圆O 的面积得到阴影的面积.【详解】∵四边形ABCD 是矩形,∴∠B=90°,∵6AB =,10AC =,∴BC=8,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设O e 的半径为r ,∵O e 内切于ABC ∆,∴OH=OE=OF=r , ∵11()22ABC S AB BC AB AC BC r =⋅=++⋅V , ∴1168(6108)22r ⨯⨯=++⋅, 解得r=2,∴O e 的半径为2,∴2168-2224-4ABC O S S S ππ=-=⨯⨯⨯=V e 阴影, 故选:D .【点睛】此题考查矩形的性质,勾股定理,三角形内切圆的定义,阴影面积的求法,添加合适的辅助线是解题的关键.13.如图,以正方形ABCD 的AB 边为直径作半圆O ,过点C 作直线切半圆于点E ,交AD 边于点F ,则FE EC=( )A .12B .13C .14D .38【答案】C【解析】【分析】连接OE 、OF 、OC ,利用切线长定理和切线的性质求出∠OCF =∠FOE ,证明△EOF ∽△ECO ,利用相似三角形的性质即可解答.【详解】解:连接OE 、OF 、OC .∵AD 、CF 、CB 都与⊙O 相切,∴CE =CB ;OE ⊥CF ; FO 平分∠AFC ,CO 平分∠BCF .∵AF ∥BC ,∴∠AFC+∠BCF =180°,∴∠OFC+∠OCF =90°,∵∠OFC+∠FOE =90°,∴∠OCF =∠FOE , ∴△EOF ∽△ECO ,∴=OE EF EC OE,即OE 2=EF•EC . 设正方形边长为a ,则OE =12a ,CE =a . ∴EF =14a . ∴EF EC =14. 故选:C .【点睛】本题考查切线的性质、切线长定理、相似三角形的判定与性质,其中通过作辅助线构造相似三角形是解答本题的关键..14.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x =的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.15.如图,点A 、B 、C 、D 、E 、F 等分⊙O ,分别以点B 、D 、F 为圆心,AF 的长为半径画弧,形成美丽的“三叶轮”图案.已知⊙O 的半径为1,那么“三叶轮”图案的面积为( )A .π33B .π33C 33π+ D 33π-【答案】B【解析】【分析】连接OA 、OB 、AB ,作OH ⊥AB 于H ,根据正多边形的中心角的求法求出∠AOB ,根据扇形面积公式计算.【详解】连接OA 、OB 、AB ,作OH ⊥AB 于H ,∵点A 、B 、C 、D 、E 、F 是⊙O 的等分点,∴∠AOB=60°,又OA=OB ,∴△AOB 是等边三角形,∴AB=OB=1,∠ABO=60°,∴OH=2211()2-=3, ∴“三叶轮”图案的面积=(2601360π⨯⨯-12×1×32)×6=π-332, 故选B .【点睛】本题考查的是正多边形和圆、扇形面积的计算,掌握正多边形的中心角的求法、扇形面积公式是解题的关键.16.如图,已知圆O 的半径为10,AB ⊥CD ,垂足为P ,且AB =CD =16,则OP 的长为( )A .6B .6C .8D .8【答案】B【解析】【分析】 作OM ⊥AB 于M ,ON ⊥CD 于N ,连接OP ,OB ,OD ,首先利用勾股定理求得OM 的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OP的长.【详解】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,∵AB=CD=16,∴BM=DN=8,∴OM=ON==6,∵AB⊥CD,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=.故选B.【点睛】本题考查的是垂径定理,正方形的判定与性质及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=86°,则∠BCD的度数是()A.86°B.94°C.107°D.137°【答案】D【解析】【分析】【详解】解:∵∠BOD=86°,∴∠BAD=86°÷2=43°,∵∠BAD+∠BCD=180°,∴∠BCD=180°-43°=137°,即∠BCD的度数是137°.故选D.【点睛】本题考查圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).18.如图,四边形ABCD内接于⊙O,F是¶CD上一点,且¶¶=,连接CF并延长交DF BCAD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°【答案】B【解析】【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【详解】∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵»»=,∠BAC=25°,DF BC∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【点睛】本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.19.如图,在扇形AOB中,∠AOB=90°,OA=4,以OB为直径作半圆,圆心为点C,过点C 作OA的平行线分别交两弧点D、E,则阴影部分的面积为()A .53π﹣3 B .533C .3π D 353π 【答案】A【解析】【分析】 连接OE.可得S 阴影=S 扇形BOE-S 扇形BCD-S △OCE.根据已知条件易求得BC=OC=CD=2,BO=OE=4.∠BOE=60o ,CE=23所以由扇形面积公式、 三角形面积公式进行解答即可.【详解】解:连接OE ,可得S 阴影=S 扇形BOE-S 扇形BCD-S △OCE ,由已知条件可得,BC=OC=CD=2,又,BO=OE=4,∴∠BOE=o 60,可得CE=23S 扇形BOE=2604360π⋅⋅8=3π, S 扇形BCD 2902==360ππ⋅⋅, S △OCE=1=223=232⨯⨯ ∴S 阴影=S 扇形BOE-S 扇形BCD-S △OCE=8--233ππ=533π 故选A.【点睛】本题主要考查扇形面积公式、 三角形面积公式,牢记公式并灵活运用可求得答案.20.如图,在Rt ABC △中,90ACB ∠=︒,30A ∠=︒,2BC =.将ABC V 绕点C 按顺时针方向旋转n 度后得到EDC △,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )A.302,B.602,C.3602,D.603,【答案】C【解析】试题分析:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot∠33AB=2BC=4,∵△EDC是△ABC旋转而成,∴BC=CD=BD=12AB=2,∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD=12AB=2,∴DF是△ABC的中位线,∴DF=12BC=12×2=1,CF=12AC=1233∴S阴影=12DF×CF=1233故选C.考点:1.旋转的性质2.含30度角的直角三角形.。
初中数学圆的易错题汇编及答案
【答案】D
【解析】
【分析】
先根据扇形的面积公式计算出扇形的圆心角,再利用周长公式计算出底面圆的周长,得出半径.再构建直角三角形,解直角三角形即可.
【详解】
72π=解得n=180源自,∴扇形的弧长= =12πcm.
围成一个圆锥后如图所示:
因为扇形弧长=圆锥底面周长
15.如图,3个正方形在⊙O直径的同侧,顶点B、C、G、H都在⊙O的直径上,正方形ABCD的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上、顶点F在QG上,正方形PCGQ的顶点P也在⊙O上.若BC=1,GH=2,则CG的长为()
A. B. C. D.
【答案】B
【解析】
【分析】
【详解】
【详解】
解:连接CE,
∵E点在以CD为直径的圆上,
∴∠CED=90°,
∴∠AEC=180°-∠CED=90°,
∴E点也在以AC为直径的圆上,
设以AC为直径的圆的圆心为O,若BE最短,则OB最短,
∵AC=8,
∴OC= AC=4,
∵BC=3,∠ACB=90°,
∴OB= =5,
∵OE=OC=4,
∴BE=OB-OE=5-4=1.
【详解】
∵AB是⊙O的直径,
∴∠BDA=∠ADC=90°,
∵∠DAC=30°,DC=1,
∴AC=2DC=2,∠C=60°,
则在Rt△ABC中,AB=ACtanC=2 ,
∴⊙O的半径为 ,
故选:B.
【点睛】
本题主要考查圆周角定理,解题的关键是掌握半圆(或直径)所对的圆周角是直角和三角函数的应用.
8.如图,用半径为 ,面积 的扇形无重叠地围成一个圆锥,则这个圆锥的高为()
六年级数学上册《圆》易错常考题汇总
六年级数学上册《圆》易错常考题汇总易错题1对直径的认识不全面判断:两端都在圆上的线段就是直径。
( )错解:√正解:×易错提示:错解错在忽略了直径必须通过圆心这一重要条件直径是通过圆心并且两端都在圆上的线段。
易错题2对圆的对称性认识不清判断:在同一平面内,任意两个圆都关于一条直线成轴对称。
错解:√正解:×易错提示:两个圆关于一条直线成轴对称,这两个圆必须完全相同。
在同一平面内的任意两个圆的半径并不一定相等,所以这两个圆不一定关于一条直线成轴对称。
易错题3混淆半圆的周长和圆周长的一半求下图的周长。
错解:3.14x4.8+2 = 7.536(cm)正解: 3.14x4.8+2 + 4.8 = 12.336 (cm)易错提示:错解错在计算半圆的周长时, 漏加圆的一条直径。
半圆的周长等于圆的周长的一半加上一条直径。
易错题4没有正确理解圆的面积计算公式的推导过程判断:把圆拼成近似的长方形后, 圆的面积和长方形的面积相等, 圆的周长和长方形的周长相等( )错解:√正解:×易错提示:把圆拼成近似的长方形后,圆的面积和长方形面积相等。
但长方形的周长比圆的周长多了2条半径的长度。
易错常考应用题1.求阴影部分的面积。
扇形的半径是:10÷2=5(厘米)10×10﹣3.14×5×5100﹣78.5=21.5(平方厘米)2.一只挂钟分针的针尖在1/4小时内,正好走了25.12厘米。
它的分针长多少?C=25.12×4×12=1205.76(厘米)R=1205.76÷6.28=192(厘米).3.一辆自行车的车轮半径是40厘米,车轮每分钟转100圈,要通过2512米的桥,大约需要几分钟?100×2πR=200×3.14×40=25120(厘米)=251.2(米)2512÷(3.14×80)=2512÷251.2=10(分钟)4.一根钢管的横截面是环形。
五年级圆的易错题
五年级圆的易错题
圆是一种常见的几何图形,在五年级的数学学习中,圆的周长、面积、圆心角等知识点是重点。
然而,有些学生可能会犯错误,以下是一些五年级圆的易错题:
1. 圆的周长等于多少?
圆的周长是直径之和,即 $2pi r$。
其中,$r$ 是圆的半径。
因此,如果圆的直径是 $2$ 米,半径是 $1$ 米,那么圆的周长是
$2timespitimes1=2pi$ 米。
2. 圆的面积等于多少?
圆的面积是半径平方乘以 $2pi$。
因此,如果圆的半径是 $1$ 米,那么圆的面积是 $1times2pi=2pi$ 平方米。
3. 圆心角的度数等于多少?
圆心角的度数等于角度数除以 $2pi$。
因此,如果一个圆心角的度数是 $30$ 度,那么它在圆上的度数是 $30div2pi=30$ 度。
4. 如何判断一个圆是椭圆形还是圆形?
一个圆如果是椭圆形,那么它的长轴和短轴的比值等于 $a/b$,
其中 $a$ 和 $b$ 分别是圆的直径和半径。
如果 $a/b<1$,则这个圆是椭圆形;如果 $a/b>1$,则这个圆是圆形。
这些是圆在五年级的一些易错题,学生需要多加练习,熟悉知识点,避免犯错。
此外,也可以借助一些辅助工具,如尺子、圆规等,加深对圆的概念和特征的理解。
初中数学圆的易错题汇编含答案
【分析】
如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.
【详解】
解:如图作OH⊥AB于H.
∵C、D分别是弦AP、BP的中点.
∴CD是△APB的中位线,
∴AB=2CD= ,
∵OH⊥AB,
∴BH=AH= ,
∵OA=OB,∠AOB=120°,
∴∠AOH=∠BOH=60°,
∴∠C=∠ABC=30°
∴∠D=30°
∵BD是直径
∴∠BAD=90°
∴BD=2AB=8.
故选C.
2.如图,已知AB是⊙O是直径,弦CD⊥AB,AC=2 ,BD=1,则sin∠ABD的值是()
A.2 B. C. D.3
【答案】C
【解析】
【分析】
先根据垂径定理,可得BC的长,再利用直径对应圆周角为90°得到△ABC是直角三角形,利用勾股定理求得AB的长,得到sin∠ABC的大小,最终得到sin∠ABD
A.πB. πC.2πD. π
【答案】A
【解析】
【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.
【详解】连接OA、OB,
∵正方形ABCD内接于⊙O,
∴AB=BC=DC=AD,
∴ ,
∴∠AOB= ×360°=90°,
在Rt△AOB中,由勾股定理得:2AO2=(2 )2,
12.如图,圆锥的底面半径为1,母线长为3,则侧面积为( )
A.2πB.3πC.6πD.8π
【答案】B
【解析】
【分析】
圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.
【详解】
解:圆锥的侧面积为: ×2π×1×3=3π,
《圆》常考易错练习题
【常考易错题训练】一、判断题1、所有圆的半径都相等,直径也都相等。
()2、半径是2 厘米的圆,它的周长和面积相等。
()3、周长都相等的圆、正方形和长方形,圆的面积最大。
()4、面积都相等的圆、正方形和长方形,圆的周长最长。
()5、大圆的圆周率与小圆的圆周率相等。
()6、如果两个圆的周长相等,那么这两个圆的半径和直径也一定相等。
()7、Π=3.14.()二、填空题1、一个半圆的半径是4dm,直径是(),周长是(),面积是()。
2、一个圆形缸盖,半径为0.5m,它的面积为()dm²。
3、用一张边长是6cm 的正方形纸,剪一个面积最大的圆。
这个圆的面积是()。
4、一个正方形铁丝方框的边长是7.85cm,工人师傅把它拉成圆形,这个圆形的面积是()。
5、画圆时,圆规两脚间的距离就是圆的()。
画一个周长是15.7cm 的圆,圆规两脚间的距离应是()cm。
6、一个圆的半径扩大到原来的5 倍,它的直径就扩大到原来的()倍,周长就扩大到原来的()倍,面积就扩大到原来的()倍。
7、一个圆的周长、直径、半径的和是18.56cm,这个圆的半径是(),周长是(),面积是()。
8、一个圆形花坛的直径是5 米,花坛边上每隔1.57 米放一盆花,一共需要放()盆。
9、把一个直径是10cm 的圆分割成若干等份,拼成一个近似的长方形,这个长方形的周长是()cm,面积是()cm³。
10、用大齿轮带动小齿轮,大齿轮的半径是12cm,小齿轮的半径是4cm,大齿轮转动一周,小齿轮要转动()周。
11、圆的半径由4dm 增加到6dm,圆的面积增加了()。
12、时钟分针的顶端转动一周形成的图形是()。
13、圆的周长是半径的()倍。
14、把一个圆分成若干等份,剪开拼成一个近似的长方形。
这个长方形的长相当于(),长方形的宽就是圆的(),若这个圆的半径为3cm,那么长方形的长为(),宽为()。
15、圆规两脚分开4厘米画出的圆的直径是()厘米,面积是()平方分米。
六年级圆易错题
六年级圆易错题第一单元(圆)(易错题型)知识点一:认识圆1、圆是()图形,()所在的直线是圆的对称轴,它有()条对称轴。
2、车轮的车轴装在()上,这样车轮滚动时平稳。
3、圆周率表示同一圆内()和()的倍数关系,保留两位小数后的近似值是()4、如果圆的半径扩大3倍,那么直径扩大()倍,周长扩大()倍,面积扩大()倍。
5、小圆的半径是6厘米,大圆的半径是9厘米。
小圆直径和大圆直径的比是(),小圆周长和大圆周长的比是()。
6、圆的半径和直径的比是(),圆的周长和直径的比是()。
知识点二:圆的周长与面积1、一辆自行车的车轮半径是30cm,车轮转动一周前进()m2、某钟表的分针长8cm,从2时到3时,分针针尖走过了()cm;从2时到3时分针扫过的面积是()cm2.3、如下图,将一个由布绳编制的圆形垫子沿线剪开,得到一个近似的三角形,三角形的底相当于圆的(),三角形的高相当于圆的()4、把一个圆平均分成若干份,可以拼成一个近似于长方形。
长方形的长相当于圆的(),宽相当于圆的()。
5、把一个圆沿着它的半径平均分成若干份,然后把它拼成一个近似的长方形,这个长方形的周长比圆的周长增加了6cm,这个圆的周长是()cm,面积是()cm26、把一个圆沿着它的半径平均分成若干份,然后把它拼成一个近似的长方形,这个长方形的宽是5厘米,这个圆的周长是()厘米,面积是()平方厘米。
7、XXX用篱爸围一个直径10米的半圆形菜地,需要围()米长的篱爸,这个菜地的面积是()平方米。
8、一个半圆形的花坛周长是30.84米,这个半圆形花坛的面积是()知识点三:易错的判断题1、直径的长度是半径的2倍()2、半圆的周长就是圆周长的一半()3、圆的周长是直径的倍。
()4、一个圆的周长是它半径的2π倍。
()5、一切的直径都相称,一切的半径都相称。
()6、圆的半径增加3cm,它的直径也增加3cm。
()7、两个圆的半径之比是1:2,面积之比也是1:2.()8、圆的周长越长,圆的面积就越大。
小学五年级数学《圆》易错题
《圆》易错题集锦一、填空1、在一个长8厘米、宽4厘米的长方形纸片上剪下一个最大的半圆,半圆的周长是()厘米。
2、如果一个圆的半径由2厘米增加到4厘米,周长要增加()厘米。
3、两圆半径的比为4:5,则直径的比为():(),周长比为():(),面积比为():()。
4、李平想在一个长5厘米、宽6厘米的长方形中画一个最大的圆,这个圆的周长是()厘米,面积是()平方厘米。
二、判断1、因为d=2r,所以同一个圆的任何两条半径都能组成一条直径。
()2、周长相等的两个圆,面积也一定相等。
()3、圆的半径扩大3倍,面积也扩大3倍。
()4、半径是2厘米的圆,它的周长和面积相等。
()5、圆的位置是由圆心决定的,圆的大小是由半径决定的。
()6、两圆的半径比是2:1,则其周长的比是4:1。
7、圆规两脚间的距离是3厘米,所画的圆的直径就是3厘米。
()8、两端都在圆上的线段中,直径最长。
()9、圆周率π=3.14.()10、圆的直径扩大到原来的2倍,周长也扩大到原来的2倍。
()11、半圆的周长就是圆周长的一半。
()12、圆有无数条对称轴。
()13、圆的周长与它直径的比的比值是π。
()14、两端在圆上的线段是圆的直径。
()15、圆规两脚间的距离是4厘米,画出的圆的周长是12.56厘米。
()三、画图1、画一个半径是1.5厘米的圆。
(1)用字母标出圆心、半径和直径。
(2)画出它的一条对称轴。
2、四、计算阴影部分的面积。
(单位:dm)五、解决问题1、依墙而建的鸡舍围城半圆形,其直径是5米。
(1)需要多长的篱笆才能把鸡舍全围起来?(2)如果将鸡舍的直径增加2米,需要增加多长的篱笆?2、用20米的钢筋制作直径为20米的铁环,最多能制作多少个?如果铁环的直径是35厘米,要制作20个铁环,至少需要多少米的钢筋?3、圆形水池四周种了40棵树,每两棵树之间的距离是1.57米。
这个水池的半径是多少米?4、一张桌面直径为2米的桌子,如果要给桌面铺上同样大小的玻璃,这块玻璃的面积是多少平方米?如果在桌面周围镶上金属条,需要多少米?5、用一张长是3米,宽是2米的长方形铁板,切割出一个最大的圆,圆的面积是多少?剩余部分的面积是多少?6、一个圆形旱冰场的直径是30米,扩建后半径增加了5米。
圆的易错题汇编附答案解析
圆的易错题汇编附答案解析一、选择题1.如图,将△ABC 绕点C 旋转60°得到△A ′B ′C ′,已知AC=6,BC=4,则线段AB 扫过的图形面积为( )A .32πB .83πC .6πD .以上答案都不对【答案】D【解析】【分析】从图中可以看出,线段AB 扫过的图形面积为一个环形,环形中的大圆半径是AC ,小圆半径是BC ,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.【详解】阴影面积=()603616103603π⨯-=π. 故选D .【点睛】本题的关键是理解出,线段AB 扫过的图形面积为一个环形.2.如图,在矩形ABCD 中,6,4AB BC ==,以A 为圆心,AD 长为半径画弧交AB 于点E ,以C 为圆心,CD 长为半径画弧交CB 的延长线于点F ,则图中阴影部分的面积是( )A .13πB .1324π+C .1324π-D .524π+【答案】C【解析】【分析】 先分别求出扇形FCD 和扇形EAD 的面积以及矩形ABCD 的面积,再根据阴影面积=扇形FCD的面积﹣(矩形ABCD的面积﹣扇形EAD的面积)即可得解.【详解】解:∵S扇形FCD2936096ππ==⨯⨯,S扇形EAD2436094ππ==⨯⨯,S矩形ABCD6424=⨯=,∴S阴影=S扇形FCD﹣(S矩形ABCD﹣S扇形EAD)=9π﹣(24﹣4π)=9π﹣24+4π=13π﹣24故选:C.【点睛】本题考查扇形面积的计算,根据阴影面积=扇形FCD的面积﹣(矩形ABCD的面积﹣扇形EAD的面积)是解答本题的关键.3.已知,如图,点C,D在⊙O上,直径AB=6cm,弦AC,BD相交于点E,若CE=BC,则阴影部分面积为()A.934π-B.9942π-C.39324π-D.3922π-【答案】B【解析】【分析】连接OD、OC,根据CE=BC,得出∠DBC=∠CEB=45°,进而得出∠DOC=90°,根据S阴影=S 扇形-S△ODC即可求得.【详解】连接OD、OC,∵AB是直径,∴∠ACB=90°,∵CE=BC,∴∠CBD=∠CEB=45°,∴∠COD =2∠DBC=90°,∴S阴影=S扇形−S△ODC=2903360π⋅⋅−12×3×3=94π−92.故答案选B.【点睛】本题考查的知识点是扇形面积的计算,解题的关键是熟练的掌握扇形面积的计算.4.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C()A.54°B.27°C.36°D.46°【答案】C【解析】【分析】先利用等腰三角形的性质和三角形内角和计算出∠AOB的度数,然后利用圆周角解答即可.【详解】解:∵OA=OB,∴∠OBA=∠OAB=54°,∴∠AOB=180°﹣54°﹣54°=72°,∴∠ACB=12∠AOB=36°.故答案为C.【点睛】本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键. 5.如图,在扇形OAB中,120AOB∠=︒,点P是弧AB上的一个动点(不与点A、B重合),C、D分别是弦AP,BP的中点.若33CD=,则扇形AOB的面积为()A.12πB.2πC.4πD.24π【答案】A【解析】【分析】如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.【详解】解:如图作OH⊥AB于H.∵C、D分别是弦AP、BP的中点.∴CD是△APB的中位线,∴AB=2CD=63∵OH⊥AB,∴BH=AH=33∵OA=OB,∠AOB=120°,∴∠AOH=∠BOH=60°,在Rt△AOH中,sin∠AOH=AH AO,∴AO=336 sin3AHAOH==∠,∴扇形AOB的面积为:2120612360ππ=g g,故选:A.【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.6.已知某圆锥的底面半径为3 cm,母线长5 cm,则它的侧面展开图的面积为()A.30 cm2B.15 cm2C.30π cm2D.15π cm2【答案】D【解析】试题解析:根据圆锥的侧面展开图的面积计算公式得:S=RLπ=15π故选D.7.如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB 相交于点E,满足∠AEC=65°,连接AD,则∠BAD等于()A.20°B.25°C.30°D.32.5°【答案】A【解析】【分析】连接OD,根据三角形内角和定理和等边对等角求出∠DOB=40°,再根据圆周角定理即可求出∠BAD的度数.【详解】解:连接OD,∵OC⊥AB,∴∠COB=90°,∵∠AEC=65°,∴∠OCE=180°﹣90°﹣65°=25°,∵OD=OC,∴∠ODC=∠OCD=25°,∴∠DOC=180°﹣25°﹣25°=130°,∴∠DOB=∠DOC﹣∠BOC=130°﹣90°=40°,∴由圆周角定理得:∠BAD=12∠DOB=20°,故选:A.【点睛】本题考查了圆和三角形的问题,掌握三角形内角和定理、等边对等角、圆周角定理是解题的关键.8.如图,有一个边长为2cm的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是( )A .3cmB .2cmC .23cmD .4cm【答案】A【解析】【分析】 根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB 的度数,最后根据等腰三角形及直角三角形的性质解答即可.【详解】解:如图所示,正六边形的边长为2cm ,OG ⊥BC ,∵六边形ABCDEF 是正六边形,∴∠BOC=360°÷6=60°,∵OB=OC ,OG ⊥BC ,∴∠BOG=∠COG=12∠BOC =30°, ∵OG ⊥BC ,OB=OC ,BC=2cm , ∴BG=12BC=12×2=1cm , ∴OB=sin 30BG o=2cm , ∴OG=2222213OB BG -=-=,∴圆形纸片的半径为3cm ,故选:A .【点睛】本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.9.如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC=3,AC=4,则sin ∠ABD 的值是( )A .43B .34C .35D .45【答案】D【解析】【分析】由垂径定理和圆周角定理可证∠ABD=∠ABC ,再根据勾股定理求得AB=5,即可求sin ∠ABD 的值.【详解】∵AB 是⊙O 的直径,CD ⊥AB ,∴弧AC=弧AD ,∴∠ABD=∠ABC .根据勾股定理求得AB=5,∴sin ∠ABD=sin ∠ABC=45. 故选D .【点睛】此题综合考查了垂径定理以及圆周角定理的推论,熟悉锐角三角函数的概念.10.如图,点E 为ABC ∆的内心,过点E 作MN BC P 交AB 于点M ,交AC 于点N ,若7AB =,5AC =,6BC =,则MN 的长为( )A .3.5B .4C .5D .5.5【答案】B【解析】【分析】 连接EB 、EC ,如图,利用三角形内心的性质得到∠1=∠2,利用平行线的性质得∠2=∠3,所以∠1=∠3,则BM=ME ,同理可得NC=NE ,接着证明△AMN ∽△ABC ,所以767MN BM -=,则BM=7-76MN①,同理可得CN=5-56MN②,把两式相加得到MN 的方程,然后解方程即可.【详解】连接EB 、EC ,如图,∵点E 为△ABC 的内心,∴EB 平分∠ABC ,EC 平分∠ACB ,∴∠1=∠2,∵MN ∥BC ,∴∠2=∠3,∴∠1=∠3,∴BM=ME ,同理可得NC=NE ,∵MN ∥BC ,∴△AMN ∽△ABC ,∴MN AM BC AB = ,即767MN BM -=,则BM=7-76MN①, 同理可得CN=5-56MN②, ①+②得MN=12-2MN ,∴MN=4.故选:B .【点睛】此题考查三角形的内切圆与内心,相似三角形的判定与性质,解题关键在于掌握与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.11.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,连接OC 交⊙O 于点D ,连接BD ,∠C=40°.则∠ABD 的度数是( )A.30°B.25°C.20°D.15°【答案】B【解析】试题分析:∵AC为切线∴∠OAC=90°∵∠C=40°∴∠AOC=50°∵OB=OD ∴∠ABD=∠ODB ∵∠ABD+∠ODB=∠AOC=50°∴∠ABD=∠ODB=25°.考点:圆的基本性质.12.如图,圆锥的底面半径为1,母线长为3,则侧面积为()A.2πB.3πC.6πD.8π【答案】B【解析】【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【详解】解:圆锥的侧面积为:12×2π×1×3=3π,故选:B.【点睛】此题考查圆锥的计算,解题关键在于掌握运算公式.13.一个圆锥的底面半径是5,高为12,则这个圆锥的全面积是()A.60πB.65πC.85πD.90π【答案】D【解析】【分析】根据勾股定理求出圆锥侧面母线长,再根据圆锥的全面积=底面积+侧面积求出答案.【详解】∵圆锥的底面半径是5,高为12,∴侧面母线长为2251213+=,∵圆锥的侧面积=51365ππ⨯⨯=,圆锥的底面积=2525ππ⨯=,∴圆锥的全面积=652590πππ+=,故选:D.【点睛】此题考查圆锥的全面积,圆锥侧面母线长与底面圆的半径、圆锥的高的关系,熟记计算公式是解题的关键.14.如图,在矩形ABCD 中,6AB =,对角线10AC =,O e 内切于ABC ∆,则图中阴影部分的面积是( )A .24π-B .242π-C .243π-D .244π-【答案】D【解析】【分析】 先根据勾股定理求出BC ,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设O e 的半径为r ,利用面积法求出r=2,再利用三角形ABC 的面积减去圆O 的面积得到阴影的面积.【详解】∵四边形ABCD 是矩形,∴∠B=90°,∵6AB =,10AC =,∴BC=8,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设O e 的半径为r ,∵O e 内切于ABC ∆,∴OH=OE=OF=r ,∵11()22ABC S AB BC AB AC BC r =⋅=++⋅V , ∴1168(6108)22r ⨯⨯=++⋅, 解得r=2,∴O e 的半径为2,∴2168-2224-4ABC O S S S ππ=-=⨯⨯⨯=V e 阴影, 故选:D .【点睛】此题考查矩形的性质,勾股定理,三角形内切圆的定义,阴影面积的求法,添加合适的辅助线是解题的关键.15.如图,抛物线y =ax 2﹣6ax+5a (a >0)与x 轴交于A 、B 两点,顶点为C 点.以C 点为圆心,半径为2画圆,点P 在⊙C 上,连接OP ,若OP 的最小值为3,则C 点坐标是( )A .522(,22-B .(4,﹣5)C .(3,﹣5)D .(3,﹣4)【答案】D【解析】【分析】首先根据二次函数的解析式求出点A 、B 、C 三点的坐标,再由当点O 、P 、C 三点共线时,OP 取最小值为3,列出关于a 的方程,即可求解.【详解】∵2650y ax ax a a +-=(>) 与x 轴交于A 、B 两点, ∴A (1,0)、B (5,0),∵226534y ax ax a a x a =+=---() , ∴顶点34C a (,-), 当点O 、P 、C 三点共线时,OP 取最小值为3,∴OC =OP+2=5, ∴29165(0)a a +=> ,∴1a = ,∴C (3,﹣4),故选:D .【点睛】本题考查了二次函数的图象和性质,解题的关键是明确圆外一点到圆上的最短距离即该点与圆心的距离减去半径长.16.如图,在边长为8的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是 ( )A .183π-B .183πC .32316πD .1839π-【答案】C【解析】【分析】 由菱形的性质得出AD=AB=8,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可. 【详解】解:∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=8,∠ADC=180°-60°=120°,∵DF 是菱形的高,∴DF ⊥AB ,∴DF=AD •sin60°=3832⨯= ∴图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积=2120(43)84332316ππ⨯⨯=. 故选:C.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.17.如图,已知某圆锥轴截面等腰三角形的底边和高线长均为10cm ,则这个圆锥的侧面积为( )A.50cm2B.50πcm2C.255cm2D.255πcm2【答案】D【解析】【分析】根据勾股定理求出圆锥的母线长,求出底面圆周长,根据扇形面积公式计算即可.【详解】解:如图所示,∵等腰三角形的底边和高线长均为10cm,∴等腰三角形的斜边长=22105=55,即圆锥的母线长为55cm,圆锥底面圆半径为5,∴这个圆锥的底面圆周长=2×π×5=10π,即为侧面展开扇形的弧长,圆锥的侧面积=12×10π×55=255πcm2,故选:D.【点睛】本题考查了圆锥的计算,解题的关键是弄清楚圆锥的侧面积的计算方法,特别是圆锥的轴截面是等腰三角形,勾股定理的应用,以及圆锥的底面周长等于圆锥的侧面扇形的弧长.18.如图,在扇形AOB中,∠AOB=90°,OA=4,以OB为直径作半圆,圆心为点C,过点C 作OA的平行线分别交两弧点D、E,则阴影部分的面积为()A.53π﹣3B.533C.3πD353π【答案】A【解析】【分析】连接OE.可得S阴影=S扇形BOE-S扇形BCD-S△OCE.根据已知条件易求得BC=OC=CD=2,BO=OE=4.∠BOE=60o,CE=23,所以由扇形面积公式、三角形面积公式进行解答即可.【详解】解:连接OE,可得S阴影=S扇形BOE-S扇形BCD-S△OCE,由已知条件可得,BC=OC=CD=2,又,BO=OE=4,∴∠BOE=o60,可得CE=23,S扇形BOE=2604360π⋅⋅8=3π,S扇形BCD2902==360ππ⋅⋅,S△OCE=1=223=232⨯⨯,∴S阴影=S扇形BOE-S扇形BCD-S△OCE=8--233ππ=5-233π,故选A.【点睛】本题主要考查扇形面积公式、三角形面积公式,牢记公式并灵活运用可求得答案.19.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A.2 B3C2D.1 2【答案】B【解析】【分析】连接OA,由圆周角定理可求出∠AOC=60°,再根据∠AOC的正切即可求出PA的值.【详解】连接OA,∵∠ABC=30°,∴∠AOC=60°,∵PA是圆的切线,∴∠PAO=90°,∵tan∠AOC =PA OA,∴PA= tan60°×1=3.故选B.【点睛】本题考查了圆周角定理、切线的性质及锐角三角函数的知识,根据圆周角定理可求出∠AOC=60°是解答本题的关键.20.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm2【答案】B【解析】【分析】先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,所以圆锥的母线长225+12=13,所以这个圆锥的侧面积=12×2π×5×13=65π(cm2).故选B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.。
《圆的认识》易错题 六年级数学——《圆》常见题型
《圆的认识》易错题六年级数学——《圆》常见题型1.判断:在同一个圆内,两条半径就是一条直径.( )2.判断:在同一个圆内,两条半径的长度和就是一条直径的长度.( )3.判断:两端都在圆上的线段中,直径是最长的.( )4.判断:直径是圆内最长的线段.( )5.圆内最长的线段是( ) A半径B周长C直径6.在同一个圆内,半径是直径的2倍.( )7.判断:圆的直径的长度是半径长度的2倍.( )8.判断:圆的半径相等,直径等于半径的2倍.( )9.判断:半径的长度是直径的二分之一。 ( )10.判断:半径是直径的一半。( )11.两端都在圆上的线段,( )最长。12.判断:所有的半径都相等,所有的直径也都相等。
( )13.判断:所有圆的直径都相等,半径都相等。( )14.判断:同一个圆的直径一定是半径的2倍。 ( )15.判断:同一个圆内,半径是直径的一半。( )16.同圆中直径是半径的( )倍。同圆中半径是直径的( )。17.判断:圆的所有半径都相等,所有的直径也相等。( )18.判断:圆的直径都相等。( )19.判断:圆的直径是半径的2倍,半径是直径的一半。( )20.判断:圆内所有线段中,直径是最长的一条。( )21.在同一个圆里,所有的( )相等,所有的( )也相等,且( )等于( )的2倍。22.在同一个圆里,所有的半径( ),所有的( )也都相等,直径等于半径的( ).23.在同一个圆内,半径是直径的( ),直径是半径的( )。24.判断:在同一个圆内,两条半径等于一条直径。 ( )25.判断:在同一圆内,所有的半径都相等。( )26.判断:在同圆或等圆中,所有的半径都相等,所有的直径也都相等。( )27.圆的直径决定圆的() A.形状 B.位置 C.大小28.( )确定圆的位置. A半径B圆心C直径29.画圆时,圆规两脚间的距离决定圆的( ) A大小B位置C形状30.圆的大小和半径有关,与圆心的位置无关.( )31.圆的位置由( )确定.( ) 决定圆的大小.32.判断:圆的半径决定圆的大小.( )33.判断:半径的长短决定圆的大小.( )34.判断:半径能决定圆的大小和位置.( )35.圆心确定圆的( ),半径确定圆的( )36.( )确定圆的大小,( )确定圆的位置。37.圆的位置由( )确定;圆的大小由( )决定。38.判断:圆的直径长度决定圆的( )。39.圆是平面上的( )线图形。( )决定圆的位置,用字母( )表示;( )决定圆的大小,用字母( )表示。40.判断:圆心决定圆的位置,半径决定圆的大小。( )。
圆的易错题汇编含答案解析
圆的易错题汇编含答案解析一、选择题1.如图,圆锥的底面半径为1,母线长为3,则侧面积为()A.2πB.3πC.6πD.8π【答案】B【解析】【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【详解】解:圆锥的侧面积为:12×2π×1×3=3π,故选:B.【点睛】此题考查圆锥的计算,解题关键在于掌握运算公式.2.如图,正方形ABCD内接于⊙O,AB=22,则AB的长是()A.πB.32πC.2πD.12π【答案】A【解析】【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.【详解】连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴AB BC CD DA===,∴∠AOB=14×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=()2,解得:AO=2,∴AB的长为902 180π=π,故选A.【点睛】本题考查了弧长公式和正方形的性质,求出∠AOB的度数和OA的长是解此题的关键.3.已知下列命题:①若a>b,则ac>bc;②若a=1;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】先对原命题进行判断,再判断出逆命题的真假即可.【详解】解:①若a>b,则ac>bc是假命题,逆命题是假命题;②若a=1是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选A.点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.4.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°【答案】B【解析】【分析】连接FB,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB、∠EFB的度数,继而根据∠EFO=∠EBF-∠OFB即可求得答案.【详解】连接FB,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB=12∠FOB=70°,∵FO=BO,∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°,∵EF=EB,∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO=∠EBF-∠OFB=55°-20°=35°,故选B.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.5.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C()A .54°B .27°C .36°D .46°【答案】C【解析】【分析】 先利用等腰三角形的性质和三角形内角和计算出∠AOB 的度数,然后利用圆周角解答即可.【详解】解:∵OA =OB ,∴∠OBA =∠OAB =54°,∴∠AOB =180°﹣54°﹣54°=72°,∴∠ACB =12∠AOB =36°. 故答案为C .【点睛】 本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.6.如图,O 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为( )A 32πB 332πC .23π-D 33π【答案】A【解析】【分析】【详解】 解:∵六边形ABCDEF 是正六边形,∴∠AOB =60°,∴△OAB 是等边三角形,OA =OB =AB =2,设点G 为AB 与⊙O 的切点,连接OG ,则OG ⊥AB ,∴OG =OA •sin 60°=2×32=3, ∴S 阴影=S △OAB ﹣S 扇形OMN =12×2×3﹣260(3)360π⨯=32π-.故选A .7.如图,ABC 中,90ACB ∠=︒,O 为AB 中点,且4AB =,CD ,AD 分别平分ACB ∠和CAB ∠,交于D 点,则OD 的最小值为( ).A .1B .22C 21D .222【答案】D【解析】【分析】 根据三角形角平分线的交点是三角形的内心,得到DO 最小时,DO 为三角形ABC 内切圆的半径,结合切线长定理得到三角形为等腰直角三角形,从而得到答案.【详解】解: CD ,AD 分别平分ACB ∠和CAB ∠,交于D 点,D ∴为ABC ∆的内心,OD ∴最小时,OD 为ABC ∆的内切圆的半径,,DO AB ∴⊥过D 作,,DE AC DF BC ⊥⊥ 垂足分别为,,E F,DE DF DO ∴==∴ 四边形DFCE 为正方形,O 为AB 的中点,4,AB =2,AO BO ∴==由切线长定理得:2,2,,AO AE BO BF CE CF r ======sin 4522,AC BC AB ∴==•︒=222,CE AC AE ∴=-=-四边形DFCE 为正方形,,CE DE ∴=222,OD CE ∴==-故选D .【点睛】本题考查的动态问题中的线段的最小值,三角形的内心的性质,等腰直角三角形的性质,锐角三角函数的计算,掌握相关知识点是解题关键.8.已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB=8cm ,且AB ⊥CD ,垂足为M ,则AC 的长为( )A .25cmB .45 cmC .25cm 或45cmD .23cm 或43cm【答案】C【解析】连接AC ,AO ,∵O 的直径CD=10cm ,AB ⊥CD ,AB=8cm ,∴AM=12AB=12×8=4cm,OD=OC=5cm, 当C 点位置如图1所示时,∵OA=5cm ,AM=4cm ,CD ⊥AB , ∴222254OA AM -=-=3cm ,∴CM=OC+OM=5+3=8cm ,∴22224845AM CM +=+=;当C 点位置如图2所示时,同理可得OM=3cm ,∵OC=5cm ,∴MC=5−3=2cm ,在Rt △AMC 中,AC=22224225AM CM +=+=cm.故选C.9.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O ,三角尺的直角顶点C 落在直尺的10cm 处,铁片与直尺的唯一公共点A 落在直尺的14cm 处,铁片与三角尺的唯一公共点为B ,下列说法错误的是( )A .圆形铁片的半径是4cmB .四边形AOBC 为正方形 C .弧AB 的长度为4πcmD .扇形OAB 的面积是4πcm 2【答案】C【解析】【分析】【详解】 解:由题意得:BC ,AC 分别是⊙O 的切线,B ,A 为切点,∴OA ⊥CA ,OB ⊥BC ,又∵∠C=90°,OA=OB ,∴四边形AOBC 是正方形,∴OA=AC=4,故A ,B 正确;∴AB 的长度为:904180π⨯=2π,故C 错误; S 扇形OAB =2904360π⨯=4π,故D 正确. 故选C .【点睛】本题考查切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.10.如图,已知ABC ∆和ABD ∆都O 是的内接三角形,AC 和BD 相交于点E ,则与ADE ∆的相似的三角形是( )A .BCE ∆B .ABC ∆ C .ABD ∆ D .ABE ∆【答案】A【解析】【分析】 根据同弧和等弧所对的圆周角相等, 则AB 弧所对的圆周角BCE BDA ∠=∠,CEB ∠和DEA ∠是对顶角,所以ADE BCE ∆∆∽.【详解】解:BCE BDA ∠=∠,CEB DEA ∠=∠ADE BCE ∴∆∆∽,故选:A .【点睛】 考查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.11.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图2是等宽的勒洛三角形和圆形滚木的截面图.图1 图2有如下四个结论:①勒洛三角形是中心对称图形②图1中,点A 到BC 上任意一点的距离都相等③图2中,勒洛三角形的周长与圆的周长相等④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动上述结论中,所有正确结论的序号是( )A .①②B .②③C .②④D .③④【答案】B【解析】【分析】逐一对选项进行分析即可.【详解】①勒洛三角形不是中心对称图形,故①错误;②图1中,点A 到BC 上任意一点的距离都相等,故②正确;③图2中,设圆的半径为r∴勒洛三角形的周长=12032180r r ππ⨯= 圆的周长为2r π∴勒洛三角形的周长与圆的周长相等,故③正确;④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误故选B【点睛】本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键.12.如图,抛物线y =ax 2﹣6ax+5a (a >0)与x 轴交于A 、B 两点,顶点为C 点.以C 点为圆心,半径为2画圆,点P 在⊙C 上,连接OP ,若OP 的最小值为3,则C 点坐标是( )A .5252B .(4,﹣5)C .(3,﹣5)D .(3,﹣4)【答案】D【解析】【分析】首先根据二次函数的解析式求出点A 、B 、C 三点的坐标,再由当点O 、P 、C 三点共线时,OP 取最小值为3,列出关于a 的方程,即可求解.【详解】∵2650y ax ax a a +-=(>) 与x 轴交于A 、B 两点, ∴A (1,0)、B (5,0),∵226534y ax ax a a x a =+=---() ,∴顶点34C a (,-), 当点O 、P 、C 三点共线时,OP 取最小值为3,∴OC =OP+2=5,5(0)a => ,∴1a = ,∴C (3,﹣4),故选:D .【点睛】本题考查了二次函数的图象和性质,解题的关键是明确圆外一点到圆上的最短距离即该点与圆心的距离减去半径长.13.下列命题中正确的个数是( )①过三点可以确定一个圆②直角三角形的两条直角边长分别是5和12,那么它的外接圆半径为6.5③如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米④三角形的重心到三角形三边的距离相等.A .1个B .2个C .3个D .4个【答案】A【解析】【分析】①根据圆的作法即可判断;②先利用勾股定理求出斜边的长度,然后根据外接圆半径等于斜边的一半即可判断;③根据圆与圆的位置关系即可得出答案;④根据重心的概念即可得出答案.【详解】①过不在同一条直线上的三点可以确定一个圆,故错误;②∵直角三角形的两条直角边长分别是5和12,13= , ∴它的外接圆半径为.113652⨯=,故正确; ③如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米或1厘米,故错误; ④三角形的内心到三角形三边的距离相等,故错误;所以正确的只有1个,故选:A .【点睛】本题主要考查直角三角形外接圆半径,圆与圆的位置关系,三角形内心,重心的概念,掌握直角三角形外接圆半径的求法,圆与圆的位置关系,三角形内心,重心的概念是解题的关键.14.如图,若干全等正五边形排成环状.图中所示的是前3个正五边形,则要完成这一圆环还需..()个这样的正五边形A.6 B.7 C.8 D.9【答案】B【解析】【分析】【详解】如图,∵多边形是正五边形,∴内角是15×(5-2)×180°=108°,∴∠O=180°-(180°-108°)-(180°-108°)=36°,36°度圆心角所对的弧长为圆周长的1 10,即10个正五边形能围城这一个圆环,所以要完成这一圆环还需7个正五边形.故选B.15.如图,有一圆锥形粮堆,其侧面展开图是半径为6m的半圆,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程长为()A .3mB .33mC .35mD .4m【答案】C【解析】【分析】 【详解】 如图,由题意得:AP =3,AB =6,90.BAP ∠=∴在圆锥侧面展开图中223635.BP m =+=故小猫经过的最短距离是35.m故选C.16.如图,在圆O 中,直径AB 平分弦CD 于点E ,且CD=43,连接AC ,OD,若∠A 与∠DOB 互余,则EB 的长是( )A .3B .4C 3D .2【答案】D【解析】【分析】 连接CO ,由直径AB 平分弦CD 及垂径定理知∠COB=∠DOB ,则∠A 与∠COB 互余,由圆周角定理知∠A=30°,∠COE=60°,则∠OCE=30°,设OE=x,则CO=2x,利用勾股定理即可求出x ,再求出BE 即可.【详解】连接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=23∵∠A与∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,设OE=x,则CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(23)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故选D.【点睛】此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理. 17.如图,四边形ABCD内接于⊙O,F是CD上一点,且DF BC,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°【答案】B【解析】【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【详解】∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵DF BC=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【点睛】本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.18.如图,在扇形AOB中,∠AOB=90°,OA=4,以OB为直径作半圆,圆心为点C,过点C 作OA的平行线分别交两弧点D、E,则阴影部分的面积为()A.53π﹣3B.533C.3πD353π【答案】A【解析】【分析】连接OE.可得S阴影=S扇形BOE-S扇形BCD-S△OCE.根据已知条件易求得BC=OC=CD=2,BO=OE=4.∠BOE=60o,CE=23所以由扇形面积公式、三角形面积公式进行解答即可.【详解】解:连接OE,可得S阴影=S扇形BOE-S扇形BCD-S△OCE,由已知条件可得,BC=OC=CD=2,又,BO=OE=4,∴∠BOE=o60,可得CE=23S扇形BOE=2604360π⋅⋅8=3π,S扇形BCD2902==360ππ⋅⋅,S△OCE=1=223=232⨯⨯,∴S阴影=S扇形BOE-S扇形BCD-S△OCE=8--233ππ=5-233π,故选A.【点睛】本题主要考查扇形面积公式、三角形面积公式,牢记公式并灵活运用可求得答案.19.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为()A.9 cm B.10 cm C.11 cm D.12 cm【答案】B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.20.如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).A .16 B .6π C .8π D .5π 【答案】B【解析】【分析】由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论.【详解】解:∵AB=5,BC=4,AC=3,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径=4+3-52=1, ∴S △ABC =12AC•BC=12×4×3=6, S 圆=π,∴小鸟落在花圃上的概率=6π , 故选B .【点睛】本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.。
圆的易错题六年级
圆的易错题六年级一、填空题。
1. 一个圆的半径是3厘米,它的直径是()厘米,周长是()厘米,面积是()平方厘米。
- 解析:在圆中,直径d = 2r(r是半径),所以直径d=2×3 = 6厘米;圆的周长公式C = 2π r,π取3.14时,C=2×3.14×3 = 18.84厘米;圆的面积公式S=π r^2,S = 3.14×3^2=3.14×9 = 28.26平方厘米。
2. 一个圆的周长是18.84分米,这个圆的半径是()分米,面积是()平方分米。
- 解析:根据圆的周长公式C = 2π r,可得r=(C)/(2π),C = 18.84分米,π = 3.14,则r=(18.84)/(2×3.14)=3分米;再根据面积公式S=π r^2,S = 3.14×3^2=28.26平方分米。
3. 在一个边长为8厘米的正方形内画一个最大的圆,这个圆的半径是()厘米,面积是()平方厘米。
- 解析:在正方形内画最大的圆,圆的直径等于正方形的边长,所以圆的半径r = 8÷2=4厘米;面积S=π r^2=3.14×4^2=3.14×16 = 50.24平方厘米。
4. 一个圆的面积是28.26平方米,它的半径是()米。
- 解析:根据圆的面积公式S=π r^2,28.26=π r^2,π = 3.14,则r^2=(28.26)/(3.14) = 9,r = 3米。
5. 把一个圆平均分成若干份,拼成一个近似的长方形,这个长方形的长相当于圆的(),宽相当于圆的()。
- 解析:把圆平均分成若干份拼成近似长方形,这个长方形的长相当于圆周长的一半,宽相当于圆的半径。
二、判断题。
6. 圆的半径扩大3倍,它的面积也扩大3倍。
(×)- 解析:圆的面积公式S=π r^2,半径扩大3倍变为3r,则面积S'=π(3r)^2=9π r^2,面积扩大了9倍,而不是3倍。
圆的周长易错题及原因
圆的周长易错题及原因1.计算公式错误错误题目:一个圆的周长是15.7厘米,求它的半径。
错误原因:没有正确使用圆的周长公式。
圆的周长公式是C=2πr,其中C是圆的周长,r是圆的半径,π是圆周率(约等于3.14)。
在上述题目中,没有正确使用这个公式,可能误以为是C=πr或C=3.14r。
正确解法:根据C=2πr,可以得到r=C/2π。
将C=15.7代入公式,得到r=15.7/(2×3.14)=2.5厘米。
2.半径与直径混淆错误题目:一个圆的直径是5厘米,求它的周长。
错误原因:没有理解半径与直径的关系。
圆的直径是半径的两倍,即直径=2×半径。
在上述题目中,可能误以为直径与半径相等,从而得到错误的答案。
正确解法:根据直径=2×半径,可以得到半径=直径/2。
将直径=5代入公式,得到半径=5/2=2.5厘米。
再根据圆的周长公式C=2πr,得到周长=2π×2.5=15.7厘米。
3.圆的大小与半径的关系错误题目:一个圆的周长是15.7厘米,求它的面积。
错误原因:没有理解圆的大小与半径的关系。
圆的面积公式是A=πr²,其中A是圆的面积,r是圆的半径,π是圆周率(约等于3.14)。
在上述题目中,可能误以为知道了周长就可以求出面积,而实际上需要知道半径才能求出面积。
正确解法:根据圆的周长公式C=2πr,可以得到r=C/2π。
将C=15.7代入公式,得到r=15.7/(2×3.14)=2.5厘米。
再根据圆的面积公式A=πr²,得到面积A=3.14×2.5²=19.625平方厘米。
4.圆周率π的使用错误错误题目:一个圆的周长是15.7厘米,求它的面积。
错误原因:没有正确使用圆周率π。
在上述题目中,可能误以为知道了周长就可以直接求出面积,而实际上需要使用圆周率π来求出面积。
正确解法:根据圆的周长公式C=2πr,可以得到r=C/2π。
将C=15.7代入公式,得到r=15.7/(2×3.14)=2.5厘米。
圆的易错题汇编附解析
算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.
【详解】
解:设小正方形的边长为1,则其面积为1.
圆的直径正好是大正方形边长,
根据勾股定理,其小正方形对角线为 ,即圆的直径为 ,
大正方形的边长为 ,
则大正方形的面积为 ,则小球停在小正方形内部(阴影)区域的概率为 .
故选: .
【点睛】
A.1个B.2个C.3个D.4个
【答案】A
【解析】
【分析】
先对原命题进行判断,再判断出逆命题的真假即可.
【详解】
解:①若a>b,则ac>bc是假命题,逆命题是假命题;
②若a=1,则 =a是真命题,逆命题是假命题;
③内错角相等是假命题,逆命题是假命题;
④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;
【答案】B
【解析】
【分析】
根据垂径定理得到CH=BH, ,根据圆周角定理求出∠AOB,根据正弦的定义求出BH,计算即可.
【详解】
如图BC与OA相交于H
∵OA⊥BC,
∴CH=BH, ,
∴∠AOB=2∠CDA=60°,
∴BH=OB⋅sin∠AOB= ,
∴BC=2BH=2 ,
故选D.
【点睛】
本题考查的是垂径定理、圆周角定理,熟练掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.
故选C.
考点:1.旋转的性质2.含30度角的直角三角形.
13.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于( )
A.4B.6C.8D.12
【答案】C
【解析】
【分析】
根据三角形内角和定理求得∠C=∠ABC=30°,再根据圆周角定理及直角三角形的性质即可求得BD的长.
六年级上册数学『圆』单元易错判断题50道
01.圆是轴对称图形,圆有无数条对称轴。
(✔)02.通过圆心的线段叫做直径。
(✘)03.在同圆或等圆中,直径一定比半径长。
(✔)04.所有的半径都相等。
(✘)05.两条半径的长等于一条直径的长。
(✘)06.水桶是圆形的。
(✘)07.所有的直径都相等。
(✘)08.圆的直径是半径的2倍。
(✘)09.两个圆的直径相等,它们的半径也一定相等。
(✔)10.直径总比半径长。
(✘)11.圆的对称轴就是直径所在的直线。
(✔)12.一个圆的直径是6㎝,那么它的半径是3㎝。
(✔)13.扇形的面积的大小与圆心角有关,与半径无关。
(✘)14.圆的半径越长,这个圆就越大。
(✔)15.画图时,圆规两脚尖之间的距离就是圆的半径。
(✔)16.同一个圆上所有的点到圆心的距离都相等。
(✔)17.半径是射线,直径是直线。
(✘)18.π=3.14。
(✘)19.圆的半径扩大4倍,圆的周长也扩大4倍。
(✔)20.如果两个圆的周长相等,那么这两个圆的半径和直径的长度也一定分别相等。
(✔)21.梯形可以画出一条对称轴。
(✘)22.在同圆或等圆中,所有的半径都相等,所有的直径也都相等。
(✔)23.在一个圆里,两端都在圆上的线段叫做圆的直径。
(✘)24.小圆半径是大圆半径的1/2,那么小圆周长也是大圆周长的1/2。
(✔)25.半圆的周长就是这个圆周长的一半。
(✔)26.求圆的周长,用字母表示就是C=πd或C=2πr。
(✔)27.半圆的周长就是用圆的周长除以2。
(✔)28.圆的面积一定比扇形的面积大。
(✘)29.一个圆的周长是它半径的2π倍。
(✔)30.圆的周长是它的直径的π倍。
(✔)31.圆的周长和它的直径的比值约是3.14。
(✔)32.两个半圆一定可以拼出一个圆。
(✘)33.圆的直径扩大2倍,它的周长也扩大2倍。
(✔)34.两个圆的直径相等,它们的周长也相等。
(✔)35.小圆的圆周率比大圆的圆周率小。
(✘)36.圆的周长与它的直径的比值是3.14。
最新初中数学圆的易错题汇编
最新初中数学圆的易错题汇编一、选择题1.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A .勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.2.用一个直径为10cm 的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB 与O e 相切于点B ,不倒翁的顶点A 到桌面L 的最大距离是18cm .若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为( )A .260cm πB .260013cm πC .272013cm πD .272cm π【答案】C【解析】【分析】 连接OB ,如图,利用切线的性质得OB AB ⊥,在Rt AOB ∆中利用勾股定理得12AB =,利用面积法求得6013BH =,然后利用圆锥的侧面展开图为扇形和扇形的面积公式计算圆锥形纸帽的表面.【详解】 解:连接OB ,作BH OA ⊥于H ,如图,Q 圆锥的母线AB 与O e 相切于点B ,OB AB ∴⊥,在Rt AOB ∆中,18513OA =-=,5OB =,2213512AB ∴=-=,Q 1122OA BH OB AB =g g , 512601313BH ⨯∴==, Q 圆锥形纸帽的底面圆的半径为6013BH =,母线长为12, ∴形纸帽的表面2160720212()21313cm ππ=⨯⨯⨯=. 故选:C .【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆锥的计算.3.如图,在ABC ∆中,90ABC ∠=︒,6AB =,点P 是AB 边上的一个动点,以BP 为直径的圆交CP 于点Q ,若线段AQ 长度的最小值是3,则ABC ∆的面积为( )A .18B .27C .36D .54【答案】B【解析】【分析】 如图,取BC 的中点T ,连接AT ,QT .首先证明A ,Q ,T 共线时,△ABC 的面积最大,设QT=TB=x ,利用勾股定理构建方程即可解决问题.【详解】解:如图,取BC 的中点T ,连接AT ,QT .∵PB 是⊙O 的直径,∴∠PQB=∠CQB=90°,∴QT=12BC=定值,AT 是定值, ∵AQ ≥AT-TQ , ∴当A ,Q ,T 共线时,AQ 的值最小,设BT=TQ=x ,在Rt △ABT 中,则有(3+x )2=x 2+62,解得x=92, ∴BC=2x=9,∴S △ABC =12•AB•BC=12×6×9=27, 故选:B .【点睛】 本题考查了圆周角定理,勾股定理,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,则有中考选择题中的压轴题.4.如图,△ABC的外接圆是⊙O,半径AO=5,sinB=25,则线段AC的长为()A.1 B.2 C.4 D.5【答案】C【解析】【分析】首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由⊙O的半径是5,sinB=25,即可求得答案.【详解】解:连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,∵∠B和∠D所对的弧都为弧AC,∴∠B=∠D,即sinB=sinD=25,∵半径AO=5,∴CD=10,∴2 sin105AC ACDCD===,∴AC=4,故选:C.【点睛】本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.5.如图,在扇形OAB中,120AOB∠=︒,点P是弧AB上的一个动点(不与点A、B重合),C、D分别是弦AP,BP的中点.若33CD=AOB的面积为()A.12πB.2πC.4πD.24π【答案】A【解析】【分析】如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.【详解】解:如图作OH⊥AB于H.∵C、D分别是弦AP、BP的中点.∴CD是△APB的中位线,∴AB=2CD=63∵OH⊥AB,∴BH=AH=33∵OA=OB,∠AOB=120°,∴∠AOH=∠BOH=60°,在Rt△AOH中,sin∠AOH=AH AO,∴AO=336 sin3AHAOH==∠,∴扇形AOB的面积为:2120612360ππ=g g,故选:A.【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.6.已知某圆锥的底面半径为3 cm,母线长5 cm,则它的侧面展开图的面积为()A.30 cm2B.15 cm2C.30π cm2D.15π cm2【答案】D【解析】试题解析:根据圆锥的侧面展开图的面积计算公式得:π=15πS=RL故选D.7.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作»PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交»PQ于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN,则∠AOB=20°C.MN∥CD D.MN=3CD【答案】D【解析】【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【详解】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN ,∴△OMN 是等边三角形,∴∠MON=60°,∵CM=CD=DN ,∴∠MOA=∠AOB=∠BON=13∠MON=20°,故B 选项正确; ∵∠MOA=∠AOB=∠BON=20°, ∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=12∠AON=20°, ∴∠MCD+∠CMN=180°, ∴MN ∥CD ,故C 选项正确;∵MC+CD+DN >MN ,且CM=CD=DN ,∴3CD >MN ,故D 选项错误;故选:D .【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.8.如图,ABC V 中,90ACB ∠=︒,O 为AB 中点,且4AB =,CD ,AD 分别平分ACB ∠和CAB ∠,交于D 点,则OD 的最小值为( ).A .1B .22C 21D .222【答案】D【解析】【分析】 根据三角形角平分线的交点是三角形的内心,得到DO 最小时,DO 为三角形ABC 内切圆的半径,结合切线长定理得到三角形为等腰直角三角形,从而得到答案.【详解】解:Q CD ,AD 分别平分ACB ∠和CAB ∠,交于D 点,D ∴为ABC ∆的内心,OD ∴最小时,OD 为ABC ∆的内切圆的半径,,DO AB ∴⊥过D 作,,DE AC DF BC ⊥⊥ 垂足分别为,,E F,DE DF DO ∴==∴ 四边形DFCE 为正方形,O Q 为AB 的中点,4,AB =2,AO BO ∴==由切线长定理得:2,2,,AO AE BO BF CE CF r ======sin 4522,AC BC AB ∴==•︒=222,CE AC AE ∴=-=-Q 四边形DFCE 为正方形,,CE DE ∴=222,OD CE ∴==-故选D .【点睛】本题考查的动态问题中的线段的最小值,三角形的内心的性质,等腰直角三角形的性质,锐角三角函数的计算,掌握相关知识点是解题关键.9.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与AB 的延长线交于点P ,连接AC ,若∠A=30°,PC=3,则⊙O 的半径为( )A.3B.23C.32D.233【答案】A【解析】连接OC,∵OA=OC,∠A=30°,∴∠OCA=∠A=30°,∴∠COB=∠A+∠ACO=60°,∵PC是⊙O切线,∴∠PCO=90°,∠P=30°,∵PC=3,∴OC=PC•tan30°=3,故选A10.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm2【答案】B【解析】【分析】先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,所以圆锥的母线长225+12=13,所以这个圆锥的侧面积=12×2π×5×13=65π(cm2).故选B .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.11.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,连接OC 交⊙O 于点D ,连接BD ,∠C=40°.则∠ABD 的度数是( )A .30°B .25°C .20°D .15°【答案】B【解析】 试题分析:∵AC 为切线 ∴∠OAC=90° ∵∠C=40° ∴∠AOC=50°∵OB=OD ∴∠ABD=∠ODB ∵∠ABD+∠ODB=∠AOC=50° ∴∠ABD=∠ODB=25°. 考点:圆的基本性质.12.如图,点E 为ABC ∆的内心,过点E 作MN BC P 交AB 于点M ,交AC 于点N ,若7AB =,5AC =,6BC =,则MN 的长为( )A .3.5B .4C .5D .5.5【答案】B【解析】【分析】 连接EB 、EC ,如图,利用三角形内心的性质得到∠1=∠2,利用平行线的性质得∠2=∠3,所以∠1=∠3,则BM=ME ,同理可得NC=NE ,接着证明△AMN ∽△ABC ,所以767MN BM -=,则BM=7-76MN①,同理可得CN=5-56MN②,把两式相加得到MN 的方程,然后解方程即可.【详解】连接EB 、EC ,如图,∵点E 为△ABC 的内心,∴EB平分∠ABC,EC平分∠ACB,∴∠1=∠2,∵MN∥BC,∴∠2=∠3,∴∠1=∠3,∴BM=ME,同理可得NC=NE,∵MN∥BC,∴△AMN∽△ABC,∴MN AMBC AB=,即767MN BM-=,则BM=7-76MN①,同理可得CN=5-56MN②,①+②得MN=12-2MN,∴MN=4.故选:B.【点睛】此题考查三角形的内切圆与内心,相似三角形的判定与性质,解题关键在于掌握与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.13.如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点E,交AD边于点F,则FEEC=()A.12B.13C.14D.38【答案】C【解析】【分析】连接OE、OF、OC,利用切线长定理和切线的性质求出∠OCF=∠FOE,证明△EOF∽△ECO ,利用相似三角形的性质即可解答.【详解】解:连接OE 、OF 、OC .∵AD 、CF 、CB 都与⊙O 相切,∴CE =CB ;OE ⊥CF ; FO 平分∠AFC ,CO 平分∠BCF .∵AF ∥BC ,∴∠AFC+∠BCF =180°,∴∠OFC+∠OCF =90°,∵∠OFC+∠FOE =90°,∴∠OCF =∠FOE ,∴△EOF ∽△ECO , ∴=OE EF EC OE ,即OE 2=EF•EC . 设正方形边长为a ,则OE =12a ,CE =a . ∴EF =14a . ∴EF EC =14. 故选:C .【点睛】本题考查切线的性质、切线长定理、相似三角形的判定与性质,其中通过作辅助线构造相似三角形是解答本题的关键..14.如图,抛物线y =ax 2﹣6ax+5a (a >0)与x 轴交于A 、B 两点,顶点为C 点.以C 点为圆心,半径为2画圆,点P 在⊙C 上,连接OP ,若OP 的最小值为3,则C 点坐标是( )A .5252(,)22-B .(4,﹣5)C .(3,﹣5)D .(3,﹣4)【答案】D【解析】【分析】首先根据二次函数的解析式求出点A 、B 、C 三点的坐标,再由当点O 、P 、C 三点共线时,OP 取最小值为3,列出关于a 的方程,即可求解.【详解】∵2650y ax ax a a +-=(>) 与x 轴交于A 、B 两点, ∴A (1,0)、B (5,0),∵226534y ax ax a a x a =+=---() , ∴顶点34C a (,-), 当点O 、P 、C 三点共线时,OP 取最小值为3,∴OC =OP+2=5,∴29165(0)a a +=> ,∴1a = ,∴C (3,﹣4),故选:D .【点睛】本题考查了二次函数的图象和性质,解题的关键是明确圆外一点到圆上的最短距离即该点与圆心的距离减去半径长.15.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,OC 交⊙O 于点D ,若∠ABD =24°,则∠C 的度数是( )A.48°B.42°C.34°D.24°【答案】B【解析】【分析】根据切线的性质求出∠OAC,结合∠C=42°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.【详解】解:∵∠ABD=24°,∴∠AOC=48°,∵AC是⊙O的切线,∴∠OAC=90°,∴∠AOC+∠C=90°,∴∠C=90°﹣48°=42°,故选:B.【点睛】考查了切线的性质,圆周角定理,三角形内角和定理,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.16.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是( )A.22°B.26°C.32°D.68°【答案】A【解析】试题分析:根据同弧所对的圆心角等于圆周角度数的两倍,则∠BOC=2∠A=136°,则根据三角形内角和定理可得:∠OBC+∠OCB=44°,根据OB=OC可得:∠OBC=∠OCB=22°.考点:圆周角的计算17.如图在Rt△ABC中,∠ACB=90°,AC=6,BC=8,⊙O是△ABC的内切圆,连接AO,BO,则图中阴影部分的面积之和为()A.10﹣32πB.14﹣52πC.12 D.14【答案】B【解析】【分析】根据勾股定理求出AB,求出△ABC的内切圆的半径,根据扇形面积公式、三角形的面积公式计算,得到答案.【详解】解:设⊙O与△ABC的三边AC、BC、AB的切点分别为D、E、F,连接OD、OE、OF,在Rt△ABC中,AB=22AC BC+=10,∴△ABC的内切圆的半径=68102+-=2,∵⊙O是△ABC的内切圆,∴∠OAB=12∠CAB,∠OBA=12∠CBA,∴∠AOB=180°﹣(∠OAB+∠OBA)=180°﹣12(∠CAB+∠CBA)=135°,则图中阴影部分的面积之和=222902113525 21021436023602πππ⨯⨯-+⨯⨯-=-,故选B.【点睛】本题考查的是三角形的内切圆与内心、扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.18.如图,在⊙O中,OC⊥AB,∠ADC=26°,则∠COB的度数是()A.52°B.64°C.48°D.42°【答案】A【解析】【分析】由OC⊥AB,利用垂径定理可得出,再结合圆周角定理及同弧对应的圆心角等于圆周角的2倍,即可求出∠COB的度数.【详解】解:∵OC⊥AB,∴,∴∠COB=2∠ADC=52°.故选:A.【点睛】考查了圆周角定理、垂径定理以及圆心角、弧、弦的关系,利用垂径定理找出是解题的关键.19.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图2是等宽的勒洛三角形和圆形滚木的截面图.图1图2有如下四个结论:①勒洛三角形是中心对称图形②图1中,点A到BC上任意一点的距离都相等③图2中,勒洛三角形的周长与圆的周长相等④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动上述结论中,所有正确结论的序号是()A.①②B.②③C.②④D.③④【答案】B【解析】【分析】逐一对选项进行分析即可.【详解】①勒洛三角形不是中心对称图形,故①错误;②图1中,点A到BC上任意一点的距离都相等,故②正确;③图2中,设圆的半径为r∴勒洛三角形的周长=12032180rrππ⨯=g g圆的周长为2rπ∴勒洛三角形的周长与圆的周长相等,故③正确;④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误故选B【点睛】本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键.20.如图,用半径为12cm ,面积272cm π的扇形无重叠地围成一个圆锥,则这个圆锥的高为( )A .12cmB .6cmC .6√2 cmD .63 cm【答案】D【解析】【分析】先根据扇形的面积公式计算出扇形的圆心角,再利用周长公式计算出底面圆的周长,得出半径.再构建直角三角形,解直角三角形即可.【详解】 72π=212360n π⨯ 解得n=180°,∴扇形的弧长=18012180π⨯=12πcm . 围成一个圆锥后如图所示:因为扇形弧长=圆锥底面周长即12π=2πr解得r=6cm ,即OB=6cm根据勾股定理得22126=63-,故选D .【点睛】本题综合考查了弧长公式,扇形弧长=用它围成的圆锥底面周长,及勾股定理等知识,所以学生学过的知识一定要结合起来.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的易错题汇编一、选择题1.如图,抛物线y =ax 2﹣6ax+5a (a >0)与x 轴交于A 、B 两点,顶点为C 点.以C 点为圆心,半径为2画圆,点P 在⊙C 上,连接OP ,若OP 的最小值为3,则C 点坐标是( )A .522(,22-B .(4,﹣5)C .(3,﹣5)D .(3,﹣4)【答案】D【解析】【分析】首先根据二次函数的解析式求出点A 、B 、C 三点的坐标,再由当点O 、P 、C 三点共线时,OP 取最小值为3,列出关于a 的方程,即可求解.【详解】∵2650y ax ax a a +-=(>) 与x 轴交于A 、B 两点, ∴A (1,0)、B (5,0),∵226534y ax ax a a x a =+=---() , ∴顶点34C a (,-), 当点O 、P 、C 三点共线时,OP 取最小值为3,∴OC =OP+2=5, 29165(0)a a +=> ,∴1a = ,∴C (3,﹣4),故选:D .【点睛】本题考查了二次函数的图象和性质,解题的关键是明确圆外一点到圆上的最短距离即该点与圆心的距离减去半径长.2.在Rt △ABC 中,∠ACB=90°.AC=8,BC=3,点D 是BC 边上动点,连接AD 交以CD 为直径的圆于点E ,则线段BE 长度的最小值为( )A.1 B.32C.3D.52【答案】A【解析】【分析】根据直径所对的圆周角为直角可知∠CED=90°,则∠AEC=90°,设以AC为直径的圆的圆心为O,若BE最短,则OB最短,根据直角三角形斜边上的中线等于斜边的一半可得OE=12AC=4,在Rt△OBC中,根据勾股定理可求得OB=5,即可得解.【详解】解:连接CE,∵E点在以CD为直径的圆上,∴∠CED=90°,∴∠AEC=180°-∠CED=90°,∴E点也在以AC为直径的圆上,设以AC为直径的圆的圆心为O,若BE最短,则OB最短,∵AC=8,∴OC=12AC=4,∵BC=3,∠ACB=90°,∴OB=22OC BC=5,∵OE=OC=4,∴BE=OB-OE=5-4=1.故选A.【点睛】本题考查了直径所对的圆周角为直角,直角三角形的性质和勾股定理. 3.如图,正方形ABCD内接于⊙O,AB=22,则»AB的长是()A.πB.32πC.2πD.12π【答案】A【解析】【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.【详解】连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴»»»»AB BC CD DA===,∴∠AOB=14×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(2)2,解得:AO=2,∴»AB的长为902 180π´=π,故选A.【点睛】本题考查了弧长公式和正方形的性质,求出∠AOB的度数和OA的长是解此题的关键.4.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C()A.54°B.27°C.36°D.46°【答案】C【解析】【分析】先利用等腰三角形的性质和三角形内角和计算出∠AOB的度数,然后利用圆周角解答即可.【详解】解:∵OA=OB,∴∠OBA=∠OAB=54°,∴∠AOB=180°﹣54°﹣54°=72°,∴∠ACB=12∠AOB=36°.故答案为C.【点睛】本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键. 5.如图,在扇形OAB中,120AOB∠=︒,点P是弧AB上的一个动点(不与点A、B重合),C、D分别是弦AP,BP的中点.若33CD=,则扇形AOB的面积为()A.12πB.2πC.4πD.24π【答案】A【解析】【分析】如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.【详解】解:如图作OH⊥AB于H.∵C、D分别是弦AP、BP的中点.∴CD是△APB的中位线,∴AB=2CD=63,∵OH⊥AB,∴BH=AH=33,∵OA=OB,∠AOB=120°,∴∠AOH=∠BOH=60°,在Rt△AOH中,sin∠AOH=AH AO,∴AO=336 sin3AHAOH==∠,∴扇形AOB的面积为:2120612360ππ=g g,故选:A.【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.6.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm2【答案】B【解析】【分析】先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】根据三视图得到圆锥的底面圆的直径为10cm ,即底面圆的半径为5cm ,圆锥的高为12cm ,所以圆锥的母线长=225+12=13,所以这个圆锥的侧面积=12×2π×5×13=65π(cm 2). 故选B . 【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.7.如图,在Rt ABC △中,90ACB ∠=︒,30A ∠=︒,2BC =.将ABC V 绕点C 按顺时针方向旋转n 度后得到EDC △,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )A .302,B .602,C .360,D .603, 【答案】C【解析】试题分析:∵△ABC 是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot ∠33AB=2BC=4,∵△EDC 是△ABC 旋转而成,∴BC=CD=BD=12AB=2, ∵∠B=60°,∴△BCD 是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE ⊥AC ,∴DE ∥BC ,∵BD=12AB=2, ∴DF 是△ABC 的中位线,∴DF=12BC=12×2=1,CF=12AC=12×23=3, ∴S 阴影=12DF×CF=12×3=32. 故选C .考点:1.旋转的性质2.含30度角的直角三角形.8.如图,已知ABC ∆和ABD ∆都O e 是的内接三角形,AC 和BD 相交于点E ,则与ADE ∆的相似的三角形是( )A .BCE ∆B .ABC ∆ C .ABD ∆ D .ABE ∆【答案】A【解析】【分析】 根据同弧和等弧所对的圆周角相等, 则AB 弧所对的圆周角BCE BDA ∠=∠,CEB ∠和DEA ∠是对顶角,所以ADE BCE ∆∆∽.【详解】解:BCE BDA ∠=∠Q ,CEB DEA ∠=∠ADE BCE ∴∆∆∽,故选:A .【点睛】考查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.9.如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC=3,AC=4,则sin ∠ABD 的值是( )A .43B .34C .35D .45【答案】D【解析】【分析】由垂径定理和圆周角定理可证∠ABD=∠ABC ,再根据勾股定理求得AB=5,即可求sin ∠ABD 的值.【详解】∵AB 是⊙O 的直径,CD ⊥AB ,∴弧AC=弧AD ,∴∠ABD=∠ABC .根据勾股定理求得AB=5,∴sin ∠ABD=sin ∠ABC=45. 故选D .【点睛】此题综合考查了垂径定理以及圆周角定理的推论,熟悉锐角三角函数的概念.10.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x 的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C.【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.11.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为()A.9 cm B.10 cm C.11 cm D.12 cm【答案】B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.12.如图,3个正方形在⊙O直径的同侧,顶点B、C、G、H都在⊙O的直径上,正方形ABCD的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上、顶点F在QG上,正方形PCGQ的顶点P也在⊙O上.若BC=1,GH=2,则CG的长为()A.125B.6C.21+D.22【答案】B【解析】【分析】【详解】解:连接AO、PO、EO,设⊙O的半径为r,OC=x,OG=y,由勾股定理可知:22222222211{22r xr x x yr y=++=++=++()①()②()③,②﹣③得到:x2+(x+y)2﹣(y+2)2﹣22=0,∴(x+y)2﹣22=(y+2)2﹣x2,∴(x+y+2)(x+y﹣2)=(y+2+x)(y+2﹣x).∵x+y+2≠0,∴x+y﹣2=y+2﹣x,∴x=2,代入①得到r2=10,代入②得到:10=4+(x+y)2,∴(x+y)2=6.∵x+y>0,∴x+y=6,∴CG=x+y=6.故选B.点睛:本题考查了正方形的性质、圆、勾股定理等知识,解题的关键是设未知数列方程组解决问题,难点是解方程组,利用因式分解法巧妙求出x的值,学会把问题转化为方程组,用方程组的思想去思考问题.13.如图,点I是Rt△ABC的内心,∠C=90°,AC=3,BC=4,将∠ACB平移使其顶点C与I重合,两边分别交AB于D、E,则△IDE的周长为()A.3 B.4 C.5 D.7【答案】C【解析】【分析】连接AI、BI,根据三角形的内心的性质可得∠CAI=∠BAI,再根据平移的性质得到∠CAI=∠AID,AD=DI,同理得到BE=EI,即可解答.【详解】连接AI、BI,∵∠C=90°,AC=3,BC=4,∴AB225AC BC∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=5故选C.【点睛】此题考查了平移的性质和三角形内心的性质,解题关键在于作出辅助线14.下列命题中正确的个数是()①过三点可以确定一个圆②直角三角形的两条直角边长分别是5和12,那么它的外接圆半径为6.5③如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米④三角形的重心到三角形三边的距离相等.A.1个B.2个C.3个D.4个【答案】A【解析】【分析】①根据圆的作法即可判断;②先利用勾股定理求出斜边的长度,然后根据外接圆半径等于斜边的一半即可判断;③根据圆与圆的位置关系即可得出答案;④根据重心的概念即可得出答案.【详解】①过不在同一条直线上的三点可以确定一个圆,故错误;②∵直角三角形的两条直角边长分别是5和12, ∴斜边为2251213+= ,∴它的外接圆半径为.113652⨯=,故正确; ③如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米或1厘米,故错误; ④三角形的内心到三角形三边的距离相等,故错误;所以正确的只有1个,故选:A .【点睛】本题主要考查直角三角形外接圆半径,圆与圆的位置关系,三角形内心,重心的概念,掌握直角三角形外接圆半径的求法,圆与圆的位置关系,三角形内心,重心的概念是解题的关键.15.如图,已知某圆锥轴截面等腰三角形的底边和高线长均为10cm ,则这个圆锥的侧面积为( )A .50cm 2B .50πcm 2C .52D .5cm 2【答案】D【解析】【分析】 根据勾股定理求出圆锥的母线长,求出底面圆周长,根据扇形面积公式计算即可.【详解】解:如图所示,∵等腰三角形的底边和高线长均为10cm ,22105+=55,圆锥底面圆半径为5,∴这个圆锥的底面圆周长=2×π×5=10π,即为侧面展开扇形的弧长,圆锥的侧面积=1×10π×55=255πcm2,2故选:D.【点睛】本题考查了圆锥的计算,解题的关键是弄清楚圆锥的侧面积的计算方法,特别是圆锥的轴截面是等腰三角形,勾股定理的应用,以及圆锥的底面周长等于圆锥的侧面扇形的弧长.16.如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6 B.6C.8 D.8【答案】B【解析】【分析】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OP的长.【详解】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,∵AB=CD=16,∴BM=DN=8,∴OM=ON==6,∵AB⊥CD,∴∠DPB=90°,∵OM ⊥AB 于M ,ON ⊥CD 于N ,∴∠OMP =∠ONP =90°∴四边形MONP 是矩形,∵OM =ON ,∴四边形MONP 是正方形,∴OP =.故选B .【点睛】本题考查的是垂径定理,正方形的判定与性质及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.如图,有一圆锥形粮堆,其侧面展开图是半径为6m 的半圆,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时,小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程长为( )A .3mB .33mC .35mD .4m【答案】C【解析】【分析】【详解】 如图,由题意得:AP =3,AB =6,90.BAP ∠=o ∴在圆锥侧面展开图中223635.BP m =+=故小猫经过的最短距离是35.m故选C.18.如图,在圆O 中,直径AB 平分弦CD 于点E ,且3AC ,OD,若∠A 与∠DOB 互余,则EB 的长是( )A.23B.4 C.3D.2【答案】D【解析】【分析】连接CO,由直径AB平分弦CD及垂径定理知∠COB=∠DOB,则∠A与∠COB互余,由圆周角定理知∠A=30°,∠COE=60°,则∠OCE=30°,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可.【详解】连接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=23∵∠A与∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,设OE=x,则CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(23)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故选D.【点睛】此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理.19.如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧弧AB 上任意一点(与点B 不重合),则∠BPC 的度数为( )A .30°B .45°C .60°D .90°【答案】B【解析】 分析:接OB ,OC ,根据四边形ABCD 是正方形可知∠BOC=90°,再由圆周角定理即可得出结论.详解:连接OB ,OC ,∵四边形ABCD 是正方形,∴∠BOC=90°,∴∠BPC=12∠BOC=45°. 故选B .点睛:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.20.一个圆锥的底面半径是5,高为12,则这个圆锥的全面积是( )A .60πB .65πC .85πD .90π【答案】D【解析】【分析】根据勾股定理求出圆锥侧面母线长,再根据圆锥的全面积=底面积+侧面积求出答案.【详解】∵圆锥的底面半径是5,高为12, 2251213+=,∵圆锥的侧面积=51365ππ⨯⨯=,圆锥的底面积=2525ππ⨯=,∴圆锥的全面积=652590πππ+=,故选:D.【点睛】此题考查圆锥的全面积,圆锥侧面母线长与底面圆的半径、圆锥的高的关系,熟记计算公式是解题的关键.。