机组主控系统

合集下载

4 单元机组主控制系统-前馈控制应用

4 单元机组主控制系统-前馈控制应用

前馈控制的应用大中小前述几种协调控制方式采用的都是反馈控制方案,实际上,为了提高控制质量,协调控制方式所采用的控制系统是前馈—反馈控制系统。

采用前馈控制的目的有两个:一是补偿被控对象(主要是锅炉侧)动态特性的迟延和惯性,加快负荷响应;二是使作为前馈信号的负荷指令与机、炉主控制指令(代表对燃烧率、汽轮机调门开度等操作量的要求)构成一定的静态关系,并且将前馈信号作为机、炉主控制指令的基本组成部分,以保证机组的输入能量与能量需求基本一致,在变负荷控制过程中起“粗调”作用。

负荷前馈控制的重点是锅炉侧。

为了补偿锅炉侧的动态迟延和惯性,前馈控制作用中除了比例(P)作用(静态前馈)以外,还包括微分(D)作用(动态前馈),它起超前控制作用,加速锅炉的负荷响应。

对于汽轮机侧,采用前馈控制,主要是要求汽轮机的调门开度或汽轮机负荷与负荷指令保持一致。

因此,通常只采用静态前馈控制,这样,如果一旦单元机组与电网突然解列,可迅速切除负荷指令,使调门立即关小,防止过分超速。

锅炉侧的前馈控制信号来源有两种:一种是负荷指令N0信号;另一种是蒸汽流量信号。

两种信号性质不同,前者为电网对机组的负荷要求;后者为汽轮机对锅炉的负荷要求。

无论哪种信号,都代表了对锅炉的能量要求。

通过前馈控制,锅炉的输入能量与能量要求随时保持平衡。

一、前馈控制信号为负荷指令N0这是一种较常用的前馈控制方案,如图10-16所示。

当负荷指令N0改变时,通过前馈控制器(P)立即改变汽轮机主控指令MT,使汽轮机调门开度(或汽轮机功率)作相应改变。

同时,通过前馈控制器(PD)立即改变锅炉主控指令MB,使燃烧率相应改变。

微分(D)控制作用使燃烧率动态超前动作,加速锅炉的负荷响应。

前馈控制还使MB和MT始终与N0保持一致。

通常,在前馈“粗调”的基础上,反馈控制只需对偏差稍加校正(“细调”),即可使系统趋于稳定。

一定程度上克服了反馈控制需待偏差产生后才发出控制作用的缺点,使负荷控制质量大为提高。

主控DCS控制系统简介

主控DCS控制系统简介
9/ GE / Xinhua Learning Center
新华的DAS系统具有如下特点: 1. 显示功能 • • • • 汉化的人机界面,易于理解和记忆 合理的分层显示结构,便于监视更多参数 操作界面简单直观、图形响应速度快速 预定义或用户专用的直接调用功能,方便快捷
10 / GE / Xinhua Learning Center
炉膛安全监控系统FSSS简述
炉膛安全监控系统 FSSS 是现代大型火力发电机 组锅炉设备必须具备的一种监控系统。 其主要作用就是能够在锅炉正常启停和相关设 备操作时,连续监视炉膛燃烧的状态,进行逻辑判 断,发出各种运行指令,使各种联锁的燃烧设备严 格按照既定的合理程序完成必要的操作。 在发生异常工况或者出现操作失误时,做出快 速反应,防止炉膛内部任何部位燃料堆积,避免发 生锅炉爆燃等事故,保证人员和锅炉设备的安全。
DCS系统简单介绍
DCS 各子系统介绍
1/ GE / Xinhua Learning Center
Байду номын сангаас
DCS系统典型网络结构图
2/ GE / Xinhua Learning Center
3/ GE / Xinhua Learning Center
• 分散控制系统DCS概述 • 数据采集系统DAS简述 • 模拟量控制系统MCS简述 • 炉膛安全监控系统FSSS简述 • 顺序控制系统SCS简述 • 电气综合保护监控系统ECS简述 • 辅机控制系统BOP简述 • 烟气脱硫控制系统FGD简述
24 / GE / Xinhua Learning Center
2. 燃烧自动控制系统 燃烧自动控制系统的目的是控制锅炉燃料燃烧过 程,使得燃料燃烧所产生的热量与外界对锅炉的蒸汽 需求相适应,同时保证锅炉的安全经济运行。 燃烧自动控制包括燃料量控制、送风量控制以及 炉膛压力控制三项主要内容。 根据制粉系统的不同,燃料量控制具体分为给粉 机转速控制(中储式)、给煤机转速控制(直吹式) 以及容量风量控制(双进双出钢球磨)。 锅炉风烟系统过程参量的调节在反馈控制的基础 上,主要通过增加各种工况下的前馈以达到消除系统 扰动,维持稳定、安全运行的目的。

单元机组主控系统(中英对照翻译)

单元机组主控系统(中英对照翻译)

单元机组主控系统Master Control System of Unit Plant单元机组主控系统一般设置有四种运行方式:即汽轮机手动控制,锅炉手动控制的基本方式(BASE方式);以锅炉为基础的汽轮机跟随方式(TF方式);以汽轮机为基础的锅炉跟随方式(BF方式)和汽轮机一锅炉综合功率控制的协调控制方式(CCS方式)。

四种运行方式之间的切换必须是平稳无扰动的。

操作员可根据机组的运行情况进行选择。

一般情况下,机组适宜在滑压控制方式和CCS方式下运行。

事故工况时,则通常选择在TF方式和定压方式下运行。

The master control system of the unit plant generally provides four modes of operation, including the base mode of steam turbine manual control and boiler manual control; the boiler-based turbine following mode (TF mode); the steam turbine-based boiler following mode (BF mode), and the Coordinated Control System (CCS) mode of steam turbine-boiler integrated power control. Switching amongst the four modes must be smooth without disturbance. The operator may make choices based on the unit running conditions. Under normal circumstances, the unit is suitable to operate in the sliding pressure control mode and the CCS mode. In accident conditions, it will usually run in the TF mod and the constant pressure mode.单元机组主控系统的前三种运行方式的根本区别在于对功率和主汽压力的控制处理上。

1.5WM机组主控系统介绍

1.5WM机组主控系统介绍

数字量输出模块用于驱动电磁阀、接触器、小功率电动机、灯和电动机启动器等负载。数 字量输出模块将CPU内部信号电平转化为控制过程所需的外部信号电平,同时有隔离和功率放 大的作用。输出模块的功率放大元件有驱动直流负载的大功率晶体管和场效应晶体管、驱动交 流负载的双向晶闸管或固态继电器。(如图所示)
模拟量输入模块用于将模拟量信号转换为CPU内部处理用的数字信号,其主要组成是A/D 转换器。(如图所示)
模拟量输出模块用于将CPU送给它的数字信号转换成为比例的电流信号或电压信号,对执 行机构进行调节或控制,其主要组成部分是D/A转换器。(如图所示)
3.4、倍福PLC模块
KL9010是K_BUS终端端子(模块)
KL9010总线末端端子可用于总线 耦合器和总线端子之间的数据交换。 每一个站都可在右侧使用KL9010 作为总线末端端子。总线末端端子 不具有任何其它功能或连接能力。
PLC工作时大多数时间与外部输入/输出设备隔离,从根本上 提高了系统的抗干扰能力,增强了系统的可靠性。
3.3、PLC输入和输出模块的基本原理
数字输入模块用于连接外部的机械触点和电子数字式传感器,例如二线式光电开关和接近开 关等。数字量输入模块将从现场传来的外部数字信号的电平转换为PLC内部的信号电平。输入电 路中一般设有RC滤波电路,以防止由于输入触点的抖动或外部干扰脉冲引起的错误输入信号,输 入电流一般为数毫安。(如图所示)
பைடு நூலகம்
维护模式激活 No
OR
Yes No
停机正常
Yes
维护
OR
Yes 维护模式激活 No
维护模式下电 No
机转速故障
Yes
OR
5.2 启动和并网控制
风力发电机的起动和并网过程如下:由风向传感器测出风向主控制 器使偏航驱动机构动作,从而使风力发电机组对准风向。同时检测风速 (只要有风发电机转子就有转动,随着风速的增加发电机的感应电压也 逐步增加,即电机端电压逐步升高),当风速超过切入风速时,机组开 始启动,当机组达到一定条件时,通过全功率变流器控制的功率模块和 变流器网侧电抗器、电容器的LC滤波作用使系统输出电压等于电网电压、 频率也达到并网条件,同时检测电网电压与变流器网侧电压之间的相位 差,当其为零或相等(过零点)时实现并网发电(这些条件在金风 1.5MW机组里全部通过变流装置的控制来实现,变流装置通过锁相控制 和SPWM调制等使机组输出达到并网条件)。

风机主控系统培训

风机主控系统培训

3.保养维护
3.6模拟量输入、输出模块:
8路模拟量输入 •±10V ;±1V ;0 .. 20 mA;PT100
8路模拟量输出 •±10V
14 bit数字分辨率
带端口监视功能 •能够监视输入端口短路或断路状态 •可通过软件配置 •出现故障时RDY灯会闪烁
3.保养维护
3.6模拟量输入、输出模块引脚图:
2.主控系统的装配
2.4附件: 速度开关、风速传感器、风向传感器、
振动开关、振动分析模块、凸轮开关、转速 传感器、温度传感器。
3.保养维护
3.1中央处理器:
系统状态指示 RUN绿色:正常 INIT橙色:系统初始化 ERR红色:系统错误
系统拨码开关 (默认44)
USB1.1接口
DC24V电源接口
CANOpen
低速轴测速盘齿数:24; 高速轴、发电机测 速盘齿数:2。
3.保养维护3.20Fra bibliotek机对北:1)、当风机吊装完后,机舱与地理北向有一个角度; 2)、电缆应保持上电前的垂直悬挂、无缠绕状态(0°); 3)、主控系统维护菜单模式下的“电缆缠绕角度”以及 参数“机舱安装对北偏差”均设定为0°。 4)、手动顺/逆时针偏航风机至地理北向位置(注:在 此过程中“电缆缠绕角度”以及“机舱位置偏移角度”将 显示相同的度数)。在主控系统维护菜单下查看此时电缆 缠绕角度,并将参数“机舱安装对北偏差”设定为此值。 5)、现在“机舱位置偏移角度”将显示为0°,但电缆 缠绕角度值没有变化,及代表此时正常的电缆缠绕角度值。 6)、因现场风机安装角度差异,每台风机“机舱安装对 北偏差”值均不一样。
3.保养维护
3.12电力测量模块(电量变送器)典型接线
高压:三相四线 Y形接线 采用 3CT、3PT

机组控制系统介绍

机组控制系统介绍
金风1500千瓦直驱风力发电机组系统结构图
电机侧功率单元 主电缆
AC DC DC
适合接入电网的频率:50/60 Hz 电压:620VAC(+/-10%) ; 标准功率因数:1.0, 无功功率的调节范围:-0.95~0.95 ; 运行温度(以外界环境运行为准):零下 30℃ ~零上 50℃ ; 采用风冷散热、集中控制方式 。
二、机组主控制系统的组成及功能
机组中用到的贝福模块(或功能端子) 1、主控制器CX1020 2、控制器供电电源CX1100-0002 3、Profibus-DP通信主站模块CX1500-M310 4、子站通信模块BK3150(总线耦合器) 5、子站通信模块BC3150(总线端子控制器) 6、4通道数字量输入端子KL1104 7、4通道数字量输出端子KL2134 8、8通道数字量输出端子KL2408 9、4通道模拟量输入端子KL3204 10、电力测量端子KL3403
主控系统
冷却系统
监控系统
变桨传感器 变桨执行器 变桨控制单元 备电系统
整流单元 逆变单元 直流保护单元 控制单元 滤波单元
控制单元 传感器单元 执行单元 总线系统
风冷系统 水冷系统
以太网通信网络系统 人机交互监控系统
一、金风1.5兆瓦风力发电机组的控制系统
控制系统各个部分的主要功能
人机交互 ▲风机控制 ▲参数设置 ▲查阅信息 网络/远程监控 ▲统计报表 ▲风机控制 ▲参数设置 ▲查阅信息
二、机组主控制系统的组成及功能
2、控制器供电电源CX1100-0002
CX1100-0002模块是系统可以选择的三种电源模块中的一种。所有其他系统组件的 电源通过内置 PC104 总线供电,无需单独的电源线。然而,CX1100 组件除了提供电源 以外,还可具有其他重要特性:集成的 NOVRAM 可实现 故障情况下过程数据的安全存 储。有两行字符(每行 16 个字符)的 LCD 显示器用于显示系统和用户信息。

MY1.5-2.0MW机组电控系统介绍(主控)

MY1.5-2.0MW机组电控系统介绍(主控)
度地获取能量。
7、可靠、快速地变频调节发电机功率及功
率因数。
8、输出功率稳定,提供优质电能。
9、三桨叶独立的变桨传动控制单元。
10、完善的自动偏航功能。
11、优化的控制策略可提高抗台风能力。
安全链原理
• 安全链原理
安全链是独立于计算机系统的最高一
级保护措施。采用反逻辑设计,将导致
风力发电机组处于危险状态的故障接点
超速监视器超速信号
PLC系统故障
安全链动作示意图
安全链触发机组动作
机组紧急停机,发出变桨紧急顺桨(EFC)
信号,桨叶由市电或蓄电池供电转到91º触
发限位开关
◆转子制动器抱闸(在转速监视器设定转速
以下)。
◆机舱部分DO输出24VDC电源断开,输出指令
切断
安全链复位
复位安全链:
按下机舱柜上的复位安全链按钮;或
传输到PC控制器上。
数据实时扫描时间10毫秒,安全端子扫描
时间为4毫秒。
TwinCATSAFE安全端子独立于CPU运行,当
CPU出现故障时,安全系统保证机组在极端
情况下的顺利停机。
先进的控制策略
先进的控制策略
1、具有自主知识产权的控制原代码,已完
全消化吸收。
2、控制代码多达20万行,具有完善的机组
EL9400(+24V), KL9550(+24V)
KL9540(+24V), EL9187(0V)。
通讯模块:
EK1100,EL6751(CANBUS),EL6731(Profibu
s),EK1110(总线耦合器)
主控系统简介
主控系统简介
先进的控制系统
200个分布在机舱和塔基的IO点通过总线

风力发电机组控制系统

风力发电机组控制系统

风力发电机组控制系统摘要:主控系统是风力发电机组的核心,通过数字量和模拟量的输入来完成数据的采集,然后根据内部设定的程序,完成逻辑功能的判断,最后通过模拟量和数字量的输出达到控制机组和保障机组安全稳定运行的目的。

关键词:数据;逻辑;控制1主控系统工作内容⑴主控系统是机组可靠运行的核心,主要完成以下工作:⑵采集数据并处理输入、输出信号;判定逻辑功能;⑶对外围执行机构发出控制指令;⑷与机舱柜及变桨控制系统进行通讯,接收机舱柜及变桨控制系统的信号;⑸与中央监控系统通讯、传递信息。

2数字模拟⑴数字输入模块用于连接外部的机械触点和电子数字式传感器,例如二线式光电开关和接近开关等。

数字量输入模块将从现场传来的外部数字信号的电平转换为PLC内部的信号电平。

输入电路中一般设有RC滤波电路,以防止由于输入触点的抖动或外部干扰脉冲引起的错误输入信号,输入电流一般为数毫安。

⑵数字量输出模块用于驱动电磁阀、接触器、小功率电动机、灯和电动机启动器等负载。

数字量输出模块将CPU内部信号电平转化为控制过程所需的外部信号电平,同时有隔离和功率放大的作用。

输出模块的功率放大元件有驱动直流负载的大功率晶体管和场效应晶体管、驱动交流负载的双向晶闸管或固态继电器。

⑶模拟量输入模块用于将模拟量信号转换为CPU内部处理用的数字信号,主要由A/D转换器组成。

⑷模拟量输出模块将CPU送给它的数字信号转换成电流信号或电压信号,对执行机构进行调节或控制,主要由D/A转换器组成。

⑸CX5020:金风2.0MW主控系统选用CX5020为主控系统的核心控制器CX5020带有两个独立的以太网端口(可定义两个独立的IP地址)和四个USB2.0接口。

一块位于盖板后面并可从外部拆装的可互换的CF卡作为CX5020的引导和存储介质,CX5020还内置了一个1秒钟UPS,可确保在CF卡上安全备份持久性应用数据,目前CX5020选用的操作系统是Windows CE,可以通过CERHOST软件进行访问。

2.5MW主控系统软件

2.5MW主控系统软件
0rpm,则触发转子刹车投入测试失败故障。 ➢ 如果在定义的时间(进入刹车投入测试开始 30s)后,发电机转速不大于
0rpm,则转入变桨系统和变桨电池测试。
机组运行状态说明
变桨系统和变桨电池测试(STARTUP_CHECK_ACCU_PITCH)
➢ 启动变桨系统进入自检测试状态(后备电源驱动变桨),使叶片返回到停 机位置。
➢ 发出变频器停止命令(停止网侧)。 ➢ 如果变频器准备好、没有故障、没有警告,则转入待风空转
机组运行状态说明
停机(OPERATION_STOP)
➢ 机组出现故障事件、停机命令、无条件解缆命令等后,机组将执 行停机。按照故障等级不同分别执行维护停机、正常停机、快速 停机、紧急停机。其中紧急停机分为紧急停机 1、紧急停机 2( 手动),分别执行不同的操作。另外,还设置有警告事件和运行 信息,只发出警告和信息,机组不会停机。
Winddesk简介
Winddesk简介
Winddesk简介
Winddesk简介
Winddesk简介
Winddesk简介
Winddesk简介
Winddesk简介
Winddesk简介
四、SCADA界面简介
SCADA界面简介
SCADA是以计算机网络为基础对风电场中的 风电机组进行远程控制、监测的自动化系统, 由1套中央监控系统、1套能量管理平台、2 套远程监视系统(可以多套)组成。
中国船舶重工集团海装风电股份 有限公司
2.5MW主控及监控系统软件介绍
目录
主控网络结构说明 风场网络结构说明 Winddesk简介 SCADA界面简介
机组运行状态说明
图纸介绍 常见故障处理
一、主控网络结构说明
主控网络结构说明

风力发电机组主控制系统

风力发电机组主控制系统

密级:公司秘密型风力发电机组主控制系统说明书编号KF20-001000DSM版本号A东方汽轮机有限公司2014年7 月编制<**设计签字**> <**设计签字日期**> 校对<**校对签字**> <**校对签字日期**> 审核<**审核签字**> <**审核签字日期**> 会签<**标准化签字**> <**标准化签字日期**><**会二签字**> <**会二签字日期**><**会三签字**> <**会三签字日期**><**会四签字**> <**会四签字日期**><**会五签字**> <**会五签字日期**><**会六签字**> <**会六签字日期**><**会七签字**> <**会七签字日期**><**会八签字**> <**会八签字日期**><**会九签字**> <**会九签字日期**> 审定<**审批签字**> <**审批签字日期**>批准<**批准签字**> <**批准签字日期**> 编号换版记录目录序号章节名称页数备注1 0-1 概述 12 0-2 系统简介 13 0-3 系统硬件114 0-4 系统功能 55 0-5 主控制系统软件说明126 0-6 故障及其处理说明640-1概述风能是一种清洁环保的可再生能源,取之不尽,用之不竭。

随着地球生态保护和人类生存发展的需要,风能的开发利用越来越受到重视。

风力发电机就是利用风能产生电能,水平轴3叶片风力发电机是目前最成熟的机型,它主要是由叶片、轮毂、齿轮箱、发电机、机舱、变频器、偏航装置、刹车装置、控制系统、塔架等组成。

风电机组主控部分介绍

风电机组主控部分介绍

水冷2
测量柜
变流柜
机舱柜
E总线结构
1号变桨柜
2号变桨柜
3号变桨柜
20
三、主控系统
3.3 人机显示系统
菲尼克斯面板机,5.7英寸屏幕,支持按键操作,24VDC供电, 通过ADS以太网与主控PLC通讯
21
三、主控系统
3.3 人机显示系统
网页版就地监控,控制器内置WEB服务器,支持IE浏
览器,可通过IP地址对任一风机进行监控。
*
输入点数 连接
4
输入信号
4
输出信号
4
输入信号
1
输出信号
4 电阻传感器
*
编码器
8
输入信号
4
输出信号
4
输入信号
2
输出信号
4 电阻传感器
* 增量编码器
拔插
常见倍服端子模块
13
二、重要零部件
2.5 电能表
西门子
WOODWARD
14
二、重要零部件
2.6 三相监视器
15
三、主控系统
3.1 主控系统
金风MW机组主控系统采用BECKHOFF的CX1020控制器,是 整个风力发电机组的大脑: ✓ 整机状态的切换:初始化->待机->启动->并网->停机->维护 ✓ 逻辑判断:各部分状态反馈,采集信号逻辑判断等 ✓ 故障保护:触发故障停机,分故障停机、快速停机、紧急停机 ✓ 整机的协调控制:变流,变桨控制等 ✓ 整机的控制算法 :冷却算法,滤波器,PI控制等
1 x 电源,2 x LAN 链接/功能, TC 状态,1 x 闪存存取 1 x I + II 型 CF 卡,带弹出装 置

空调机组控制原理

空调机组控制原理

空调机组控制原理
1.控制系统架构:空调机组的控制系统通常包括主控制器、调节器、
执行器等组成。

主控制器是整个控制系统的核心,负责接收各个传感器的
输入信号,并对机组进行统一的控制和管理。

调节器则根据主控制器的指令,调节空调机组的工作状态。

执行器则执行调节器的指令,完成各个部
件的调节。

2.传感器和执行器:空调机组的控制系统需要使用各种传感器来感知
环境参数和机组运行状态,并通过执行器来控制各个部件。

常用的传感器
包括温度传感器、湿度传感器、压力传感器等。

温度传感器用于感知室内
和室外温度,湿度传感器用于感知室内和室外湿度,压力传感器用于感知
制冷剂的压力。

执行器一般包括电动阀、风机、压缩机等。

3.控制策略:空调机组的控制系统需要根据环境需求和设定参数来制
定相应的控制策略。

常见的控制策略包括温度控制、湿度控制、新风控制等。

温度控制是根据室内和室外的温度差异来控制制冷或制热功能的开启
和关闭,以保持室内温度在一个设定范围内。

湿度控制是根据室内和室外
的湿度差异来控制加湿或除湿功能的开启和关闭,以保持室内湿度在一个
设定范围内。

新风控制是根据室内空气质量和人员密度等因素来控制新风
量的大小,以保持室内空气的新鲜度。

综上所述,空调机组控制原理是通过主控制器对传感器信号进行处理,并根据设定的控制策略来控制执行器的工作,从而实现对空调机组的控制
和管理。

空调机组控制原理的目标是使机组能够根据环境需求和设定参数,自动实现合适的制冷、制热、新风等功能,从而保持室内环境的舒适度和
空气质量。

三一电气风力发电机组主控系统

三一电气风力发电机组主控系统
通讯网络
三三一一重电能气
• 内部通讯是指控制器与变桨、 变流、智能传感器的数据交换。 通常 是由工业现场总线实现, 包括:CANOPEN、PROFIBUS、 RS485等。
• 外部通讯是指主控与远端数据 服务器,多个风机控制器之间 的数据传输,通常使用 EtherNET TCP/IP(局域网络) 实现。
品质改变世界
三、 主控产品组成部分(软件)
主控系统监控界面
三一电气风场监控系统是建立 在3C+S基础上的风力发电场自 动化检测调度系统。 通过监控系统实现对风电场的 风机进行远程实时监测、控制 和诊断,实现风电场的优化运 行,以及通过远程启动、停止 、复位,最大限度地减少现场 考察和维护管理。
三三一一重电能气
图3.9主控系统监控界面 30
品质改变世界
三、 主控产品组成部分(软件)
强大的数据分析功能
三三一一重电能气
图3.10 监控系统数据分析界面 31
品质改变世界
三、 主控产品组成部分(软件)
风场信息化架构
三三一一重电能气
图3.11 风场网络架构 32
品质改变世界
三、 主控产品组成部分(软件)
监控组网案例
20
三三一一重电能气
品质改变世界
三、 主控产品组成部分(电气)
电气部分
三三一一重电能气
¾ 电气部分(即硬件组成部分)是主控系统的实物载体,与风机中的各 种外围设备如发电机、齿轮箱、液压站、变桨系统、变流器等之间形 成电气连接,收集反馈信号,并根据相应的动作逻辑,确保主控系统良 好地控制各种外围设备,使各设备能够相互谐调配合运行。
国内没有研发能力,增加新功能困难 人机界面中文化不完全,操作12复杂

风电主控系统解决方案

风电主控系统解决方案

风电主控系统解决方案主控系统是现代风力发电机的神经中枢。

和利时风电主控系统可根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网,并监视齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机。

保证风电机组安全可靠运行,实现自然风的最大利用率和最高的能量转化率,向电网提供良好的电能。

目前国内监控系统的下位机是指风电机组的控制器。

对于每台风力发电机组来说,即使没有上位机的参与,也能安全正确地工作。

所以相对于整个监控系统来说,下位机控制系统是一个子系统,具有在各种异常工况下单独处理风电机组故障,保证风电机组安全稳定运行的能力。

LK207作为此控制系统的主控制器,通过检测电网参数、风况、现场温度参数,对风电机组进行并、脱网控制,同时根据风况进行偏航、变桨等动作,以进行优化控制,从而提高风电机组的运行效率与发电质量。

和利时风电主控系统由电源系统、CPU模块、IO模块、底板、特殊功能模块、通讯网络、HMI面板以及调试PC等组成。

主控站安装于风电机组塔筒底部,与机舱站通过现场总线进行通讯,与远程监控系统和人机界面通过工业以太网进行通讯;对风电机组整体运行进行控制和监测;通过现场总线实现与变桨系统和变流系统通讯。

机舱站以远程IO方式,通过现场总线与主控制器、变桨控制系统进行通讯。

机舱站用于采集电网电量信息,记录风向、风速、发电机转速及温度等数据,控制偏航、扭揽。

机舱站通过光纤介质与塔底主控站进行通讯。

人机界面安装于风电机组塔底和机舱,通过工业以太网与主控制器通讯;用于完成系统运行状态控制和显示、风电机组参数设置、历史数据的查询和统计、故障记录的查询等工作。

通过设置用户访问权限,保证风电机组操作的安全可靠。

以太网交换机将每台风电机组数据,通过光纤介质,发送到中央监控系统中。

风电机组与风电机组之间采用环网拓扑结构。

优势及特点开放性强。

支持多种现场总线协议,如Modbus、PROFIBUS-DP、CANopen、自由口等,同时提供多种接口方式选择。

风电机组主控系统培训课件

风电机组主控系统培训课件
运行数据可以通过连接到远程通讯模块或因特网的PC机进行历史数 据的调用,也就是说,风机的完整的状况信息可以被熟悉的操作人员和 维护人员获知利用。但是要提供安全密码等级,正确的安全密码才允许 远程控制。
二、风机控制系统的作用-基本功能
并网运行的FD型风力发电机组的控制系统具备以下功能: ① 根据风速信号自动进入启动状态或从电网切出。 ② 根据功率及风速大小自动进行转速和功率控制。 ③ 根据风向信号自动偏航对风。 ④ 发电机超速或转轴超速,能紧急停机。 ⑤ 当电网故障,发电机脱网时,能确保机组安全停机。 ⑥ 电缆扭曲到一定值后,能自动解缆。 ⑦ 当机组运行过程中,能对电网、风况和机组的运行状况进行检
1安全链 安全链是一个硬回路,由所有能触发紧急停机的触点串联而成,任何一个触发都 会导致紧急停机。以下是构成紧急停机的信号点:
位于机舱控制柜上的紧急停机按钮,机舱内便携式控制盒停机按钮,变频器控制 柜上的紧急停机按钮。
低速轴超速信号,发电机转速超速信号。 超过额定功率的1.5倍。 振动超限 主控系统触发的变浆控制失败 电缆扭曲: ±4旋转 2变浆控制 三个叶片变桨分别由三个带变频控制的三个直流电机驱动,通过L+B控制器同步调 整动作。如果是电网故障或安全停机,每个电机的电源由各自的后备蓄电池提供。 变桨控制除了调节功率外,还作为三重冗余保护。每个叶片多安装有一个角度编 码器,每个电机也装有一个编码器,在运行中, L+B控制还监视变桨电机的电流 和温度,三个蓄电池循环充电控制,蓄电池电压检测,并通过串口与控制器通讯 进行数据传输。 3安全刹车 风机装有两个刹车卡钳,通过作用在装在高速轴上的刹车盘来止动。刹车卡钳直 接安装在齿轮箱壳体上。止动时靠弹簧力,张开时靠液压力。
二、风机控制系统的作用-检测风机运行状态

国产风电机组主控系统开发与应用

国产风电机组主控系统开发与应用

国产风电机组主控系统开发与应用摘要:风机主机是整个风力发电装置的关键,而主机的自主生产水平不高,且对国外的依赖性很强,成为风力发电装备中最脆弱的一环。

本课题以风力发电PLC为研究对象,以解决其软件和硬件适应性差,缺乏CAN开放式通讯组件为目标,设计了基于CPU和FPGA的风力发电PLC组件,并开发了基于CAN开放式通讯组件的风力发电PLC组件。

经过专业的第三方检测,本公司研制的国产风机主要控制系统在功能、性能和可靠性等方面均完全符合风机的使用要求。

经过在陆地上2MW、海上5MW的风机示范应用,和在陆地上1.5MW风机的批次应用,结果证明,这个风机的主控系统已经具有了很高的实时性、极高的环境适应性和抗电磁干扰等能力,可以充分地满足各种风机的使用需求,这也意味着,在中国,风机的控制中心已经实现了完全自主可控。

关键词:风电机组;主控系统;华能睿渥风电PLC;国产化;开发应用引言当前,我国风力发电设备的主控体系中,大多数采用的程序逻辑控制器(PLC)都是从国外引进的,其软件和硬件技术都是从外国引进的,其安全性和可控性还有待进一步提高。

以目前的全球形势来看,若“敏感”的晶片被禁止出售,风力发电可编程控制器将会有组件供应不足的危险。

此外,如果被他人利用“漏洞”、“后门”等技术方法“劫持”了该芯片,则可能导致风力发电机的控制系统出现故障,并给以新能源为主的电网带来严重危害。

为此,迫切需要研究和发展一种自主可控的、安全可靠的风力发电PLC。

1风电机组主控系统国产化现状当前风力发电机控制中所使用的可编程控制器,以德国倍福PLC、奥地利巴合曼PLC为主,其余分别为ABB、贝加莱、西门子等。

国内风力发电系统的主要控制系统,如南大傲拓的NJ300系统和国电的EPF-CP系统等,已经进行了初步的试验和使用。

更加严重的问题是,不论是一套成熟的进口的、还是一套示范的国产的,它们的中央处理器(CPU)、现场可编程门阵列(FPGA)、微控制单元(MCU)、DDR3、Flash、EEPROM、以太网PHY芯片等关键芯片,都使用了或部分使用了进口的商品,因此,它们的可控的风险比较高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字量输出模块用于驱动电磁阀、接触器、小功率电动机、灯和电动机启动器等负载。数 字量输出模块将CPU内部信号电平转化为控制过程所需的外部信号电平,同时有隔离和功率放 大的作用。输出模块的功率放大元件有驱动直流负载的大功率晶体管和场效应晶体管、驱动交 流负载的双向晶闸管或固态继电器。(如图所示)
模拟量输入模块用于将模拟量信号转换为CPU内部处理用的数字信号,其主要组成是A/D 转换器。(如图所示)
三、PLC模块的功能及组态结构
3.1、PLC的基础知识
什么是PLC?
可编程序控制器(Programmable Logic Controller)简称PLC,国际电工委员会(IEC)于 1987年颁布了可编程控制器标准草案第三稿。在草案中对可编程控制器定义如下:
“可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。它采用可编 程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令, 并通过数字式和模拟式的输入和输出,控制各种类型的机械或生产过程。可编程控制器及其有关外
各个功能模块内部的通讯图
主控制器通过现场总线Profibus-DP与各个子站进行交互通讯,各个功能模块通 过K-Bus总线进行通讯,主CPU通过PC104总线进行内部通讯。
模拟量输出模块用于将CPU送给它的数字信号转换成为比例的电流信号或电压信号,对执 行机构进行调节或控制,其主要组成部分是D/A转换器。(如图所示)
3.4、倍福PLC模块
KL9010是K_BUS终端端子(模块)
KL9010总线末端端子可用于总线 耦合器和总线端子之间的数据交换。 每一个站都可在右侧使用KL9010 作为总线末端端子。总线末端端子 不具有任何其它功能或连接能力。
围设备,都应按易于与工业系统联成一个整体,易于扩充其功能的原则设计”。
PLC有什么特点?
1、通用性强,使用方便; 2、功能强,适应面广; 3、可靠性高,抗干扰能力强 ; 4、编程方法简单,容易掌握 ; 5、PLC控制系统的设计、安装、调试和维修工作量少,极为方便。控制程序变化方便,具有很好的 柔性; 6、体积小、重量轻、功耗低。
PLC执行程序的过程
输入和输出
★ 集中采样: 在一个扫描周期中,对输入状态的采样只在输入处理阶段进行。当PLC
进入程序处理阶段后输入端将被封锁,直到下一个扫描周期的输入处理阶段 才对输入状态进行重新采样。 ★集中输出:
在用户程序中如果对输出结果多次赋值,则最后一次有效。在一个扫描 周期内,只在输出处理阶段才将输出状态从输出映象寄存器中输出,对输 出接口进行刷新。在其它阶段里输出状态一直保存在输出映象寄存器中。
机组的主控制器
CX1500-M310
CX1020
CX1100 KL9210 KL6904 KL9010
主控器由CX1500-M310模块负责DP通讯,由CX1020负责机组程序 的逻辑判断,由CX1100负责CPU的供电及后续模块的通讯,由KL9210负 责后续模块的供电,由KL6904负责安全链的判断和管理。
PLC工作时大多数时间与外部输入/输出设备隔离,从根本上 提高了系统的抗干扰能力,增强了系统的可靠性。
3.3、PLC输入和输出模块的基本原理
数字输入模块用于连接外部的机械触点和电子数字式传感器,例如二线式光电开关和接近开 关等。数字量输入模块将从现场传来的外部数字信号的电平转换为PLC内部的信号电平。输入电 路中一般设有RC滤波电路,以防止由于输入触点的抖动或外部干扰脉冲引起的错误输入信号,输 入电流一般为数毫安。(如图所示)
金风1.5兆瓦机组主控制系统工作原理讲解
作者:孙伟
主要内容: 一、1.5MW风力发电机组电气控制系统的组成 二、 1.5MW风力发电机组电气控制系统的拓扑结构 三、PLC模块的功能及组态结构 四、现场总线profibus—DP 五、主控系统的功能
一、1.5MW风力发电机组电气控制系统的组成
直驱1.5MW电控系统组成
金风1.5MW风力发电机组的主控系统以德国beckhoff公司生 产的嵌入式PLC控制器为核心。PLC控制器主要实现风力发电机 组的过程控制、安全保护、故障检测、参数设定、数据记录、数 据显示以及人工操作,配备有多种通讯接口,能够实现就地通讯 和远程通讯。采用PROFIBUS-DP现场总线组网,安全可靠。其 中主控系统是机组可靠运行的核心,主要完成数据采集及输入、 输出信号处理;逻辑功能判定;对外围执行机构发出控制指令; 与机舱柜及变桨控制系统通讯,接收机舱柜及变桨控制系统的信 号;与中央监控系统通讯、传递信息。
网络/远程监控
▲统计报表 ▲风机控制 ▲参数设置 ▲查阅信息
主控制器(风机系统逻辑控制)
▲风机正常工作逻辑控制 ▲故障诊断及保护 ▲数据采集/统计
变浆系统
▲桨距调节 ▲桨距角采集 ▲异常保护
变流系统
▲电力变换 ▲功率控制 ▲转矩控制 ▲功率因数调节
传感器
▲数字量采集 ▲模拟量采集
二、 1.5MW风力 发电机组电气控 制系统的拓扑结 构
PLC的应用
1、开关量逻辑控制 ;2、运动控制 ;3、闭环过程控制 ;4、数据处理 ;5、通讯联网
PLC的组成 PLC由四部分组成 :中央处理单元(CPU板)、输入输出(I/O)部件和电源部件
3.2、PLC的工作原理
PLC采用分时操作原理,从第一条程 序开始,在无中断或跳转控制的情况 下,按程序存储顺序的先后,逐条执 行执行程序,直到程序结束。然后再 从头开始扫描执行,并周而复始地重 复进行。由于CPU的运算处理速度很 快,所以从宏观上来看,PLC外部出 现的结果似乎是同时完成的。整个过 程包括内部处理、通信服务、输入处 理、程序执行、输出处理五个阶段。
变桨系统
变流系统
主控系统
监控系统
变 桨 传 感

变 桨 执 行
器 件
变 桨 控 制
单 元
变 桨 备 电
整逆保控滤 流变护制波 单单单单单 元元元元元
控 制 单 元
传 感 器 单

执 行 单 元
总 线 系 统
工 业 以 太 的关系
人机交互
▲风机控制 ▲参数设置 ▲查阅信息
相关文档
最新文档