【2份】江苏省2016年高考数学(文)复习高考仿真卷
【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析
考纲解读明方向分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。
3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。
2016年高考理科数学全国卷2(含详细答案)
数学试卷 第1页(共39页) 数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)理科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,{0}1,2M =,2{|320}N x x x =-+≤,则M N = ( )A .{1}B .{2}C .{0,1}D .{1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12i z =+,则12z z =( )A .5-B .5C .4i -+D .4i -- 3.设向量a ,b 满足|a +b||a -b|=则a b =( )A .1B .2C .3D .5 4.钝角三角形ABC △的面积是12,1AB =,BC =,则AC =( )A .5BC .2D .15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.456.如图,网格纸上正方形小格的边长为1(表示1 cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59 C .1027D .137.执行如图的程序框图,如果输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .7 8.设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a =( ) A .0 B .1 C .2D .39.设x ,y 满足约束条件70,310,350,x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥则2z x y =-的最大值为( )A .10B .8C .3D .210.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,O 为坐标原点,则OAB △的面积为 ( )ABC .6332D .94 11.直三棱柱111ABC A B C -中,90BCA ∠=,M ,N 分别是11A B ,11AC 的中点,1BC CA CC ==,则BM 与AN 所成角的余弦值为( )A .110B .25 CD12.设函数π()3sin x f x m,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.10()x a +的展开式中,7x 的系数为15,则a = (用数字填写答案). 14.函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为 .15.已知偶函数()f x 在[0,)+∞上单调递减,(2)0f =,若(1)0f x ->,则x 的取值范围是 .16.设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得45OMN ∠=,则0x 的取值范围是 .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 满足11a =,131n n aa +=+.(Ⅰ)证明:1{}2n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1211132n a a a ++⋅⋅⋅+<.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB平面AEC ;(Ⅱ)设二面角D AE C --为60,1AP =,AD =求三棱锥E ACD -的体积.19.(本小题满分12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:121()()ˆ()nii i ni i tt y y bt t ==--=-∑∑,ˆˆay bt =-.20.(本小题满分12分)设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左、右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b .21.(本小题满分12分)已知函数()e e 2x xf x x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.4142 1.4143<,估计ln2的近似值(精确到0.001).请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时填写试题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,π0,2θ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :2y +垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4—5:不等式选讲设函数1()||(0)f x x x a a a =++->.(Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围.3 / 132016年普通高等学校招生全国统一考试(全国新课标卷2)【解析】集合A B {0,1,2,3}=A B 的值.【解析】向量a(4,m),b(3,2)-,a b (4,m ∴+=-又(a b)b +⊥,12∴-【提示】求出向量a b +的坐标,根据向量垂直的充要条件,构造关于m 的方程,解得答案.【解析】输入的数学试卷第10页(共39页)数学试卷第11页(共39页)数学试卷第12页(共39页)5 / 13:πcos 4⎛- ⎝:π2cos 4⎛⎫-α= ⎝【提示】方法1:利用诱导公式化22π1n 1,π∴=解得e 2=.1数学试卷第16页(共39页)数学试卷第17页(共39页)数学试卷第18页(共39页)(Ⅰ)某保险的基本保费为7 / 13数学试卷 第22页(共39页)数学试卷 第23页(共39页) 数学试卷 第24页(共39页)(Ⅰ)ABCD 是菱形,AC BD ⊥,则,AC 6=,AEOD 1AO=,则, ,又OHEF H =,为坐标原点,建立如图所示空间直角坐标系,AB 5=,C(1,3,0),D (0,0,3)',AB (4,3,0)=,AD (1,3,3)'=-,AC (0,6,0)=,设平面的一个法向量为n (x,y,z)=11n AB 0n AD 0⎧=⎪⎨'=⎪⎩,得3y 03y 3z 0=⎧⎨+=3=,得n (3,4,5)∴=-同理可求得平面AD '的一个法向量n (3,01)=,的平面角为θ,122n n 9255210n n +==,∴二面角9 / 13为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到AB 、AD '、AC的一个法向量n 、n ,设二面角221234k +,由2212121k 413k 341kk =+⎛⎫++- ⎪⎝⎭,由AM =22212121k434k 3k k=+++, 整理可得2(k 1)(4k k 4)0--+=,由24k -212144134⎫=⎪+⎭轴对称,由MA ⊥数学试卷 第28页(共39页)数学试卷 第29页(共39页) 数学试卷 第30页(共39页)226t 3tk +,26t t 3k k+, AN ,可得2226t 6t 21k 1kt 3tk 3k k+=+++, 整理得26k 3kt -=,由椭圆的焦点在x 轴上,11 / 13 当2)(2,)-+∞2)和(2,-+∞x 2e f (0)=2>x 2e a 2⎫+⎪⎭a ∈x x 2(x)e 2-=的值域为t 2e a 2=-,只需t 2e 02≤0,可得t ∈t t 2e e 2t 2=+t e (t +22.【答案】(Ⅰ)DF CE ⊥,Rt DFC Rt EDC ∴△∽△,DF CF ED CD∴=, DE DG =,CD BC =,DF CF DG BC∴=,又GDF DEF BCF ∠=∠=∠, GDF BCF ∴△∽△,CFB DFG ∴∠=∠,GFB GFC CFB GFC DFG DFC 90∴∠=∠+∠=∠+∠=∠=,GFB GCB 180∴∠+∠=,B ∴,C ,G ,F 四点共圆;(Ⅱ)E 为AD 中点,A B 1=,1DG CG DE 2∴===,数学试卷 第34页(共39页)数学试卷 第35页(共39页) 数学试卷 第36页(共39页)∴在Rt DFC △中,1GF CD GC 2==,连接GB ,Rt BCG Rt BFG △≌△, BCG BCGF 111S 2S =21=222∴=⨯⨯⨯△四边形.【提示】(Ⅰ)证明B ,C ,G ,F 四点共圆可证明四边形BCGF 对角互补,由已知条件可知BCD 90∠=,因此问题可转化为证明GFB 90∠=;(Ⅱ)在Rt DFC △中,1GF CD GC ==,因此可得BCG BFG △≌△,则BCG BCGF S 2S =△四边形,据此解答.(Ⅰ)圆,22x ρ=+(Ⅱ)直线x α, l C (6,0)-,13 / 13 【考点】圆的标准方程,直线与圆相交的性质24.【答案】(Ⅰ)当1x 2<-时,不等式f (x)2<可化为:11x x 222---<,解得x 1>-, 11x 2∴-<<-, 当11x 22-≤≤时,不等式f (x)2<可化为:11x x 1222-+-=<,此时不等式恒成立, 11x 22∴-≤≤,当1x 2>时,不等式f (x)2<可化为:11x x 222++-<,解得x 1<, 1x 12∴<<,综上可得M (1,1)=-; (Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即2222a b 1a b +>+,即2222a b 2ab 1a 2ab b +++>++, 即22(ab 1)(a b)+>+,即a b ab 1+<+.【提示】(Ⅰ)分当1x 2<-时,当11x 22-≤≤时,当1x 2>时三种情况,分别求解不等式,综合可得答案; (Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即2222a b 1a b +>+,配方后,可证得结论. 【考点】绝对值不等式的解法。
2016年江苏省高考数学压轴试卷(解析版)
2016年江苏省高考数学压轴试卷(解析版)2016年江苏省高考数学压轴试卷一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在题中横线上)1.若集合A={x|y=,x∈R},B={x||x|≤1,x∈R},则A∩B=.2.若复数+m(i为虚数单位)为纯虚数,则实数m=.3.若原点(0,0)和点(1,1)在直线x+y﹣a=0的两侧,则a的取值范围是.4.某射击选手连续射击5枪命中的环数分别为:9.7,9.9,10.1,10.2,10.1,则这组数据的方差为.5.如图是一个算法流程图,则输出的x的值为.6.从2个红球,2个黄球,1个白球中随机取出两个球,则两球颜色不同的概率是.7.若sinα=且α是第二象限角,则tan(α﹣)=.8.如图,正四棱锥P﹣ABCD的底面一边AB长为,侧面积为,则它的体积为9.已知双曲线﹣=1 (a>0,b>0)的一条渐近线的方程为2x﹣y=0,则该双曲线的离心率为.10.不等式组所表示的区域的面积为.11.已知△ABC外接圆O的半径为2,且,||=||,则=.12.如图,三个边长为2的等边三角形有一条边在同一条直线上,边B3C3上有10个不同的点P1,P2,…P10,记m i=•(i=1,2,3,…,10),则m1+m2+…+m10的值为.13.在等差数列{a n}中,首项a1=3,公差d=2,若某学生对其中连续10项迸行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为.14.设关于x的实系数不等式(ax+3)(x2﹣b)≤0对任意x ∈[0,+∞)恒成立,则a2b=.二、解答题15.如图,在△ABC中,点D在边AB上,CD⊥BC,AC=5,CD=5,BD=2AD.(Ⅰ)求AD的长;(Ⅱ)求△ABC的面积.16.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,E为侧棱PA的中点.(1)求证:PC∥平面BDE;(2)若PC⊥PA,PD=AD,求证:平面BDE⊥平面PAB.17.如图,A、B是海岸线OM、ON上的两个码头,海中小岛有码头Q到海岸线OM、ON的距离分别为2km、km.测得tan∠MON=﹣3,OA=6km.以点O为坐标原点,射线OM 为x轴的正半轴,建立如图所示的直角坐标系.一艘游轮以18km/小时的平均速度在水上旅游线AB航行(将航线AB看作直线,码头Q在第一象限,航线AB经过Q).(1)问游轮自码头A沿方向开往码头B共需多少分钟?(2)海中有一处景点P(设点P在xOy平面内,PQ⊥OM,且PQ=6km),游轮无法靠近.求游轮在水上旅游线AB航行时离景点P最近的点C的坐标.18.已知椭圆C:的右焦点为F(1,0),且点P (1,)在椭圆C上;(1)求椭圆C的标准方程;(2)过椭圆C1:=1上异于其顶点的任意一点Q作圆O:x2+y2=的两条切线,切点分别为M、N(M、N不在坐标轴上),若直线MN在x轴,y轴上的截距分别为m、n,证明:为定值;(3)若P1、P2是椭圆C2:上不同两点,P1P2⊥x轴,圆E过P1、P2,且椭圆C2上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆C2是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.19.已知函数f(x)=e x|x2﹣a|(a≥0).(1)当a=1时,求f(x)的单调减区间;(2)若存在m>0,方程f(x)=m恰好有一个正根和一个负根,求实数m的最大值.20.已知数列{a n}的通项公式为a n=(n﹣k1)(n﹣k2),其中k 1,k2∈Z:(1)试写出一组k1,k2∈Z的值,使得数列{a n}中的各项均为正数;(2)若k1=1、k2∈N*,数列{b n}满足b n=,且对任意m∈N*(m≠3),均有b3<b m,写出所有满足条件的k2的值;(3)若0<k1<k2,数列{c n}满足c n=a n+|a n|,其前n项和为S n,且使c i=c j≠0(i,j∈N*,i<j)的i和j有且仅有4组,S1、S2、…、S n中至少3个连续项的值相等,其他项的值均不相等,求k1,k2的最小值.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲]21.如图:在Rt∠ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连接AE交⊙O于点F,求证:BE•CE=EF•EA.B.[选修4-2:矩阵与变换]22.已知矩阵A=,求矩阵A的特征值和特征向量.C.[选修4-4:坐标系与参数方程]23.在极坐标系中,曲线C的极坐标方程为ρ=2cosθ+2sinθ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C所截得的弦长.D.[选修4-5:不等式选讲]24.设x,y均为正数,且x>y,求证:2x+≥2y+3.四.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.25.甲、乙两人投篮命中的概率为别为与,各自相互独立,现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后,甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E(ξ).26.若存在n个不同的正整数a1,a2,…,a n,对任意1≤i<j ≤n,都有∈Z,则称这n个不同的正整数a1,a2,…,a n 为“n个好数”.(1)请分别对n=2,n=3构造一组“好数”;(2)证明:对任意正整数n(n≥2),均存在“n个好数”.2016年江苏省高考数学压轴试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在题中横线上)1.若集合A={x|y=,x∈R},B={x||x|≤1,x∈R},则A∩B={1} .【分析】求出A中x的范围确定出A,求出B中不等式的解集确定出B,找出两集合的交集即可.【解答】解:由A中y=,得到x﹣1≥0,解得:x≥1,即A={x|x≥1},由B中不等式变形得:﹣1≤x≤1,即B={x|﹣1≤x≤1},则A∩B={1},故答案为:{1}.2.若复数+m(i为虚数单位)为纯虚数,则实数m=﹣1.【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简,然后由实部等于0求得m的值.解:∵+m==m+1+2i,由复数+m为纯虚数,得m+1=0,解得m=﹣1.故.3.若原点(0,0)和点(1,1)在直线x+y﹣a=0的两侧,则a的取值范围是(0,2).【考点】二元一次不等式(组)与平面区域.【分析】因为原点O和点P(1,1)在直线x+y﹣a=0的两侧,所以(﹣a)•(1+1﹣a)<0,由此能求出a的取值范围.【解答】解:因为原点O和点P(1,1)在直线x+y﹣a=0的两侧,所以(﹣a)•(1+1﹣a)<0,解得0<a<2,4.某射击选手连续射击5枪命中的环数分别为:9.7,9.9,10.1,10.2,10.1,则这组数据的方差为0.032.【考点】极差、方差与标准差.【分析】先计算数据的平均数后,再根据方差的公式计算.【解答】解:数据9.7,9.9,10.1,10.2,10.1的平均数==10,方差=(0.09+0.01+0.01+0.04+0.01)=0.032.故答案为:0.032.5.如图是一个算法流程图,则输出的x的值为.【分析】模拟执行算法流程,依次写出每次循环得到的x,n 的值,当n=6时,满足条件n>5,退出循环,输出x的值为.【解答】解:模拟执行算法流程,可得n=1,x=1, x=,n=2, 不满足条件n>5,x=,n=3不满足条件n>5,x=,n=4, 不满足条件n>5,x=,n=5, 不满足条件n>5,x=,n=6满足条件n>5,退出循环,输出x的值为.故答案为:.6.从2个红球,2个黄球,1个白球中随机取出两个球,则两球颜色不同的概率是.【考点】古典概型及其概率计算公式.【分析】根据互斥时间的概率公式计算即可.解:从5个球中任意取两个共有C52=10种,两球颜色相同的有2种,两球颜色不同的概率是1﹣=,7.若sinα=且α是第二象限角,则tan(α﹣)=﹣7.【分析】由已知求得cosα,进一步得到tanα,再由两角差的正切求得tan(α﹣)的值.【解答】解:∵α是第二象限角,sinα=,∴,∴,则=,故答案为﹣7.8.如图,正四棱锥P﹣ABCD的底面一边AB长为,侧面积为,则它的体积为4【考点】棱柱、棱锥、棱台的体积.【分析】作出棱锥的高PO,则O为底面中心,作OE⊥AB于E,根据侧面积计算PE,利用勾股定理计算PO,带入体积公式计算体积.【解答】解:过P作底面ABCD的垂线PO,则O为底面正方形ABCD的中心,过O作OE⊥AB于E,连结PE.则OE==.∵PO⊥平面ABCD,AB⊂平面ABCD,∴PO⊥AB,又AB⊥OB,PO⊂平面POE,OE⊂平面POE,PO∩OE=O,∴AB⊥平面POE,∵PE⊂平面POE,∴AB⊥PE.∴正四棱锥的侧面积S 侧=4S△PAB=4×=8,解得PE=2.∴PO==1.∴正四棱锥的体积V=S 正方形ABCD•PO=(2)2×1=4.故答案为:4.9.已知双曲线﹣=1 (a>0,b>0)的一条渐近线的方程为2x﹣y=0,则该双曲线的离心率为.【考点】双曲线的简单性质.【分析】利用双曲线﹣=1(a>0,b>0)的一条渐近线方程为2x﹣y=0,可得b=2a,c=a,即可求出双曲线的离心率.解:∵双曲线﹣=1(a>0,b>0)的一条渐近线方程为2x ﹣y=0,∴b=2a,c=a,∴离心率是e==.10.不等式组所表示的区域的面积为16.【分析】作出不等式组对应的平面区域,求出交点坐标,【解答】解:由不等式组作出平面区域如图所示(阴影部分),则由,,得A(﹣1,1),B(3,5),C(3,﹣3),所以,11.已知△ABC外接圆O的半径为2,且,||=||,则=12.【分析】运用平面向量的三角形法则,以及外心的特点,可得O为BC的中点,三角形ABC为直角三角形,再由勾股定理和向量的数量积定义,即可求出结果.【解答】解:如图所示,△A BC的外接圆的半径为2,且,∴(﹣)+(﹣)=2,∴+=2+2=,∴O为BC的中点,即AB⊥AC;又||=||,∴△ABO为等边三角形,且边长为2,由勾股定理得,AC==2,则•=||•||•cos∠ACB=2×4×=12.故答案为:12.12.如图,三个边长为2的等边三角形有一条边在同一条直线上,边B3C3上有10个不同的点P1,P2,…P10,记m i=•(i=1,2,3,…,10),则m1+m2+…+m10的值为180.【考点】平面向量数量积的运算.【分析】以A为坐标原点,AC1所在直线为x轴建立直角坐标系,可得B 2(3,),B3(5,),C3(6,0),求出直线B3C3的方程,可设P i(x i,y i),可得x i+y i=6,运用向量的数量积的坐标表示,计算即可得到所求和.【解答】解:以A为坐标原点,AC1所在直线为x轴建立直角坐标系,可得B 2(3,),B3(5,),C3(6,0),直线B 3C3的方程为y=﹣(x﹣6),可设P i(x i,y i),可得x i+y i=6,即有m i=•=3x i+y i=(x i+y i)=18,则m1+m2+…+m10=18×10=180.故答案为:180.13.在等差数列{a n}中,首项a1=3,公差d=2,若某学生对其中连续10项迸行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为200.【考点】等差数列的前n项和.【分析】先排除不是遗漏掉首项与末项,从而设9项为a n,a n+1,a n+2,…,a n+m﹣1,a n+m+1,a n+m+2,…,a n+9,从而可得10(2n+1)+90﹣2(m+n)﹣1=185,从而求得.【解答】解:若遗漏的是10项中的第一项或最后一项,则185=9•a中,故a中=20(舍去);故设9项为a n,a n+1,a n+2,…,a n+m﹣1,a n+m+1,a n+m+2,…,a n+9,其中(0<m<9,m∈N*)故10a n+×2﹣a m+n=185,即10(2n+1)+90﹣2(m+n)﹣1=185,故m=9n﹣43,故n=5,m=2;故10×a5+×2=110+90=200;14.设关于x的实系数不等式(ax+3)(x2﹣b)≤0对任意x ∈[0,+∞)恒成立,则a 2b=9.【分析】利用换元法设f(x)=ax+3,g(x)=x2﹣b,根据一元一次函数和一元二次函数的图象和性质进行判断求解即可.【解答】解:∵(ax+3)(x2﹣b)≤0对任意x∈[0,+∞)恒成立,∴当x=0时,不等式等价为﹣3b≤0,即b≥0,当x→+∞时,x2﹣b>0,此时ax+3<0,则a<0,设f(x)=ax+3,g(x)=x2﹣b,若b=0,则g(x)=x2>0,函数f(x)=ax+3的零点为x=﹣,则函数f(x)在(0,﹣)上f(x)>0,此时不满足条件;若a=0,则f(x)=3>0,而此时x→+∞时,g(x)>0不满足条件,故b>0;∵函数f(x)在(0,﹣)上f(x)>0,则(﹣,+∞))上f(x)<0,而g(x)在(0,+∞)上的零点为x=,且g(x)在(0,)上g(x)<0,则(,+∞)上g(x)>0,∴要使(ax+3)(x 2﹣b)≤0对任意x∈[0,+∞)恒成立,则函数f(x)与g(x)的零点相同,即﹣=,∴a2b=9.故答案为:9.二、解答题15.如图,在△ABC中,点D在边AB上,CD⊥BC,AC=5,CD=5,BD=2AD.(Ⅰ)求AD的长;(Ⅱ)求△ABC的面积.【考点】解三角形.【分析】(1)假设AD=x,分别在△ACD和△ABC中使用余弦定理计算cosA,列方程解出x;(2)根据(1)的结论计算sinA,代入面积公式计算.【解答】解:(1)设AD=x,则BD=2x,∴BC==.在△ACD中,由余弦定理得cosA==,在△ABC中,由余弦定理得cosA==.∴=,解得x=5.∴AD=5.(2)由(1)知AB=3AD=15,cosA==,∴sinA=.∴S△ABC===.16.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,E为侧棱PA的中点.(1)求证:PC∥平面BDE;(2)若PC⊥PA,PD=AD,求证:平面BDE⊥平面PAB.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)连结AC,交BD于O,连结OE,E为PA的中点,利用三角形中位线的性质,可知OE∥PC,利用线面平行的判定定理,即可得出结论;(2)先证明PA⊥DE,再证明PA⊥OE,可得PA⊥平面BDE,从而可得平面BDE⊥平面PAB.【解答】证明:(1)连结AC,交BD于O,连结OE.因为ABCD是平行四边形,所以OA=OC.…因为E为侧棱PA的中点,所以OE∥PC.…因为PC⊂平面BDE,OE⊂平面BDE,所以PC∥平面BDE.…(2)因为E为PA中点,PD=AD,所以PA⊥DE.…因为PC⊥PA,OE∥PC,所以PA⊥OE.因为OE⊂平面BDE,DE⊂平面BDE,OE∩DE=E,所以PA⊥平面BDE.…因为PA⊂平面PAB,所以平面BDE⊥平面PAB.…17.如图,A、B是海岸线OM、ON上的两个码头,海中小岛有码头Q到海岸线OM、ON的距离分别为2km、km.测得tan∠MON=﹣3,OA=6km.以点O为坐标原点,射线OM 为x轴的正半轴,建立如图所示的直角坐标系.一艘游轮以18km/小时的平均速度在水上旅游线AB航行(将航线AB看作直线,码头Q在第一象限,航线AB经过Q).(1)问游轮自码头A沿方向开往码头B共需多少分钟?(2)海中有一处景点P(设点P在xOy平面内,PQ⊥OM,且PQ=6km),游轮无法靠近.求游轮在水上旅游线AB航行时离景点P最近的点C的坐标.【考点】直线与圆的位置关系.【分析】(1)由已知得:A(6,0),直线ON的方程为y=﹣3x,求出Q(4,2),得直线AQ的方程,从而求出水上旅游线AB的长,由此能求出游轮在水上旅游线自码头A沿方向开往码头B共航行时间.(2)点P到直线AB的垂直距离最近,则垂足为C,分别求出直线AB的方程和直线PC的方程,联立直线AB和直线PC 的方程组,能求出点C的坐标.【解答】解:(1)由已知得:A(6,0),直线ON的方程为y=﹣3x,…1分设Q(x1,2),(x1>0),由及x1>0,得x1=4,∴Q (4,2),…3分∴直线AQ的方程为y=﹣(x﹣6),即x+y﹣6=0,…5分由,得,即B(﹣3,9),…6分∴AB==9,即水上旅游线AB的长为9km.游轮在水上旅游线自码头A沿方向开往码头B共航行30分钟时间.…8分(2)点P到直线AB的垂直距离最近,则垂足为C. (10)分由(1)知直线AB的方程为x+y﹣6=0,P(4,8),则直线PC的方程为x﹣y+4=0,…12分联立直线AB和直线PC的方程组,得点C的坐标为C(1,5).…14分18.已知椭圆C:的右焦点为F(1,0),且点P (1,)在椭圆C上;(1)求椭圆C的标准方程;(2)过椭圆C1:=1上异于其顶点的任意一点Q作圆O:x2+y2=的两条切线,切点分别为M、N(M、N不在坐标轴上),若直线MN在x轴,y轴上的截距分别为m、n,证明:为定值;(3)若P1、P2是椭圆C2:上不同两点,P1P2⊥x轴,圆E过P1、P2,且椭圆C2上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆C2是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.【考点】椭圆的简单性质.【分析】(1)由焦点坐标确定出c的值,根据椭圆的性质列出a与b的方程,再将P点坐标代入椭圆方程列出关于a与b的方程,联立求出a与b的值,确定出椭圆方程即可.(2)由题意:确定出C1的方程,设点P(x1,y1),M(x2,y2),N(x3,y3),根据M,N不在坐标轴上,得到直线PM与直线OM斜率乘积为﹣1,确定出直线PM的方程,同理可得直线PN的方程,进而确定出直线MN方程,求出直线MN与x轴,y轴截距m与n,即可确定出所求式子的值为定值.(3)依题意可得符合要求的圆E,即为过点F,P1,P2的三角形的外接圆.所以圆心在x轴上.根据题意写出圆E的方程.由于圆的存在必须要符合,椭圆上的点到圆E距离的最小值是|P1E|,结合图形可得圆心E在线段P1P2上,半径最小.又由于点F已知,即可求得结论.【解答】解:(1)∵椭圆C:的右焦点为F(1,0),且点P(1,)在椭圆C上;∴,解得a=2,b=,∴椭圆C的标准方程为.(2)由题意:C1: +=1,设点P(x1,y1),M(x2,y2),N(x3,y3),∵M,N不在坐标轴上,∴k PM=﹣=﹣,∴直线PM的方程为y﹣y2=﹣(x﹣x2),化简得:x2x+y2y=,①,同理可得直线PN的方程为x3x+y3y=,②,把P点的坐标代入①、②得,∴直线MN的方程为x1x+y1y=,令y=0,得m=,令x=0得n=,∴x1=,y1=,又点P在椭圆C1上,∴()2+3()2=4,则+=为定值.(3)由椭圆的对称性,可以设P1(m,n),P2(m,﹣n),点E在x轴上,设点E(t,0),则圆E的方程为:(x﹣t)2+y2=(m﹣t)2+n2,由内切圆定义知道,椭圆上的点到点E距离的最小值是|P 1E|,设点M(x,y)是椭圆C上任意一点,则|ME|2=(x﹣t)2+y2=,当x=m时,|ME|2最小,∴m=﹣,③,又圆E过点F,∴(﹣)2=(m﹣t)2+n2,④点P1在椭圆上,∴,⑤由③④⑤,解得:t=﹣或t=﹣,又t=﹣时,m=﹣<﹣2,不合题意,综上:椭圆C存在符合条件的内切圆,点E的坐标是(﹣,0).19.已知函数f(x)=e x|x2﹣a|(a≥0).(1)当a=1时,求f(x)的单调减区间;(2)若存在m>0,方程f(x)=m恰好有一个正根和一个负根,求实数m的最大值.【考点】一元二次方程的根的分布与系数的关系;分段函数的应用.【分析】(1)求出a=1的f(x)的解析式,分别求出各段的导数,解不等式即可得到减区间;(2)讨论a=0,a>0,通过导数判断单调区间和极值,由方程f(x)=m恰好有一个正根和一个负根,即可求得m的范围,进而得到m的最大值.【解答】解:(1)当a=1时,f(x)=,当|x|>1时,f′(x)=e x(x2+2x﹣1),由f′(x)≤0得﹣1﹣≤x≤﹣1+,所以f(x)的单调减区间是(﹣1﹣,﹣1);当|x|≤1时,f′(x)=﹣e x(x2+2x﹣1),由f′(x)≤0得x≥﹣1+或x≤﹣1﹣.所以f(x)的单调减区间是(﹣1+,1);综上可得,函数f(x)的单调减区间是(﹣1﹣,﹣1),(﹣1+,1);(2)当a=0时,f(x)=e x•x2,f′(x)=e x•x(x+2),当x<﹣2时,f′(x)>0,f(x)递增,当﹣2<x<0时,f′(x)<0,f(x)递减,当x>0时,f′(x)>0,f(x)递增.f(﹣2)为极大值,且为4e﹣2,f(0)为极小值,且为0,当a>0时,f(x)=同(1)的讨论可得,f(x)在(﹣∞,﹣﹣1)上增,在(﹣﹣1,﹣)上减,在(﹣,﹣1)上增,在(﹣1,)上减,在(,+∞)上增,且函数y=f(x)有两个极大值点,f(﹣﹣1)=,f(﹣1)=,且当x=a+1时,f(a+1)=e a+1(a2+a+1)>(﹣1)>,所以若方程f(x)=m恰好有正根,则m>f(﹣﹣1)(否则至少有二个正根).又方程f(x)=m恰好有一个负根,则m=f(﹣﹣1).令令g(x)=e﹣x(x+1),x≥1.g′(x)=﹣xe﹣x<0,g(x)在x≥1递减,即g(x)max=g(1)=,等号当且仅当x=1时取到.所以f(﹣﹣1)max=()2,等号当且仅当a=0时取到.且此时f(﹣﹣1)=(﹣1)=0,即f(﹣﹣1)>f(﹣1),所以要使方程f(x)=m恰好有一个正根和一个负根,m的最大值为.20.已知数列{a n}的通项公式为a n=(n﹣k1)(n﹣k2),其中k1,k2∈Z:(1)试写出一组k1,k2∈Z的值,使得数列{a n}中的各项均为正数;(2)若k1=1、k2∈N*,数列{b n}满足b n=,且对任意m∈N*(m≠3),均有b 3<b m,写出所有满足条件的k2的值;(3)若0<k1<k2,数列{c n}满足c n=a n+|a n|,其前n项和为S n,且使c i=c j≠0(i,j∈N*,i<j)的i和j有且仅有4组,S1、S2、…、S n中至少3个连续项的值相等,其他项的值均不相等,求k1,k2的最小值.【考点】数列的求和;数列递推式.【分析】(1)通过函数f(x)=(x﹣k1)(x﹣k2)是与x轴交于k1、k2两点且开口向上的抛物线可知,只需知k1、k2均在1的左边即可;(2)通过k1=1化简可知b n=n+﹣(1+k2),排除k2=1、2可知k2≥3,此时可知对于f(n)=n+而言,当n≤时f(n)单调递减,当n≥时f(n)单调递增,进而解不等式组即得结论;(3)通过0<k1<k2及a n=(n﹣k1)(n﹣k2)可知c n=,结合c i=c j≠0(i,j∈N*,i<j)可知0<i<k1<k2<j,从而可知k1的最小值为5,通过S1、S2、…、S n 中至少3个连续项的值相等可知5=k1≤m+1<m+2<…<k2,进而可得k2的最小值为6.【解答】解:(1)k1=k2=0;(2)∵k1=1、k2∈N*,a n=(n﹣k1)(n﹣k2),∴b n===n+﹣(1+k2),当k2=1、2时,f(n)=n+均单调递增,不合题意;当k2≥3时,对于f(n)=n+可知:当n≤时f(n)单调递减,当n≥时f(n)单调递增,由题意可知b1>b2>b3、b3<b4<…,联立不等式组,解得:6<k2<12,∴k2=7,8,9,10,11;(3)∵0<k1<k2,a n=(n﹣k1)(n﹣k2),∴c n=a n+|a n|=,∵c i=c j≠0(i,j∈N*,i<j),∴i、j∉(k1,k2),又∵c n=2[n2﹣(k1+k2)n+k1k2],∴=,∴0<i<k1<k2<j,此时i的四个值为1,2,3,4,故k1的最小值为5,又S1、S2、…、S n中至少3个连续项的值相等,不妨设S m=S m+1=S m+2=...,则c m+1=c m+2= 0∵当k1≤n≤k2时c n=0,∴5=k1≤m+1<m+2<…<k2,∴k2≥6,即k2的最小值为6.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲]21.如图:在Rt∠ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连接AE交⊙O于点F,求证:BE•CE=EF•EA.【考点】圆的切线的性质定理的证明.【分析】欲证明BE•CE=EF•EA.在圆中线段利用由切割线定理得EB2=EF•FA,进而利用四边形BODE中的线段,证得BE=CE即可.【解答】证明:因为Rt△ABC中,∠ABC=90°所以OB ⊥CB, 所以CB为⊙O的切线, 所以EB2=EF•FA连接OD,因为AB=BC, 所以∠BAC=45°, 所以∠BOD=90°, 在四边形BODE中,∠BOD=∠OBE=∠BED=90°所以BODE为矩形, 所以, 即BE=CE.所以BE•CE=EF•EA.B.[选修4-2:矩阵与变换]22.已知矩阵A=,求矩阵A的特征值和特征向量.【考点】特征值与特征向量的计算.【分析】先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组求出相应的特征向量.【解答】B.矩阵A的特征多项式为,…由f(λ)=0,解得λ1=2,λ2=3..…当λ1=2时,特征方程组为故属于特征值λ1=2的一个特征向量;…当λ2=3时,特征方程组为故属于特征值λ2=3的一个特征向量.…C.[选修4-4:坐标系与参数方程]23.在极坐标系中,曲线C的极坐标方程为ρ=2cosθ+2sinθ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C所截得的弦长.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】求出曲线C的极坐标方程化为直角坐标方程,求出圆心与半径,直线的参数方程为普通方程,利用圆心距半径半弦长满足勾股定理求解弦长即可.【解答】解:曲线C的直角坐标方程为x2+y2﹣2x﹣2y=0,圆心为(1,1),半径为,直线的直角坐标方程为x﹣y﹣=0,所以圆心到直线的距离为d==,所以弦长=2=.D.[选修4-5:不等式选讲]24.设x,y均为正数,且x>y,求证:2x+≥2y+3.【分析】因为x>y,所以x﹣y>0,所以不等式左边减去2y 得:2x+=(x﹣y)+(x﹣y)+,这样便可证出本题.【解答】证明:由题设x>y,可得x﹣y>0;∵2x+﹣2y=2(x﹣y)+=(x﹣y)+(x﹣y)+;又(x﹣y)+(x﹣y)+,当x﹣y=1时取“=“;∴2x+﹣2y≥3,即2x+≥2y+3.四.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.25.甲、乙两人投篮命中的概率为别为与,各自相互独立,现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后,甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E(ξ).【考点】随机事件;离散型随机变量及其分布列.【分析】(1)比赛结束后甲的进球数比乙的进球数多1个,有以下几种情况:甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球.由此能求出比赛结束后甲的进球数比乙的进球数多1个的概率.(2)由已知得ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.【解答】解:(1)比赛结束后甲的进球数比乙的进球数多1个,有以下几种情况:甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球.比赛结束后甲的进球数比乙的进球数多1个的概率:p=++=.(2)由已知得ξ的可能取值为0,1,2,3,P(ξ=0)=+++= =,P(ξ=1)=+++=,P(ξ=3)==,P(ξ=2)=1﹣P(ξ=0)﹣P(ξ=1)﹣P(ξ=3)=1﹣=,∴ξ的分布列为:ξ0 1 2 3PEξ==1.26.若存在n个不同的正整数a1,a2,…,a n,对任意1≤i<j ≤n,都有∈Z,则称这n个不同的正整数a1,a2,…,a n 为“n个好数”.(1)请分别对n=2,n=3构造一组“好数”;(2)证明:对任意正整数n(n≥2),均存在“n个好数”.【分析】(1)利用新定义,分别对n=2,n=3构造一组“好数”;(2)利用数学归纳法进行证明即可.【解答】解:(1)当n=2时,取数a1=1,a2=2,因为=3∈Z,当n=3时,取数a1=2,a2=3,a3=4,则=﹣5∈Z,=﹣7∈Z,=﹣3∈Z,即a1=2,a2=3,a3=4可构成三个好数.(2)证:①由(1)知当n=2,3时均存在,②假设命题当n=k(k≥2,k∈Z)时,存在k个不同的正整数a1,a2,…,a k,使得对任意1≤i<j≤k,都有∈Z成立,则当n=k+1时,构造k+1个数A,A+a1,A+a2,…,A+a k,(*)其中A=1×2×…×a k,若在(*)中取到的是A和A+a i,则=﹣﹣1∈Z,所以成立,若取到的是A+a i和A+a j,且i<j,则=+,由归纳假设得∈Z,又a j﹣a i<a k,所以a j﹣a i是A的一个因子,即∈Z,所以=+∈Z,所以当n=k+1时也成立.所以对任意正整数,均存在“n 个好数”.。
2024年高考数学合格性考试仿真模拟卷02(全解全析)
2024年北京市第二次普通高中学业水平合格性考试数学仿真模拟试卷02一、选择题(本大题共20题,每小题3分,共计60分。
每小题列出的四个选项中只有一项是最符合题目要求的)1.设集合{}{}1,0,1,21,2,3M N =-=,,则M N ⋂=()A .{}1,2B .{}1,2,3C .{}1,0,1,2-D .{}1,0,1,2,3-【答案】A【分析】根据交集运算求解.【详解】由题意可得:M N ⋂={}1,2.故选:A.2.命题:“2,340x x x ∀∈-+<R ”的否定是()A .2,340x x x ∃∉-+≥RB .2,340x x x ∃∈-+>RC .2,340x x x ∃∈-+≥RD .2,340x x x ∀∉-+≥R 【答案】C【分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系,可得:命题“2,340x x x ∀∈-+<R ”的否定为:“2,340x x x ∃∈-+≥R ”.故选:C.3.设32i z =-+,则在复平面内z 对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限A B .1C .2D .3,,2n x =,若//m n ,则()A .1BC .D .AB .2C .2D .12A .12B .32C .1D .2【答案】C【分析】根据两角和的正弦公式求得正确答案.【详解】()sin30cos60cos30sin60sin 3060sin901︒︒+︒︒=︒+︒=︒=.故选:C8.要得到π3sin()6y x =+的图象只需将3sin y x =的图象()A .向左平移π6个单位B .向右平移π6个单位C .向左平移π2个单位D .向右平移π2个单位【答案】A【分析】根据给定条件,利用图象的平移变换求解即得.A .2B .1C .0D .2-【答案】D【分析】令()0f x =,求出方程的解,即可得到函数的零点.【详解】解:令()0f x =,即20x +=,解得2x =-,所以函数()2f x x =+的零点为2-;故选:D10.不等式24120x x +-<的解集为()A .{}62x x -<<B .{}26x x -<<C .{}62x x -<<-D .{}25x x <<2A .2B .3C .1D .-3【答案】B【分析】直接化简即可.【详解】由322log 8log 23==.故选:B.12.若函数()1y k x b =-+在()∞∞-+,上是增函数,则().A .1k >B .1k <C .1k <-D .1k >-【答案】A【分析】根据函数是增函数,求解参数范围.【详解】因为()1y k x b =-+在()-∞+∞,上是增函数,则10k ->,即1k >.A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A .45-B .45C.15D .15-A .()3f x x =+B .2()3f x x =+C .3()f x x =D .1()f x x=16.已知函数()56,0f x x x ⎧+≥=⎨+<⎩,若()6f a =,则=a ()A .0B .2C .3-D .2或3【答案】B【分析】由题意分类讨论0a ≥,a<0,解方程可求解a .【详解】当0a ≥时,则()26f a a a =+=,解得:2a =或3a =-(舍去)当0a <时,则()566f a a =+=,解得:0a =(舍去)综上所述:2a =故选:B.17.已知事件M 表示“3粒种子全部发芽”,事件N 表示“3粒种子都不发芽”,则M 和N ()A .是对立事件B .不是互斥事件C .互斥但不是对立事件D .是不可能事件【答案】C【分析】利用互斥事件和对立事件的定义求解即可.【详解】事件M 表示“3粒种子全部发芽”,事件N 表示“3粒种子都不发芽”,所以事件M 和事件N 不会同时发生,是互斥事件,因为3粒种子可能只发芽1粒,所以事件M 和事件N 可以都不发生,则M 和N 不是对立事件.故选:C18.若0x >,则9x x+有()A .最小值6B .最小值8C .最大值8D .最大值319.一组数据:1,1,3,3,5,5,7,7,,x y ,其中,x y 为正整数,且x y ≠.若该组数据的40%分位数为2.5,则该组数据的众数为()A .1B .3C .5D .7人,进行理论知识和实践技能两项测试(每项测试结果均分为A B C 、、三等),取得各等级的人数如下表:实践技能等级理论知识等级AB C A m124B 20202Cn65已知理论知识测试结果为A 的共40人.在参加测试的100人中,从理论知识测试结果为A 或B ,且实践技能测试结果均为C 的人中随机抽取2人,则这2人理论知识测试结果均为A 的概率是()A .35B .25C .12D .34【答案】B【分析】由题知理论知识测试结果为A ,且实践技能测试结果为C 的有4人,记为,,,A B C D ,理论知识测试结果为B ,且实践技能测试结果为C 的有2人,记为,a b ,再根据古典概型列举基本事件,求解概率即可.【详解】解:由题知理论知识测试结果为A 的共40人,故12440m ++=,解得24m =,21.已知幂函数()f x x α=的图象过点()3,9P ,则α=【答案】2【分析】将点()3,9P 代入函数()f x x α=,即可求解.【详解】因为幂函数()f x x α=的图象过点()3,9P ,所以()339f α==,解得2α=.故答案为:2.22.能说明“若a b >,则11a b<”为真命题的一组,a b 的值依次为=a ;b =.1111则该直三棱柱的体积为.【答案】24【分析】根据直三棱柱的体积公式直接求解即可..以下函数中,图象经过第二象限的函数有①.1y x-=②.ln()y x =-③.23y x =④.exy =25.(7分)已知函数()sin 2f x x =+.(1)求函数()f x 的最小正周期;(2)当x ∈[0,2π]时,求函数()f x 的最大值及取得最大值时x 的值.分别是PA ,PB 的中点,求证:(1)//MN 平面ABCD ;(2)CD ⊥平面PAD .【答案】(1)证明见解析;(2)证明见解析.【分析】(1)根据三角形中位线性质和线面平行判定定理可证;(2)利用线面垂直的性质可知PA CD ⊥,然后由矩形性质和线面垂直的判定定理可证.【详解】(1)因为M ,N 分别是PA ,PB 的中点,所以//MN AB .又因为MN ⊄平面ABCD ,AB ⊂平面ABCD ,所以//MN 平面ABCD .(2)因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA CD ⊥,因为四边形ABCD 是矩形,所以CD AD ⊥.又AD PA A ⋂=,,AD PA ⊂平面PAD ,所以CD ⊥平面PAD .27.(7分)阅读下面题目及其解答过程,并补全解答过程.已知函数()2()f x x b b =-+∈R .(Ⅰ)当0b =时,判断函数()f x 的奇偶性;(Ⅱ)求证:函数()f x 在R 上是减函数.解答:(Ⅰ)当0b =时,函数()f x 是奇函数.理由如下:因为()2f x x b =-+,所以当0b =时,()f x =①.因为函数()f x 的定义域是R ,所以x ∀∈R ,都有x -∈R .所以()2()2f x x x -=--=.所以()f x -=②.所以函数()f x 是奇函数.(Ⅱ)证明:任取12,x x ∈R ,且12x x <,则③.因为()()11222,2f x x b f x x b =-+=-+,所以()()()()121222f x f x x b x b -=-+--+=④.所以⑤.所以()()12f x f x >.所以函数()f x 在R 上是减函数.以上解答过程中,设置了①~⑤五个空格,如下的表格中为每个空格给出了两个选项,其中只有一个正确,请选出你认为正确的,并填写在答题卡的指定位置.空格序号选项①A .2x -B .2x ②A .()f x B .()f x -③A .120x x -<B .120x x ->④A .()122x x -B .()122x x --⑤A .()()120f x f x -<B .()()120f x f x ->【答案】①A ;②B ;③A ;④B ;⑤B .【分析】根据选项一一判断即可.【详解】①中,当0b =时,()22f x x b x =-+=-,故选:A ;②中,()()2()2f x x x f x -=--==-,故选:B ;③中,12x x <,则120x x -<,故选:A ;④中,()()()()()1212121222222f x f x x b x b x x x x -=-+--+=-+=--,故选:B ;⑤中,()()()12122f x f x x x -=--,因为120x x -<,所以()()120f x f x ->,故选:B .28.(7分)对于正整数集合{}()*12,,,,3n A a a a n n =⋅⋅⋅∈≥N ,如果去掉其中任意一个元素()1,2,,i a i n =⋅⋅⋅之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合A 为“平衡集”.(1)判断集合{}2,4,6,8,10Q =是否是“平衡集”并说明理由;(2)求证:若集合A 是“平衡集”,则集合A 中元素的奇偶性都相同;(3)证明:四元集合{}1234,,,A a a a a =,其中1234a a a a <<<不可能是“平衡集”.【答案】(1){}2,4,6,8,10Q =不是“平衡集”,利用见解析(2)证明见解析(3)证明见解析【分析】(1)根据定义直接判断即可得到结论.(2)设12n a a a M ++⋯+=,由“平衡集”定义可知(1i M a i -=,2,⋯,)n 为偶数,所以(1i a i =,2,⋯,)n 的奇偶性相同.(3)依次去掉1a ,2a 可得12a a =,显然与12a a <矛盾,所以集合1{A a =,2a ,3a ,4}a 不可能是“平衡集”.【详解】(1)集合{}2,4,6,8,10Q =不是“平衡集”,理由如下:当去掉1或5或9时,满足条件,当去掉4时,21068+≠+,不满足条件,当去掉8时,21046+≠+,不满足条件,所以集合{}2,4,6,8,10Q =不是“平衡集”.(2)设集合1{A a =,2a ,⋯,}n a ,12n a a a M ++⋯+=,由于集合A 是“平衡集”,设去掉(N )i a i *∀∈,则{}12i A A A a =⋃⋃,其中12A A =∅ ,且12,A A 中的元素和相等,不妨设1A 中的元素和为,N n n ∈,所以i 2M n a =+,12(i M n a i -==,2,⋯,)n 为偶数,(1i a i ∴=,2,⋯,)n 的奇偶性相同,方可保证()i M a -一直为偶数,即集合A 中元素的奇偶性都相同.(3)若集合1{A a =,2a ,3a ,4}a 是“平衡集”,且1234a a a a <<<,去掉1a ,则234a a a +=,去掉2a ,则134a a a +=,12a a ∴=,显然与12a a <矛盾,∴集合1{A a =,2a ,3a ,4}a 不可能是“平衡集”.。
高考数学模拟复习试卷试题模拟卷105 (2)
高考模拟复习试卷试题模拟卷【考情解读】1.会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).2.会利用导数解决某些实际问题. 【重点知识梳理】1.利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f(x);(2)求函数的导数f′(x),解方程f′(x)=0;(3)比较函数在区间端点和f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值; (4)回归实际问题作答. 2.不等式问题(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题.3.方程解的个数问题构造函数,利用导数研究函数的单调性,极值和特殊点的函数值,根据函数性质结合草图推断方程解的个数.【高频考点突破】考点一 函数的最值与导数例1、已知a ∈R ,函数f(x)=ax +ln x -1.(1)当a =1时,求曲线y =f(x)在点(2,f(2))处的切线方程; (2)求f(x)在区间(0,e]上的最小值. 【拓展提升】1.极值只能在定义域内部取得,而最值却可以在区间的端点取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.2.求给定区间上的函数的最值关键是判断函数在此区间上的单调性,但要注意极值点不一定是最值点,还要与端点值比较,对于含参数的函数最值,要注意分类讨论.【变式探究】已知函数f(x)=ax -2x -3ln x ,其中a 为常数.(1)当函数f(x)的图象在点⎝⎛⎭⎫23,f ⎝⎛⎭⎫23处的切线的斜率为1时,求函数f(x)在⎣⎡⎦⎤32,3上的最小值;(2)若函数f(x)在区间(0,+∞)上既有极大值又有极小值,求a 的取值范围;考点二 利用导数证明不等式例2、 已知定义在正实数集上的函数f(x)=12x2+2ax ,g(x)=3a2lnx +b ,其中a>0.设两曲线y =f(x),y =g(x)有公共点,且在该点处的切线相同.(1)用a 表示b ,并求b 的最大值; (2)求证:f(x)≥g(x)(x>0).【方法技巧】利用导数证明不等式的步骤 (1)构造新函数,并求其单调区间; (2)判断区间端点函数值与0的关系;(3)判断定义域内函数值与0的大小关系,证不等式. 【变式探究】 证明:当x ∈[0,1]时,22x≤sinx≤x. 考点三、利用导数研究函数零点问题 例3、已知函数f(x)=x2+xsinx +cosx.(1)若曲线y =f(x)在点(a ,f(a))处与直线y =b 相切,求a 与b 的值; (2)若曲线y =f(x)与直线y =b 有两个不同交点,求b 的取值范围. 【方法技巧】函数零点或函数图象交点问题的求解,一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.【变式探究】 已知函数f(x)=x3-3ax -1,a≠0. (1)求f(x)的单调区间;(2)若f(x)在x =-1处取得极值,直线y =m 与y =f(x)的图象有三个不同的交点,求m 的取值范围. 考点四 生活中的优化问题例4、某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x<6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.【方法技巧】在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.【变式探究】请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E,F在AB上,是被切去的一个等腰直角三角形斜边的两个端点,设AE =FB=x(cm).(1)某广告商要求包装盒的侧面积S(cm2)最大,试问x取何值?(2)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.【真题感悟】【高考北京,文8】某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程“指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为()A.6升 B.8升 C.10升 D.12升【高考福建,文22】已知函数2(1)()ln2xf x x-=-.(Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-. 【高考广东,文21】(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---. (1)若()01f ≤,求a 的取值范围; (2)讨论()f x 的单调性; (3)当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数. 【高考四川,文21】已知函数f(x)=-2lnx +x2-2ax +a2,其中a>0. (Ⅰ)设g(x)为f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a ∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解. 【高考天津,文20】(本小题满分14分)已知函数4()4,,f x x x x R(I )求()f x 的单调区间; (II )设曲线()y f x 与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x ,求证:对于任意的正实数x ,都有()()f x g x ;(III )若方程()=()f x a a 为实数有两个正实数根12x x ,,且12x x ,求证:1321-43a x x . 16.【高考浙江,文20】(本题满分15分)设函数2(),(,)f x x ax b a b R =++∈.(1)当214a b时,求函数()f x 在[1,1]上的最小值()g a 的表达式; (2)已知函数()f x 在[1,1]上存在零点,021b a ≤-≤,求b 的取值范围.1.(·四川卷)已知函数f(x)=ex -ax2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数. (1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值; (2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e -2<a <1. 2.(·安徽卷)若直线l 与曲线C 满足下列两个条件:(i)直线l 在点P(x0,y0)处与曲线C 相切;(ii)曲线C 在点P 附近位于直线l 的两侧.则称直线l 在点P 处“切过”曲线C.下列命题正确的是________(写出所有正确命题的编号). ①直线l :y =0在点P(0,0)处“切过”曲线C :y =x3;②直线l :x =-1在点P(-1,0)处“切过”曲线C :y =(x +1)2; ③直线l :y =x 在点P(0,0)处“切过”曲线C :y =sin x ; ④直线l :y =x 在点P(0,0)处“切过”曲线C :y =tan x ; ⑤直线l :y =x -1在点P(1,0)处“切过”曲线C :y =ln x. 3.(·安徽卷)设函数f(x)=1+(1+a)x -x2-x3,其中a>0. (1)讨论f(x)在其定义域上的单调性;(2)当x ∈[0,1]时,求f(x)取得最大值和最小值时的x 的值. 4.(·北京卷)已知函数f(x)=2x3-3x. (1)求f(x)在区间[-2,1]上的最大值;(2)若过点P(1,t)存在3条直线与曲线y =f(x)相切,求t 的取值范围;(3)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线y =f(x)相切?(只需写出结论)5.(·福建卷)已知函数f(x)=ex -ax(a 为常数)的图像与y 轴交于点A ,曲线y =f(x)在点A 处的切线斜率为-1.(1)求a 的值及函数f(x)的极值; (2)证明:当x >0时,x2<ex ;(3)证明:对任意给定的正数c ,总存在x0,使得当x ∈(x0,+∞)时,恒有x <cex. 6.(·湖北卷)π为圆周率,e =2.718 28…为自然对数的底数. (1)求函数f (x)=ln xx 的单调区间;(2)求e3,3e ,eπ,πe ,3π,π3这6个数中的最大数与最小数. 7.(·湖南卷)若0<x1<x2<1,则() A .ex2-ex1>ln x2-ln x1 B .ex2-ex1<ln x2-ln x1 C .x2ex1>x1ex2 D .x2ex1<x1ex28.(·湖南卷)已知函数f(x)=xcos x -sin x +1(x >0). (1)求f(x)的单调区间;(2)记xi 为f(x)的从小到大的第i(i ∈N*)个零点,证明:对一切n ∈N*,有1x21+1x22+…+1x2n <23.9.(·江西卷)若曲线y =xln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________. 10.(·江西卷)将连续正整数1,2,…,n(n ∈N*)从小到大排列构成一个数123…n ,F(n)为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F(12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率.(1)求p(100);(2)当n≤时,求F(n)的表达式;(3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S ={n|h(n)=1,n≤100,n ∈N*},求当n ∈S 时p(n)的最大值.11.(·辽宁卷)当x ∈[-2,1]时,不等式ax3-x2+4x +3≥0恒成立,则实数a 的取值范围是() A .[-5,-3] B.⎣⎡⎦⎤-6,-98C .[-6,-2]D .[-4,-3]12.(·新课标全国卷Ⅱ] 若函数f(x)=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是() A .(-∞,-2] B .(-∞,-1] C .[2,+∞) D .[1,+∞)13.(·新课标全国卷Ⅱ] 已知函数f(x)=x3-3x2+ax +2,曲线y =f(x)在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k <1时,曲线y =f(x)与直线y =kx -2只有一个交点.14.(·全国新课标卷Ⅰ)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a 的取值范围是()A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)15.(·全国新课标卷Ⅰ)设函数f(x)=aln x +1-a 2x2-bx(a≠1),曲线y =f(x)在点(1, f(1))处的切线斜率为0. (1)求b ;(2)若存在x0≥1,使得f(x0)<aa -1,求a 的取值范围. 16.(·山东卷)设函数f(x)=aln x +x -1x +1,其中a 为常数.(1)若a =0,求曲线y =f(x)在点(1,f(1))处的切线方程; (2)讨论函数f(x)的单调性.17.(·陕西卷)设函数f(x)=ln x +mx ,m ∈R. (1)当m =e(e 为自然对数的底数)时,求f(x)的极小值; (2)讨论函数g(x)=f′(x)-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a <1恒成立,求m 的取值范围.18.(·天津卷)已知函数f(x)=x2-23ax3(a >0),x ∈R. (1)求f(x)的单调区间和极值;(2)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1,求a 的取值范围.19.(·浙江卷)已知函数f(x)=x3+3|x -a|(a >0).若f(x)在[-1,1]上的最小值记为g(a). (1)求g(a);(2)证明:当x ∈[-1,1]时,恒有f(x)≤g(a)+4.19.(·重庆卷)已知函数f(x)=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f(x)在点(1,f(1))处的切线垂直于直线y =12x.(1)求a 的值;(2)求函数f(x)的单调区间与极值. 【押题专练】1.已知函数f(x)=ax2+c ,且f′(1)=2,则a 的值为() A. 2 B .1 C .-1 D .02.曲线y =x3-2x +1在点(1,0)处的切线方程为() A .y =x -1 B .y =-x +1C .y =2x -2D .y =-2x +23.若函数f(x)的定义域为[a ,b],且b>-a>0,则函数g(x)=f(x)+f(-x)的定义域为() A .[a ,b] B .[-b ,-a] C .[-b ,b] D .[a ,-a] 4.过点(0,1)且与曲线y =x +1x -1在点(3,2)处的切线垂直的直线的方程为( ) A .2x -y +1=0 B .2x +y -1=0 C .x +2y -2=0 D .x -2y +2=05.设函数f(x)=⎩⎪⎨⎪⎧1,x>0,0,x =0,-1,x<0,g(x)=x2f(x -1),则函数g(x)的递减区间是( )A .(0,1)B .(1,+∞)C .(-∞,0)D .(0,+∞)6.定义域为R 的函数f(x)满足f(1)=1,且f(x)的导函数f′(x)>12,则满足2f(x)<x +1的x 的集合为( ) A .{x|-1<x<1} B .{x|x<1} C .{x|x<-1或x>1} D .{x|x>1}7.设f(x)=x(ax2+bx +c)(a≠0)在x =1和x =-1处有极值,则下列点中一定在x 轴上的是( ) A .(a ,b) B .(a ,c) C .(b ,c) D .(a +b ,c)8.设曲线y =xn +1(n ∈N*)在点(1,1)处的切线与x 轴的交点横坐标为xn ,则log2 012x1+log2 012x2+…+log2 012x 的值为( )A .-log2 0122 011B .-1C .-1+log2 0122 011D .19.函数f(x)=x3+ax(x ∈R)在x =1处有极值,则曲线y =f(x)在原点处的切线方程是________. 10.曲线y =x(3lnx +1)在点(1,1)处的切线方程为________.11.设f(x),g(x)分别是定义在R 上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0且g(-3)=0,则不等式f(x)g(x)<0的解集为________.12. 某商品进货价每件50元,据市场调查,当销售价格(每件x 元)为50<x≤80时,每天售出的件数为P =105(x -40)2,若要使每天获得的利润最多,销售价格每件应定为多少元?13.已知函数f(x)=ex(ax2+x +1). (1)设a>0,讨论f(x)的单调性;(2)设a =-1,证明:对任意x1,x2∈[0,1],都有|f(x1)-f(x2)|<2. 14.已知函数f(x)=ex +1x -a.(1)当a =12时,求函数f(x)在x =0处的切线方程;(2)当a>1时,判断方程f(x)=0实根的个数.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第02节 古典概型一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
抛物线【九大题型】(举一反三)(新高考专用)(解析版)—2025年高考数学一轮复习
抛物线【九大题型】专练【题型1 抛物线的定义及其应用】........................................................................................................................3【题型2 抛物线的标准方程】................................................................................................................................5【题型3 抛物线的焦点坐标及准线方程】............................................................................................................6【题型4 抛物线的轨迹方程】................................................................................................................................7【题型5 抛物线上的点到定点的距离及最值】....................................................................................................9【题型6 抛物线上的点到定点和焦点距离的和、差最值】..............................................................................11【题型7 抛物线的焦半径公式】..........................................................................................................................14【题型8 抛物线的几何性质】..............................................................................................................................16【题型9 抛物线中的三角形(四边形)面积问题】 (18)1、抛物线【知识点1 抛物线及其性质】1.抛物线的定义(1)定义:平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫作抛物线.点F叫作抛物线的焦点,直线l叫作抛物线的准线.(2)集合语言表示设点M(x,y)是抛物线上任意一点,点M到直线l的距离为d,则抛物线就是点的集合P={M||MF|=d}.2.抛物线的标准方程与几何性质(0,0)(0,0)3.抛物线与椭圆、双曲线几何性质的差异抛物线与椭圆、双曲线几何性质的差异:①它们都是轴对称图形,但椭圆和双曲线又是中心对称图形;②顶点个数不同,椭圆有4个顶点,双曲线有2个顶点,抛物线只有1个顶点;③焦点个数不同,椭圆和双曲线各有2个焦点,抛物线只有1个焦点;④离心率取值范围不同,椭圆的离心率范围是0<e<1,双曲线的离心率范围是e>1,抛物线的离心率是e=1;⑤椭圆和双曲线都有两条准线,而抛物线只有一条准线;⑥椭圆是封闭式曲线,双曲线和抛物线都是非封闭式曲线.【知识点2 抛物线标准方程的求解方法】1.抛物线标准方程的求解待定系数法:求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.【知识点3 抛物线的焦半径公式】1.焦半径公式设抛物线上一点P的坐标为,焦点为F.(1)抛物线:;(2)抛物线:(3)抛物线:;(4)抛物线:.注:在使用焦半径公式时,首先要明确抛物线的标准方程的形式,不同的标准方程对应于不同的焦半径公式.【知识点4 与抛物线有关的最值问题的解题策略】1.与抛物线有关的最值问题的两个转化策略(1)转化策略一:将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”“三角形两边之和大于第三边”,使问题得以解决.(2)转化策略二:将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.【方法技巧与总结】1.通径:过焦点与对称轴垂直的弦长等于2p.2.抛物线P,也称为抛物线的焦半径.【题型1 抛物线的定义及其应用】【例1】(2024·贵州贵阳·二模)抛物线y2=4x上一点M与焦点间的距离是10,则M到x轴的距离是()A.4B.6C.7D.9【解题思路】借助抛物线定义计算即可得.【解答过程】抛物线y2=4x的准线为x=―1,由抛物线定义可得x M+1=10,故x M=10―1=9,则|y M|===6,即M到x轴的距离为6.故选:B.【变式1-1】(2024·河北·模拟预测)已知点P为平面内一动点,设甲:P的运动轨迹为抛物线,乙:P到平面内一定点的距离与到平面内一定直线的距离相等,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解题思路】根据已知条件,结合充分条件、必要条件的定义,即可求解.【解答过程】解:当直线经过定点时,点的轨迹是过定点且垂直于该直线的另一条直线,当直线不经过该定点时,点的轨迹为抛物线,故甲是乙的充分条件但不是必要条件.故选:A.【变式1-2】(2024·北京大兴·三模)已知抛物线y2=4x的焦点为F,过F且斜率为―1的直线与直线x=―1交于点A,点M在抛物线上,且满足|MA|=|MF|,则|MF|=()A.1B C.2D.【解题思路】由题意先求出过F且斜率为―1的直线方程,进而可求出点A,接着结合点M在抛物线上且|MA|=|MF|可求出x M,从而根据焦半径公式|MF|=x M+1即可得解.【解答过程】由题意可得F(1,0),故过F且斜率为―1的直线方程为y=―(x―1)=―x+1,令x=―1⇒y=2,则由题A(―1,2),因为|MA|=|MF|,所以MA垂直于直线x=―1,故y M=2,又M 在抛物线上,所以由22=4x M ⇒x M =1,所以|MF |=x M +1=2.故选:C.【变式1-3】(2024·福建莆田·模拟预测)若抛物线C 的焦点到准线的距离为3,且C 的开口朝左,则C 的标准方程为( )A .y 2=―6xB .y 2=6xC .y 2=―3xD .y 2=3x【解题思路】根据开口设抛物线标准方程,利用p 的几何意义即可求出.【解答过程】依题意可设C 的标准方程为y 2=―2px(p >0),因为C 的焦点到准线的距离为3,所以p =3,所以C 的标准方程为y 2=―6x .故选:A.【题型2 抛物线的标准方程】【例2】(2024·山东菏泽·模拟预测)已知点A (a,2)为抛物线x 2=2py (p >0)上一点,且点A 到抛物线的焦点F 的距离为3,则p =( )A .12B .1C .2D .4【解题思路】由题意,根据抛物线的性质,抛物线x 2=2py (p >0),则抛物线焦点为F 0,M (x 1,y 1)为 抛物线上一点,有|MF |=y 1+p 2,可得|AF |=2+p2=3,解得p =2.【解答过程】因为抛物线为x 2=2py (p >0),则其焦点在y 轴正半轴 上,焦点坐标为由于点A (a,2)为抛物线x 2=2py ,(p >0)为上一点,且点A 到抛物线的焦点F 的距离为3, 所以点A 到抛物线的焦点F 的距离为|AF |=2+p2=3,解得p =2,故选:C.【变式2-1】(2024·陕西安康·模拟预测)过点(2,―3),且焦点在y 轴上的抛物线的标准方程是( )A .x 2=―3yB .x 2=―43yC .x 2=―23yD .x 2=―4y【解题思路】利用待定系数法,设出抛物线方程,把点代入求解即可.【解答过程】设抛物线的标准方程为x 2=ay (a ≠0),将点点(2,―3)代入,得22=―3a,解得a=―43,所以抛物线的标准方程是x2=―43y.故选:B.【变式2-2】(2024·新疆·三模)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1,则抛物线的标准方程为()A.y2=x B.y2=2x C.y2=4x D.y2=8x【解题思路】根据抛物线的定义求解.【解答过程】由题意抛物线y2=2px(p>0)上任意一点到焦点F的距离与它到直线x=―1的距离相,因此―p2=―1,p=2,抛物线方程为y2=4x.故选:C.【变式2-3】(2024·宁夏石嘴山·三模)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于两点A、B,交其准线于C,AE与准线垂直且垂足为E,若|BC|=2|BF|,|AE|=3,则此抛物线的方程为()A.y2=3x2B.y2=9xC.y2=9x2D.y2=3x【解题思路】过点A,B作准线的垂线,设|BF|=a,得到|AC|=3+3a,结合抛物线的定义,求得a=1,再由BD//FG,列出方程求得p的值,即可求解.【解答过程】如图所示,分别过点B作准线的垂线,垂足为D,设|BF|=a,则|BC|=2|BF|=2a,由抛物线的定义得|BD|=|BF|=a,在直角△BCD中,可得sin∠BCD=|BD||BC|=12,所以∠BCD=30∘,在直角△ACE中,因为|AE|=3,可得|AC|=3+3a,由|AC |=2|AE |,所以3+3a =6,解得a =1,因为BD //FG ,所以1p =2a3a ,解得p =32,所以抛物线方程为y 2=3x .故选:C.【题型3 抛物线的焦点坐标及准线方程】【例3】(2024·内蒙古赤峰·二模)已知抛物线C 的方程为 x =―116y 2, 则此抛物线的焦点坐标为( )A .(-4,0)B .―14,C .(-2,0)D .―12,【解题思路】由抛物线的几何性质求解.【解答过程】依题意得:y 2=―16x ,则此抛物线的焦点坐标为:―4,0,故选:A.【变式3-1】(2024·黑龙江大庆·模拟预测)已知抛物线C:y =6x 2,则C 的准线方程为( )A .y =―32B .y =32C .y =―124D .y =124【解题思路】根据抛物线的准线方程直接得出结果.【解答过程】抛物线C :y =6x 2的标准方程为x 2=16y ,所以其准线方程为y =―124.故选:C.【变式3-2】(2024·河南·三模)抛物线y 2=―28x 的焦点坐标为( )A .(0,―14)B .(0,―7)C .(―14,0)D .(―7,0)【解题思路】根据抛物线的标准方程直接得出结果.【解答过程】∵2p =28,∴p =14,∴抛物线y 2=―28x 的焦点坐标为(―7,0).故选:D.【变式3-3】(2024·福建厦门·模拟预测)若抛物线y 2=mx 的准线经过双曲线x 2―y 2=2的右焦点,则m的值为()A.―4B.4C.―8D.8【解题思路】根据题意,分别求得双曲线的右焦点以及抛物线的准线方程,代入计算,即可得到结果.【解答过程】因为双曲线x2―y2=2的右焦点为(2,0),又抛物线y2=mx的准线方程为x=―m4,则―m4=2,即m=―8.故选:C.【题型4 抛物线的轨迹方程】【例4】(2024·湖南衡阳·三模)已知点F(2,0),动圆P过点F,且与x=―2相切,记动圆圆心P点的轨迹为曲线Γ,则曲线Γ的方程为()A.y2=2x B.y2=4x C.y2=8x D.y2=12x【解题思路】分析题意,利用抛物线的定义判断曲线是抛物线,再求解轨迹方程即可.【解答过程】由题意知,点P到点F的距离和它到直线x=―2的距离相等,所以点P的轨迹是以(2,0)为焦点的抛物线,所以Γ的方程为y2=8x,故C正确.故选:C.【变式4-1】(23-24高二上·北京延庆·期末)到定点F(1,0)的距离比到y轴的距离大1的动点且动点不在x轴的负半轴的轨迹方程是()A.y2=8x B.y2=C.y2=2x D.y2=x【解题思路】根据抛物线的定义即可得解.【解答过程】因为动点到定点F(1,0)的距离比到y轴的距离大1,所以动点到定点F(1,0)的距离等于到x=―1的距离,所以动点的轨迹是以F(1,0)为焦点,x=―1为准线的抛物线,所以动点的轨迹方程是y2=4x.故选:B.【变式4-2】(23-24高二上·重庆·期末)已知点P(x,y)=|x+1|,则点P的轨迹为()A.椭圆B.双曲线C.抛物线D.圆【解题思路】根据已知条件及抛物线的定义即可求解.P(x,y)到点(1,0)的距离;|x+1|表示点P(x,y)到直线x=―1的距离.=|x+1|,所以点P(x,y)到点(1,0)的距离等于点P(x,y)到直线x=―1的距离,所以P的轨迹为抛物线.故选:C.【变式4-3】(23-24高二上·宁夏石嘴山·阶段练习)一个动圆与定圆F:(x+2)2+y2=1相内切,且与定直线l:x=3相切,则此动圆的圆心M的轨迹方程是( )A.y2=8x B.y2=4x C.y2=―4x D.y2=―8x【解题思路】先利用圆与圆的位置关系,直线与圆的位置关系找到动点M的几何条件,再根据抛物线的定义确定动点M的轨迹,最后利用抛物线的标准方程写出轨迹方程.【解答过程】设动圆M的半径为r,依题意:|MF|=r―1,点M到定直线x=2的距离为d=r―1,所以动点M到定点F(―2,0)的距离等于到定直线x=2的距离,即M的轨迹为以F为焦点,x=2所以此动圆的圆心M的轨迹方程是y2=―8x.故选:D.【题型5 抛物线上的点到定点的距离及最值】【例5】(2024·全国·模拟预测)已知A是抛物线C:y2=4x上的点,N(4,0),则|AN|的最小值为()A.2B.C.4D.【解题思路】由抛物线的方程,利用二次函数的性质求最值【解答过程】设,t,则|AN|===≥当且仅当t=±故选:D.【变式5-1】(2024高三·全国·专题练习)已知P是抛物线y2=2x上的点,Q是圆(x―5)2+y2=1上的点,则|PQ |的最小值是( )A .2B .C .D .3【解题思路】将问题转化为求|PC|的最小值,根据两点之间的距离公式,求得|PC|的最小值再减去半径即可.【解答过程】如图,抛物线上点P (x,y )到圆心C (5,0)的距离为|PC |,|CP |≤|CQ |+|PQ |,因此|PQ |≥|CP |―1,当|CP |最小时,|PQ |=|CP |―1最小,而|CP |2=(x ―5)2+y 2=―52+y 2=2―82+9,当y =±|CP |min =3,因此|PQ |的最小值是2.故选:A.【变式5-2】(2024·湖南益阳·三模)已知M 是抛物线y²=4x 上一点,圆C 1:(x ―1)2+(y ―2)2=1关于直线y =x ―1对称的圆为C 2,N 是圆C 2上的一点,则|MN |的最小值为( )A .1B ―1C―1D .37【解题思路】根据对称性求出圆C 2的方程,设y 0,求出|MC 2|的最小值,即可求出|MN |的最小值.【解答过程】圆C 1:(x ―1)2+(y ―2)2=1圆心为C 1(1,2),半径r =1,设C 2(a,b ),=―1―1=0,解得a =3b =0,则C 2(3,0),所以圆C2 :(x ―3)2+y 2=1,设y 0,则|MC 2|==所以当y 20=4,即y 0=±2时,|MC 2|min=所以|MN |的最小值是―1.故选:A.【变式5-3】(2024·黑龙江齐齐哈尔·二模)已知抛物线C:y2=8x的焦点为F,M为C上的动点,N为圆A:x2+ y2+2x+8y+16=0上的动点,设点M到y轴的距离为d,则|MN|+d的最小值为()A.1B C D.2【解题思路】作出图形,过点M作ME垂直于抛物线的准线,垂足为点E,利用抛物线的定义可知d=|MF|―2,分析可知,当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,|MN|+d取最小值,即可得解.【解答过程】根据已知得到F(2,0),圆A:(x+1)2+(y+4)2=1,所以A(―1,―4),圆A的半径为1,抛物线C的准线为l:x=―2,过点M作ME⊥l,垂足为点E,则|ME|=d+2,由抛物线的定义可得d+2=|ME|=|MF|,所以,|MN|+d=|MN|+|MF|―2≥|AM|+|MF|―1―2≥|AF|―1―2=1―2=2.当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,两个等号成立,因此,|MN|+d的最小值为3.故选:D.【题型6 抛物线上的点到定点和焦点距离的和、差最值】【例6】(2024·四川成都·模拟预测)设点A(2,3),动点P在抛物线C:y2=4x上,记P到直线x=―2的距离为d,则|AP|+d的最小值为()A.1B.3C1D【解题思路】根据抛物线的定义,P到焦点F的距离等于P到准线的距离,可得d=|PF|+1,从而转化为求|AP|+|PF|+1的值,当A,P,F三点共线时,d=|PF|+1取得最小值,即可求解.【解答过程】由题意可得,抛物线C的焦点F(1,0),准线方程为x=―1,由抛物线的定义可得d=|PF|+1,所以|AP|+d=|AP|+|PF|+1,因为|AP|+|PF|≥|AF|==所以|AP|+d=|AP|+|PF|+1≥+1.当且仅当A,P,F三点共线时取等号,所以|AP|+d+1.故选:D.【变式6-1】(2024·湖南常德·一模)已知抛物线方程为:y2=16x,焦点为F.圆的方程为(x―5)2+(y―1)2 =1,设P为抛物线上的点,Q|PF|+|PQ|的最小值为()A.6B.7C.8D.9【解题思路】根据抛物线定义将点到焦点的距离转化为点到直线的距离,即|PF|=|PN|,从而得到|PF|+ |PQ|=|PN|+|PQ|,P、Q、N三点共线时和最小;再由Q在圆上,|QN|min=|MN|―r得到最小值.【解答过程】由抛物线方程为y2=16x,得到焦点F(4,0),准线方程为x=―4,过点P做准线的垂线,垂足为N,因为点P在抛物线上,所以|PF|=|PN|,所以|PF|+|PQ|=|PN|+|PQ|,当Q点固定不动时,P、Q、N三点共线,即QN垂直于准线时和最小,又因为Q在圆上运动,由圆的方程为(x―5)2+(y―1)2=1得圆心M(5,1),半径r=1,所以|QN|min=|MN|―r=8,故选:C.【变式6-2】(2024·全国·模拟预测)在直角坐标系xOy中,已知点F(1,0),E(―2,0),M(2,2),动点P满足线段PE的中点在曲线y2=2x+2上,则|PM|+|PF|的最小值为()A.2B.3C.4D.5【解题思路】设P(x,y),由题意求出P的轨迹方程,继而结合抛物线定义将|PM|+|PF|的最小值转化为M 到直线l的距离,即可求得答案.【解答过程】设P(x,y),则PE y2=2x+2,可得y2=4x,故动点P的轨迹是以F为焦点,直线l:x=―1为准线的抛物线,由于22<4×2,故M(2,2)在抛物线y2=4x内部,过点P作PQ⊥l,垂足为Q,则|PM|+|PF|=|PM|+|PQ|,(抛物线的定义),故当且仅当M,P,Q三点共线时,|PM|+|PQ|最小,即|PM|+|PF|最小,最小值为点M到直线l的距离,所以(|PM|+|PF|)min=2―(―1)=3,故选:B.【变式6-3】(2024·陕西西安·一模)设P为抛物线C:y2=4x上的动点,A(2,6)关于P的对称点为B,记P到直线x=―1、x=―4的距离分别d1、d2,则d1+d2+|AB|的最小值为()A B.C+3D.+3【解题思路】根据题意得到d1+d2+|AB|=2d1+3+2|PA|=2(d1+|PA|)+3,再利用抛物线的定义结合三角不等式求解.【解答过程】抛物线C:y2=4x的焦点为F(1,0),准线方程为x=―1,如图,因为d 2=d 1+3,且A (2,6)关于P 的对称点为B ,所以|PA |=|PB |,所以d 1+d 2+|AB |=2d 1+3+2|PA |=2(d 1+|PA |)+3 =2(|PF |+|PA |)+3≥2|AF |+3 ==.当P 在线段AF 与抛物线的交点时,d 1+d 1+|AB |取得最小值,且最小值为.故选:D.【题型7 抛物线的焦半径公式】【例7】(2024·青海西宁·一模)已知F 是抛物线C:x 2=4y 的焦点,点M 在C 上,且M 的纵坐标为3,则|MF |=( )A .B .C .4D .6【解题思路】利用抛物线的标准方程和抛物线的焦半径公式即可求解.【解答过程】由x 2=4y ,得2p =4,解得p =2.所以抛物线C:x 2=4y 的焦点坐标为F (0,1),准线方程为y =―1,又因为M 的纵坐标为3,点M 在C 上,所以|MF |=y M +p2=3+22=4.故选:C.【变式7-1】(2024·河南·模拟预测)已知抛物线C:y 2=2px (p >0)上的点(m,2)到原点的距离为为F ,准线l 与x 轴的交点为M ,过C 上一点P 作PQ ⊥l 于Q ,若∠FPQ =2π3,则|PF |=( )A .13B .12C D .23【解题思路】根据点(m,2)到原点的距离为再设点P 坐标,利用抛物线的定义和等腰三角形的性质列出方程即可求解.【解答过程】因为点(m,2)到原点的距离为所以m 2+22=8,解得m =2,(负值舍),将点(2,2)代入抛物线方程y 2=2px (p >0),得4=4p ,所以p =1,所以C:y 2=2x,F(12,0),l:x =―12.由于抛物线关于x 轴对称,不妨设,因为|PQ|=|PF|=x +12,∠FPQ =2π3,所以△PQF 为等腰三角形,∠PQF =π6,所以|QF|=+12),所以|QF|==+12),解得x =16或x =―12(舍),所以|PF |=16+12=23.故选:D.【变式7-2】(2024·新疆·三模)已知抛物线C :y 2=x 的焦点为F ,在抛物线C 上存在四个点P ,M ,Q ,N ,若弦PQ 与弦MN 的交点恰好为F ,且PQ ⊥MN ,则1|PQ |+1|MN |=( )A B .1C D .2【解题思路】由抛物线的方程可得焦点F 的坐标,应用抛物线焦点弦性质|PF |=p1―cos θ,|QF |=p1+cos θ,|MF |=p1+sin θ,|NF |=p1―sin θ,结合三角的恒等变换的化简可得1|PQ |+1|MN |=12p ,即可求解.【解答过程】由抛物线C:y 2=x 得2p =1,则p =12,F(14,0),不妨设PQ 的倾斜角为θ0<θ<则由|PF |cos θ+p =|PF |,p ―|QF |cos θ=|QF |,得|PF |=p 1―cos θ,|QF |=p1+cos θ,所以|MF |==p1+sin θ,|NF |==p1―sin θ,得|PQ |=|PF |+|QF |=p1―cos θ+p1+cos θ=2psin 2θ,|MN |==2pcos 2θ,所以1|PQ |+1|MN |=12p =1.故选:B.【变式7-3】(2024·北京西城·三模)点F 抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若FA +FB +FC =0,则|FA |+|FB |+|FC |=( )A .2B .C .3D .【解题思路】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),根据抛物线方程求出焦点坐标和准线方程,再由FA +FB +FC =0可得F 为△ABC 的重心,从而可求出x 1+x 2+x 3,再根据抛物线的定义可求得结果.【解答过程】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),由y 2=2x ,得p =1,所以F(12,0),准线方程为x =―12,因为FA +FB +FC =0,所以F 为△ABC 的重心,所以x 1+x 2+x 33=12,所以x 1+x 2+x 3=32,所以|FA |+|FB |+|FC |=x 1+12+x 2+12+x 3+12=x 1+x 2+x 3+32=32+32=3,故选:C.【题型8 抛物线的几何性质】【例8】(2024·重庆·模拟预测)A,B 是抛物线y 2=2px(p >0)上的不同两点,点F 是抛物线的焦点,且△OAB 的重心恰为F ,若|AF|=5,则p =( )A .1B .2C .3D .4【解题思路】根据重心可得x 1+x 2=3p 2y 1=―y 2,结合对称性可得x 1=3p4,再根据抛物线的定义运算求解.【解答过程】设A (x 1,y 1),B (x 2,y 2),因为△OAB 的重心恰为F=p2=0,解得x 1+x 2=3p2y 1=―y 2,由y 1=―y 2可知A,B 关于x 轴对称,即x 1=x 2,则x 1+x 2=2x 1=3p2,即x 1=3p 4,又因为|AF |=x 1+p2=5p 4=5,解得p =4.故选:D.【变式8-1】(23-24高二下·福建厦门·期末)等边三角形的一个顶点位于原点,另外两个顶点在抛物线y 2=2x 上,则这个等边三角形的边长为( )A .2B .C .4D.【解题思路】正三角形的另外两个顶点关于x 轴对称,设另外两个顶点坐标分别是A ),B―a),把顶点代入抛物线方程化简即可求解.【解答过程】设正三角形得边长为2a ,由图可知正三角形的另外两个顶点关于x 轴对称,可设另外两个顶点坐标分别是A),B―a ),把顶点代入抛物线方程得a 2=解得a =所以正三角形的边长为故选:D.【变式8-2】(23-24高三下·北京·阶段练习)设抛物线C 的焦点为F ,点E 是C 的准线与C 的对称轴的交点,点P 在C 上,若∠PEF =30°,则sin ∠PFE =( )A B C D 【解题思路】先设P(x 0,y 0),根据图形分别表示出tan ∠ P EF 和sin ∠ P FE 即可得解.【解答过程】由于抛物线的对称性,不妨设抛物线为C:y 2=2px(p >0),则其焦点为F(p2,0),点E 是C 的准线与C 的对称轴的交点,其坐标为E(―p2,0),点P 在C 上,设为P(x 0,y 0),若∠ P EF =30∘,则tan ∠ P EF =|y 0|x 0+p 2=且|PF|=x 0+p 2,则sin ∠ P FE =sin (π―∠ P FE )=|y 0||PF|=故选:B.【变式8-3】(23-24高二下·重庆·阶段练习)已知x 轴上一定点A (a,0)(a >0),和抛物线y 2=2px (p >0)上的一动点M ,若|AM |≥a 恒成立,则实数a 的取值范围为( )A .B .(0,p ]C .D .(0,2p ]【解题思路】设M (x 0,y 0) (x 0≥0),表示出|AM |,依题意可得x 20―(2a ―2p )x 0≥0恒成立,分x 0=0和x 0>0两种情况讨论,当x0>0时x0≥2a―2p恒成立,即可得到2a―2p≤0,从而求出a的取值范围.【解答过程】设M(x0,y0)(x0≥0),则y20=2px0,所以|AM|====因为|AM|≥a恒成立,所以x20―(2a―2p)x0+a2≥a2恒成立,所以x20―(2a―2p)x0≥0恒成立,当x0=0时显然恒成立,当x0>0时x0≥2a―2p恒成立,所以2a―2p≤0,则a≤p,又a>0,所以0<a≤p,即实数a的取值范围为(0,p].故选:B.【题型9 抛物线中的三角形(四边形)面积问题】【例9】(2024·江西新余·二模)已知点Q(2,―2)在抛物线C:y2=2px上,F为抛物线的焦点,则△OQF (O为坐标原点)的面积是()A.12B.1C.2D.4【解题思路】将点Q代入抛物线C的方程,即可求解p,再结合抛物线的公式,即可求解【解答过程】∵点Q(2,―2)在抛物线C:y2=2px上,F为抛物线C的焦点,∴4=4p,解得p=1,故抛物线C的方程为y2=2x,F(12,0),则△OQF的面积S△OQF=12×12×2=12.故选:A.【变式9-1】(23-24高二上·广东广州·期末)已知抛物线C:y2=2px(p>0)的焦点为F,直线l与C相交于A、B两点,与y轴相交于点E.已知|AF|=5,|BF|=3,若△AEF的面积是△BEF面积的2倍,则抛物线C的方程为()A .y 2=2xB .y 2=4xC .y 2=6xD .y 2=8x【解题思路】过A,B 分别作C 的准线的垂线交y 轴于点M,N ,根据抛物线定义可得|AM |=5―p2,|BN |=3―p 2,再由S △AEF S △BEF=|AE ||BE |=|AM ||BN |即可求参数p ,进而可得抛物线方程.【解答过程】如图,过A,B 分别作C 的准线的垂线交y 轴于点M,N ,则AM //BN ,故|AE ||BE |=|AM ||BN |,因为C 的准线为x =―p2,所以|AM |=|AF |―p2=5―p2,|BN |=|BF |―p2=3―p2,所以S △AEFS △BEF=12|EF ||AE |sin ∠AEF 12|EF ||BE |sin ∠BEF =|AE ||BE |=|AM ||BN |=5―p 23―p 2=2,解得p =2,故抛物线C 的方程为y 2=4x .故选:B.【变式9-2】(23-24高二上·广东广州·期末)设F 为抛物线y 2=4x 的焦点,A,B,C 为该抛物线上不同的三点,且FA +FB +FC =0,O 为坐标原点,若△OFA 、△OFB 、△OFC 的面积分别为S 1、S 2、S 3,则S 21+S 22+S 23=( )A .3B .4C .5D .6【解题思路】设点A,B,C 的坐标,再表示出△OFA,△OFB,△OFC 的面积,借助向量等式即可求得答案.【解答过程】设点A,B,C 的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),而抛物线的焦点F(1,0),|OF|=1,FA =(x 1―1,y 1),FB =(x 2―1,y 2),FC =(x 3―1,y 3),由FA +FB +FC =0,得x 1+x 2+x 3=3,于是S 1=12|y 1|,S 2=12|y 2|,S 3=12|y 3|,所以S 21+S 22+S 23=14(y 21+y 22+y 23)=x 1+x 2+x 3=3.故选:A.【变式9-3】(23-24高二·全国·课后作业)已知抛物线C:y2=8x,点P为抛物线上任意一点,过点P向圆D:x2+y2―4x+3=0作切线,切点分别为A,B,则四边形PADB的面积的最小值为()A.1B.2C D【解题思路】由题意圆的圆心与抛物线的焦点重合,可得连接PD,则S四边形PADB=2S Rt△PAD=|PA|,而|PA|=|PD|最小时,四边形PADB的面积最小,再抛物线的定义转化为点P到抛物线的准线的距离的最小值,结合抛物线的性质可求得结果【解答过程】如图,连接PD,圆D:(x―2)2+y2=1,该圆的圆心与抛物线的焦点重合,半径为1,则S四边形PADB=2S Rt△PAD=|PA|.又|PA|=PADB的面积最小时,|PD|最小.过点P向抛物线的准线x=―2作垂线,垂足为E,则|PD|=|PE|,当点P与坐标原点重合时,|PE|最小,此时|PE|=2.==故S四边形PADBmin故选:C.一、单选题1.(2024·江西·模拟预测)若抛物线x 2=8y 上一点(x 0,y 0)到焦点的距离是该点到x 轴距离的2倍.则y 0=( )A .12B .1C .32D .2【解题思路】根据抛物线的方程,结合抛物线的标准方程,得到抛物线的焦点和准线,利用抛物线的定义,得到抛物线上的点(x 0,y 0)到焦点的距离,根据题意得到关于y 0的方程,求解即可.【解答过程】已知拋物线的方程为x 2=8y ,可得p =4.所以焦点为F (0,2),准线为l :y =―2.抛物线上一点A (x 0,y 0)到焦点F 的距离等于到准线l 的距离,即|AF |=y 0+2,又∵A 到x 轴的距离为y 0,由已知得y 0+2=2y 0,解得y 0=2.故选:D .2.(2024·四川·模拟预测)已知抛物线C:x 2=8y 的焦点为F,P 是抛物线C 上的一点,O 为坐标原点,|OP |=4|PF |=( )A .4B .6C .8D .10【解题思路】求出抛物线焦点和准线方程,设P (m,n )(m ≥0),结合|OP |=n =4,由焦半径公式得到答案.【解答过程】抛物线C:x 2=8y 的焦点为F (0,2),准线方程为y =―2,设P (m,n )(m ≥0)=,解得n =4或n =―12(舍去),则|PF |=n +2=6.故选:B .3.(23-24高二下·甘肃白银·期中)若圆C 与x 轴相切且与圆x 2+y 2=4外切,则圆C 的圆心的轨迹方程为( )A .x 2=4y +4B .x 2=―4y +4C .x 2=4|y |+4D .x 2=4y ―4【解题思路】设圆心坐标为(x,y )=2+|y |,化简整理即可得解.【解答过程】设圆心坐标为(x,y)=2+|y|,化简得x2=4|y|+4,即圆C的圆心的轨迹方程为x2=4|y|+4.故选:C.4.(2024·北京海淀·三模)已知抛物线y2=4x的焦点为F、点M在抛物线上,MN垂直y轴于点N,若|MF|=6,则△MNF的面积为()A.8B.C.D.【解题思路】确定抛物线的焦点和准线,根据|MF|=6得到M.【解答过程】因为抛物线y2=4x的焦点为F(1,0),准线方程为x=―1,所以|MF|=x M+1=6,故x M=5,不妨设M在第一象限,故M×(5―0)×=所以S△MNF=12故选:C.5.(2024·西藏林芝·模拟预测)已知抛物线y2=8x上一点P到准线的距离为d1,到直线l:4x―3y+12=0的距离为d2,则d1+d2的最小值为()A.1B.2C.3D.4【解题思路】点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,利用抛物线的定义得|PF|=|PB|,当A,P和F共线时,点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和的最小,由点到直线的距离公式求得答案.【解答过程】由抛物线y2=8x知,焦点F(2,0),准线方程为l:x=―2,根据题意作图如下;点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,由抛物线的定义知:|PB|=|PF|,所以点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和为|PF|+|PA|,=4,且点F(2,0)到直线l:4x―3y+12=0的距离为d=|8―0+12|5所以d1+d2的最小值为4.故选:D.6.(2024·四川雅安·三模)已知过圆锥曲线的焦点且与焦点所在的对称轴垂直的弦被称为该圆锥曲线的通径,清代数学家明安图在《割圆密率捷法》中,也称圆的直径为通径.已知圆(x―2)2+(y+1)2=4的一条直径与拋物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,则p=()B.1C.2D.4A.12【解题思路】根据圆的通径的上端点就是抛物线通径的上右端点,可得抛物线x2=2py(p>0)经过点(2,1),从而可得答案.【解答过程】因为圆(x―2)2+(y+1)2=4的一条直径与抛物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,而抛物线x2=2py(p>0)的通径与y轴垂直,所以圆(x―2)2+(y+1)2=4的这条直径与x轴垂直,且圆的直径的上端点就是抛物线通径的右端点,因为圆(x―2)2+(y+1)2=4的圆心为(2,―1),半径为2,所以该圆与x轴垂直的直径的上端点为(2,1),即抛物线x2=2py(p>0)经过点(2,1),则4=2p,即p=2.故选:C.7.(2024·山西运城·三模)已知抛物线C:y 2=4x 的焦点为F ,动点M 在C 上,点B 与点A (1,―2)关于直线l:y =x ―1对称,则|MF ||MB |的最小值为( )AB .12CD .13【解题思路】根据对称性可得B(―1,0),即点B 为C 的准线与x 轴的交点,作MM ′垂直于C 的准线于点M ′,结合抛物线的定义可知|MF ||MB |=|MM ′||MB |= cos θ(∠MBF =θ),结合图象可得当直线MB 与C 相切时,cos θ最小,求出切线的斜率即可得答案.【解答过程】依题意,F(1,0),A(1,―2),设B(m,n)=―1m+12―1,解得m =―1n =0,即B(―1,0),点B 为C 的准线与x 轴的交点,由抛物线的对称性,不妨设点M 位于第一象限,作MM ′垂直于C 的准线于点M ′,设∠MBF =θ,θ∈ (0,π2),由抛物线的定义得|MM ′|=|MF |,于是|MF ||MB |=|MM ′||MB |= cos θ,当直线MB 与C 相切时,θ最大,cos θ最小,|MF||MB|取得最小值,此时直线BM 的斜率为正,设切线MB 的方程为x =my ―1(m >0),由x =my ―1y 2=4x消去x 得y 2―4my +4=0,则Δ=16m 2―16=0,得m =1,直线MB 的斜率为1,倾斜角为π4,于是θmax =π4,(cos θ)min =,所以|MF||MB|的最小值为故选:A.8.(2024·江西九江·二模)已知抛物线C:y 2=2px 过点A (1,2),F 为C 的焦点,点P 为C 上一点,O 为坐标原点,则( )A .C 的准线方程为x =―2B .△AFO 的面积为1C .不存在点P ,使得点P 到C 的焦点的距离为2D .存在点P ,使得△POF 为等边三角形【解题思路】求解抛物线方程,得到准线方程,判断A ;求解三角形的面积判断B ;利用|PF|=2.判断C ;判断P 的位置,推出三角形的形状,判断D .【解答过程】由题意抛物线C:y 2=2px 过点A(1,2),可得p =2,所以抛物线方程为C:y 2=4x ,所以准线方程为x =―1,A 错误;可以计算S △AFO =12×1×2=1,B 正确;当P(1,2)时,点P 到C 的焦点的距离为2,C 错误;△POF 为等边三角形,可知P 的横坐标为:12,当x =12时,纵坐标为:则12×=≠则△POF 为等腰三角形,不是等边三角形,故等边三角形的点P 不存在,所以D 错误.故选:B .二、多选题9.(2024·湖南长沙·二模)已知抛物线C 与抛物线y 2=4x 关于y 轴对称,则下列说法正确的是( )A .抛物线C 的焦点坐标是(―1,0)B .抛物线C 关于y 轴对称C .抛物线C 的准线方程为x =1D .抛物线C 的焦点到准线的距离为4【解题思路】依题意可得抛物线C 的方程为y 2=―4x ,即可得到其焦点坐标与准线方程,再根据抛物线的性。
【冲锋号考场模拟】赢战2023年高考数学模拟仿真卷 01卷(文科)(全国卷专用)(原卷版)
【冲锋号·考场模拟】赢战2023年高考数学模拟仿真卷01卷(文科)(全国卷专用)本卷满分150分,考试时间120分钟。
注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2022·河北·模拟预测)已知集合3{Z |Z}1A x x=∈-,2{Z |60}B x x x =∈--≤,则A B ⋃=()A .{2}B .}{2,0,2-C .{}2,1,0,1,2,3,4--D .}{3,2,0,2,4--2.已知复数(1)i,z m m m =-+∈R ,则下列命题中错误的是()A .若1m =,则12i z =+B .若1m =,则|z |=C .若z 的虚部是2,则1m =D .若z 在复平面内对应的点是(1,2)-,则1m =3.函数()3sin 22x xx xf x -=+的部分图象大致为()A .B .C .D .4.食物链亦称“营养链”,是指生态系统中各种生物为维持其本身的生命活动,必须以其他生物为食物的这种由食物联结起来的链锁关系.如图为某个生态环境中的食物链,若从鹰、麻雀、兔、田鼠以及蝗虫中任意选取两种,则这两种生物不能构成摄食关系的概率()A .35B .25C .23D .135.1360年詹希元创制了“五轮沙漏”,流沙从漏斗形的沙池流到初轮边上的沙斗里,驱动初轮,从而带动各级机械齿轮旋转.最后一级齿轮带动在水平面上旋转的中轮,中轮的轴心上有一根指针,指针则在一个有刻线的仪器圆盘上转动,以此显示时刻,这种显示方法几乎与现代时钟的表面结构完全相同.已知一个沙漏的沙池形状为圆雉形,满沙池的沙漏完正好一小时(假设沙匀速漏下),当沙池中沙的高度漏至一半时,记时时间为()A .12小时B .23小时C .34小时D .78小时6.若2cos230,,21tan 8πααα⎛⎫∈= ⎪+⎝⎭,则cos 6πα⎛⎫+= ⎪⎝⎭()A .32B .22C .12D .17.记不等式组620x y x y +⎧⎨-≥⎩表示的平面区域为D ,命题:(,),29p x y D x y ∃∈+ ;命题:(,),212q x y D x y ∀∈+ .给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝,这四个命题中,所有真命题的编号是A .①③B .①②C .②③D .③④8.斜率为k 的直线l 过抛物线()220y px p =>焦点F ,交抛物线于A ,B 两点,点()00,P x y 为AB 中点,作OQ AB ⊥,垂足为Q ,则下列结论中不正确的是A .0ky 为定值B .OA OB ⋅为定值C .点P 的轨迹为圆的一部分D .点Q 的轨迹是圆的一部分9.已知函数()cos ||2|sin |f x x x =-,以下结论正确的是()A .π是()f x 的一个周期B .函数在2π0,3⎡⎤⎢⎥⎣⎦单调递减C .函数()f x的值域为[D .函数()f x 在[2π,2π]-内有6个零点10.(2022·广西柳州·模拟预测)如图1所示,双曲线具有光学性质;从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,从2F 发出的光线经过图2中的A ,B 两点反射后,分别经过点C 和D ,且3cos 5BAC ∠=-,AB BD ⊥,则E 的离心率为()ABC.2D11.已知0.40.7e ,eln1.4,0.98a b c ===,则,,a b c 的大小关系是()A .a c b>>B .b a c>>C .b c a>>D .c a b>>12.英国物理学家牛顿用“作切线”的方法求函数的零点时,给出的“牛顿数列”在航空航天中应用广泛,若数列{}n x 满足()()1n n n n f x x x f x +=-',则称数列{}n x 为牛顿数列,如果()22f x x x =--,数列{}n x 为牛顿数列,设1ln 2n n n x a x +=-且11a =,2n x >,数列{}n a 的前n 项和为n S ,则2022S =()A .202221-B .202222-C .20221122⎛⎫- ⎪⎝⎭D .2022122⎛⎫- ⎪⎝⎭第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a 与b 的夹角为30°,且||a =r ,1b ||=,设m a b =+ ,n a b =-,则向量m 在n 方向上的投影向量的模为________.14.南宋数学家在《详解九章算法》和《算法通变本末》中提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,高阶等差数列中前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.现有高阶等差数列,其前7项分别为1,2,4,7,11,16,22,则该数列的第20项为________.15.(2022·四川·成都七中模拟预测)已知A ,B ,C ,D 是体积为3的球体表面上四点,若4AB =,2AC =,BC =A BCD -的体积为CD 长度的最大值为________.16.已知函数()y f x =,x D ∈,若存在实数m ,使得对于任意的x D ∈,都有()f x m ≥,则称函数()y f x =,x D ∈有下界,m 为其一个下界;类似的,若存在实数M ,使得对于任意的x D ∈,都有()f x M ≤,则称函数()y f x =,x D ∈有上界,M 为其一个上界.若函数()y f x =,x D ∈既有上界,又有下界,则称该函数为有界函数.对于下列4个结论中正确的序号是______.①若函数()y f x =有下界,则函数()y f x =有最小值;②若定义在R 上的奇函数()y f x =有上界,则该函数是有界函数;③对于函数()y f x =,若函数()y f x =有最大值,则该函数是有界函数;④若函数()y f x =的定义域为闭区间[],a b ,则该函数是有界函数.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答。
2016年高考数学调研卷(第一模拟)文(含解析)
2016年全国卷II高考《考试大纲》调研卷文科数学(第一模拟)一、选择题:共12题1.已知集合A={x|x2+x-2=0},B={x|-x2+x=0},则A∩B=A.{-1,0}B.{0,1}C.{1}D.{0}【答案】C【解析】本题考查一元二次方程的解、集合的交运算.先求出两个集合A,B,再利用集合知识求解即可.因为A={-2,1},B={0,1},所以A∩B={1}.选C.2.已知(a+b i)·(1-2i)=5(i为虚数单位,a,b∈R),则a+b的值为A.-1B.1C.2D.3【答案】D【解析】本题主要考查复数的乘法运算、复数相等的概念.解题时,先利用复数的乘法运算对已知条件进行运算,然后根据复数相等的概念求出a,b即可求解.因为(a+b i)(1-2i)=a+2b+(b-2a)i=5,故, 解得a=1,b=2,故a+b=3,选D.3.高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为A.13B.17C.19D.21【答案】C【解析】本题主要考查系统抽样在实际问题中的应用,考查考生对基础知识的掌握情况.因为47-33=14,所以由系统抽样的定义可知样本中的另一个学生的编号为5+14=19.4.“x>1”是“log2(x-1)<0”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】本题主要考查不等式的知识与充要关系的判断.分清条件和结论,根据充分条件、必要条件的定义判断是解题的关键.由log2(x-1)<0得0<x-1<1,即1<x<2,故“x>1”是“log2(x-1)<0”的必要不充分条件,选B.5.在约束条件下,目标函数z=x+2y的最大值为A.26B.24C.22D.20【答案】A【解析】本题主要考查线性规划的知识,数形结合是解决线性规划题目的常用方法.作出不等式组对应的平面区域如图中阴影部分所示,由z=x+2y得y=-x+,当y=-x+经过点C时,目标函数z=x+2y取得最大值,由得,即C(6,10),故目标函数z=x+2y的最大值为6+2×10=26,选A.6.已知角θ的终边经过点P(-1,-),则sin2θ+sin(3π-θ)cos(2π+θ)-cos2θ=A.-B.C.-D.【答案】D【解析】本题主要考查任意角的三角函数的定义、诱导公式、三角函数的求值等,考查考生的运算求解能力及转化思想.通解因为角θ的终边经过点P(-1,-),故tanθ=,故,由sin2θ+cos2θ=1可得cos2θ=,即cosθ=-,所以sinθ=-,sin2θ+sin(3π-θ)cos(2π+θ)-cos2θ=sin2θ+sinθcosθ-cos2θ=+(-)×(-)-,选D.优解因为角θ的终边经过点P(-1,-),故tanθ=,故sin2θ+sin(3π-θ)cos(2π+θ)-cos2θ=sin2θ+sinθcosθ-cos2θ==,选D.7.执行如图所示的程序框图,若输出的结果为43,则判断框内应填入的条件是A.z≤42?B.z≤20?C.z≤50?D.z≤52?【答案】A【解析】本题考查程序框图的知识,解题时,要注意z的值是否满足输出结果,何时终止循环.运行程序:x=0,y=1,因为z=1不满足输出结果,则x=1,y=1,因为z=2×1+1=3不满足输出结果,则x=1,y=3,因为z=2×1+3=5不满足输出结果,则x=3,y=5,因为z=2×3+5=11不满足输出结果,则x=5,y=11,因为z=2×5+11=21不满足输出结果,则x=11,y=21,因为z=2×11+21=43满足输出结果,此时需终止循环,结合选项可知,选A.8.设各项均为正数的等差数列{a n}的前n项和为S n,且a4a8=32,则S11的最小值为A.22B.44C.22D.44【答案】B【解析】本题主要考查等差数列的性质、前n项和公式,利用基本不等式求最值等知识.解答的关键是利用好基本不等式.因为数列{a n}为各项均为正数的等差数列,所以a4+a8≥2=8,S11=(a4+a8)≥×8=44,故S11的最小值为44,当且仅当a4=a8=4时取等号.选B.9.已知某空间几何体的三视图如图所示,则该几何体的体积为A.6+B.10+C.10+D.6+【答案】B【解析】本题考查三视图、几何体的体积,考查考生的计算能力、空间想象能力.由三视图还原出几何体是解题的关键.由三视图可知该几何体是由一个各棱长均为2的正四棱锥、一个棱长为2的正方体和一个直三棱柱构成的,正方体的体积为2×2×2=8,三棱柱的体积为×2×1×2=2,棱长为2的正四棱锥的高为,故其体积为×2×2×,故该几何体的体积为8+2+=10+,选B.10.将函数f(x)=sin(ωx+φ)(ω>0,-≤φ<)图象上每一点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移个单位长度得到y=sin x的图象,则函数f(x)的单调递增区间为A.[2kπ-,2kπ+],k∈ZB.[2kπ-,2kπ+],k∈ZC.[kπ-,kπ+],k∈ZD.[kπ-,kπ+],k∈Z【答案】C【解析】本题主要考查三角函数的图象与性质、三角函数的图象变换等知识.先根据三角函数图象变换求出ω,φ的值,再求其单调区间.通解将函数f(x)=sin(ωx+φ)图象上每一点的横坐标伸长为原来的2倍(纵坐标不变),则函数变为y=sin(ωx+φ),再向左平移个单位长度得到的函数为y=sin[ω(x+)+φ]=sin(ωx++φ)=sin x,又ω>0,所以,又-≤φ<,所以ω=2,φ=-,f(x)=sin(2x-),由2kπ-≤2x-≤2kπ+,k∈Z,可得kπ-≤x≤kπ+,k∈Z.选C.优解将y=sin x的图象向右平移个单位长度得到的函数为y=sin(x-),将函数y=sin(x-)的图象上每一点的横坐标缩短为原来的(纵坐标不变),则函数变为y=sin(2x-)=f(x),由2kπ-≤2x-≤2kπ+,k∈Z,可得kπ-≤x≤kπ+,k∈Z,选C.11.已知变量a,b满足b=-a2+3ln a(a>0),若点Q(m,n)在直线y=2x+上,则(a-m)2+(b-n)2的最小值为A. B. C.9 D.3【答案】A【解析】本题主要考查导数的几何意义、点到直线的距离公式,考查考生构造函数解决问题的意识、数据处理能力等,属于中上等难度题.将问题转化为函数图象上的动点与直线上的动点的距离问题,可用与已知直线平行的切线求解.由题意知,y=2x+表示斜率为2的直线,变量a,b满足b=-a2+3ln a,设函数f(x)=-x2+3ln x,则f'(x)=-x+,设当切线斜率为2时,函数f(x)图象的切点的横坐标为x0,则-x0+=2,∴x0=1,此时切点坐标为(1,-),切点到直线y=2x+的距离d=,∴(a-m)2+(b-n)2的最小值为d2=.12.已知双曲线C:-4y2=1(a>0)的右顶点到其一条渐近线的距离等于,抛物线E:y2=2px的焦点与双曲线C的右焦点重合,直线l的方程为x-y+4=0,在抛物线上有一动点M到y轴的距离为d1,到直线l的距离为d2,则d1+d2的最小值为A.+2B.+1C.-2D.-1【答案】D【解析】本题综合考查双曲线的方程、渐近线,抛物线的定义、性质等,考查考生分析问题、解决问题的能力.-4y2=1的右顶点坐标为(a,0),一条渐近线为x-2ay=0.由点到直线的距离公式得d=,解得a=或a=-(舍去),故双曲线的方程为-4y2=1.因为c==1,故双曲线的右焦点为(1,0),即抛物线的焦点为(1,0),所以p=2,x=-1是抛物线的准线,因为点M到y轴的距离为d1,所以到准线的距离为d1+1,设抛物线的焦点为F,则d1+1=|MF|,所以d1+d2=d1+1+d2-1=|MF|+d2-1,焦点到直线l的距离d3=,而|MF|+d2≥d3=,所以d1+d2=|MF|+d2-1≥-1,选D.二、填空题:共4题13.设向量a,b的夹角为60°,|a|=1,|b|=2,则(-3a+b)·(a+2b)=.【答案】0【解析】本题主要考查向量的模与夹角、向量的数量积等,考查考生的运算能力.因为向量a,b的夹角为60°,|a|=1,|b|=2,所以a·b=|a|·|b|cos 60°=1×2×=1,则(-3a+b)·(a+2b)=-3a2-6a·b+a·b+2b2=-3-5+8=0.14.已知在平面直角坐标系中,O(0,0),A(2,4),B(6,2),则三角形OAB的外接圆的方程是.【答案】x2+y2-6x-2y=0【解析】本题主要考查三角形的外接圆等知识.有两种方法解决,一是待定系数法,设出圆的一般方程,求出D,E,F即可,二是先判断出三角形OAB为直角三角形,再利用直角三角形的性质求出其外接圆的方程.解法一设三角形OAB的外接圆方程是x2+y2+Dx+Ey+F=0,依题意可得,解得,故三角形OAB的外接圆的方程是x2+y2-6x-2y=0.解法二因为直线OA的斜率k OA==2,直线AB的斜率k AB==-,k AB×k OA=2×(-)=-1,所以三角形OAB 是直角三角形,点A为直角顶点,OB为斜边,因为|OB|=,故外接圆的半径r=,又OB的中点坐标为(3,1),故三角形OAB的外接圆的标准方程为(x-3)2+(y-1)2=10,即x2+y2-6x-2y=0.15.已知棱长均为a的正三棱柱ABC-A1B1C1的六个顶点都在半径为的球面上,则a的值为.【答案】1【解析】本题主要考查球的内接三棱柱等,考查考生的空间想象能力与运算能力.设O是球心,D是等边三角形A1B1C1的中心,则OA1=,因为正三棱柱ABC-A1B1C1的所有棱长均为a,所以A1D=a×a,OD=,故A1D2+OD2=(a)2+()2=()2,得a2=,即a2=1,得a=1.16.已知正项等比数列{a n}的前n项和为S n,a1=2,且S1,S2+2,S3成等差数列,记数列{a n·(2n+1)}的前n项和为T n,则T n=.【答案】2-(1-2n)×2n+1【解析】本题主要考查等比数列的通项公式、错位相减法求和.利用已知条件可以求出{a n}的通项公式,再利用错位相减法求和即可.设数列{a n}的公比为q,由可得4+4q+4=2+2+2q+2q2,即q2-q-2=0,解得q=2或q=-1(舍去),∴a n=2n(n∈N*),a n·(2n+1)=(2n+1)×2n,故T n=3×2+5×22+…+(2n+1)×2n,则2T n=3×22+5×23+…+(2n+1)×2n+1,故-T n=3×2+2×22+2×23+…+2×2n-(2n+1)×2n+1=6+2×-(2n+1)×2n+1=-2+(1-2n)×2n+1,故T n=2-(1-2n)×2n+1.三、解答题:共8题17.已知△ABC的内角A,B,C所对的边分别为a,b,c,且a=2,.(1)求角A的大小;(2)求△ABC的面积的最大值.【答案】(1)根据正弦定理,由可得,,∴b2-a2=bc-c2,即b2+c2-a2=bc,由余弦定理可得cos A=,∵A∈(0,π),∴A=.(2)由a=2及余弦定理可得cos A=,故b2+c2=bc+4.又bc+4=b2+c2≥2bc,∴bc≤4+2,当且仅当b=c=时等号成立.故所求△ABC的面积的最大值为×(4+2)×+1.【解析】本题主要考查余弦定理、正弦定理的应用,基本不等式及三角形的面积公式等,考查了考生的计算能力,属于中档题.(1)利用正弦定理与余弦定理即可得出;(2)先利用余弦定理、基本不等式求出bc的最大值,再利用三角形的面积计算公式即可得出.【备注】解三角形的常见类型和方法:(1)已知两角和一边,首先根据内角和求出第三角,再用正弦定理、余弦定理求解相关问题;(2)已知两边和夹角,先用余弦定理求出第三边,再用正弦定理求另两角,必有一解;(3)已知三边可先应用余弦定理求对应的三个角,再求解相关问题.18.某县共有90个农村淘宝服务网点,随机抽取6个网点统计其元旦期间的网购金额(单位:万元)的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本数据的平均数;(2)若网购金额(单位:万元)不小于18的服务网点定义为优秀服务网点,其余为非优秀服务网点,根据茎叶图推断这90个服务网点中优秀服务网点的个数;(3)从随机抽取的6个服务网点中再任取2个作网购商品的调查,求恰有1个网点是优秀服务网点的概率.【答案】(1)由题意知,样本数据的平均数=12.(2)样本中优秀服务网点有2个,频率为,由此估计这90个服务网点中有90×=30个优秀服务网点.(3)由于样本中优秀服务网点有2个,分别记为a1,a2,非优秀服务网点有4个,分别记为b1,b2,b3,b4,从随机抽取的6个服务网点中再任取2个的可能情况有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3), (b1,b4),(b2,b3),(b2,b4),(b3,b4),共15种,记“恰有1个是优秀服务网点”为事件M,则事件M包含的可能情况有:(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),共8种,故所求概率P(M)=.【解析】本题主要考查统计中的茎叶图、样本均值、用样本估计总体、古典概型等知识.(1)先根据茎叶图读出数据,再利用公式求解即可;(2)利用样本估计总体的知识即可得出;(3)先利用列举法将满足条件的情况逐一列出来,再利用古典概型的概率计算公式解答.【备注】概率与统计解答题是近几年新课标高考的热点考题,利用茎叶图解答实际问题是当今命题的热点与亮点.这类题往往借助于熟悉的知识点,结合实际生活中比较新颖的问题进行命题,在高考试卷中,概率与统计的内容每年都有所涉及,往往对分层抽样、系统抽样比较偏重,考生只有正确处理茎叶图,读准数据,掌握古典概型的概率的计算,考试时才不会失分.19.在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=.(1)求证:平面EBC⊥平面EBD;(2)设M为线段EC上一点,且3EM=EC,试问在线段BC上是否存在一点T,使得MT∥平面BDE,若存在,试指出点T的位置;若不存在,请说明理由.【答案】(1)因为AD=1,CD=2,AC=,所以AD2+CD2=AC2,所以△ADC为直角三角形,且AD⊥D C.同理,因为ED=1,CD=2,EC=,所以ED2+CD2=EC2,所以△EDC为直角三角形,且ED⊥DC.又四边形ADEF是正方形,所以AD⊥DE,又AD∩DC=D,所以ED⊥平面ABCD.又BC⊂平面ABCD,所以ED⊥BC.在梯形ABCD中,过点B作BH⊥CD于点H,故四边形ABHD是正方形,所以∠ADB=45°,BD=.在Rt△BCH中,BH=CH=1,所以BC=,故BD2+BC2=DC2,所以BC⊥BD.因为BD∩ED=D,BD⊂平面EBD,ED⊂平面EBD,所以BC⊥平面EBD,又BC⊂平面EBC,所以平面EBC⊥平面EBD.(2)在线段BC上存在一点T,使得MT∥平面BDE,此时3BT=BC.连接MT,在△EBC中,因为,所以MT∥EB.又MT⊄平面BDE,EB⊂平面BDE,所以MT∥平面BDE.【解析】本题主要考查空间中直线与直线、直线与平面、平面与平面之间的位置关系等,考查考生的推理论证能力、空间想象能力及运算求解能力.(1)先利用勾股定理证明△ADC、△EDC 是直角三角形,最后证明平面EBC⊥平面EBD;(2)是探究性问题,先利用分析法找到点T,再进行证明.【备注】与平行、垂直有关的探究性问题是高考常考题型之一,解答的基本思路是先根据条件猜测点的位置,再给出证明.在探究点的存在性问题时,点多为中点、三等分点等特殊点,有时也需结合平面几何知识找点.20.设F1、F2分别是椭圆E:+=1(b>0)的左、右焦点,若P是该椭圆上的一个动点,且·的最大值为1.(1)求椭圆E的方程;(2)设直线l:x=ky-1与椭圆E交于不同的两点A、B,且∠AOB为锐角(O为坐标原点),求k的取值范围.【答案】(1)解法一易知a=2,c=,b2<4,所以F1(-,0),F2(,0),设P(x,y),则·=(--x,-y)·(-x,-y)=x2+y2-4+b2=x2+b2--4+b2=(1-)x2+2b2-4.因为x∈[-2,2],故当x=±2,即点P为椭圆长轴端点时,·有最大值1,即1=(1-)×4+2b2-4,解得b2=1.故所求椭圆E的方程为+y2=1.解法二由题意知a=2,c=,b2<4,所以F1(-,0),F2(,0),设P(x,y),则·=||·||·cos∠F1PF2=||·||·[+y2++y2-16+4b2]=(1-)x2+2b2-4.因为x∈[-2,2],故当x=±2,即点P为椭圆长轴端点时,·有最大值1,即1=(1-)×4+2b2-4,解得b2=1.故所求椭圆E的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),由得(k2+4)y2-2ky-3=0,Δ=(-2k)2+12(4+k2)=16k2+48>0,故y1+y2=,y1·y2=.又∠AOB为锐角,故·=x1x2+y1y2>0,又x1x2=(ky1-1)(ky2-1)=k2y1y2-k(y1+y2)+1,所以x1x2+y1y2=(1+k2)y1y2-k(y1+y2)+1=(1+k2)·-+1=>0,所以k2<,解得-<k<,故k的取值范围是(-,).【解析】本题主要考查直线与椭圆的位置关系等基础知识,考查考生综合运用数学知识解决问题的能力.(1)先设P(x,y),表示出F1、F2的坐标,然后求出、,得到·关于x的表达式,利用·的最大值求得b2的值,进而可求出椭圆的方程;(2)将x=ky-1与椭圆方程联立消去x,利用根与系数的关系表示出y1+y2和y1y2,由∠AOB为锐角可得x1x2+y1y2>0,将x1=ky1-1,x2=ky2-1代入求得x1x2+y1y2关于k的表达式,解不等式求出k的取值范围.【备注】每年高考试题都有一道解析几何的解答题,此题难度中等偏上,综合考查圆锥曲线的定义、标准方程、几何性质,与圆锥曲线有关的定点、定值、最值、范围问题和直线与圆锥曲线的位置关系等知识.由于解析几何解答题的综合性较强,对考生的能力要求较高,所以解答这类问题时,要注意观察问题的个性特征,熟练运用圆锥曲线的几何性质,以减少解题过程中的运算量.21.已知函数f(x)=ax2-ln x+1(a∈R).(1)求函数f(x)的单调区间;(2)求证:当a=1时,f(x)>x2+在(1,+∞)上恒成立.【答案】(1)由于f(x)=ax2-ln x+1(a∈R),故f'(x)=2ax-(x>0).①当a≤0时,f'(x)<0在(0,+∞)上恒成立,∴f(x)在(0,+∞)上是单调递减函数.②当a>0时,令f'(x)=0,得x=.当x变化时,f'(x),f(x)随x的变化情况如下表:x(0,)(,+∞)f'(x) -0 +f(x) ↘极小值↗由表可知,f(x)在(0,)上是单调递减函数,在(,+∞)上是单调递增函数.综上所述,当a≤0时,f(x)的单调递减区间为(0,+∞),无单调递增区间;当a>0时,f(x)的单调递减区间为(0,),单调递增区间为(,+∞).(2)当a=1时,f(x)=x2-ln x+1,设F(x)=x2-ln x+1-x2-x2-ln x-,则F'(x)=x->0在(1,+∞)上恒成立,∴F(x)在(1,+∞)上为增函数,且F(1)=0,即F(x)>0在(1,+∞)上恒成立,∴当a=1时,f(x)>x2+在(1,+∞)上恒成立.【解析】本题考查运用导数知识求函数的单调区间及不等式的恒成立问题,涉及分类讨论、构造法等思想方法.第(1)问是求函数的单调区间问题,对f(x)求导,分a≤0和a>0进行讨论,进而求出单调区间;第(2)问通过构造函数,利用函数的单调性进行证明.【备注】函数的单调性、极值、最值是高考命题的重点与热点,函数与不等式等结合的题目往往成为考卷的压轴题,因而预计2016年高考对函数的单调性、极值、最值等问题还会继续考查,但已知条件中函数表达式的结构形式不会太复杂,因而本题试图在函数表达式较简单的基础上加大问题设置上的难度,在不增加考生题意理解难度的基础上,力争考查更多的知识.22.如图,四边形ABCD是☉O的内接四边形,延长BA和CD相交于点P,BD为☉O的直径,过点C 作CE⊥BD于点E,BE=,AD=,,.(1)求BC的值;(2)求sin∠BDC的值.【答案】(1)因为四边形ABCD是☉O的内接四边形,所以∠PAD=∠PCB,又∠P=∠P,所以△PAD∽△PC B.设PA=a,PD=b,则有,即,故b=a,所以.又AD=,所以BC=4.(2)由BD为☉O的直径可知,BC⊥CD,又CE⊥BD,所以在Rt△BCD中,由射影定理知,BC2=BE·BD,故42=·BD,解得BD=3.故sin∠BDC=.【解析】本题考查圆内接四边形的性质、三角形相似、射影定理等.对于第(1)问要先得到△PAD 与△PCB相似,再利用已知条件得到比例关系式,即可求出BC的值;对于第(2)问要充分利用射影定理求出BD的值,进而求解sin∠BDC的值.【备注】与圆有关的证明或计算问题是高考考查的重点内容,它主要以圆周角定理、圆内接四边形的对角互补等作为证明角相等的依据,以圆的切割线定理、相交弦定理作为证明线段成比例的依据,以圆内接四边形的有关性质作为证明四点共圆的依据.求解时要依据图形,合理推理,准确转化,必要时需要借助辅助线将问题转化.23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,直线l的极坐标方程为ρ(cosθ+k sinθ)=-2(k为实数).(1)判断曲线C1与直线l的位置关系,并说明理由;(2)若曲线C1和直线l相交于A,B两点,且|AB|=,求直线l的斜率.【答案】(1)由曲线C1的参数方程可得其普通方程为(x+1)2+y2=1.由ρ(cosθ+k sinθ)=-2可得直线l的直角坐标方程为x+ky+2=0.因为圆心(-1,0)到直线l的距离d=≤1,所以直线与圆相交或相切,当k=0时,直线l与曲线C1相切;当k≠0时,直线l与曲线C1相交.(2)由于曲线C1和直线l相交于A,B两点,且|AB|=,故圆心到直线l的距离d=,解得k=±1,所以直线l的斜率为±1.【解析】本题考查曲线的参数方程及直线的极坐标方程,考查直线与圆的位置关系、点到直线的距离公式等.【备注】化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消元法、加减消元法、恒等式(三角的或代数的)消元法;极坐标方程与直角坐标方程互化的关键是用好公式:.24.设函数f(x)=|x+3|-|x-1|.(1)解不等式f(x)≥0;(2)若f(x)+2|x-1|≥m对任意的实数x均成立,求m的取值范围.【答案】(1)通解f(x)≥0等价于|x+3|≥|x-1|,当x>1时,|x+3|≥|x-1|等价于x+3≥x-1,即3≥-1,不等式恒成立,故x>1;当-3≤x≤1时,|x+3|≥|x-1|等价于x+3≥1-x,解得x≥-1,故-1≤x≤1;当x<-3时,|x+3|≥|x-1|等价于-x-3≥1-x,即-3≥1,无解.综上,原不等式的解集为{x|x≥-1}.优解f(x)≥0等价于|x+3|≥|x-1|,即(x+3)2≥(x-1)2,化简得8x≥-8,解得x≥-1,即原不等式的解集为{x|x≥-1}.(2)f(x)+2|x-1|=|x+3|-|x-1|+2|x-1|=|x+3|+|x-1|≥|x+3-(x-1)|=4,要使f(x)+2|x-1|≥m 对任意的实数x均成立,则[f(x)+2|x-1|]min≥m,所以m≤4.【解析】第(1)问主要考查绝对值不等式的解法,可以利用分类讨论思想进行解答,也可以两边先平方然后化简求解;第(2)问主要考查绝对值不等式的恒成立问题,利用绝对值不等式的意义求出最小值即可解决.。
2016年江苏省高考数学试卷(含详细答案解析)
2016年江苏省高考数学试卷一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B=.2.(5分)复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是.3.(5分)在平面直角坐标系xOy中,双曲线﹣=1的焦距是.4.(5分)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是.5.(5分)函数y=的定义域是.6.(5分)如图是一个算法的流程图,则输出的a的值是.7.(5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.8.(5分)已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是.9.(5分)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.10.(5分)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.11.(5分)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f (x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是.12.(5分)已知实数x,y满足,则x2+y2的取值范围是.13.(5分)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.14.(5分)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.二、解答题(共6小题,满分90分)15.(14分)在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.17.(14分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?18.(16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.19.(16分)已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.20.(16分)记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】21.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.B.【选修4—2:矩阵与变换】22.(10分)已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB.C.【选修4—4:坐标系与参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.24.设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a.附加题【必做题】25.(10分)如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2﹣p,﹣p);②求p的取值范围.26.(10分)(1)求7C﹣4C的值;(2)设m,n∈N*,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.2016年江苏省高考数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B={﹣1,2} .【分析】根据已知中集合A={﹣1,2,3,6},B={x|﹣2<x<3},结合集合交集的定义可得答案.【解答】解:∵集合A={﹣1,2,3,6},B={x|﹣2<x<3},∴A∩B={﹣1,2},故答案为:{﹣1,2}【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是5.【分析】利用复数的运算法则即可得出.【解答】解:z=(1+2i)(3﹣i)=5+5i,则z的实部是5,故答案为:5.【点评】本题考查了复数的运算性质,考查了推理能力与计算能力,属于基础题.3.(5分)在平面直角坐标系xOy中,双曲线﹣=1的焦距是2.【分析】确定双曲线的几何量,即可求出双曲线﹣=1的焦距.【解答】解:双曲线﹣=1中,a=,b=,∴c==,∴双曲线﹣=1的焦距是2.故答案为:2.【点评】本题重点考查了双曲线的简单几何性质,考查学生的计算能力,比较基础.4.(5分)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是0.1.【分析】先求出数据4.7,4.8,5.1,5.4,5.5的平均数,由此能求出该组数据的方差.【解答】解:∵数据4.7,4.8,5.1,5.4,5.5的平均数为:=(4.7+4.8+5.1+5.4+5.5)=5.1,∴该组数据的方差:S2=[(4.7﹣5.1)2+(4.8﹣5.1)2+(5.1﹣5.1)2+(5.4﹣5.1)2+(5.5﹣5.1)2]=0.1.故答案为:0.1.【点评】本题考查方差的求法,是基础题,解题时要认真审题,注意方差计算公式的合理运用.5.(5分)函数y=的定义域是[﹣3,1] .【分析】根据被开方数不小于0,构造不等式,解得答案.【解答】解:由3﹣2x﹣x2≥0得:x2+2x﹣3≤0,解得:x∈[﹣3,1],故答案为:[﹣3,1]【点评】本题考查的知识点是函数的定义域,二次不等式的解法,难度不大,属于基础题.6.(5分)如图是一个算法的流程图,则输出的a的值是9.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,可得答案.【解答】解:当a=1,b=9时,不满足a>b,故a=5,b=7,当a=5,b=7时,不满足a>b,故a=9,b=5当a=9,b=5时,满足a>b,故输出的a值为9,故答案为:9【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.7.(5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.【分析】出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,由此利用对立事件概率计算公式能求出出现向上的点数之和小于10的概率.【解答】解:将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,基本事件总数为n=6×6=36,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共6个,∴出现向上的点数之和小于10的概率:p=1﹣=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.8.(5分)已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是20.【分析】利用等差数列的通项公式和前n项和公式列出方程组,求出首项和公差,由此能求出a9的值.【解答】解:∵{a n}是等差数列,S n是其前n项和,a1+a22=﹣3,S5=10,∴,解得a1=﹣4,d=3,∴a9=﹣4+8×3=20.故答案为:20.【点评】本题考查等差数列的第9项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.9.(5分)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7.【分析】法1:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象即可得到答案;法2:由sin2x=cosx,即cosx(2sinx﹣1)=0,可得cosx=0或sinx=,结合题意,解之即可.【解答】解:法1:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.法2:依题意,sin2x=cosx,即cosx(2sinx﹣1)=0,故cosx=0或sinx=,因为x∈[0,3π],故x=,,,,,,,共7个,故答案为:7.【点评】本题考查正弦函数与余弦函数的图象,作出函数y=sin2x与y=cosx在区间[0,3π]上的图象是关键,属于中档题.10.(5分)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.【分析】设右焦点F(c,0),将y=代入椭圆方程求得B,C的坐标,运用两直线垂直的条件:斜率之积为﹣1,结合离心率公式,计算即可得到所求值.方法二、运用向量的数量积的性质,向量垂直的条件:数量积为0,结合离心率公式计算即可得到所求.【解答】解:设右焦点F(c,0),将y=代入椭圆方程可得x=±a=±a,可得B(﹣a,),C(a,),由∠BFC=90°,可得k BF•k CF=﹣1,即有•=﹣1,化简为b2=3a2﹣4c2,由b2=a2﹣c2,即有3c2=2a2,由e=,可得e2==,可得e=,另解:设右焦点F(c,0),将y=代入椭圆方程可得x=±a=±a,可得B(﹣a,),C(a,),=(﹣a﹣c,),=(a﹣c,),•=0,则c2﹣a2十b2=0,因为b2=a2﹣c2,代入得3c2=2a2,由e=,可得e2==,可得e=.故答案为:.【点评】本题考查椭圆的离心率的求法,注意运用两直线垂直的条件:斜率之积为﹣1,考查化简整理的运算能力,属于中档题.11.(5分)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f (x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是﹣.【分析】根据已知中函数的周期性,结合f(﹣)=f(),可得a值,进而得到f(5a)的值.【解答】解:f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,∴f(﹣)=f(﹣)=﹣+a,f()=f()=|﹣|=,∴a=,∴f(5a)=f(3)=f(﹣1)=﹣1+=﹣,故答案为:﹣【点评】本题考查的知识点是分段函数的应用,函数的周期性,根据已知求出a 值,是解答的关键.12.(5分)已知实数x,y满足,则x2+y2的取值范围是[,13] .【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合两点间的距离公式以及点到直线的距离公式进行求解即可.【解答】解:作出不等式组对应的平面区域,设z=x2+y2,则z的几何意义是区域内的点到原点距离的平方,由图象知A到原点的距离最大,点O到直线BC:2x+y﹣2=0的距离最小,由得,即A(2,3),此时z=22+32=4+9=13,点O到直线BC:2x+y﹣2=0的距离d==,则z=d2=()2=,故z的取值范围是[,13],故答案为:[,13].【点评】本题主要考查线性规划的应用,涉及距离的计算,利用数形结合是解决本题的关键.13.(5分)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.【分析】由已知可得=+,=﹣+,=+3,=﹣+3,=+2,=﹣+2,结合已知求出2=,2=,可得答案.【解答】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,故答案为:【点评】本题考查的知识是平面向量的数量积运算,平面向量的线性运算,难度中档.14.(5分)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是8.【分析】结合三角形关系和式子sinA=2sinBsinC可推出sinBcosC+cosBsinC=2sinBsinC,进而得到tanB+tanC=2tanBtanC,结合函数特性可求得最小值.【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,另解:由已知条件sinA=2sinBsinc,sin(B十C)=2sinBsinC,sinBcosC十cosBsinC=2sinBcosC,两边同除以cosBcosC,tanB十tanC=2tanBtanC,∵﹣tanA=tan(B十C)=,∴tanAtanBtanC=tanA十tanB十tanC,∴tanAtanBtanC=tanA十2tanBtanC≥2,令tanAtanBtanC=x>0,即x≥2,即x≥8,或x≤0(舍去),所以x的最小值为8.当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C 均为锐角.【点评】本题考查了三角恒等式的变化技巧和函数单调性知识,有一定灵活性.二、解答题(共6小题,满分90分)15.(14分)在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【分析】(1)利用正弦定理,即可求AB的长;(2)求出cosA、sinA,利用两角差的余弦公式求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cosB=,B∈(0,π),∴sinB=,∵,∴AB==5;(2)cosA═﹣cos(π﹣A)=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.∵A为三角形的内角,∴sinA=,∴cos(A﹣)=cosA+sinA=.【点评】本题考查正弦定理,考查两角和差的余弦公式,考查学生的计算能力,属于基础题.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.【分析】(1)通过证明DE∥AC,进而DE∥A1C1,据此可得直线DE∥平面A1C1F1;(2)通过证明A1F⊥DE结合题目已知条件A1F⊥B1D,进而可得平面B1DE⊥平面A1C1F.【解答】解:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC﹣A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F,∴DE∥A1C1F;(2)在ABC﹣A1B1C1的直棱柱中,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面B1DE⊥平面A1C1F.【点评】本题考查直线与平面平行的证明,以及平面与平面相互垂直的证明,把握常用方法最关键,难度不大.17.(14分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?【分析】(1)由正四棱柱的高O1O是正四棱锥的高PO1的4倍,可得PO1=2m时,O1O=8m,进而可得仓库的容积;(2)设PO1=xm,则O1O=4xm,A1O1=m,A1B1=•m,代入体积公式,求出容积的表达式,利用导数法,可得最大值.【解答】解:(1)∵PO1=2m,正四棱柱的高O1O是正四棱锥的高PO1的4倍.∴O1O=8m,答:仓库的容积V=×62×2+62×8=312m3,(2)若正四棱锥的侧棱长为6m,设PO1=xm,则O1O=4xm,A1O1=m,A1B1=•m,则仓库的容积V=×(•)2•x+(•)2•4x=x3+312x,(0<x<6),∴V′=﹣26x2+312,(0<x<6),当0<x<2时,V′>0,V(x)单调递增;当2<x<6时,V′<0,V(x)单调递减;故当x=2时,V(x)取最大值;答:当PO1=2m时,仓库的容积最大.【点评】本题考查的知识点是棱锥和棱柱的体积,导数法求函数的最大值,难度中档.18.(16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.【分析】(1)设N(6,n),则圆N为:(x﹣6)2+(y﹣n)2=n2,n>0,从而得到|7﹣n|=|n|+5,由此能求出圆N的标准方程.(2)由题意得OA=2,k OA=2,设l:y=2x+b,则圆心M到直线l的距离:d=,由此能求出直线l的方程.(3)=,即||=,又||≤10,得t∈[2﹣2,2+2],对于任意t∈[2﹣2,2+2],欲使,只需要作直线TA的平行线,使圆心到直线的距离为,由此能求出实数t的取值范围.【解答】解:(1)∵N在直线x=6上,∴设N(6,n),∵圆N与x轴相切,∴圆N为:(x﹣6)2+(y﹣n)2=n2,n>0,又圆N与圆M外切,圆M:x2+y2﹣12x﹣14y+60=0,即圆M:(x﹣6)2+(x﹣7)2=25,∴|7﹣n|=|n|+5,解得n=1,∴圆N的标准方程为(x﹣6)2+(y﹣1)2=1.(2)由题意得OA=2,k OA=2,设l:y=2x+b,则圆心M到直线l的距离:d==,则|BC|=2=2,BC=2,即2=2,解得b=5或b=﹣15,∴直线l的方程为:y=2x+5或y=2x﹣15.(3)设P(x1,y1),Q(x2,y2),∵A(2,4),T(t,0),,∴,①∵点Q在圆M上,∴(x2﹣6)2+(y2﹣7)2=25,②将①代入②,得(x1﹣t﹣4)2+(y1﹣3)2=25,∴点P(x1,y1)即在圆M上,又在圆[x﹣(t+4)]2+(y﹣3)2=25上,从而圆(x﹣6)2+(y﹣7)2=25与圆[x﹣(t+4)]2+(y﹣3)2=25有公共点,∴5﹣5≤≤5+5.解得2﹣2≤t,∴实数t的取值范围是[2﹣2,2+2].【点评】本题考查圆的标准方程的求法,考查直线方程的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用.19.(16分)已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.【分析】(1)①利用方程,直接求解即可.②列出不等式,利用二次函数的性质以及函数的最值,转化求解即可.(2)求出g(x)=f(x)﹣2=a x+b x﹣2,求出函数的导数,构造函数h(x)=+,求出g(x)的最小值为:g(x0).①若g(x0)<0,g(x)至少有两个零点,与条件矛盾.②若g(x0)>0,利用函数g(x)=f(x)﹣2有且只有1个零点,推出g(x0)=0,然后求解ab=1.【解答】解:函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①方程f(x)=2;即:=2,y=2x在R上单调,可得x=0.②不等式f(2x)≥mf(x)﹣6恒成立,即≥m()﹣6恒成立.令t=,t≥2.不等式化为:t2﹣mt+4≥0在t≥2时,恒成立.可得:△≤0或即:m2﹣16≤0或m≤4,∴m∈(﹣∞,4].实数m的最大值为:4.(2)g(x)=f(x)﹣2=a x+b x﹣2,g′(x)=a x lna+b x lnb=a x[+]lnb,0<a<1,b>1可得,令h(x)=+,则h(x)是递增函数,而,lna<0,lnb>0,因此,x0=时,h(x0)=0,因此x∈(﹣∞,x0)时,h(x)<0,a x lnb>0,则g′(x)<0.x∈(x0,+∞)时,h(x)>0,a x lnb>0,则g′(x)>0,则g(x)在(﹣∞,x0)递减,(x0,+∞)递增,因此g(x)的最小值为:g(x0).①若g(x0)<0,x<log a2时,a x>=2,b x>0,则g(x)>0,因此x1<log a2,且x1<x0时,g(x1)>0,因此g(x)在(x1,x0)有零点,则g(x)至少有两个零点,与条件矛盾.②若g(x0)≥0,函数g(x)=f(x)﹣2有且只有1个零点,g(x)的最小值为g(x0),可得g(x0)=0,由g(0)=a0+b0﹣2=0,因此x0=0,因此=0,﹣=1,即lna+lnb=0,ln(ab)=0,则ab=1.可得ab=1.【点评】本题考查函数与方程的综合应用,函数的导数的应用,基本不等式的应用,函数恒成立的应用,考查分析问题解决问题的能力.20.(16分)记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.【分析】(1)根据题意,由S T的定义,分析可得S T=a2+a4=a2+9a2=30,计算可得a2=3,进而可得a1的值,由等比数列通项公式即可得答案;(2)根据题意,由S T的定义,分析可得S T≤a1+a2+…a k=1+3+32+…+3k﹣1,由等比数列的前n项和公式计算可得证明;(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,进而分析可以将原命题转化为证明S C≥2S B,分2种情况进行讨论:①、若B=∅,②、若B≠∅,可以证明得到S A≥2S B,即可得证明.【解答】解:(1)等比数列{a n}中是公比为3的等比数列,则a4=3a3=9a2,当T={2,4}时,S T=a2+a4=a2+9a2=30,因此a2=3,从而a1==1,故a n=3n﹣1,(2)S T≤a1+a2+…a k=1+3+32+…+3k﹣1=<3k=a k+1,(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,分析可得S C=S A+S C∩D,S D=S B+S C∩D,则S C+S C∩D﹣2S D=S A﹣2S B,因此原命题的等价于证明S A≥2S B,由条件S C≥S D,可得S A≥S B,①、若B=∅,则S B=0,故S A≥2S B,②、若B≠∅,由S A≥S B可得A≠∅,设A中最大元素为l,B中最大元素为m,若m≥l+1,则其与S A<a1+1≤a m≤S B相矛盾,因为A∩B=∅,所以l≠m,则l≥m+1,S B≤a1+a2+…a m=1+3+32+…+3m﹣1=≤=,即S A≥2S B,综上所述,S A≥2S B,故S C+S C∩D≥2S D.【点评】本题考查数列的应用,涉及新定义的内容,解题的关键是正确理解题目中对于新定义的描述.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】21.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.【分析】依题意,知∠BDC=90°,∠EDC=∠C,利用∠C+∠DBC=∠ABD+∠DBC=90°,可得∠ABD=∠C,从而可证得结论.【解答】解:在△ABC中,由BD⊥AC可得∠BDC=90°,因为E为BC的中点,所以DE=CE=BC,则:∠EDC=∠C,由∠BDC=90°,可得∠C+∠DBC=90°,由∠ABC=90°,可得∠ABD+∠DBC=90°,因此∠ABD=∠C,而∠EDC=∠C,所以,∠EDC=∠ABD.【点评】本题考查三角形的性质应用,利用∠C+∠DBC=∠ABD+∠DBC=90°,证得∠ABD=∠C是关键,属于中档题.B.【选修4—2:矩阵与变换】22.(10分)已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB.【分析】依题意,利用矩阵变换求得B=(B﹣1)﹣1==,再利用矩阵乘法的性质可求得答案.【解答】解:∵B﹣1=,∴B=(B﹣1)﹣1==,又A=,∴AB==.【点评】本题考查逆变换与逆矩阵,考查矩阵乘法的性质,属于中档题.C.【选修4—4:坐标系与参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.【分析】分别化直线与椭圆的参数方程为普通方程,然后联立方程组,求出直线与椭圆的交点坐标,代入两点间的距离公式求得答案.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.【点评】本题考查直线与椭圆的参数方程,考查了参数方程化普通方程,考查直线与椭圆位置关系的应用,是基础题.24.设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a.【分析】运用绝对值不等式的性质:|a+b|≤|a|+|b|,结合不等式的基本性质,即可得证.【解答】证明:由a>0,|x﹣1|<,|y﹣2|<,根据绝对值不等式的性质,可得|2x+y﹣4|=|2(x﹣1)+(y﹣2)|≤2|x﹣1|+|y﹣2|<+=a,则|2x+y﹣4|<a成立.【点评】本题考查绝对值不等式的证明,注意运用绝对值不等式的性质,以及不等式的简单性质,考查运算能力,属于基础题.附加题【必做题】25.(10分)如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2﹣p,﹣p);②求p的取值范围.【分析】(1)求出抛物线的焦点坐标,然后求解抛物线方程.(2):①设点P(x1,y1),Q(x2,y2),通过抛物线方程,求解k PQ,通过P,Q 关于直线l对称,点的k PQ=﹣1,推出,PQ的中点在直线l上,推出=2﹣p,即可证明线段PQ的中点坐标为(2﹣p,﹣p);②利用线段PQ中点坐标(2﹣p,﹣p).推出,得到关于y2+2py+4p2﹣4p=0,有两个不相等的实数根,列出不等式即可求出p的范围.【解答】解:(1)∵l:x﹣y﹣2=0,∴l与x轴的交点坐标(2,0),即抛物线的焦点坐标(2,0).∴,∴抛物线C:y2=8x.(2)证明:①设点P(x1,y1),Q(x2,y2),则:,即:,k PQ==,又∵P,Q关于直线l对称,∴k PQ=﹣1,即y1+y2=﹣2p,∴,又PQ的中点在直线l上,∴==2﹣p,∴线段PQ的中点坐标为(2﹣p,﹣p);②因为Q中点坐标(2﹣p,﹣p).∴,即∴,即关于y2+2py+4p2﹣4p=0,有两个不相等的实数根,∴△>0,(2p)2﹣4(4p2﹣4p)>0,∴p∈.【点评】本题考查抛物线方程的求法,直线与抛物线的位置关系的应用,考查转化思想以及计算能力.26.(10分)(1)求7C﹣4C的值;(2)设m,n∈N*,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【分析】(1)由已知直接利用组合公式能求出7的值.(2)对任意m∈N*,当n=m时,验证等式成立;再假设n=k(k≥m)时命题成立,推导出当n=k+1时,命题也成立,由此利用数学归纳法能证明(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【解答】解:(1)7=﹣4×=7×20﹣4×35=0.证明:(2)对任意m∈N*,①当n=m时,左边=(m+1)=m+1,右边=(m+1)=m+1,等式成立.②假设n=k(k≥m)时命题成立,即(m+1)C+(m+2)C+(m+3)C+…+k+(k+1)=(m+1),当n=k+1时,左边=(m+1)+(m+2)+(m+3)++(k+1)+(k+2)=,右边=∵=(m+1)[﹣]=(m+1)×[k+3﹣(k﹣m+1)]=(k+2)=(k+2),∴=(m+1),∴左边=右边,∴n=k+1时,命题也成立,∴m,n∈N*,n≥m,(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【点评】本题考查组合数的计算与证明,是中档题,解题时要认真审题,注意组合数公式和数学归纳法的合理运用.。
2022年高考数学(文)模拟卷三(全国卷)(原卷版+解析版)
2022年高考数学(文)模拟卷(全国卷)二轮拔高卷03(本卷满分150分,考试时间120分钟。
)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数3i z a =+,且()i i ,R z m m a m =+∈,则a m +=( ) A .3B .0C .3-D .6-2.已知命题:p x ∃∈R ,2610x x +=-,命题:q x ∀∈R ,3sin 2cos 22x x +<,则下列命题中为真命题的是( ) A .p q ∧B .p q ∨⌝C .p q ⌝∧⌝D .p q ⌝∧3.某校为了解高一高二各班体育节的表现情况,统计了高一高二各班的得分情况并绘成如图所示的茎叶图,则下列说法正确的是( )A .高一年级得分中位数小于高二年级得分中位数B .高一年级得分方差大于高二年级得分方差C .高一年级得分平均数等于高二年级得分平均数D .高一年级班级得分最低为344.已知在ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,则根据条件解三角形时恰有一解的一组条件是( )A .3a =,4b =,6A π= B .4a =,3b =,3A π=C .1a =,2b =,4A π=D .2a =,3b =,23A π=5.若实数x ,y 满足约束条件10330390x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则2z x y =-的最大值是( )A .-2B .-4C .3D .46.其几何体的三视图如图所示(单位:cm ),则该几何体的体积是A .34cmB .38cmC .3163cm D .3323cm 7.五声音阶(汉族古代音律)就是按五度的相生顺序,从宫音开始到羽音,依次为:宫,商,角,徵,羽,若宫的频率为f ,则宫,商,角,徵,羽的频率分别是f 、98f 、8164f 、32f 、2716f .定义音比(大于1)是相邻两个音的频率比,上述音比只有两个不同的值,记为(),αβαβ>,则下列关系式不成立...的是( )(参考数据:lg 20.301≈、lg30.477≈) A .3227α=B .lg 2lg33lg 2β=-C .10lg lg 9αβ⋅=D .lg lg 0.2αβ-<8.已知函数π()2sin()(0,||)2f x x ωϕωϕ=+><的最小正周期3π4T ≥,且7π12x =是函数()f x 的一条对称轴,π(,0)3是函数()f x 的一个对称中心,则函数()f x 在ππ,46⎛⎤- ⎥⎝⎦上的取值范围是( )A .(B .(]-1,2C .1-12⎛⎤⎥⎝⎦, D .[]1,2-9.已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若122F A F A =,则21cos AF F ∠=A .14 B .13C D 10.已知正四棱柱1111ABCD A B C D -中,12312AA AB ==,点M 是线段1BB 的中点,点N 是线段1DD 上靠近D 的三等分点,若正四棱柱1111ABCD A B C D -被过点1A ,M ,N 的平面所截,则所得截面的周长为( )A .10+B .10+C .9+D .9+11.数列{}n a 满足:221110101n n n n a a a a a ++<<≥=+-,,,则( )A .3420191a a a <<,B .3420191a a a ,C .3420191a a a ><,D .3420191a a a >>,12.已知函数()e xf x =,()cosg x t x =;若()()g x f x ≤在,22x ππ⎛⎫∈- ⎪⎝⎭上恒成立,则实数t 的取值范围是( )A.4π⎛⎤-∞ ⎥⎝⎦B.4,π-⎫+∞⎪⎭C.4,π⎫+∞⎪⎭D.4π-⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分。
2016年江苏省高考数学试题(含附加题+答案)
XC中高考资料第 1 页 共 15 页绝密★启用前2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。
1.已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ▲ . 2.复数(12i)(3i),z =+-其中i 为虚数单位,则z 的实部是 ▲ .3.在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是 ▲ .4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 ▲ . 5.函数y =232x x --的定义域是 ▲ .6.如图是一个算法的流程图,则输出的a 的值是 ▲ .7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 ▲ .8.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 ▲ .9.定义在区间[0,3π]上的函数y =sin2x 的图象与y =cos x 的图象的交点个数是 ▲ .10.如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0的右焦点,直线2by =与椭圆交于B ,C 两点,且90BFC ∠= ,则该椭圆的离心率是 ▲ . 注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分。
考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
2016年高考文科数学全国卷1(含详细答案)
数学试卷 第1页(共39页) 数学试卷 第2页(共39页)数学试卷 第3页(共39页)绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:山西、河南、河北、湖南、湖北、江西、安徽、福建、广东本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分. 考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3. 考试结束,监考员将本试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B = ( )A. {1,3}B. {3,5}C. {5,7}D. {1,7}2. 设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则=a( )A. 3-B. 2-C. 2D. 33. 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 ( )A.13 B.12 C. 23D. 564. ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知a =,2c =,2cos 3A =,则b =( )A.B.C. 2D. 35. 直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13 B.12 C. 23D. 346. 将函数2sin(2)6y x π=+的图象向右平移14个周期后,所得图象对应的函数为( )A. 2sin(2)4y x π=+ B. 2sin(2)3y x π=+ C. 2sin(2)4y x π=-D. 2sin(2)3y x π=-7. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 ( )A. 17πB. 18πC. 20πD. 28π 8. 若0a b >>,01c <<,则( )A. log log a b c c <B. log log c c a b <C. cca b <D. ab c c>9. 函数2|x|2y x e =-在[2,2]-的图象大致为( )ABC D10. 执行如图的程序框图,如果输入的0x =,1y =,1n =,则输出x ,y 的值满足 ( )A. 2y x =B. 3y x =C. 4y x =D. 5y x =11. 平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,n 所成角的正弦值为( )A.B.C.D.1312. 若函数1()sin 2sin 3f x x x a x =-+在(,)-∞+∞单调递增,则a 的取值范围是( )A. []1,1-B. 11,3⎡⎤-⎢⎥⎣⎦C. 11,33⎡⎤-⎢⎥⎣⎦D. 11,3⎡⎤--⎢⎥⎣⎦姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)第II 卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13. 设向量a 1(),x x =+,b (1,2)=,且a ⊥b ,则x = .14. 已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-= . 15. 设直线2y x a =+与圆22:220C x y ay +--=相交于,A B 两点,若||AB =则圆C的面积为 .16. 某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足11b =,213b =,11n n n n a b b nb +++=. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求{}n b 的前n 项和. 18.(本小题满分12分)如图,已知正三棱锥P ABC -的侧面是直角三角形,6PA =.顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连接PE 并延长交AB 于点G . (Ⅰ)证明:G 是AB 的中点;(Ⅱ)在图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.19.(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (Ⅰ)若19n =,求y 与x 的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值; (Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(本小题满分12分)在直角坐标系xOy 中,直线:(0)l y t t =≠交y 轴于点M ,交抛物线2:2C y px =(0)p >于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求||||OH ON ;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.21.(本小题满分12分)已知函数2()(2)(1)x f x x e a x =-+-. (Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修41-:几何证明选讲如图,OAB △是等腰三角形,120AOB ∠=.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点,C D 在⊙O 上,且,,,A B C D 四点共圆,证明:AB CD ∥.23.(本小题满分10分)选修44-:坐标系与参数方程在直线坐标系xOy 中,曲线1C 的参数方程为cos ,1sin ,x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .24.(本小题满分10分),选修45-:不等式选讲已知函数()|1||23|f x x x =+--. (Ⅰ)画出()y f x =的图象; (Ⅱ)求不等式|()|1f x >的解集.{3,5}A B=a-=,由已知,得213/ 13数学试卷 第10页(共39页)数学试卷 第11页(共39页) 数学试卷 第12页(共39页)平面ABB1D平面1n所成角等于所成角的正弦值为5/ 13数学试卷 第16页(共39页)数学试卷 第17页(共39页) 数学试卷 第18页(共39页)【解析】由题意,0a b x =+,3【提示】根据向量垂直的充要条件便可得出0a b =,进行向量数量积的坐标运算即可得出关于的值.【考点】向量的数量积,坐标运算7/ 13作出二元一次不等式组①表示的平面区域,即可行域,如图中阴影部分所示.7z77z数学试卷第22页(共39页)数学试卷第23页(共39页)数学试卷第24页(共39页)18.【答案】(Ⅰ)因为P在平面ABC内的正投影为D,所以AB PD⊥.9/ 13数学试卷第29页(共39页)数学试卷第30页(共39页)11 / 13))(1,)+∞时,(,ln(2)),1,+a -,1)(ln(2),)a -+∞时,单调递增,在1,ln((2))a -单调递减)在(,1)-∞ln 2a ,则f数学试卷 第34页(共39页)数学试卷 第35页(共39页) 数学试卷 第36页(共39页)同理可证,'OO CD ⊥,所以//AB CD .13/ 13。
2016年高考文科数学全国卷2(含详细答案)
数学试卷 第1页(共33页) 数学试卷 第2页(共33页) 数学试卷 第3页(共33页)绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷2)文科数学使用地区:海南、宁夏、黑龙江、吉林、辽宁、新疆、内蒙古、青海、甘肃、重庆、陕西、西藏本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分,共6页.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4. 作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合{}123A =,,,{}2|9B x x =<,则A B =( ) A. {2,1,0,1,2,3}--B. {2,1,0,1,2}--C. {1,2,3}D. {1,2}2. 设复数z 满足3z i i +=-,则=z ( )A. 12i -+B. 12i -C. 32i +D. 32i -3. 函数()sin y A x ωϕ=+的部分图像如图所示,则A. 2sin(2)6y x π=-B. 2sin(2)3y x π=-C. 2sin()6y x π=+D. 2sin()3y x π=+4. 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )A. 12πB. 323πC. 8πD. 4π5. 设F 为抛物线C :24y x =的焦点,曲线0ky k x =>()与C 交于点P ,PF x ⊥轴,则=k( )A.12 B. 1 C. 32D. 26. 圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则=a( )A. 43-B. 34-C.D. 27. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积( )A. 20πB. 24πC. 28πD. 32π8. 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 ( )A. 710B. 58C. 38D. 3109. 中国古代有计算多项式值得秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的s = ( )A. 7B. 12C. 17D. 3410. 下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是 ( )A. y x =B. lg y x =C. 2x y =D. 1y x=11. 函数() = cos26cos()2f x x x π+-的最大值为( )A. 4B. 5C. 6D. 712. 已知函数()()f x x ∈R 满足()(2)f x f x =-,若函数223y x x =--与()y f x =图象的交点为11x y (,),22x y (,),…,m m x y (,),则1mi i x =∑=A. 0B. mC. 2mD. 4m姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共6页) 数学试卷 第5页(共6页) 数学试卷 第6页(共6页)第Ⅱ卷本卷包括必考题和选考题两部分.第13~12题为必考题,每个试题考生都必须作答.第22~24为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分. 13. 已知向量a ()4m =,,b ()32=-,,且a ∥b ,则m =________.14. 若x ,y 满足约束条件10,30,30,x y x y x -++--⎧⎪⎨⎪⎩≥≥≤则2z x y =-的最小值为________.15. ABC ∆的内角A B C ,,的对边分别为a b c ,,,若4cos 5A =,5cos 13C =,1a =,则b =________.16. 有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)等差数列{}n a 中,344a a +=,576a a +=.(Ⅰ)求{}n a 的通项公式;(Ⅱ)设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]0=,[2.6]2=.18. (本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(Ⅰ)记A 为事件:“一续保人本年度的保费不高于基本保费”。
湖南省高考数学模拟试卷(四)文(含解析)-人教版高三全册数学试题
2016年某某省高考数学模拟试卷(文科)(四)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设复数z满足1+z=(1﹣z)i,则|z|=()A.B.1 C.D.22.设全集为R,集合A={x|x2﹣9<0},B={x|﹣1<x≤5},则A∩(∁R B)=()A.(﹣3,0)B.(﹣3,﹣1) C.(﹣3,﹣1] D.(﹣3,3)3.已知,则a,b,c的大小关系是()A.a>c>b B.c>a>b C.a>b>c D.c>b>a4.阅读如图的程序框图,运行相应的程序,则输出S的值为()A.﹣10 B.6 C.14 D.185.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,86.已知等差数列{a n}前四项中第二项为606,前四项和S n为3834,则该数列第4项为()A.2004 B.3005 C.2424 D.20167.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.88.已知向量满足,,,则与的夹角为()A.B.C.D.9.已知圆C:x2+y2﹣4x﹣4y=0与x轴相交于A,B两点,则弦AB所对的圆心角的大小()A.B.C.D.10.将的图象上各点的横坐标缩短到原来的一半,纵坐标不变,再将图象上所有点向左平移个单位,则所得函数图象的一条对称轴为()A.B.C.D.11.已知四面体P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=AB,若四面体P﹣ABC的体积为,则该球的体积为()A.B.2πC.D.12.已知双曲线﹣=1 (a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.曲线y=e﹣x+1在点(0,2)处的切线与直线y=0和x=0围成三角形的面积为.14.已知等比数列{a n}中,a3+a5=8,a1a5=4,则=.15.若不等式组表示的平面区域为三角形,且其面积等于,则m的值为.16.已知函数,若|f(x)|≥ax,则a的取值X围是.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.18.某城市100户居民的月平均用电量(单位:度)以[160,180),[180,200),[200,220),[220,240)[240,260),[260,280),[280,300]分组的频率分布直方图如图(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则越平均用电量在[220,240)的用户中应抽取多少户?19.在边长为5的菱形ABCD中,AC=8,现沿对角线BD把△ABD折起,折起后使∠ADC的余弦值为.(1)求证:平面ABD⊥平面CBD;(2)若M是AB的中点,求三棱锥A﹣MCD的体积.20.已知抛物线C1:x2=4y的焦点F也是椭圆C2: +=1(a>b>0)的一个焦点,C1与C2的公共弦的长为2,过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向.(Ⅰ)求C2的方程;(Ⅱ)若|AC|=|BD|,求直线l的斜率.21.已知函数f(x)=lnx﹣.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)证明;当x>1时,f(x)<x﹣1;(Ⅲ)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k (x﹣1).四.请考生在第(22)、(23)(24)三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.[选修4-1几何证明选讲]22.如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(Ⅰ)求证:AD∥EC;(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.[选修4-4坐标系与参数方程]23.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)若圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.[选修4-5不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣3|+|x﹣a|.(Ⅰ)当a=1时,求不等式f(x)<4的解集;(Ⅱ)设函数f(x)的最小值为g(a),求g(a)的最小值.2016年某某省高考数学模拟试卷(文科)(四)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设复数z满足1+z=(1﹣z)i,则|z|=()A.B.1 C.D.2【考点】复数求模.【专题】转化思想;综合法;数系的扩充和复数.【分析】由1+z=(1﹣z)i,可得z=,再利用复数的运算法则、共轭复数的定义、模的计算公式即可得出.【解答】解:∵1+z=(1﹣z)i,∴z====i,则|z|=1.故选:B.【点评】本题考查了复数的运算法则、共轭复数的定义、模的计算公式,考查了推理能力与技能数列,属于基础题.2.设全集为R,集合A={x|x2﹣9<0},B={x|﹣1<x≤5},则A∩(∁R B)=()A.(﹣3,0)B.(﹣3,﹣1) C.(﹣3,﹣1] D.(﹣3,3)【考点】交、并、补集的混合运算.【专题】集合.【分析】根据补集的定义求得∁R B,再根据两个集合的交集的定义,求得A∩(∁R B).【解答】解:∵集合A={x|x2﹣9<0}={x|﹣3<x<3},B={x|﹣1<x≤5},∴∁R B={x|x≤﹣1,或 x>5},则A∩(∁R B)={x|﹣3<x≤﹣1},故选:C.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.3.已知,则a,b,c的大小关系是()A.a>c>b B.c>a>b C.a>b>c D.c>b>a【考点】对数值大小的比较.【专题】转化思想;综合法;函数的性质及应用.【分析】根据指数的运算求出a的X围,根据对数的运算性质得到b,c的X围,比较即可.【解答】解: ==>2,<0,0<<1,即a>2,b<0,0<c<1,即a>c>b,故选:A.【点评】本题考查了指数以及对数的运算性质,是一道基础题.4.阅读如图的程序框图,运行相应的程序,则输出S的值为()A.﹣10 B.6 C.14 D.18【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的i,S的值,当i=8时满足条件i>5,退出循环,输出S的值为6.【解答】解:模拟执行程序框图,可得S=20,i=1i=2,S=18不满足条件i>5,i=4,S=14不满足条件i>5,i=8,S=6满足条件i>5,退出循环,输出S的值为6.故选:B.【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的i,S的值是解题的关键,属于基础题.5.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,8【考点】茎叶图.【专题】概率与统计.【分析】求乙组数据的平均数就是把所有乙组数据加起来,再除以5.找甲组数据的中位数要把甲组数据按从小到大的顺序排列,位于最中间的一个数为中位数.据此列式求解即可.【解答】解:乙组数据平均数=(9+15+18+24+10+y)÷5=16.8;∴y=8;甲组数据可排列成:9,12,10+x,24,27.所以中位数为:10+x=15,∴x=5.故选:C.【点评】本题考查了中位数和平均数的计算.平均数是指在一组数据中所有数据之和再除以数据的个数.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.6.已知等差数列{a n}前四项中第二项为606,前四项和S n为3834,则该数列第4项为()A.2004 B.3005 C.2424 D.2016【考点】等差数列的前n项和;等差数列的通项公式.【专题】等差数列与等比数列.【分析】根据等差数列前n项和公式和通项公式之间的关系进行推导即可.【解答】解:已知a2=606,S4=3834,则S3=a1+a2+a3=3a2=1818即a4=S4﹣S3=3834﹣1818=2016,故选:D【点评】本题主要考查等差数列的前n项和公式和通项公式的应用,比较基础.7.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【考点】由三视图求面积、体积.【专题】立体几何.【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.【点评】本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.8.已知向量满足,,,则与的夹角为()A.B.C.D.【考点】数量积表示两个向量的夹角.【专题】平面向量及应用.【分析】设与的夹角为θ,由数量积的定义代入已知可得cosθ,进而可得θ【解答】解:设与的夹角为θ,∵,,,∴=||||cosθ=1×2×cosθ=,∴cosθ=﹣,∴θ=故选:D【点评】本题考查数量积与向量的夹角,属基础题.9.已知圆C:x2+y2﹣4x﹣4y=0与x轴相交于A,B两点,则弦AB所对的圆心角的大小()A.B.C.D.【考点】直线与圆的位置关系.【专题】综合题;直线与圆.【分析】根据条件令x=0,求出AB的长度,结合三角形的勾股定理求出三角形ACB是直角三角形即可得到结论.【解答】解:当y=0时,得x2﹣4x=0,解得x=0或x=4,则AB=4﹣0=4,半径R=2,∵CA2+CB2=(2)2+(2)2=8+8=16=(AB)2,∴△ACB是直角三角形,∴∠ACB=90°,即弦AB所对的圆心角的大小为90°,故选:C.【点评】本题主要考查圆心角的求解,根据条件求出先AB的长度是解决本题的关键.10.将的图象上各点的横坐标缩短到原来的一半,纵坐标不变,再将图象上所有点向左平移个单位,则所得函数图象的一条对称轴为()A.B.C.D.【考点】正弦函数的图象.【专题】三角函数的图像与性质.【分析】由条件利用y=Asin(ωx+φ)的图象变换规律,可得所得图象对应的函数解析式,再根据正弦函数的图象的对称性,求得所得函数图象的一条对称轴.【解答】解:将的图象上各点的横坐标缩短到原来的一半,纵坐标不变,可得函数y=sin(2x+)的图象;再把所得图象象左平移个单位,则所得函数图象对应的解析式为y=sin[2(x+)+]=sin(2x+),令2x+=kπ+,求得 x=﹣,k∈z,故所得函数的图象的对称轴方程为 x=﹣,k∈z.结合所给的选项,故选:A.【点评】本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.11.已知四面体P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=AB,若四面体P﹣ABC的体积为,则该球的体积为()A.B.2πC.D.【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】设该球的半径为R,则AB=2R,2AC=AB=,故AC=R,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,由此能求出球的体积.【解答】解:设该球的半径为R,则AB=2R,2AC=AB=,∴AC=R,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,在Rt△ABC中,由勾股定理,得:BC2=AB2﹣AC2=R2,所以Rt△ABC面积S=×BC×AC=,又PO⊥平面ABC,且PO=R,四面体P﹣ABC的体积为,∴V P﹣ABC==,即R3=9,R3=3,所以:球的体积V球=×πR3=×π×3=4π.故选D.【点评】本题考查四面体的外接球的体积的求法,解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题.12.已知双曲线﹣=1 (a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【考点】双曲线的标准方程.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由抛物线标准方程易得其准线方程,从而可得双曲线的左焦点,再根据焦点在x轴上的双曲线的渐近线方程渐近线方程,得a、b的另一个方程,求出a、b,即可得到双曲线的标准方程.【解答】解:由题意, =,∵抛物线y2=4x的准线方程为x=﹣,双曲线的一个焦点在抛物线y2=4x的准线上,∴c=,∴a2+b2=c2=7,∴a=2,b=,∴双曲线的方程为.故选:D.【点评】本题主要考查双曲线和抛物线的标准方程与几何性质,考查学生的计算能力,属于基础题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.曲线y=e﹣x+1在点(0,2)处的切线与直线y=0和x=0围成三角形的面积为 2 .【考点】利用导数研究曲线上某点切线方程.【专题】计算题;方程思想;转化法;导数的概念及应用.【分析】求函数的导数,利用导数求出函数的切线方程,结合三角形的面积公式进行求解即可.【解答】解:函数的导数f′(x)=﹣e﹣x,则f′(0)=﹣1,则切线方程为y﹣2=﹣x,即y=﹣x+2,切线与x轴的交点为(2,0),与y轴的交点为(0,2),∴切线与直线y=0和x=0围成三角形的面积S=,故答案为:2【点评】本题主要考查三角形面积的计算,求函数的导数,利用导数的几何意义求出切线方程是解决本题的关键.14.已知等比数列{a n}中,a3+a5=8,a1a5=4,则= 9 .【考点】等比数列的性质.【专题】等差数列与等比数列.【分析】由等比数列的性质可得a1a5=a32=4,解出a3,分别可得q2,而=q4,代入可得答案.【解答】解:由等比数列的性质可得a1a5=a32=4,解得a3=2,或a3=﹣2,当a3=2时,可得a5=8﹣a3=6,q2==3当a3=﹣2,可得a5=8﹣a3=10,q2==﹣5,(舍去)∴=q4=32=9故答案为:9【点评】本题考查等比数列的性质,涉及分类讨论的思想,属基础题.15.若不等式组表示的平面区域为三角形,且其面积等于,则m的值为 1 .【考点】二元一次不等式(组)与平面区域.【专题】数形结合;综合法;不等式的解法及应用.【分析】作出不等式组对应的平面区域,求出三角形各顶点的坐标,利用三角形的面积公式进行求解即可.【解答】解:作出不等式组对应的平面区域如图:若表示的平面区域为三角形,由,得,即A(2,0),则A(2,0)在直线x﹣y+2m=0的下方,即2+2m>0,则m>﹣1,则A(2,0),D(﹣2m,0),由,解得,即B(1﹣m,1+m),由,解得,即C(,).则三角形ABC的面积S△ABC=S△ADB﹣S△ADC=|AD||y B﹣y C|=(2+2m)(1+m﹣)=(1+m)(1+m﹣)=,即(1+m)×=,即(1+m)2=4解得m=1或m=﹣3(舍).【点评】本题主要考查线性规划以及三角形面积的计算,求出交点坐标,结合三角形的面积公式是解决本题的关键.16.已知函数,若|f(x)|≥ax,则a的取值X围是[﹣2,0].【考点】绝对值不等式的解法;指、对数不等式的解法.【专题】不等式的解法及应用.【分析】由题意可得,当x>0时,log2(x+1)>0恒成立,则此时应有a≤0.当x≤0时,|f(x)|=x2﹣2x≥ax,再分x=0、x<0两种情况,分别求得a的X围,综合可得结论.【解答】解:由于函数,且|f(x)|≥ax,①当x>0时,log2(x+1)>0恒成立,不等式即log2(x+1)≥ax,则此时应有a≤0.②当x≤0时,由于﹣x2+2x 的取值为(﹣∞,0],故不等式即|f(x)|=x2﹣2x≥ax.若x=0时,|f(x)|=ax,a取任意值.若x<0时,有a≥x﹣2,即a≥﹣2.综上,a的取值为[﹣2,0],故答案为[﹣2,0].【点评】本题主要考查绝对值不等式的解法,对数不等式的解法,体现了分类讨论的数学思想,属于中档题.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.【考点】正弦定理.【专题】解三角形.【分析】(Ⅰ)由正弦定理及已知可得=,由sinA≠0,即可证明sinB=cosA.(Ⅱ)由两角和的正弦函数公式化简已知可得sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,可得sin2B=,结合X围可求B,由sinB=cosA及A的X围可求A,由三角形内角和定理可求C.【解答】解:(Ⅰ)证明:∵a=btanA.∴=tanA,∵由正弦定理:,又tanA=,∴=,∵sinA≠0,∴sinB=cosA.得证.(Ⅱ)∵sinC=sin[π﹣(A+B)]=sin(A+B)=sinAcosB+cosAsinB,∴sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,∴sin2B=,∵0<B<π,∴sinB=,∵B为钝角,∴B=,又∵cosA=sinB=,∴A=,∴C=π﹣A﹣B=,综上,A=C=,B=.【点评】本题主要考查了正弦定理,三角形内角和定理,两角和的正弦函数公式的应用,属于基础题.18.某城市100户居民的月平均用电量(单位:度)以[160,180),[180,200),[200,220),[220,240)[240,260),[260,280),[280,300]分组的频率分布直方图如图(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则越平均用电量在[220,240)的用户中应抽取多少户?【考点】用样本的数字特征估计总体的数字特征.【专题】计算题;数形结合;整体思想;定义法;概率与统计.【分析】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095++0.011)×20+0.0125×(a﹣220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数.【解答】解:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得x=0.0075,∴直方图中x的值为0.0075;(2)月平均用电量的众数是=230,∵(0.002+0.0095+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a﹣220)=0.5可得a=224,∴月平均用电量的中位数为224;(3)月平均用电量为[220,240)的用户有0.0125×20×100=25,月平均用电量为[240,260)的用户有0.0075×20×100=15,月平均用电量为[260,280)的用户有0.005×20×100=10,月平均用电量为[280,300)的用户有0.0025×20×100=5,∴抽取比例为=,∴月平均用电量在[220,240)的用户中应抽取25×=5户【点评】本题考查频率分布直方图,涉及众数和中位数以及分层抽样,属基础题.19.在边长为5的菱形ABCD中,AC=8,现沿对角线BD把△ABD折起,折起后使∠ADC的余弦值为.(1)求证:平面ABD⊥平面CBD;(2)若M是AB的中点,求三棱锥A﹣MCD的体积.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积.【专题】空间位置关系与距离.【分析】(Ⅰ)由已知条件推导出AO⊥平面BCD,由此能证明平面ABD⊥平面CBD.(Ⅱ)分别以OA,OC,OD所在直线为坐标轴建系,利用向量法能求出三棱锥A﹣MCD的体积.【解答】(Ⅰ)证明:菱形ABCD中,记AC,BD交点为O,AD=5,∴OA=4,OD=3,翻折后变成三棱椎A﹣BCD,在△ACD中,AC2=AD2+CD2﹣2AD•CD•cos∠ADC=25+25﹣2×,在△AOC中,OA2+OC2=32=AC2,∴∠AOC=90°,即AO⊥OC,又AO⊥BD,OC∩BD=O,∴AO⊥平面BCD,又AO⊂平面ABD,∴平面ABD⊥平面CBD.(Ⅱ)解:由(Ⅰ)知OA,OC,OD两两互相垂直,分别以OA,OC,OD所在直线为坐标轴建系,则A (0,0,4),B(0,﹣3,0),C(4,0,0),D(0,3,0),M(0,﹣,2),=(4,,﹣2),=(4,0,﹣4),=(4,﹣3,0),设平面ACD的一个法向量=(x,y,z),则由,得,令y=4,得=(3,4,3),∵=(),∴A到平面ACD的距离d===.∵在边长为5的菱形ABCD中,AC=8,∴S△ACD==12,∴三棱锥A﹣MCD的体积V===.【点评】本题考查平面与平面垂直的证明,考查三棱锥的体积的求法,解题时要认真审题,注意向量法的合理运用.20.已知抛物线C1:x2=4y的焦点F也是椭圆C2: +=1(a>b>0)的一个焦点,C1与C2的公共弦的长为2,过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向.(Ⅰ)求C2的方程;(Ⅱ)若|AC|=|BD|,求直线l的斜率.【考点】直线与圆锥曲线的关系;椭圆的标准方程.【专题】开放型;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)通过C1方程可知a2﹣b2=1,通过C1与C2的公共弦的长为2且C1与C2的图象都关于y轴对称可得,计算即得结论;(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),通过=可得(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,设直线l方程为y=kx+1,分别联立直线与抛物线、直线与椭圆方程,利用韦达定理计算即可.【解答】解:(Ⅰ)由C1方程可知F(0,1),∵F也是椭圆C2的一个焦点,∴a2﹣b2=1,又∵C1与C2的公共弦的长为2,C1与C2的图象都关于y轴对称,∴易得C1与C2的公共点的坐标为(±,),∴,又∵a2﹣b2=1,∴a2=9,b2=8,∴C2的方程为+=1;(Ⅱ)如图,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),∵与同向,且|AC|=|BD|,∴=,∴x1﹣x2=x3﹣x4,∴(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,设直线l的斜率为k,则l方程:y=kx+1,由,可得x2﹣4kx﹣4=0,由韦达定理可得x1+x2=4k,x1x2=﹣4,由,得(9+8k2)x2+16kx﹣64=0,由韦达定理可得x3+x4=﹣,x3x4=﹣,又∵(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,∴16(k2+1)=+,化简得16(k2+1)=,∴(9+8k2)2=16×9,解得k=±,即直线l的斜率为±.【点评】本题是一道直线与圆锥曲线的综合题,考查求椭圆方程以及直线的斜率,涉及到韦达定理等知识,考查计算能力,注意解题方法的积累,属于中档题.21.已知函数f(x)=lnx﹣.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)证明;当x>1时,f(x)<x﹣1;(Ⅲ)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k (x﹣1).【考点】导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.【专题】综合题;开放型;导数的综合应用.【分析】(Ⅰ)求导数,利用导数大于0,可求函数f(x)的单调增区间;(Ⅱ)令F(x)=f(x)﹣(x﹣1),证明F(x)在[1,+∞)上单调递减,可得结论;(Ⅲ)分类讨论,令G(x)=f(x)﹣k(x﹣1)(x>0),利用函数的单调性,可得实数k 的所有可能取值.【解答】解:(Ⅰ)∵f(x)=lnx﹣,∴f′(x)=>0(x>0),∴0<x<,∴函数f(x)的单调增区间是(0,);(Ⅱ)令F(x)=f(x)﹣(x﹣1),则F′(x)=当x>1时,F′(x)<0,∴F(x)在[1,+∞)上单调递减,∴x>1时,F(x)<F(1)=0,即当x>1时,f(x)<x﹣1;(Ⅲ)由(Ⅱ)知,k=1时,不存在x0>1满足题意;当k>1时,对于x>1,有f(x)<x﹣1<k(x﹣1),则f(x)<k(x﹣1),从而不存在x0>1满足题意;当k<1时,令G(x)=f(x)﹣k(x﹣1)(x>0),则G′(x)==0,可得x1=<0,x2=>1,当x∈(1,x2)时,G′(x)>0,故G(x)在(1,x2)上单调递增,从而x∈(1,x2)时,G(x)>G(1)=0,即f(x)>k(x﹣1),综上,k的取值X围为(﹣∞,1).【点评】本题考查导数知识的综合运用,考查函数的单调性,考查不等式的证明,正确构造函数是关键.四.请考生在第(22)、(23)(24)三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.[选修4-1几何证明选讲]22.如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(Ⅰ)求证:AD∥EC;(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.【考点】圆的切线的性质定理的证明;直线与圆相交的性质;直线与圆的位置关系;与圆有关的比例线段.【专题】计算题;证明题.【分析】(I)连接AB,根据弦切角等于所夹弧所对的圆周角得到∠BAC=∠D,又根据同弧所对的圆周角相等得到∠BAC=∠E,等量代换得到∠D=∠E,根据内错角相等得到两直线平行即可;(II)根据切割线定理得到PA2=PB•PD,求出PB的长,然后再根据相交弦定理得PA•PC=BP•PE,求出PE,再根据切割线定理得AD2=DB•DE=DB•(PB+PE),代入求出即可.【解答】解:(I)证明:连接AB,∵AC是⊙O1的切线,∴∠BAC=∠D,又∵∠BAC=∠E,∴∠D=∠E,∴AD∥EC.(II)∵PA是⊙O1的切线,PD是⊙O1的割线,∴PA2=PB•PD,∴62=PB•(PB+9)∴PB=3,在⊙O2中由相交弦定理,得PA•PC=BP•PE,∴PE=4,∵AD是⊙O2的切线,DE是⊙O2的割线,∴AD2=DB•DE=9×16,∴AD=12【点评】此题是一道综合题,要求学生灵活运用直线与圆相切和相交时的性质解决实际问题.本题的突破点是辅助线的连接.[选修4-4坐标系与参数方程]23.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)若圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.【考点】参数方程化成普通方程.【专题】计算题;规律型;转化思想;直线与圆.【分析】(1)利用点在直线上,代入方程求出a,利用极坐标与直角坐标的互化,求出直线的直角坐标方程.(2)化简圆的参数方程与直角坐标方程,求出圆心与半径,利用圆心到直线的距离与半径比较即可得到直线与圆的位置关系.【解答】解:(1)点A的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.可得: cos(﹣)=a,解得a=.直线l的极坐标方程为ρcos(θ﹣)=,即:ρcosθ+ρsinθ=2,直线l的直角坐标方程为:x+y﹣2=0.(2)圆C的参数方程为(α为参数),可得圆的直角坐标方程为:(x﹣1)2+y2=1.圆心(1,0),半径为:1.因为圆心到直线的距离d==<1,所以直线与圆相交.【点评】本题考查参数方程与极坐标方程与直角坐标方程的互化,直线与圆的位置关系的应用,考查计算能力.[选修4-5不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣3|+|x﹣a|.(Ⅰ)当a=1时,求不等式f(x)<4的解集;(Ⅱ)设函数f(x)的最小值为g(a),求g(a)的最小值.【考点】绝对值不等式的解法;分段函数的应用.【专题】函数的性质及应用.【分析】(1)化简函数f(x)的解析式,画出函数的f(x)的图象,数形结合求得不等式f(x)<4的解集.(2)由条件利用绝对值的意义求得g(a)的最小值.【解答】解:(1)当a=1时,f(x)=2|x﹣1|+|x﹣3|=,由图可得,不等式f(x)<4的解集为(,3).(2)函数f(x)=|x﹣1|+|x﹣3|+|x﹣a|表示数轴上的x对应点到a、1、3对应点的距离之和,可得f(x)的最小值为g(a)=,故g(a)的最小值为2.【点评】本题主要考查绝对值的意义,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
高考数学《集合》专项练习(选择题含答案)(汇编)
《集合》专项练习参考答案1.(2016全国Ⅰ卷,文1,5分)设集合,,则A ∩B =( ) (A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7}【解析】集合A 与集合B 的公共元素有3,5,故}5,3{=B A ,故选B .2.(2016全国Ⅱ卷,文1,5分)已知集合,则A ∩B =( ) (A ) (B ) (C ) (D ) 【解析】由29x <得33x -<<,所以{|33}B x x =-<<,因为{1,2,3}A =,所以{1,2}A B =,故选D .3.(2016全国Ⅲ卷,文1,5分)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B =( )(A ){48}, (B ){026},, (C ){02610},,, (D ){0246810},,,,, 【解析】由补集的概念,得{0,2,6,10}AB =,故选C .4.(2016全国Ⅰ卷,理1,5分)设集合,, 则A ∩B =( ) (A ) (B ) (C ) (D )【解析】对于集合A :解方程x 2-4x +3=0得,x 1=1,x 2=3,所以A ={x |1<x <3}(大于取两边,小于取中间).对于集合B :2x -3>0,解得x >23.3{|3}2A B x x ∴=<<.选D .5.2016全国Ⅱ卷,理1,5分)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, 【解析】要使复数z 对应的点在第四象限,应满足3010m m +>⎧⎨-<⎩,解得31m -<<,故选A .6.(2016全国Ⅲ卷,理1,5分)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=>,则S ∩T =( )(A) [2,3] (B)(-∞ ,2] [3,+∞)(C) [3,+∞) (D)(0,2] [3,+∞)7.(2016北京,文1,5分)已知集合{|24},{|3>5}A x x B x x x =<<=<或,则A B =( ) (A ){|2<<5}x x (B ){|<45}x x x >或 (C ){|2<<3}x x (D ){|<25}x x x >或【解析】画数轴得,,所以,故选C .8.(2016北京,理1,5分)已知集合,,则( ) (A )(B )(C )(D )【解析一】对于集合A :(解绝对值不等的常用方法是两边同时平方)|x |<2,两边同时平方{1,3,5,7}A ={|25}B x x =≤≤{123}A =,,,2{|9}B x x =<{210123}--,,,,,{21012}--,,,,{123},,{12},2{|430}A x x x =-+<{|230}B x x =->3(3,)2--3(3,)2-3(1,)23(,3)2(2,3)AB ={|||2}A x x =<{1,0,1,2,3}B =-A B ={0,1}{0,1,2}{1,0,1}-{1,0,1,2}-得x 2<4,解方程x 2=4得,x 1=-2,x 2=2,所以A ={x |-2<x <2}(大于取两边,小于取中间).所以A ∩B ={-1,0,1}.故选C .【解析二】对于集合A :(绝对值不等式解法二:|x |<2⇔-2<x <2).A ={x |-2<x <2}.所以A ∩B ={-1,0,1}.故选C . 9.(2016上海,文理1,5分)设x ∈R ,则不等式31x -<的解集为_______. 【答案】(24),【解析】试题分析:421311|3|<<⇔<-<-⇔<-x x x ,故不等式1|3|<-x 的解集为)4,2(.【解析一】对不等式31x -<:(解绝对值不等的常用方法是两边同时平方)|x -3|<1,两边同时平方得(x -3)2<1,解方程(x -3)2=1得,x 1=2,x 2=4,所以A ={x |2<x <4}. 【解析二】对于集合A :(绝对值不等式解法二:|x -3|<1⇔-1<x -3<1,解得2<x <4).A ={x |2<x <4}. 10.(2016山东,文1,5分)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B =(A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6} 【答案】A11.(2016山东,理2,5分)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A ∪B =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞ 【答案】C【解析】对于集合A :∵y =2x >0,∴A ={y |y >0}.对于集合B :∵x 2-1=0,解得x =±1,∴B ={x |-1<x <1}(大于取两边,小于取中间).∴A ∪B =(1,)-+∞12.(2016四川,文2,5分)设集合A ={x |1≤x ≤5},Z 为整数集,则集合A∩Z 中元素的个数是(A)6 (B)5 (C)4 (D)3 【答案】B【解析】{1,2,3,4,5}A =Z ,由Z 为整数集得Z ={…-3,-2,-1,0,1,2,3…}.故A Z 中元素的个数为5,选B .13.(2016四川,理1,5分)设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3(B )4(C )5(D )6 【答案】C【解析】由题意,知{2,1,0,1,2}A =--Z ,由Z 为整数集得Z ={…-3,-2,-1,0,1,2,3…}.故AZ 中元素的个数为5,选C .14.(2016天津,文1,5分)已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则AB =(A )}3,1{ (B )}2,1{ (C )}3,2{ (D )}3,2,1{【答案】A【解析】∵},12|{A x x y y B ∈-==,∴当x =1时,y =2×1-1=1;当x =2时,y =2×2-1=3;当x =3时,y =2×3-1=5.∴{1,3,5},{1,3}B A B ==.选A .15.(2016天津,理1,5分)已知集合}{4,3,2,1=A ,}{A x x y y B ∈-==,23,则=B A (A )}{1 (B )}{4 (C )}{3,1 (D )}{4,1 【答案】D【解析】∵}{A x x y y B ∈-==,23,∴当x =1时,y =3×1-2=1;当x =2时,y =3×2-2=4;当x =3时,y =3×3-2=7;当x =4时,y =4×3-2=10.∴{14710}{14}B =A B =,,,,,.选D .16.(2016浙江,文1,5分)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q ()=( ) A .{1} B .{3,5} C .{1,2,4,6} D .{1,2,3,4,5} 【答案】C17.(2016浙江,理1,5分)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(C R Q )=( )A .[2,3]B .(-2,3]C .[1,2)D .(−∞,−2]∪[1,+∞)【答案】B【解析】对于集合Q :∵x 2=4,解得x =±2,∴B ={x |x ≤-2或x ≥2}(大于取两边,小于取中间). 18.(2016江苏,文理1,5分)已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B _______. 【答案】{}1,2- 【解析】{}{}{}1,2,3,6231,2AB x x =--<<=-.故答案应填:{}1,2-19.(2015全国Ⅰ卷,文1,5分)已知集合A ={x |x =3n +2,n ∈N},B ={6,8,10,12,14},则集合A∩B 中元素的个数为( ) A .5 B .4 C .3 D .2 【答案】D【解析】由已知得A ={2,5,8,11,14,17,…},又B ={6,8,10,12,14},所以A∩B ={8,14}. 20.(2015全国Ⅱ卷,文1,5分)已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∪B =( )A .(-1,3)B .(-1,0)C .(0,2)D .(2,3) 【答案】A【解析】因为A =(-1,2),B =(0,3),所以A ∪B =(-1,3),故选A . 21.(2014全国Ⅰ卷,文1,5分)已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M∩N =( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 【答案】B【解析】M∩N ={x |-1<x <3}∩{x |-2<x <1}={x |-1<x <1}. 22.(2014全国Ⅱ卷,文1,5分)已知集合A ={-2,0,2},B ={x |x 2-x -2=0},则A∩B =( )A .∅B .{2}C .{0}D .{-2}【答案】B【解析】∵集合A ={-2,0,2},B ={x |x 2-x -2=0}={2,-1},∴A∩B ={2},故选B . 23.(2013全国Ⅰ卷,文1,5分)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A},则A∩B=( )A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【解析】∵B ={x |x =n 2,n ∈A}={1,4,9,16},∴A∩B ={1,4},故选A . 24.(2013全国Ⅱ卷,文1,5分)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M∩N =( )A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1} 【答案】C【解析】由题意得M∩N ={-2,-1,0}.选C . 25.(2012全国卷,文1,5分)已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A =B (D )A∩B =∅【答案】B【解析】A ={x |-1<x <2},B ={x |-1<x <1},则B ⊂≠A ,故选B . 26.(2011全国卷,文1,5分)已知集合M ={0,1,2,3,4},N ={1,3,5},P =M∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个【答案】B【解析】由题意得P =M∩N ={1,3},∴P 的子集为⌀,{1},{3},{1,3},共4个.27.(2010全国卷,文1,5分)已知集合,则 (A )(0,2)(B )[0,2](C )|0,2|(D )|0,1,2|【解析】,,选D28.(2009全国卷,文2,5分)设集合A ={4,5,7,9},B ={3,4,7,8,9},全集,则集合中的元素共有( )(A)3个 (B )4个 (C )5个 (D )6个【解析】,.故选A .29.(2008全国卷,文1,5分)已知集合M ={x |(x +2)(x -1)<0},N ={x |x +1<0},则M∩N =( )A.(-1,1)B.(-2,1)C.(-2,-1)D.(1,2) 【答案】C【解析】易求得{}{}|21,|1=-<<=<-M x x N x x ∴{}|21=-<<-M N x x 30.(2007全国卷,文1,5分)设{|210}S x x =+>,{|350}T x x =-<,则S T ⋂=2,,4,|A x x x R B x x Z =≤∈=∈A B ={}|22,{0,1,2}A x x B =-≤≤={}0,1,2AB =U A B =()UA B {3,4,5,7,8,9}A B ={4,7,9}(){3,5,8}UA B A B =∴=A.∅B.1{|}2x x<C.5{|}3x x>D.15{|}23x x-<<【答案】D.。
2016年高考全国Ⅰ文科数学试题及答案(word解析版)
2016年普通高等学校招生全国统一考试(全国Ⅰ)数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2016年全国Ⅰ,文1,5分】设集合{}1,3,5,7A =,{}25B x x =≤≤,则A B = ( )(A ){}1,3 (B ){}3,5 (C ){}5,7 (D ){}1,7【答案】B【解析】集合A 和集合B 公共元素有3,5,所以{}3,5A B = ,所以A B 中有2个元素,故选B .【点评】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.(2)【2016年全国Ⅰ,文2,5分】设()()12i i a ++的实部与虚部相等,其中a 为实数,则a =( )(A )3- (B )2- (C )2 (D )3【答案】A【解析】()()()12i i 212i a a a ++=-++,由已知,得212a a -=+,解得3a =-,故选A .【点评】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题.高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性.(3)【2016年全国Ⅰ,文3,5分】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )(A )13(B )12 (C )23 (D )56 【答案】A【解析】将4中颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有4种,故概率为23,故选A . 【点评】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举.(4)【2016年全国Ⅰ,文4,5分】ABC ∆的内角A B C 、、的对边分别为a b c 、、.已知a =2c =,2cos 3A =,则b =( )(A (B (C )2 (D )3【答案】D 【解析】由余弦定理得2254223b b =+-⨯⨯⨯,解得3b =(13b =-舍去),故选D . 【点评】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b .运算失误是基础题失分的主要原因,请考生切记!(5)【2016年全国Ⅰ,文5,5分】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) (A )13(B )12 (C )23 (D )34 【答案】B【解析】如图,由题意得在椭圆中,OF c =,OB b =,11242OD b b =⨯=,在Rt OFB ∆中,OF OB BF OD ⨯=⨯,且222a b c =+,代入解得22a 4c =,所以椭圆得离心率得1e 2=,故选B . 【点评】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a ,c的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .(6)【2016年全国Ⅰ,文6,5分】若将函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图像向右平移14个周期后,所得图像对应的函 数为( )(A )2sin 24y x π⎛⎫=+ ⎪⎝⎭ (B )2sin 23y x π⎛⎫=+ ⎪⎝⎭ (C )2sin 24y x π⎛⎫=- ⎪⎝⎭ (D )2sin 23y x π⎛⎫=- ⎪⎝⎭ 【答案】D 【解析】函数=2sin(2+)6y x π的周期为π,将函数=2sin(2+)6y x π的图像向右平移14个周期即4π个单位,所得函数为=2sin 2()+2sin 2463y x x πππ⎡⎤⎛⎫-=- ⎪⎢⎥⎣⎦⎝⎭,故选D . 【点评】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减“,二是平移多少个单位是对x 而言的,不用忘记乘以系数.(7)【2016年全国Ⅰ,文7,5分】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条 相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π(B )18π (C )20π (D )28π【答案】A 【解析】该几何体为球体,从球心挖掉整个球的18(如右图所示),故34728383r ππ=,解得2r =, 2271431784S r r πππ∴=⋅+⋅=,故选A . 【点评】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.(8)【2016年全国Ⅰ,文8,5分】若0a b >>,01c <<,则( ) (A )log log a b c c < (B )log log c c a b < (C )c c a b < (D )a b c c >【答案】B【解析】由01c <<可知log c y x =是减函数,又0a b >>,所以log log c c a b <.故选B .本题也可以用特殊值代入验证,故选B .【点评】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数单调性进行比较,若底数不同,可考虑利用中间量进行比较.(9)【2016年全国Ⅰ,文9,5分】函数22xy x e =-在[]2,2-的图像大致为( ) (A )(B )(C )(D )【答案】D【解析】解法一(排除法):2()2x f x x e =- 为偶函数,且2(2)887.40.6f e =-≈-=,故选D . 解法二:2()2xf x x e =- 为偶函数,当0x >时,'()4x f x x e =-,作4y x =与x y e =(如 图),故存在实数0(0,1)x ∈,使得'0()0f x =,且0(0,)x x ∈时,'0()0f x <,0(,2)x x ∈时,'0()0f x >,()f x ∴在0(0,)x 上递减,在0(,2)x 上递增,故选D .【点评】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项.(10)【2016年全国Ⅰ,文10,5分】执行右面的程序框图,如果输入的0,1,1x y n ===,则输出,x y 的值满足( )(A )2y x = (B )3y x = (C )4y x = (D )5y x =【答案】C【解析】第一次循环:0,1,2x y n ===,第二次循环:1,2,32x y n ===,第三次循环: 3,6,32x y n ===,此时满足条件2236x y +≥,循环结束,3,62x y ==,满足 4y x =,故选C .【点评】程序框图基本是高考每年必考知识点,一般以客观题形式出现,难度不大,求解此类问题一般是把人看作计算机,按照程序逐步列出运行结果.(11)【2016年全国Ⅰ,文11,5分】平面α过正方体1111ABCD A B C D -的顶点A ,11//CB D α平面,ABCD m α= 平面,11ABB A n α= 平面,则m ,n 所成角的正弦值为( )(A (B (C (D )13 【答案】A【解析】如图,设平面11CB D 平面ABCD m '=,平面11CB D 11ABB A n '=,因为α∥平面11CB D ,所以m m '∥,n n '∥,则,m n 所成的角.延长AD ,过1D 作11D E B C ∥,连接CE ,11B D ,则CE 为m ',同理11B F 为n ',而BD CE ∥,111B F A B ∥,则,m n ''所成的角即为1A B ,BD所成的角即为60︒,故,m n 故选A . 【点评】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.(12)【2016年全国Ⅰ,文12,5分】若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是( )(A )[]1,1- (B )11,3⎡⎤-⎢⎥⎣⎦ (C )11,33⎡⎤-⎢⎥⎣⎦ (D )11,3⎡⎤--⎢⎥⎣⎦ 【答案】C【解析】()21cos2cos 03f x x a x '=-+≥对x ∈R 恒成立,故()2212cos 1cos 03x a x --+≥,245cos cos 033a x x -+≥恒成立,即245033at t -+≥对[]1,1t ∈-恒成立,构造()24533f t at t =-+,开口向下的二次函数()f t 的最小值的可能值为端点值,故只需保证()()11031103f t f t ⎧-=-≥⎪⎪⎨⎪-=+≥⎪⎩,解得1133t -≤≤,故选C . 【点评】本题把导数与三角函数结合在一起进行考查,有所创新,求解关键是把函数单调性转化为不等式恒成立,再进一步转化为二次函数在闭区间上的最值问题,注意与三角函数值域或最值有关的问题,要注意弦函数的有界性. 第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分(13)【2016年全国Ⅰ,文13,5分】设向量(),1x x =+a ,()1,2=b ,且⊥a b ,则x = .【答案】23-【解析】由题意,20,2(1)0,3x x x ⋅=++=∴=-a b . 【点评】全国卷中向量大多以客观题形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若()()1122,,,x y x y ==a b ,则1122x y x y ⋅=+a b .(14)【2016年全国Ⅰ,文14,5分】已知θ是第四象限角,且3sin 45πθ⎛⎫+= ⎪⎝⎭,则tan 4πθ⎛⎫-= ⎪⎝⎭ . 【答案】43- 【解析】由题意sin sin 442θθπ⎡ππ⎤⎛⎫⎛⎫+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦3cos 45θπ⎛⎫=-= ⎪⎝⎭,因为2222k k θ3ππ+<<π+π()k ∈Z ,所以722444k k θ5ππππ+<-<π+()k ∈Z ,从而4sin 45θπ⎛⎫-=- ⎪⎝⎭,因此4tan 43θπ⎛⎫-=- ⎪⎝⎭.故填43-. 【点评】三角函数求值,若涉及到开方运算,要注意根式前正负号的取舍,同时要注意角的灵活变换.(15)【2016年全国Ⅰ,文15,5分】设直线2y x a =+与圆22220C x y ay +--=:相交于A ,B 两点,若AB =,则圆C 的面积为 .【答案】4π【解析】有题意直线即为20x y a -+=,圆的标准方程为()2222x y a a +-=+,所以圆心到直线的距离d =,所以AB ==2224a r +==,所以244S r ππ==. 【点评】注意在求圆心坐标、半径、弦长时常用圆的几何性质,如圆的半径r 、弦长l 、圆心到弦的距离d 之间的关系:2222l r d ⎛⎫=+ ⎪⎝⎭在求圆的方程时常常用到. (16)【2016年全国Ⅰ,文16,5分】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.【答案】216000【解析】设生产产品A 、产品B 分别为x 、y 件,利润之和为z 元, 那么 1.50.5150,0.390,53600,0,0.x y x y x y x y +≤⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩①目标函数2100900z x y =+.①等价于3300,103900,53600,0,0.x y x y x y x y +≤⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩ ②作出二元一次不等式组②表示的平面区域(如图),即可行域将2100900z x y =+变形得73900z y x =-+,平行直线73y x =-,当直线73900z y x =-+经过点M 时,z取得最大值.解方程组10390053600x y x y +=⎧⎨+=⎩,得M 的坐标()60,100.所以当60x =,100y =时,max 210060900100216000z =⨯+⨯=.故生产产品A 、产品B 的利润之和的最大值为216000元.【点评】线性规划也是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合.本题运算量较大,失分的一个主要原因是运算失误.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2016年全国Ⅰ,文17,12分】已知{}n a 是公差为3的等差数列,数列{}n b满足11b =,213b =,11n n n n a b b nb +++=.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和.解:(1)由已知1221a b b b +=,11b =,213b =,得12a =,所以数列{}n a 是首项为2,公差为3的等差数列,通项公式为31n a n =-.(2)由(1)和11n n n n a b b nb +++= ,得13n n b b +=,因此{}n b 是首项为1,公比为13的等比数列.记{}n b 的前n 项和为n S ,则111()313122313nn n S --==-⨯-. 【点评】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.(18)【2016年全国Ⅰ,文18,12分】如图,在已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (1)证明G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积. 解:(1)因为P 在平面ABC 内的正投影为D ,所以.AB PD ⊥因为D 在平面PAB 内的正 投影为E ,所以.AB DE ⊥所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得, PA PB =,从而G 是AB 的中点. (2)在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,PB PC ⊥,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故2.3CD CG =由题设可得PC ⊥平面PAB ,DE ⊥平面PAB , 所以//DE PC ,因此21,.33PE PG DE PC ==由已知,正三棱锥的侧面是直角三角形且6PA =,可得2,DE PE == 在等腰直角三角形EFP 中,可得 2.EF PF ==所以四面体PDEF 的体积114222323V =⨯⨯⨯⨯=. 【点评】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.(19)【2016年全国Ⅰ,文19,12分】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数.(1)若19n =,求y 与x 的函数解析式;(2)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求的n 的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买PA B D C GE19个还是20个易损零件?解:(1)当19x ≤时,3800y =;当19x >时,()3800500195005700y x x =+-=-,所以y 与x 的函数解析式为()3800,195005700,19x y x x x ≤⎧=∈⎨->⎩Ν. (2)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故n 的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为1(400090450010)4050100⨯+⨯=.比较两个平均数可知,购买1台机器的同时应购买19个易损零件. 【点评】本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.(20)【2016年全国Ⅰ,文20,12分】在直角坐标系xOy 中,直线():0l y t t =≠交y 轴于点M ,交抛物线2:2(0)C y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(1)求OH ON; (2)除H 以外,直线M H 与C 是否有其它公共点?说明理由.解:(1)由已知得()0,M t ,2,2t P t p ⎛⎫ ⎪⎝⎭.又N 为M 关于点P 的对称点,故2,t N t p ⎛⎫ ⎪⎝⎭,ON 的方程为2y px =,整理得2220px t x -=,解得10x =,222t x p =,因此22,2t H t p ⎛⎫ ⎪⎝⎭.所以N 为OH 的中点,即2OH ON =. (2)直线M H 与C 除H 以外没有其它公共点.理由如下:直线M H 的方程为2p y t x t-=,即2()t x y t p =-. 代入22y px =得22440y ty t -+=,解得122y y t ==,即直线M H 与C 只有一个公共点,所以除H 以外 直线M H 与C 没有其它公共点.【点评】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成;解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题.其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.(21)【2016年全国Ⅰ,文21,12分】已知函数()()()22e 1x f x x a x =-+-.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.解:(1)()()()()()'12112x x f x x e a x x e a =-+-=-+.(i) 设0a ≥,则当(),1x ∈-∞时,()'0f x <;当()1,x ∈+∞时,()'0f x >.所以在(),1-∞单调递减,在()1,+∞单调递增.(ii) 设0a <,由()'0f x =得1x =或()ln 2x a =-. ①若2e a =-,则()()()'1xf x x e e =--,所以()f x 在(),-∞+∞单调递增. ②若2e a >-,则()ln 21a -<,故当()()(),ln 21,x a ∈-∞-+∞ 时,()'0f x >;当()()ln 2,1x a ∈-时, ()'0f x <,所以()f x 在()()(),ln 2,1,a -∞-+∞单调递增,在()()ln 2,1a -单调递减. ③若2e a <-,则()ln 21a ->,故当()()(),1ln 2,x a ∈-∞-+∞ 时,()'0f x >,当()()1,ln 2x a ∈-时, ()'0f x <,所以()f x 在()()(),1,ln 2,a -∞-+∞单调递增,在()()1,ln 2a -单调递减.(2)(i) 设0a >,则由(1)知,()f x 在(),1-∞单调递减,在()1,+∞单调递增.又()1f e =-,()2f a =,取b 满足0b <且ln 22b a <,则()()()23321022a f b b a b a b b ⎛⎫>-+-=-> ⎪⎝⎭,所以()f x 有两个零点. (ii)设0a =,则()()2x f x x e =-,所以()f x 有一个零点.(iii)设0a <,若2e a ≥-,则由(1)知,()f x 在()1,+∞单调递增.又当1x ≤时,()0f x <,故()f x 不 存在两个零点;若2e a <-,则由(1)知,()f x 在()()1,ln 2a -单调递增,在()()ln 2,a -+∞单调递增.又 当1x ≤时,()0f x <,故()f x 不存在两个零点.综上,a 的取值范围为()0,+∞.【点评】本题第一问是用导数研究函数单调性,对含有参数的函数单调性的确定,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简;第二问是求参数取值范围,由于这类问题常涉及到导数、函数、不等式等知识,越来越受到高考命题者的青睐,解决此类问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.(22)【2016年全国Ⅰ,文22,10分】(选修4-1:几何证明选讲)如图,OAB ∆是等腰三角形,120AOB ∠=︒.以O 为圆心,12OA 为半径作圆. (1)证明:直线AB 与O 相切;(2)点C ,D 在⊙O 上,且A B C D ,,,四点共圆,证明://AB CD .解:(1)设E 是AB 的中点,连接OE ,因为OA OB =,120AOB ∠=︒,所以OE AB ⊥,60AOE ∠=︒.在Rt AOE ∆中,12OE AO =,即O 到直线AB 的距离等于圆O 的半 径,所以直线AB 与O e 相切. (2)因为2OA OD =,所以O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'OO .由已知得O 在线段AB 的垂直平分线上,又'O 在线段AB 的垂直平分线上,所以'OO AB ⊥.同理可证,'OO CD ⊥.所以//AB CD .【点评】近几年几何证明题多以圆为载体命制,在证明时要抓好“长度关系”与“角度关系的转化”,熟悉相关定理与性质.该部分内容命题点有:平行线分线段成比例定理;三角形的相似与性质;四点共圆;圆内接四边形的性质与判定;切割线定理.(23)【2016年全国Ⅰ,文23,10分】(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (1)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(2)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .解:(1)cos 1sin x a t y a t =⎧⎨=+⎩(t 均为参数),∴()2221x y a +-= ① ∴1C 为以()01,为圆心,a 为半径的圆.方程为 222210x y y a +-+-=∵222sin x y y ρρθ+==,,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程.(2)24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+= ,,224x y x ∴+=,即()2224x y -+= ② 3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C①-②得:24210x y a -+-=,即为3C ,∴210a -=,∴1a =.【点评】“互化思想”是解决极坐标方程与参数方程问题的重要思想,解题时应熟记极坐标方程与参数方程的互化公式及应用.(24)【2016年全国Ⅰ,文24】(本小题满分10分)(选修4-5:不等式选讲)已知函数()123f x x x =+--.(1)在答题卡题图中画出()y f x =的图像;O D C B A E O'D C O BA(2)求不等式()1f x >的解集.解:(1)4,13()12332,1234,2x x f x x x x x x x ⎧⎪-<-⎪⎪=+--=--≤<⎨⎪⎪-+≥⎪⎩,如图所示: (2)①当1x <-时,()41f x x =->,解得3x <或5x >,1x ∴<-; ②当312x -≤<时,()321f x x =->,解得13x <或1x >, 113x ∴-≤<或312x <<; ③当32x ≥时,()41f x x =-+>,解得3x <或5x >,332x ∴≤<或5x >. 综上可知,不等式()1f x >的解集为()()1,1,35,3⎛⎫-∞+∞ ⎪⎝⎭ . 【点评】不等式证明选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写出集合形式.。
2016年高考数学(新课标版) 专题06 三角化简求值 含解析
2016年高考三轮复习系列:讲练测之核心热点 【全国通用版】 热点六 三角化简求值 【名师精讲指南篇】 【高考真题再现】1.【2013⋅新课标全国】设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______【答案】;2.【2013⋅新课标全国】已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( )(A )10(B )9(C )8(D )5【答案】D ;【解析】因为225cos 10A -=,且锐角△ABC,故1cos 5A =,故2222cos a b c bc A =+-,解得5b =.3.【2014高考全国1文】若0tan >α,则( )A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α 【答案】C 【解析】试题分析:由sin tan 0cos ααα=>,可得:sin ,cos αα同正或同负,即可排除A 和B,又由sin 22sin cos ααα=⋅,故sin 20α>.4.【2014全国1高考理】设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则( ) (A ) 32παβ-= (B )32παβ+=(C )22παβ-=(D )22παβ+=【答案】C5.【2015全国1理】sin 20cos10cos160sin10-=( ).A..12- D .12B.原式sin 20cos10cos 20sin10=+=1sin 302=.故选D . 【热点深度剖析】三角函数的化简、求值及最值问题,主要考查同角三角函数的基本关系式,三角函数的诱导公式,和、差、倍、半、和积互化公式在求三角函数值时的应用,考查利用三角公式进行恒等变形的技能,以及基本运算的能力,特别突出算理方法的考查. 2013年试题主要考查三角恒等变换,及倍角公式的灵活运用、同角的三角函数关系等知识以及相应的运算能力. 2014年的试题文主要考查三角函数的同角的三角函数关系,理科考查三角函数的同角的三角函数关系,三角恒等变换.2015主要考查两角和与差的三角函数公式.通过三年试题来看,二倍角公式,同角的三角函数关系是考试的重点.从近几年的高考试题来看,利用同角三角函数的关系改变三角函数的名称,利用诱导公式、和差角公式及二倍角公式改变角的恒等变换是高考的热点,常与三角函数式的求值、三角函数的图象与性质、三角形中三角恒等变化,向量等知识综合考查,既有选择题、填空题,又有解答题,属中低档题.预测2016年会加大对三角客观题考查的力度,同角三角函数基本关系式、诱导公式及三角恒等变换是考查重点. 【重点知识整合】 一.三角函数诱导公式1.对于形如2,,()k a a a k Z ππ±-±∈即满足2nπα+中n 取偶数时:等于角α的同名三角函数,前面加上一个把α看成是锐角时,该角所在象限的符号; 2.对于形如3,()22a a k Z ππ±±∈即满足2nπα+中n 取奇数时:等于角α的余名三角函数,前面加上一个把α看成是锐角时,该角所在象限的符号.3.口诀:奇变偶不变,符号看象限(看原函数,同时可把α看成是锐角).4.运用诱导公式转化角的一般步骤:(1)负化正:当已知角为负角时,先利用负角的诱导公式把这个角的三角函数化为正角的三角函数值;(2)正化负:当已知角是大于360的角时,可用360k α⋅+的诱导公式把这个角的三角函数值化为主区间0360→内的三角函数值;(3)主化锐:当已知角是90到360内的角时,可利用180,270,360ααα---的诱导公式把这个角的三角函数值化为0到90内的角. 二. 两角和与差的三角函数公式1. 两角和与差的正弦公式:()sin αβ±=sin cos cos sin αβαβ±. 变形式:()()sin sin αβαβ++-=2sin cos αβ()();sin sin αβαβ+--=2cos sin αβ;2.两角和与差的余弦公式:()cos αβ±=cos cos sin sin αβαβ变形式:()()cos cos αβαβ++-=2cos cos αβ;()()cos cos αβαβ+--=2sin sin αβ;3.两角和与差的正切公式:()tan αβ±=tan tan 1tan tan αβαβ±())2k k Z παβαβπ+≠+∈(、、.变形式:tan tan αβ±=()()tan 1tan tan αβαβ±.注意:运用两角和与差的三角函数公式的关键是熟记公式,我们不仅要记住公式,更重要的是抓住公式的特征,如角的关系,次数关系,三角函数名等抓住公式的结构特征对提高记忆公式的效率起到至关重要的作用,而且抓住了公式的结构特征,有利于在解题时观察分析题设和结论等三角函数式中所具有的相似性的结构特征,联想到相应的公式,从而找到解题的切入点.三.二倍角公式的正弦、余弦、正切1.二倍角的正弦公式:sin 2α=2sin cos αα;二倍角的余弦公式:cos 2α=22cos sin αα-=22cos 1α-=212sin α-;二倍角的正切公式:tan 2α= 22tan 1tan αα- .2. 降幂公式:sin cos αα=1sin 22α;2sin α=1cos 22α-;2cos α=1cos 22α+. 3.升幂公式:1sin 2α+=2(sin cos )αα+;1cos 2α+=22cos α;1cos 2α-=22sin α.注意:在二倍角公式中,两个角的倍数关系,不仅限于2α是α的二倍,要熟悉多种形式的两个角的倍数关系,同时还要注意απαπα-+442,,三个角的内在联系的作用,⎪⎭⎫⎝⎛±⎪⎭⎫ ⎝⎛±=⎪⎭⎫⎝⎛±=απαπαπα4cos 4sin 222sin 2cos 是常用的三角变换. 【应试技巧点拨】1. 利用诱导公式求值:给角求值的原则和步骤 (1)原则:负化正、大化小、化到锐角为终了.(2)步骤:利用诱导公式可以把任意角的三角函数转化为02π:之间角的三角函数,然后求值,其步骤为:给值求值的原则:寻求所求角与已知角之间的联系,通过相加或相减建立联系,若出现2π的倍数,则通过诱导公式建立两者之间的联系,然后求解. 常见的互余与互补关系 (1)常见的互余关系有:3πα+与6πα-;3πα-与6πα+;4πα+与4πα-等.(2)常见的互补关系有:3πα+ 与23πα-;4πα+与34πα-等.遇到此类问题,不妨考虑两个角的和,要善于利用角的变换的思想方法解决问题. 2.利用诱导公式化简三角函数的原则和要求(1)原则:遵循诱导公式先行的原则,即先用诱导公式化简变形,达到角的统一,再进行三角函数名称转化,以保证三角函数名称最少.(2)要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.2. 利用诱导公式证明三角恒等式的主要思路 (1)由繁到简法:由较繁的一边向简单一边化简.(2)左右归一法:使两端化异为同,把左右式都化为第三个式子. (3)转化化归法:先将要证明的结论恒等变形,再证明.提醒:由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算,如()()cos 5cos cos παπαα-=-=-. 4. 正、余弦三兄妹“sin cos x x ±、sin cos x x ⋅”的应用sin cos x x ±与sin cos x x ⋅通过平方关系联系到一起,即2(sin cos )12sin cos x x x x ±=±,2(sin cos )1sin cos ,2x x x x +-=21(sin cos )sin cos .2x x x x --=因此在解题中若发现题设条件有三者之一,就可以利用上述关系求出或转化为另外两个. 5.如何利用“切弦互化”技巧(1)弦化切:把正弦、余弦化成切得结构形式,这样减少了变量,统一为“切”得表达式,进行求值. 常见的结构有:① sin ,cos αα的二次齐次式(如22sin sin cos cos a b c αααα++)的问题常采用“1”代换法求解;②sin ,cos αα的齐次分式(如sin cos sin cos a b c d αααα++)的问题常采用分式的基本性质进行变形.(2)切化弦:利用公式tan α=sin cos αα,把式子中的切化成弦.一般单独出现正切、余切的时候,采用此技巧.6.三角函数的化简、计算、证明的恒等变形的基本思路基本思路是:一角二名三结构.即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心.第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点.基本的技巧有:(1)巧变角:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等. (2)三角函数名互化:切割化弦,弦的齐次结构化成切. (3)公式变形使用:如()()()()()()()()cos cos sin sin cos tan 1tan tan tan tan tan tan tan tan tan tan tan tan tan tan tan tan .αββαββααβαβαβαβαβαβαβαβαβαβαβ+++=+-=++=+--+++=+,,,(4)三角函数次数的降升:降幂公式与升幂公式. (5)式子结构的转化.(6)常值变换主要指“1”的变换:221sin cos x x =+22sec tan tan cot x x x x =-=⋅tan sin 42ππ===等.(7)辅助角公式:()sin cos a x b x x θ+=+(其中θ角所在的象限由a b 、的符号确定,θ的值由tan baθ=确定.在求最值、化简时起着重要作用,这里只要掌握辅助角θ为特殊角的情况即可.如sin cos ),sin 2sin(cos 2sin()436x x x x x x x x x πππ±=±±=±±=±等.【考场经验分享】1.在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点.OP r =一定是正值.2.同角三角函数关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围判断符号,正确取舍.3.使用诱导公式时一定要注意三角函数值在各象限的符号,特别是在具体题目中出现类似kπ±α(k ∈Z)的形式时,需要对k 的取值进行分类讨论,从而确定三角函数值的正负.4.重视三角函数的“三变”: “三变”是“变角”,“ 变名”,“ 变式”;变角为:对角的拆分要尽可能化为同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.4.两角和与两角差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式在学习时应注意以下几点:(1)不仅对公式的正用逆用要熟悉,而且对公式的变形应用也要熟悉; (2)善于拆角、拼角如()ββαα-+=,()()()αβαβαβαβαα++=+-++=22,等; (3)注意倍角的相对性 (4)要时时注意角的范围(5)化简要求熟悉常用的方法与技巧,如切化弦,异名化同名,异角化同角等.5.证明三角等式的思路和方法.(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式.(2)证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等.6.解答三角高考题的策略.(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”.(2)寻找联系:运用相关公式,找出差异之间的内在联系.(3)合理转化:选择恰当的公式,促使差异的转化.7.加强三角函数应用意识的训练由于考生对三角函数的概念认识肤浅,不能将以角为自变量的函数迅速与三角函数之间建立联系,造成思维障碍,思路受阻.实际上,三角函数是以角为自变量的函数,也是以实数为自变量的函数,它产生于生产实践,是客观实际的抽象,同时又广泛地应用于客观实际,故应培养实践第一的观点.总之,三角部分的考查保持了内容稳定,难度稳定,题量稳定,题型稳定,考查的重点是三角函数的概念、性质和图象,三角函数的求值问题以及三角变换的方法. 8.变为主线、抓好训练变是本章的主题,在三角变换考查中,角的变换,三角函数名的变换,三角函数次数的变换,三角函数式表达形式的变换等比比皆是,在训练中,强化变意识是关键,但题目不可太难,较特殊技巧的题目不做,立足课本,掌握课本中常见问题的解法,把课本中习题进行归类,并进行分析比较,寻找解题规律.针对高考中题目看,还要强化变角训练,经常注意收集角间关系的观察分析方法.另外如何把一个含有不同名或不同角的三角函数式化为只含有一个三角函数关系式的训练也要加强,这也是高考的重点.同时应掌握三角函数与二次函数相结合的题目.三角函数求值中要特别注意角的范围,如根据21cos2sin2αα-=求sinα的值时,sinα=中的符号是根据角的范围确定的,即当α的范围使得sin0α≥时,取正号,反之取负号.注意在运用同角三角函数关系时也有类似问题.9.本热点一般难度不大,属于得全分的题目,一般放在选择题与填空题的中间位置,但是因题目解法的灵活性造成在紧张的考试氛围里面,容易一时的思路堵塞,需冷静处理,如果一时想不到化简的方向,可暂且放一放,不要钻牛角尖,否则可能造成心理负担,情绪受到影响,因新课标高考对这个热点考查难度已经降低,学生应有必胜的信心.【名题精选练兵篇】ns s i2cos B +2sin B =,B.tanα=2,则=. B . C . D .=sinαcosα===,tanx=,(+x .B .C .D .tanx=+x==+ ++=,10.【2016届甘肃省河西五市部分普通高中高三第一次联考】已知sin 2cos αα=,则tanα=2tan则= 【答案】:∵tanα=2tan,======== ,故答案为:.sincos22sin cos22παπαπαπα++-=---( )A .12 B .12- C .2 D .2- 【答案】B.【解析】由题意3sin 5α=-,因为α是第三象限的角,所以4cos 5α=-,因此222sincoscossin(cossin )1sin 1222222cos 2sin cos cos sin cos sin 222222παπααααααπαπαααααα++-+++====------. 13. 【惠安一中、养正中学、安溪一中2015届高三上学期联合考试】已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边上一点()1,2P --,则sin 2θ 等于( ) A .45-B .35-C .35D .45【答案】D.【解析】根据任意角的三角函数的定义,sin θ=,cos θ=4sin 22sin cos 5θθθ==.14. 【宿迁市2015届高三年级摸底考试】若1cos()33απ-=,则sin(2)απ-6的值是 . 【答案】97-. 【解析】9719121)3(cos 2)322cos()2322sin()62sin(2-=-⨯=--=-=+-=-παπαππαπα.15. 【浙江省效实中学2015届高三上学期期末考试】化简:22cos ()12πα--=A .cos αB .cos α-C .cos 2αD .cos 2α- 【答案】D 【解析】22cos ()12πα--=ααπαπ2cos )2cos()2(2cos -=-=-,答案D.16. 【拉萨中学高三年级(2015届)第三次月考试卷】若⎥⎦⎤⎢⎣⎡∈24ππθ,, 8732sin =θ,则θsin =( )A. 53B. 54C. 47D. 43或47【答案】D.17. 若202παβπ<<<<-,1cos()43πα+=,cos()42πβ-=则cos()2βα+= A .33B .33-C .935 D .96-【答案】C. 【解析】因为202παβπ<<<<-,1cos()43πα+=,所以4344παππ<+<,且322)4sin(=+απ;又因为cos()42πβ-=且02<<-βπ,所以2244πβππ<-<,且36)24sin(=-βπ.又因为)24()4(2βπαπβα--+=+,所以)24sin()4sin()24cos()4cos()]24()4cos[()2cos(βπαπβπαπβπαπβα-++-+=--+=+935363223331=⨯+⨯=.故应选C. 18. 【北京101中学2014—2015学年度高三第一学期期中模拟】在ABC ∆中,若=+=C B C B A tan tan ,cos cos 2sin 则 .【答案】2【解析】因为C B A cos cos 2sin =,所以()2tan tan cos sin cos sin sin cos cos 2=+⇒+=+=C B B C C B C B C B【名师原创测试篇】1. 若锐角θ满足3sin 5θ=,则tan(2)4πθ-的值为( ) A.1731 B.1625 C.3117- D.2516- 【答案】A2. 已知1sin 22α=,则11tan tan 2αα-=____. 【答案】2【解析】由已知得2222sin cos 2tan 1sin 2sin cos 1tan 2ααααααα===++,所以11tan tan 2αα-=2211tan 1tan 2tan 2tan 2tan ααααα-+-==. 3. 已知第三象限角α的终边经过点P ()3,4a a ,则cos α=( ) A.35 B.45 C.35- D.45- 【答案】C【解析】由题可得,因为角α是第三象限角,所以0a <,根据三角函数的概念可得33cos 55a a α===--,故选C. 4. 执行如图所示的程序框图,则输出结果S 的值为( )C.12- D.12cos3。
专题62 绝对值不等式-2016年高考数学(文)一轮复习精品资料(解析版)
专题六十二绝对值不等式【高频考点解读】1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:①|a+b|≤|a|+|b|;②|a-b|≤|a-c|+|c-b|.2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c.3.会用绝对值不等式、平均值不等式证明一些简单问题;能够利用平均值不等式求一些特定函数的最(极)值.【重点知识梳理】一、绝对值不等式的解法1.|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法(1)若c>0,则|ax+b|≤c等价于-c≤ax+b≤c,|ax+b|≥c等价于ax+b≥c或ax+b≤-c,然后根据a,b 的值解出即可.(2)若c<0,则|ax+b|≤c的解集为∅,|ax+b|≥c的解集为R.2.|x-a|+|x-b|≥c(或≤c)(c>0),|x-a|-|x-b|≤c(或≤c)(c>0)型不等式的解法可通过零点分区间法或利用绝对值的几何意义进行求解.(1)零点分区间法的一般步骤①令每个绝对值符号的代数式为零,并求出相应的根;②将这些根按从小到大排列,把实数集分为若干个区间;③由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集;④取各个不等式解集的并集就是原不等式的解集.(2)利用绝对值的几何意义由于|x-a|+|x-b|与|x-a|-|x-b|分别表示数轴上与x对应的点到a,b对应的点的距离之和与距离之差,因此对形如|x-a|+|x-b|≤c(c>0)或|x-a|-|x-b|≥c(c>0)的不等式,利用绝对值的几何意义求解更直观.3.|f(x)|>g(x),|f(x)|<g(x)(g(x)>0)型不等式的解法(1)|f(x)|>g(x)⇔f(x)>g(x)或f(x)<-g(x).(2)|f (x )|<g (x )⇔-g (x )<f (x )<g (x ). 二、绝对值不等式的证明证明绝对值不等式||a |-|b ||≤|a ±b |≤|a |+|b |.主要的三种方法1.利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明. 2.利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明. 3.转化为函数问题,数形结合进行证明. 三、绝对值不等式的综合应用1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,将原函数转化为分段函数,然后利用数形结合解决问题,这是常用的思想方法.2.f (x )<a 恒成立⇔f (x )max <a . f (x )>a 恒成立⇔f (x )min >a . 【高考考点突破】考点一、绝对值不等式的解法 例1.解不等式|2x +1|-2|x -1|>0.【变式探究】解不等式|x +3|-|2x -1|<x2+1.解:①当x <-3时,原不等式化为-(x +3)-(1-2x )<x2+1,解得x <10,∴x <-3. ②当-3≤x <12时,原不等式化为(x +3)-(1-2x )<x2+1,解得x <-25,∴-3≤x <-25.③当x ≥12时,原不等式化为(x +3)+(1-2x )<x2+1,解得x >2,∴x >2.综上可知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-25或x >2.【方法技巧】含绝对值不等式的常用解法1.基本性质法:对a ∈R +,|x |<a ⇔-a <x <a ,|x |>a ⇔x <-a 或x >a . 2.平方法:两边平方去掉绝对值符号.3.零点分区间法(或叫定义法):含有两个或两个以上绝对值符号的不等式,可用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.4.几何法:利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解. 5.数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解. 考点二、绝对值不等式的证明例2、设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪13a +16b <14; (2)比较|1-4ab |与2|a -b |的大小,并说明理由.(2)由(1)得a 2<14,b 2<14.因为|1-4ab |2-4|a -b |2=(1-8ab+16a2b2)-4(a2-2ab+b2) =(4a2-1)(4b2-1)>0,所以|1-4ab|2>4|a-b|2,故|1-4ab|>2|a-b|.【变式探究】已知x,y∈R,且|x+y|≤16,|x-y|≤14,求证:|x+5y|≤1.考点三、绝对值不等式的综合应用例3.已知函数f(x)=|2x-1|+|x-2a|.(1)当a=1时,求f(x)≤3的解集;(2)当x∈[1,2]时,f(x)≤3恒成立,求实数a的取值范围.(2)∵当x∈[1,2]时,f(x)≤3恒成立,即|x-2a|≤3-|2x-1|=4-2x,故2x-4≤2a-x≤4-2x,即3x-4≤2a≤4-x.再根据3x-4的最大值为6-4=2,4-x的最小值为4-2=2,∴2a=2,∴a=1,即a 的范围为{1}. 【高考风向标】1. 【2015高考陕西,文24】选修4-5:不等式选讲 已知关于x 的不等式x a b +<的解集为{|24}x x << (I)求实数,a b 的值;(II)+的最大值. 【答案】(I) 3,1a b =-=;(II)4.2. 【2015高考新课标1,文24】(本小题满分10分)选修4-5:不等式选讲 已知函数()12,0f x x x a a =+--> . (I )当1a = 时求不等式()1f x > 的解集;(II )若()f x 图像与x 轴围成的三角形面积大于6,求a 的取值范围. 【答案】(Ⅰ)2{|2}3x x <<(Ⅱ)(2,+∞) 【解析】(Ⅰ)当a =1时,不等式f (x )>1化为|x +1|-2|x-1|>1,等价于11221x x x ≤-⎧⎨--+->⎩或111221x x x -<<⎧⎨++->⎩或11221x x x ≥⎧⎨+-+>⎩,解得223x <<,所以不等式f (x )>1的解集为2{|2}3x x <<. ……5分1.(2014·福建卷) (Ⅲ)选修4-5:不等式选讲已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a . (1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3.2.(2014·广东卷)不等式|x -1|+|x +2|≥5的解集为________. 【答案】(-∞,-3]∪[2,+∞)3.(2014·湖南卷)若关于x 的不等式|ax -2|<3的解集为⎩⎨⎧⎭⎬⎫x -53<x <13,则a =________.【答案】-3【解析】依题意可得-3<ax -2<3,即-1<ax <5 ,而-53<x <13,即-1<-3x <5,所以a =-3.4.[2014·江西卷] (1)(不等式选做题)对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为( ) A .1 B .2 C .3 D .4【答案】(1)C【解析】易知|x-1|+|x|≥1,当且仅当0≤x≤1时等号成立;|y-1|+|y+1|≥2, 当且仅当-1≤y≤1时等号成立.故|x-1|+|x|+|y-1|+|y+1|≥3.【随堂巩固】1.已知对于任意非零实数m,不等式|2m-1|+|1-m|≥|m|(|x-1|-|2x+3|)恒成立,求实数x的取值范围.答案(-∞,-3]∪[-1,+∞)2.设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的解集为{x|x≤-1},求a的值.答案(1){x|x≥3或x≤-1}(2)a=23.f(x)=|x+1|+|x-2|-m.(1)当m =5时,求f (x )>0的解集;(2)若关于x 的不等式f (x )≥2的解集是R ,求m 的取值范围. 答案 (1){x |x >3或x <-2} (2)m ≤1(1)m =5时,即g (x )>5,x ≥2,2x -1>5,∴x >3. ∵g (x )关于x =12对称,∴不等式的解集为{x |x >3或x <-2}. (2)由题意知g (x )≥2+m 恒成立. ∴g (x )min ≥2+m ,即3≥2+m .∴m ≤1.4.已知函数f (x )=|x +1|,g (x )=2|x |+a . (1)当a =0时,解不等式f (x )≥g (x );(2)若存在x ∈R ,使得f (x )≥g (x )成立,求实数a 的取值范围. 答案 (1)[-13,1] (2)(-∞,1]5.已知函数f (x )=|x -a |,其中a >1.(1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 答案 (1){x |x ≤1或x ≥5} (2)a =3(2)记h (x )=f (2x +a )-2f (x ),则h (x )=⎩⎪⎨⎪⎧-2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12. 又已知|h (x )|≤2的解集为{x |1≤x ≤2}, 所以⎩⎨⎧a -12=1,a +12=2,于是a =3.6.已知函数f (x )=|x -a |.(1)若f (x )≤m 的解集为{x |-1≤x ≤5},求实数a ,m 的值; (2)当a =2且t ≥0时,解关于x 的不等式f (x )+t ≥ f (x +2t ).7.已知函数f (x )=|2x +1|-|x |.(1)求不等式f (x )>0的解集;(2)若存在x 0∈R ,使得f (x 0)≤m 成立,求实数m 的取值范围.8.已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.解:(1)当a =-3时,f (x )=⎩⎪⎨⎪⎧-2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1;当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4;所以f (x )≥3的解集为{x |x ≤1或x ≥4}.9.已知f (x )=|x +1|+|x -1|,不等式f (x )<4的解集为M .(1)求M ;(2)当a ,b ∈M 时,证明:2|a +b |<|4+ab |.(2)证明:a ,b ∈M 即-2<a <2,-2<b <2.∵4(a +b )2-(4+ab )2=4(a 2+2ab +b 2)-(16+8ab +a 2b 2)=(a 2-4)·(4-b 2)<0, ∴4(a +b )2<(4+ab )2,∴2|a +b |<|4+ab |.10.已知函数f (x )=|2x +1|+|2x -3|.(1)若关于x 的不等式f (x )<|1-2a |的解集不是空集,求实数a 的取值范围;(2)若关于t 的一元二次方程t 2+26t +f (m )=0有实根,求实数m 的取值范围.解:(1)∵f (x )=|2x +1|+|2x -3|≥|(2x +1)-(2x -3)|=4,∴|1-2a |>4,∴a <-32或a >52,∴实数a 的取值范围为⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫52,+∞.11.已知函数f (x )=|2x +2|+|2x -3|.(1)若∃x 0∈R ,使得不等式f (x 0)<m 成立,求m 的取值范围;(2)求使得不等式f (x )≤|4x -1|成立的x 的取值范围.:。
江苏省南京市第五十五中学2024年招生全国统一考试高考仿真模拟卷数学试题(全国通用)试题
江苏省南京市第五十五中学2024年招生全国统一考试高考仿真模拟卷数学试题(全国通用)试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数12i i --的共轭复数对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限 2.过抛物线()220y px p =>的焦点F 的直线与抛物线交于A 、B 两点,且2AF FB =,抛物线的准线l 与x 轴交于C ,ACF ∆的面积为82,则AB =( )A .6B .9C .92D .623.公比为2的等比数列{}n a 中存在两项m a ,n a ,满足2132m n a a a =,则14m n +的最小值为( ) A .97 B .53 C .43 D .13104.水平放置的ABC ,用斜二测画法作出的直观图是如图所示的A B C ''',其中2,O A O B ''''== 3O C ''=,则ABC 绕AB 所在直线旋转一周后形成的几何体的表面积为( )A .83πB .3πC .(833)πD .(16312)π 5.若关于x 的不等式1127kx x ⎛⎫≤ ⎪⎝⎭有正整数解,则实数k 的最小值为( ) A .9 B .8 C .7 D .66.已知复数168i z =-,2i z =-,则12z z =( ) A .86i - B .86i + C .86i -+ D .86i --7.函数()2ln x f x x x=-的图象大致为( ) A . B .C .D .8.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【2份】江苏省2016年高考数学(文)复习高考仿真卷目录高考仿真卷(A卷) (1)高考仿真卷(B卷) (7)参考答案 (13)高考仿真卷(A卷)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分.把答案填在题中的横线上)1.复数2i2-i所对应的点位于复平面内第________象限.2.已知全集U={0,2,4,6,8,10},S={0,6,10},T={2,4,6},则S∩(∁U T)等于________.3.某算法流程图如图所示,若输入的n=10,则输出的结果是________.4.某社会调研机构对即将毕业的大学生就业期望月薪进行调查,共调查了3 000名大学生,并根据所得数据绘制了样本频率分布直方图(如图),则期望月薪收入在[2 500,3 500)的大学生有________人.5.某市举行“希望杯”数学竞赛,现在要从进入决赛的5名选手中再经过一轮选拔选出2名特等奖.某校有甲、乙两名同学进入决赛,则在这次竞赛中该校有特等奖的概率为________.6.已知向量a =(2,0),b =(1,2),c =(3,4).若λ为实数,(a -λb )∥c ,则λ等于________.7.在递增的等比数列{a n }中,已知a 1+a n =34,a 3·a n -2=64,且前n 项和为S n =42,则n =________.8.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为________. 9.设m ,n 为空间两条不同的直线,α,β为空间两个不同的平面,给出下列命题:①若m ∥α,m ∥β,则α∥β;②若m ⊥α,m ∥β,则α⊥β;③若m ∥α,m ∥n ,则n ∥α;④若m ⊥α,α∥β,则m ⊥β.其中的正确命题序号是________.10.设a ∈R ,函数f (x )=e x +ae x 的导函数f ′(x )是奇函数,若曲线y =f (x )在点(x 0,f (x 0))处的切线与直线2x -2y +3=0平行,则x 0=________.11.已知动点P (x ,y )在过点⎝ ⎛⎭⎪⎫-32,-2的圆(x -1)2+(y +2)2=5的两条切线和x -y +1=0围成的区域内,则z =(x +2)2+(y -1)2的最小值为________.12.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=⎝ ⎛⎭⎪⎫12|x -1|+m .若函数f (x )有5个零点,则实数m 的取值范围是________. 13.已知命题p :向量a ,b 满足|a |=|b |=2,a ·b =0,且向量c 与a -b 共线,则|a +c |的最小值为m ;命题q :关于x 的不等式x +a x -m ≥5m ,x ∈(m ,+∞)(其中a >0)恒成立.若p ∧q 为真命题,则实数a 的取值范围为________.14.已知函数f (x )=e x ,g (x )=ax +b ,若集合{x |f (x )<g (x )}为空集,则ab 的最大值为________.二、解答题(本大题共6小题,共90分,解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .若b =1,c =32. (1)求角C 的取值范围;(2)求4sin C cos ⎝⎛⎭⎪⎫C +π6的最小值.16.(本小题满分16分)如图,在三棱柱ABC -A 1B 1C 1中,四边形ABB 1A 1和ACC 1A 1都为矩形.(1)设D 是AB 的中点,证明:直线BC 1∥平面A 1DC ; (2)在△ABC 中,若AC ⊥BC ,证明:直线BC ⊥平面ACC 1A 1.17.(本小题满分14分)如图,现准备在一个海湾的半岛上建一条旅游观光长廊AB ,设计AB 的长为4.5 km ,且长廊所在直线与海岸线l 的夹角为60°(海岸线看作直线),长廊上距离海岸线最近的点B 到海岸线的距离BC =4 3 km ,D 为海岸线l 上的一点.设CD =x km ⎝ ⎛⎭⎪⎫x >94,点D 对长廊AB 的视角为θ.(1)将tan θ表示为x 的函数;(2)求点D 的位置,使得θ取得最大值.18.(本小题满分16分)已知A ,B ,C 是椭圆m :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A 的坐标为(23,0),BC 过椭圆的中心,且AC →·BC →=0,|BC→|=2|AC →|. (1)求椭圆m 的方程;(2)过点(0,t )的直线l (斜率存在时)与椭圆m 交于两点P ,Q ,设D 为椭圆m 与y 轴负半轴的交点,且|DP →|=|DQ →|,求实数t 的取值范围.19.(本小题满分16分)已知关于x 的函数f (x )=ln x +a (x -1)2(a ∈R ). (1)求函数f (x )在点P (1,0)处的切线方程; (2)若函数f (x )有极小值,试求a 的取值范围;(3)若在区间[1,+∞)上,函数f (x )不出现在直线y =x -1的上方,试求a 的最大值.20.(本小题满分16分)数列{a n }的前n 项和为S n ,且a n +1-a n =d ,n ∈N *,d 为常数.数列{b n }满足b n =S 2n -1-S 2n -1-1,n ∈N *,S 0=0. (1)若b 1,b 2,b 3成等比数列,证明:数列{b n }成等比数列; (2)(ⅰ)若a 1=12d =1,求数列{b n }的前n 项和T n ;(ⅱ)若a 1=154d >0,证明:1b 1+1b 2+1b 3+…+1b n ≤89d ⎝ ⎛⎭⎪⎫12-14n +1,n ∈N *.高考仿真卷(B 卷)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分.把答案填在题中的横线上)1.设集合U ={1,2,3,4},A ={1,2},B ={2,4},则∁U (A ∪B )=________.2.已知i 是虚数单位,复数z 满足(3-i)z =-2i ,则z 的值是________. 3.某校高一、高二、高三年级的学生人数之比为10∶8∶7,按分层抽样从中抽取200名学生作为样本,若每人被抽到的概率都是0.2,则该校高三年级的总人数为________.4.如图是一个算法流程图,若输入m 的值为2,则输出的i 的值是________.5.某校甲、乙、丙3名艺术考生报考三所院校(每人限报一所),则其中甲、乙两名学生填报不同院校的概率为________.6.若等比数列{a n }满足a n a n +1=4n (n ∈N *),则该数列的公比为________.7.过原点O 作圆x 2+y 2-12x -16y +75=0的两条切线,设切点分别为P ,Q ,则线段PQ 的长为________.8.将函数y =12sin 2x +32cos 2x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是________. 9.“a ≤-1”是“函数f (x )=ln x +ax +1x 在[1,+∞)上是单调减函数”的________条件.10.设F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,若双曲线右支上存在点P ,使得∠PF 1F 2=60°,|PF 2|是焦距的32倍,则双曲线的离心率为________.11.如图,三棱柱ABC -A 1B 1C 1的各条棱长都是2,且顶点A 1在底面ABC 上的射影O 为△ABC 的中心,则三棱锥A 1-ABC 的体积为________.12.已知函数f (x )=⎩⎨⎧-x ,x ∈[-1,0),1f (x -1)-1,x ∈[0,1),若方程f (x )-kx -3k =0有两个实数根,则k 的取值范围是________.13.点E ,F 分别是正方形ABCD 的边AB 和CD 上的点,且AB =2AE ,CD =4FD ,点P 为线段EF 上的动点,AP →=xAB →+yAD →,则1x +1y 的最小值为________.14.已知f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,3x -2,x >0,设集合A ={y |y =|f (x )|,-1≤x ≤1},B={y |y =ax ,-1≤x ≤1},若对同一x 的值,总有y 1≥y 2,其中y 1∈A ,y 2∈B ,则实数a 的取值范围是________.二、解答题(本大题共6小题,共90分,解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)在△ABC 中,三个内角分别为A ,B ,C ,已知b =a cos C +c sin A ,cos B =45. (1)求cos C 的值;(2)若BC =10,D 为AB 的中点,求CD 的长.16.(本小题满分14分)如图,在四棱锥P -ABCD 中,底面ABCD 为菱形,∠BAD =60°,P A =PD =AD =2,点M 在线段PC 上,且PM =2MC ,N 为AD 的中点.(1)求证:BC ⊥平面PNB ;(2)若平面P AD ⊥平面ABCD ,求三棱锥P -NBM 的体积.17.(本小题满分14分)某品牌公司拟生产某种特殊规格的品牌服装,其日产量最多不超过20件,每日产品废品率p 与日产量x (件)之间近似满足关系式p =⎩⎨⎧215-x,1≤x ≤9,x ∈N *,x 2+60540,10≤x ≤20,x ∈N*(日产品废品率=日废品量日产量×100%).已知每生产一件正品可赢利2千元,而生产一件废品则亏损1千元(该车间的日利润y =日正品赢利额-日废品亏损额).(1)将该车间日利润y (千元)表示为日产量x (件)的函数;(2)当该车间的日产量为多少件时,日利润最大?最大日利润是几千元?18.(本小题满分16分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F (3,0).A ,B ,C ,D 分别为椭圆C 的左、右、上、下顶点,且四边形ACBD 的内切圆的方程为x 2+y 2=45.(1)求椭圆C 的方程;(2)若点P 是直线x =-1上的动点,直线P A ,PB 与椭圆C 的另一个交点分别是M ,N ,求证:直线MN 经过一定点.19.(本小题满分16分)已知函数f(x)=xln x+ax,x>1.(1)若f(x)在区间(1,+∞)上单调递减,求实数a的取值范围;(2)若a=2,求函数f(x)的极小值;(3)若方程(2x-m)ln x+x=0在区间(1,e]上有两个不相等实根,求实数m的取值范围.20.(本小题满分16分)已知数列{a n }与{b n }满足关系:a 1=2a ,a na n +1+a 2a n +1a n =2,b n =a n +a a n -a (n ∈N *,a >0),数列{a n }的前n 项和为S n ,数列{b n }的前n 项之积为T n .(1)求证:数列{lg b n }是等比数列; (2)求T n 的表达式;(3)证明:a n -a a n +1-a =32n -1+1,并且比较S n 与⎝ ⎛⎭⎪⎫n +43a 的大小.参考答案高考仿真卷(A 卷)1.二 [依题意,复数2i 2-i =2i (2+i )(2+i )(2-i )=-25+45i 在复平面内对应的点的坐标是⎝⎛⎭⎪⎫-25,45,该点位于第二象限.]2.{0,10} [依题意得∁U T ={0,8,10},S ∩(∁U T )={0,10}.] 3.5 [该程序框图运行5次结束,所以输出的S =10+8+6+4+2=30,T =9+7+5+3+1=25,所以输出的S -T =30-25=5.] 4.1 350 [由频率分布直方图可得期望月薪收入在[2 500,3 500)的频率为(0.000 5+0.000 4)×500=0.45,所以频数为3 000×0.45=1 350,即期望月薪收入在[2 500,3 500)的大学生有1 350人.]5.710 [设进入决赛的这5名选手分别为甲,乙,A ,B ,C ,则两名特等奖的可能组合为甲乙,甲A ,甲B ,甲C ,乙A ,乙B ,乙C ,AB ,AC ,BC ,共10种,其中该校有特等奖的可能组合有7种,故所求概率为710.]6.-4 [依题意得a -λb =(2-λ,-2λ),由(a -λb )∥c 得3×(-2λ)-4(2-λ)=0,由此解得λ=-4.]7.3 [由等比数列的性质,a 1·a n =a 3·a n -2=64, ∴a 1,a n 是方程x 2-34x +64=0的两根. 又数列{a n }递增,∴a 1=2,a n =32, 从而S n =a 1-a n q 1-q =2-32q1-q =42,则q =4.又a n =32=a 1·q n -1, ∴2·4n -1=32=25,n =3.]8.5+12 [不妨设双曲线为x 2a 2-y 2b 2=1(a >0,b >0),焦点F (-c ,0),虚轴的顶点B (0,b ).又直线FB 与双曲线的一条渐近线垂直, ∴b -00-(-c )·⎝ ⎛⎭⎪⎫-b a =-1,则b 2=ac , ∴c 2-a 2=ac ,⎝ ⎛⎭⎪⎫c a 2-ca -1=0,则e =ca =5+12⎝ ⎛⎭⎪⎫e =1-52舍去.] 9.②④ [对于①,平行于同一直线的两个平面可能是相交平面,①不正确;对于②,由m ∥β得知,在平面β内必存在直线n 与m 平行,由m ⊥α得n ⊥α,又n ⊂β,因此有α⊥β,②正确;对于③,直线n可能位于平面α内,此时结论不正确,③不正确;对于④,由定理“若一条直线与两个平行平面中的一个垂直,则它与另一个平面也垂直”得知,④正确.综上所述,其中的正确命题序号是②④.]10.ln 22 [由于f ′(x )=e x -a ·e -x ,故若f ′(x )为奇函数,则必有f ′(0)=1-a =0,解得a =1,f ′(x )=e x-e -x,则据题意得f ′(x 0)=e x 0-e -x 0=22,解得e x 0=2,所以x 0=ln 2=ln 22.]11.2 [由题意得圆(x -1)2+(y +2)2=5的圆心为(1,-2),过⎝ ⎛⎭⎪⎫-32,-2的直线方程设为y =k ⎝ ⎛⎭⎪⎫x +32-2,因为直线和圆相切,所以⎪⎪⎪⎪⎪⎪k ×1+2+32k -21+k2=5,解得k =±2,所以两条切线的方程分别为l 1:2x -y +1=0,l 2:2x +y +5=0.两直线和x -y +1=0围成的区域如图中阴影部分所示,z =(x +2)2+(y -1)2的几何意义为可行域内的点到D (-2,1)的距离的平方,由图知点D 到直线x -y +1=0的距离最短,即为|-2-1+1|2=2,所以z min =2.]12.⎝ ⎛⎭⎪⎫-1,-12 [由函数f (x )是定义在R 上的奇函数得x =0是该函数的一个零点,且x >0和x <0时函数有相同的零点个数,所以若函数f (x )有5个零点,则当x >0时,f (x )=⎝ ⎛⎭⎪⎫12|x -1|+m 有两个零点,即方程⎝ ⎛⎭⎪⎫12|x -1|+m =0在x >0时有两解,即函数y =⎝ ⎛⎭⎪⎫12|x -1|(x >0),y =-m 的图象有两个不同的交点,结合函数图象可得12<-m <1,即-1<m <-12.]13.[8,+∞) [因为p ∧q 为真命题,所以p ,q 都是真命题.因为向量c 与a -b 共线,所以存在实数λ,使得c =λ(a -b ),所以|a +c |=|(1+λ)a -λb |=[(1+λ)a -λb ]2=4(1+λ)2+4λ2=8λ2+8λ+4,当λ=-12时,|a +c |min =2,即m = 2.命题q :关于x 的不等式x +ax -2≥52,x ∈(2,+∞)(其中a >0)恒成立,即⎝ ⎛⎭⎪⎫x +a x -2min≥52,x ∈(2,+∞).又x +a x -2=(x -2)+ax -2+2≥2a +2,当且仅当x =a +2时取等号,所以2a +2≥52,解得a ≥8.] 14.e2 [由集合{x |f (x )<g (x )}为空集,可得不等式f (x )≥g (x )对x ∈R 恒成立,即y =f (x )-g (x )≥0恒成立.当a ≤0时,函数y =e x -ax -b 在R 上单调递增,y ≥0不恒成立,所以a ≤0舍去;当a >0时,由y ′=e x -a =0解得x =ln a ,且x <ln a 时,y ′<0,函数单调递减,当x >ln a 时,y ′>0,函数单调递增,所以y ≥0即为y min =y (ln a )=a -a ln a -b ≥0,所以b ≤a -a ln a ,ab ≤a 2-a 2ln a ,a >0.令y =x 2-x 2ln x ,x >0,则y ′=2x -2x ln x -x =x (1-2ln x ),x >0,由y ′=0解得x =e ,且x ∈(0,e),y ′>0,函数y =x 2-x 2ln x 单调递增,x ∈(e ,+∞),y ′<0,函数y =x 2-x 2ln x 单调递减,所以当x =e 时,函数y =x 2-x 2ln x 取得最大值e -12e =12e ,所以ab ≤a 2-a 2ln a ≤12e ,即ab 的最大值是12e.]15.解 (1)由正弦定理得1sin B =32sin C ,即sin C =32sin B . 由0<sin B ≤1得0<sin C ≤32, 又b >c ,故C 为锐角,0<C ≤π3.(2)4sin C cos ⎝⎛⎭⎪⎫C +π6=4sin C ⎝ ⎛⎭⎪⎫32cos C -12sin C=23sin C cos C -2sin 2 C =3sin 2C -(1-cos 2C )=2sin ⎝⎛⎭⎪⎫2C +π6-1,由0<C ≤π3得π6<2C +π6≤5π6,故sin ⎝ ⎛⎭⎪⎫2C +π6≥12,所以4sin C cos ⎝ ⎛⎭⎪⎫C +π6≥0(当C =π3时取到等号),所以4sin C cos ⎝⎛⎭⎪⎫C +π6的最小值是0.16.证明 (1)连接AC1交A 1C 于点O ,连接OD .因为四边形ACC 1A 1为矩形,所以O 为AC 1的中点,又因为D 是AB 的中点,所以OD 为△ABC 1的中位线,OD ∥BC 1, 因为直线OD ⊂平面A 1DC ,BC 1⊄平面A 1DC . 所以直线BC 1∥平面A 1DC .(2)因为四边形ABB 1A 1和ACC 1A 1都是矩形, 所以AA 1⊥AB ,AA 1⊥AC .因为AB ,AC 为平面ABC 内的两条相交直线, 所以AA 1⊥平面ABC .因为直线BC ⊂平面ABC ,所以AA 1⊥BC . 又BC ⊥AC ,BC ⊥AA 1,AA 1,AC 为平面ACC 1A 1内的两条相交直线,所以BC ⊥平面ACC 1A 1. 17.解 (1)过A 分别作直线CD ,BC 的垂线,垂足分别为E ,F .由题设知∠ABF =30°,∴CE =AF =94,BF =943, AE =BC +BF =943+43=254 3.又tan ∠BDC =43x ⎝ ⎛⎭⎪⎫x >94,ED =x -94,tan ∠ADC =AE ED =2534x -9,∴tanθ=tan ∠ADB =tan(∠ADC -∠BDC )= tan ∠ADC -tan ∠BDC1+tan ∠ADC ·tan ∠BDC=93(x +4)x (4x -9)+300,其中x >0,x ≠94, 即tan θ=93(x +4)x (4x -9)+300,x >0.(2)记tan θ=93(x +4)x (4x -9)+300=f (x ),由f (x )>0可知θ是锐角.而f ′(x )=-363(x +14)(x -6)(4x 2-9x +300)2,x >0,∴f (x )在(0,6)上单调递增,(6,+∞)上单调递减, 函数f (x )在x =6时取得最大值f (6)=3313,而y =tan θ在⎝⎛⎭⎪⎫0,π2上是增函数,所以当x =6时,tan θ取得最大值,即θ取得最大值. 在海岸线上距离C 点6 km 处的D 点观看旅游长廊的视角最大. 18.解 (1)∵|BC→|=2|AC →|且BC 过(0,0),则|OC →|=|AC →|.∵AC→·BC →=0,∴∠OCA =90°, 即C (3,3).又∵a =23,设椭圆m 的方程为x 212+y 212-c 2=1,将C 点坐标代入得312+312-c 2=1,解得c 2=8,b 2=4. ∴椭圆m 的方程为x 212+y 24=1.(2)由条件得D (0,-2),当k =0时,显然-2<t <2;当k ≠0时,设l :y =kx +t ,⎩⎨⎧x 212+y 24=1,y =kx +t ,消y 得(1+3k 2)x 2+6ktx +3t 2-12=0, 由Δ>0可得t 2<4+12k 2.①设P (x 1,y 1),Q (x 2,y 2),PQ 的中点H (x 0,y 0), 则x 0=x 1+x 22=-3kt 1+3k 2,y 0=kx 0+t =t1+3k 2,∴H ⎝ ⎛⎭⎪⎫-3kt 1+3k 2,t 1+3k 2.由|DP →|=|DQ →|,∴DH ⊥PQ ,即k DH=-1k , ∴t1+3k 2+2-3kt 1+3k 2-0=-1k , 化简得t =1+3k 2,②∴t >1.将①代入②得1<t <4, ∴t 的范围是(1,4),综上t ∈(-2,4).19.解 (1)f ′(x )=1x +2a (x -1)(x >0),∴f ′(1)=1. 又f (1)=0,∴f (x )在点P (1,0)处的切线方程为y =x -1. (2)f ′(x )=2ax 2-2ax +1x (x >0), 令g (x )=2ax 2-2ax +1(x >0),(ⅰ)a =0时,f ′(x )=0无解,f (x )无极小值;(ⅱ)a <0时,g (0)=1>0,所以g (x )=0有两解x 1,x 2,且x 1<0<x 2; 0<x <x 2时,g (x )>0,f ′(x )>0,x >x 2时,g (x )<0,f ′(x )<0,此时f (x )无极小值. (ⅲ)a >0时,∵g (0)=1>0,g (x )的对称轴为x =12, 要使函数f (x )有极小值,则Δ>0即4a 2-8a >0. ∴a <0或a >2,∴a >2.此时g (x )=0有两解x 3,x 4>0,不妨设x 3≤x 4, 则x 3<x <x 4时,g (x )<0,f ′(x )<0.x >x 4时,g (x )>0,f ′(x )>0,此时f (x )有极小值f (x 4). 综上所述,a >2.(3)由题意,f (x )≤x -1,x ≥1, 即ln x +a (x -1)2≤x -1,x ≥1. 下证:ln x ≤x -1,x >0,记h (x )=ln x -(x -1)=ln x -x +1,x >0, 则h ′(x )=1x -1=1-x x ,x >0. 0<x <1时,h ′(x )>0,x >1时,h ′(x )<0,∴h (x )≤h (1)=0, 即ln x ≤x -1,x >0.(ⅰ)a ≤0时,f (x )≤ln x ≤x -1; (ⅱ)a >0时,取x >1+1a ,则f (x )=ln x +a (x -1)(x -1)>ln ⎝ ⎛⎭⎪⎫1+1a +a ⎝ ⎛⎭⎪⎫1+1a -1(x -1)>ln 1+x -1=x -1,与题意矛盾.故a 的最大值为0.20.(1)证明 因为b 1,b 2,b 3成等比数列,所以b 1=S 1=a 1≠0,b 22=b 1b 3,所以(a 2+a 3)2=a 1(a 4+a 5+a 6+a 7).又由a n +1-a n =d ,n ∈N *可得数列{a n }成等差数列, 所以(2a 1+3d )2=a 1(4a 1+18d ),化简得3d 2=2a 1d , 所以d =0或a 1=32d .当d =0时,b n =(2n -1)a 1-(2n -1-1)a 1=2n -1a 1≠0,n ∈N *, 且b n +1b n =2n a 12n -1a 1=2为常数,所以此时数列{b n }成等比数列;若a 1=32d ,则b n =a 2n -1+a 2n -1+1+…+a 2n -1=2n -1a n -12+2n -1(2n -1-1)d 2=2n -1[a 1+(2n -1-1)d ]+2n -1(2n -1-1)d 2=2n -1⎝ ⎛⎭⎪⎫32d ·2n -1+a 1-32d =32d ·4n -1≠0,且b n +1b n =32d ·4n32d ·4n -1=4为常数,此时数列{b n }成等比数列.综上,若b 1,b 2,b 3成等比数列,数列{b n }成等比数列. (2)(ⅰ)解 若a 1=12d =1,由(1)可得b n =2n -1⎝⎛⎭⎪⎫32d ·2n -1-d =34×4n -2n ,所以T n =34×(4+42+43+…+4n )-(2+22+23+…+2n )=34×4(1-4n )1-4-2(1-2n)1-2=4n -2n +1+1.(ⅱ)证明 若a 1=154d >0,则由(1)可得 b n =2n -1⎝ ⎛⎭⎪⎫32d ·2n -1+94d =3d (4n+3×2n)8, 所以1b n =83d (4n +3×2n )=89d ×3×4n -142n -1+3×2n ×4n -1≤89d ×4n -4n -142n -1+5×4n -1+1=89d ×⎝ ⎛⎭⎪⎫14n -1+1-14n +1,n ∈N *.所以1b 1+1b 2+1b 3+…+1b n≤89d ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫140+1-14+1+⎝ ⎛⎭⎪⎫14+1-142+1+…+⎝ ⎛⎭⎪⎫14n -1+1-14n +1=89d ×⎝ ⎛⎭⎪⎫12-14n +1,n ∈N *. 高考仿真卷(B 卷)1.{3} [利用集合运算的定义求解.因为A ∪B ={1,2,4},所以∁U (A ∪B )={3}.]2.12-32i [依题意得z =-2i (3+i )(3+i )(3-i )=-3i +12=12-32i.] 3.280 [因为每人被抽到的概率都是0.2,所以该校总人数为2000.2= 1 000,所以该校高三年级的总人数为1 000×710+8+7=280.]4.4 [当输入m 的值为2时,执行题中的流程图,进行第一次循环时,i =1,A =2,B =1,A >B ;进行第二次循环时,i =2,A =4, B =2,A >B ;进行第三次循环时,i =3,A =8,B =6,A >B ;进行第四次循环时,i =4,A =16,B =24,A <B ,此时结束循环,输出 i =4.]5.23 [设三所院校为A ,B ,C ,当甲填报A 校时,则甲、乙、丙填报院校的情况有AAA ,AAB ,AAC ,ABA ,ABB ,ABC ,ACA ,ACB ,ACC ,共9种;同理,当甲填报B 或C 校时,都各有9种填报方法,即三名考生的填报方法共有27种.其中甲、乙两名学生填报不同院校的有 6×3=18(种),故所求概率为1827=23.]6.2 [依题意得a n +1a n +2a n a n +1=a n +2a n =4,即q 2=4,又a n a n +1=4n >0,因此数列{a n }的任意相邻的两项符号均相同,因此q =2.]7.53 [依题意,圆的圆心坐标是C (6,8)、半径是5,OC =10,OP =102-52=53,sin ∠POC =510=12,∠POC =30°,∠POQ =2∠POC =60°,△POQ 是等边三角形,PQ =OP =5 3.]8.π12 [依题意,把函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象向左平移m 个单位长度后得到的曲线y =sin ⎣⎢⎡⎦⎥⎤2(x +m )+π3=sin ⎣⎢⎡⎦⎥⎤2x +2m +π3关于y 轴对称,于是有2m +π3=k π+π2,即m =k π2+π12(k ∈Z ),因此m 的最小值是π12.]9.充分不必要 [因为f ′(x )=1x +a -1x 2,函数f (x )单调递减⇔f ′(x )=1x+a -1x 2≤0⇔a ≤⎝ ⎛⎭⎪⎫1x 2-1x min ,而1x 2-1x =⎝ ⎛⎭⎪⎫1x -122-14,所以a ≤-14,所以“a ≤-1”是“函数f (x )=ln x +ax +1x 在[1,+∞)上是单调减函数”的充分不必要条件.]10.2+6 [依题意得|PF 2|=3c ,又|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1|·|F 1F 2|cos 60°,即9c 2=|PF 1|2+4c 2-2c |PF 1|,即|PF 1|2-2c |PF 1|=5c 2=0,|PF 1|=(6+1)c ,2a =|PF 1|-|PF 2|=(6-2)c ,e =ca =26-2=2+ 6.] 11.13 [因为△ABC 是正三角形,O 为正三角形ABC 的中心,A 1O ⊥平面ABC ,所以三棱锥A 1-ABC 是正三棱锥.又三棱柱ABC -A 1B 1C 1的各条棱长都是2,所以AO =63,A 1O =AA 21-AO 2=233,所以VA 1-ABC =13S △ABC ·A 1O =13×34×(2)2×233=13.]12.⎝ ⎛⎦⎥⎤0,12 [依题意,当x ∈[0,1)时,x -1∈[-1,0),f (x -1)=-(x -1),f (x )=1f (x -1)-1=-1x -1-1.在坐标平面内画出函数y =f (x )与直线y =k (x +3)(该直线过点(-3,0)、斜率为k )的大致图象,结合图象可知,要使该直线与函数y =f (x )的图象有两个不同的交点,相应的斜率k 的取值范围是⎝ ⎛⎦⎥⎤0,12.] 13.92 [由题意可得点E ,P ,F 三点共线,则EP →=λEF →,λ∈[0,1],AP→-AE →=λ(AF →-AE →),所以AP →-12AB →=λ⎝⎛⎭⎪⎫AD →+14AB →-12AB →,则AP →=⎝⎛⎭⎪⎫12-14λAB →+λAD →,又AB →,AD →不共线,由平面向量基本定理可得⎩⎨⎧x =12-14λ,y =λ,所以4x +y =2,x >0,y >0.1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·⎝ ⎛⎭⎪⎫2x +y 2=52+y 2x +2x y ≥52+2y 2x ·2x y =92,当且仅当y 2x =2x y ,x =13,y =23时取等号,所以1x +1y 的最小值为92.]14.[-1,0] [由题意可得|f (x )|≥ax 对任意x ∈[-1,1]恒成立.当x∈[-1,1]时,|f (x )|=⎩⎪⎨⎪⎧2-x 2,-1≤x ≤0,2-3x ,0<x ≤23,3x -2,23<x ≤1,作出函数图象如图,显然当a >0时,不满足题意;当a ≤0时,只要直线y =ax 在x ∈[-1,0]上与线段OA 重合或者在线段OA 下方时,满足题意,所以-1≤a ≤0.]15.解 (1)由b =a cos C +c sin A 及正弦定理,得sin B =sin(A +C )=sin A cos C +sin C sin A ,则cos A sin C =sin C sin A ,由于0<C <π知sin C ≠0,∴tan A =1,又A ∈(0,π), 所以A =π4.又cos B =45,B ∈(0,π),知sin B =35,∴cos C =cos(π-A -B )=cos ⎝ ⎛⎭⎪⎫34π-B =cos 34πcos B +sin 34πsin B =-210.(2)由(1)可得sin ∠ACB =1-cos 2∠ACB =7210,在△ABC 中,由正弦定理,得BC sin A =ABsin ∠ACB ,则AB =14.在△BCD 中,BD =12AB =7,根据余弦定理得,CD 2=BC 2+BD 2-2BC ·BD ·cos B =72+102-2×7×10×45=37,所以CD =37.16.(1)证明 ∵P A =AD ,N 为AD 的中点,∴PN ⊥AD , 又底面ABCD 为菱形,∠BAD =60°,连接BD , ∴△ABD 为等边三角形,又N 为AD 的中点, ∴BN ⊥AD ,又PN ∩BN =N ,∴AD ⊥平面PNB , ∵AD ∥BC ,∴BC ⊥平面PNB .(2)解 ∵平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PN ⊥AD ,∴PN ⊥平面ABCD ,又NB ⊂平面ABCD .∴PN ⊥NB , ∵P A =PD =AD =2,∴PN =NB =3,∴S △PNB =32. 又BC ⊥平面PNB ,PM =2MC ,∴V P -NBM =V M -PNB =23V C -PNB =23×13×32×2=23. 17.解(1)由题意可知,y =2x (1-p )-px =⎩⎨⎧24x -2x 215-x,1≤x ≤9,x ∈N *,53x -x3180,10≤x ≤20,x ∈N *.(2)考虑函数f (x )=⎩⎨⎧24x -2x 215-x,1≤x ≤9,53x -x 3180,10≤x ≤20,当1≤x ≤9时,f ′(x )=2-90(15-x )2,令f ′(x )=0,得x =15-3 5.当1≤x <15-35时,f ′(x )>0,函数f (x )在[1,15-35)上单调递增; 当15-35<x ≤9时,f ′(x )<0,函数f (x )在(15-35,9]上单调递减,所以当x =15-35时,f (x )取得极大值,也是最大值, 又x 是整数,f (8)=647,f (9)=9, 所以当x =8时,f (x )有最大值647.当10≤x ≤20时,f ′(x )=53-x 260=100-x260≤0,所以函数f (x )在[10,20]上单调递减,所以当x =10时,f (x )取得极大值1009,也是最大值.由于1009>647,所以当该车间的日产量为10件时,日利润最大,且最大日利润为1009千克.18.(1)解 由题意可得原点O 到直线x a +yb =1, 即bx +ay =ab 的距离为25,所以|ab |a 2+b2=25.① 又a 2=b 2+c 2=b 2+3,② ①②联立解得a 2=4,b 2=1, 所以椭圆C 的方程为x 24+y 2=1.(2)证明 设P (-1,t ),则直线P A :y =t (x +2),代入x 24+y 2=1,整理得(1+4t 2)x 2+16t 2x +16t 2-4=0,则x A x M =-2x M =16t 2-41+4t 2,x M =2-8t 21+4t 2,y M =t (x M +2)=4t1+4t 2,即M ⎝ ⎛⎭⎪⎫2-8t 21+4t 2,4t 1+4t 2. 同理,联立PB :y =-t 3(x -2)与x 24+y 2=1,解得N ⎝ ⎛⎭⎪⎫8t 2-189+4t2,12t 9+4t 2. 所以k MN =12t 9+4t 2-4t1+4t 28t 2-189+4t 2-2-8t 21+4t 2=2t4t 2+3,所以直线MN 的方程为y -12t 9+4t 2=2t 4t 2+3⎝⎛⎭⎪⎫x -8t 2-189+4t 2,化简得y =2t4t 2+3(x +4),恒过定点(-4,0).19.解 (1)f ′(x )=ln x -1ln 2x +a ,且f (x )在(1,+∞)上是减函数, ∴f ′(x )≤0在x ∈(1,+∞)上恒成立, 则a ≤1ln 2x -1ln x =⎝ ⎛⎭⎪⎫1ln x -122-14,∵x ∈(1,+∞),∴ln x ∈(0,+∞),∴1ln x -12=0时函数t =⎝ ⎛⎭⎪⎫1ln x -122-14的最小值为-14,∴a ≤-14.(2)当a =2时,f (x )=xln x +2x ,f ′(x )=ln x -1+2ln 2x ln 2x .令f ′(x )=0,得2ln 2x +ln x -1=0,解得ln x =12或ln x =-1(舍),于是x = e. 当1<x <e 时,f ′(x )<0;当x >e 时,f ′(x )>0. ∴当x =e 时,f (x )有极小值f (e)=eln e +2e =4 e.(3)将方程(2x -m )ln x +x =0化为(2x -m )+xln x =0, 整理得xln x +2x =m ,因此函数f (x )=xln x +2x 与直线y =m 在(1,e]上有两个交点,由(2)知,f (x )在(1,e)上递减,在(e ,e]上递增.又f (e)=4e ,f (e)=3e ,且当x →1时,f (x )→+∞. ∴4e <m ≤3e.故实数m 的取值范围为(4e ,3e].20.(1)证明 由a n a n +1+a 2a n +1a n =2,可得a n +1=12⎝ ⎛⎭⎪⎫a n +a 2a n ,b n =a n +aa n -a,∴b n +1=a n +1+a a n +1-a =12⎝ ⎛⎭⎪⎫a n +a 2a n +a12⎝ ⎛⎭⎪⎫a n +a 2a n -a =(a n +a )2(a n -a )2=b 2n>0, ∴lg b n +1=2lg b n ,又a >0,∴b n =a n +aa n -a ≠1,故lgb n ≠0,因此lg b n +1lg b n=2,故{lg b n }是等比数列.(2)解 由(1)知b 1=a 1+aa 1-a =3,∴lgb n =(lg 3)·2n -1,∴b n =32n -1.∴T n =b 1b 2b 3…b n =320·321·322·…·32n= 320+21+22+…+2n -1=31-2n1-2=32n -1.(3)证明 由b n =a n +aa n -a,得a n =b n +1b n -1·a =32n -1+132n -1-1·a =a +2a32n -1-1,∴a n -a a n +1-a =2a32n -1-12a 32n -1=32n -132n -1-1=(32n -1)2-132n -1-1=32n -1+1. ∴当n ≥2时,a n +1-a =a n -a 32n -1+1≤110(a n -a ),∴a 3-a <110(a 2-a ),a 4-a <110(a 3-a ),…,a n -a <110(a n -1-a ), ∴S n -a 1-a 2-(n -1)a <110[S n -1-a -(n -2)a ],∵a 1=2a ,a 2=54a ,∴10S n -65a 2-10(n -2)a <S n -a n -2a -(n -2)a , ∴S n <⎣⎢⎡⎦⎥⎤(n -2)+6118-32n -1+19(32n -1-1)a <⎝ ⎛⎭⎪⎫n +2518-19a =⎝ ⎛⎭⎪⎫n +2318a <⎝ ⎛⎭⎪⎫n +43a .。