N第一章1.1极限

合集下载

大学高数第一章函数和极限ppt课件

大学高数第一章函数和极限ppt课件
16
幂函数图像(a 0时)
17
幂函数图像(a 0时)
18
指数函数基本性质
解析式: y ax (a>0,且a 1) 基本特征:定义域为实数集R,值域为(0,+∞),函数 图像必经过点(0,1)
19
对数函数基本性质
解析式: y loga x(a 0,且a 1)
基本特征:定义域为(0,+∞),值域为实数集R,图像
例如函数 y x2 在 (, 0) 上单调递减, 在 (0, ) 上单调递增
7
3.函数的奇偶性
如函数 y f (x) 的定义域 D 关于原点对称,且对于任意 xD ,均有: f (x) f (x) ,则称该函数在其定义域内是偶函数; 若是 f (x) f (x) ,则称该函数在其定义域内是奇函数;
x x0
x x0
lim | x | lim x 1,
x
x x0
x x0
左右极限不相等,所以, lim | x | 不存在. x0 x
也可以从函数的图像上明确地看出该函数的极限不存在
32
例 证明 lim | x | 0 x 0
证:因为 lim | x | lim (x) 0 ,
x0
x0
{x
|
x
2
k
,
k
Z } ,余
切函数定义域为 {x | x k , k Z} ,二者周期T均为
,值域均为(- ∞,+ ∞) ,互为倒数。
22
正切、余切函数基本图像
正切函数图像片段
23
余切函数有限次四则运算和有限 次函数复合所构成的只能用一个解析式表示的函数, 称为初等函数。 例如: y lg x 、y x tan x sin(1 ex )

极限的概念

极限的概念

高等数学 1.2.2 函数的极限 2.当
x x0 时,函数 f ( x)的极限
x x0的左右极限定义
定义1· 5
1.2 极限的概念
高等数学 1.2.2 函数的极限 2.当
x x0 时,函数 f ( x)的极限
左极限与右极限的关系
定理1· 2
1.2 极限的概念
高等数学 1.2.2 函数的极限 2.当
1
lim cosx 不存在 [B](4)limarc cotx 不存在(5) x x
2,x 0 f(x) f(x) [C] (6)设 ,则 xlim 2,x 0
不存在
1.2 极限的概念
高等数学 1.2.2 函数的极限 2.当
x x0 时,函数 f ( x)的极限
(2)定义中考虑的是xx0时函数f(x)的变化趋势,并不 考虑在x0处f(x)的情况 .
( 3 ) 由极限的定义1.9容易得到以下两个结论:
1.2 极限的概念
高等数学 1.2.2 函数的极限 2.当 例1
x x0 时,函数 f ( x)的极限
考察下列函数,写出当x 2时函数的极限并作图验证 (1)y = c (c为常数) (2)y = x
高等数学 1.2.2 函数的极限 2.当
x x0 时,函数 f ( x)的极限
x0 3, 3、 f(x) x 3, x 0
x 0
limf(x) 3 limf(x) lim (x 3) 3
x 0 x 0 x 0
x 0
因为 lim f(x) lim f(x) 3
x 时,函数 f ( x)的极限
例3
解: 作y
1 图象 x

高等数学第一章《函数与极限》

高等数学第一章《函数与极限》

第一章 函数与极限一、内容提要(一)主要定义【定义 1.1】 函数 设数集,D R ⊂如果存在一个法则,使得对D 中每个元素x ,按法则f ,在Y 中有唯一确定的元素y 与之对应,则称:f D R →为定义在D 上的函数,记作(),y f x x D =∈.x 称为自变量,y 称为因变量,D 称为定义域.【定义1.2】 数列极限 给定数列{}x n 及常数a ,若对任意0ε>,总存在正整数N ,使得当n N >时,恒有x a n -<ε成立,则称数列{}x n 收敛于a ,记为a x n n =∞→lim .【定义1.3】 函数极限(1)对于任意0ε>,存在()0δε>,当δ<-<00x x 时,恒有()ε<-A x f .则称A 为()f x 当0x x →时的极限,记为A x f x x =→)(lim 0.(2) 对于任意0ε>,存在0X >,当x X >时,恒有f x A ()-<ε.则称A 为()f x 当x →∞时的极限,记为lim ()x f x A →∞=.(3)单侧极限左(右)极限 任意0ε>,存在()0δε>,使得当000(0)x x x x δδ-<-<<-<时,恒有()ε<-A x f .则称当00()x x x x -+→→时)(x f 有左(右)极限A ,记为00lim ()(lim ())x x x x f x A f x A -+→→== 或00(0)((0))f x A f x A -=+=.单边无穷极限 任意0ε>,存在0X >,使得当x X >(x X <-)时, 恒有f x A ()-<ε, 则lim ()x f x A →+∞=(lim ()x f x A →-∞=) .【定义1.4 】 无穷小、无穷大 若函数()f x 当0x x →(或x →∞)时的极限为零(|()|f x 无限增大),那么称函数()f x 为当0x x →(或x →∞)时的无穷小(无穷大).【定义1.5】 等价无穷小 若lim 0,lim 0,lim 1βαβα===,则α与β是等价的无穷小.【定义 1.6】 连续 若)(x f y =在点0x 附近有定义,且)()(lim 00x f x f x x =→,称()y f x =在点0x 处连续.否则0x 为()f x 的间断点.(二)主要定理【定理1.1】极限运算法则 若a x u =)(lim , b x v =)(lim ,则 (1)()lim u v ±存在,()lim lim lim u v u v a b ±=±=±且; (2)()lim u v ⋅存在,()lim lim lim u v u v a b ⋅=⋅=⋅且; (3)当0≠b 时, limu v 存在,lim lim lim u u a v v b==且 推论 ⑴ lim lim Cu C u Ca ==; ⑵ ()lim lim nnnu u a ==. 【定理1.2】极限存在的充要条件⇔=→A x f x x )(lim 0lim ()x x f x -→=0lim ()x x f x A +→=.lim ()x f x A →∞=⇔lim ()x f x →-∞=lim ()x f x A →+∞=【定理1.3】极限存在准则 (1) 单调有界数列必有极限(2) 夹逼准则: 设数列{}n x 、{}n y 及{}n z 满足① n n n y x z ≤≤, ② lim =lim n n n n y z a →∞→∞=,则lim n n x →∞存在,且lim n n x a →∞=.【定理1.4】极限与无穷小的关系 若lim (),f x A =则(),f x A α=+其中lim 0.α=【定理1.5】两个重要极限 1sin lim0=→x x x ,e x xx =⎪⎭⎫⎝⎛+∞→11lim .【定理1.6】 初等函数的连续性 初等函数在其定义区间内连续. 【定理1.7】闭区间上连续函数的性质(1)最值定理 闭区间上连续函数在该区间上一定有最大值M 和最小值m . (2)有界定理 闭区间上连续函数一定在该区间上有界.(3)介值定理 闭区间上连续函数必可取介于最大值M 与最小值m 之间的任何值. (4)零点存在定理 设函数()x f 在[]b a ,上连续,()a f ()0<⋅b f ,则至少存在一个ξ∈()b a ,,使 ()0f ξ=.二、典型题解析函数两要素:定义域,对应关系定义域:使表达式有意义的自变量的全体,方法为解不等式 对应关系:主要方法用变量替换(一)填空题【例1.1】 函数23arccos2xy x =+的定义域是 . 解 由arccos y u =的定义域知11u -≤≤,从而23112xx -≤≤+, 即 (][][),21,12,-∞--+∞.【例1.2】 设()()()2sin ,1f x x f x xφ==-,则函数()x φ的定义域为 .解 由已知()()2sin[()]1fx x xφφ==-,所以()2sin(1)x arc x φ=-,则2111,x -≤-≤即x ≤.【例1.3】设1()(0,1),()([...()])1n n f x x x f x f f f x x =≠≠=+次,试求()n f x 解 由()1xf x x =-,则21()[()]11xx f x f f x x x x -===--,显然复合两次变回原来的形式,所以,2(),211n x n k f x x n k x =⎧⎪=⎨=+⎪-⎩(二)选择题【例 1.9】设函数()f x 在(),-∞+∞上连续,又0a >且1a ≠,则函数()()()sin 2sgn sin F x f x x =-是 [ ](A) 偶函数 (B) 奇函数 (C) 非奇非偶函数 (D) 奇偶函数. 解 因为()()sgn sin sgn sin x x -=-⎡⎤⎣⎦,所以()sgn sin x 为奇函数.而()sin 2f x -为偶函数,故()()sin 2sgn sin f x x -⋅为奇函数,故选 B .【例 1.10】设()f x 是偶函数,当[]0,1x ∈时,()2f x x x =-,则当[]1,0x ∈-时,()f x = [ ](A) 2x x -+(B) 2x x + (C) 2x x - (D) 2x x --.解 因为()()f x f x -=,取[]1,0x ∈-,则[0,1]x -∈,所以()()()22f x x x x x -=---=--, 故选 D .(三)非客观题 1.函数及其性质【例1.16】 求函数()lg(1lg )f x x =-的定义域. 解 要使()f x 有意义,x 应满足0,1lg 0x x >⎧⎨->⎩ 即010x <<,所以()f x 的定义域为 (0,10).【例1.17】 设函数()f x 的定义域是[0,1],试求()f x a ++()f x a -的定义域(0a >).解 由()f x 的定义域是[0,1],则0101x a x a ≤+≤⎧⎨≤-≤⎩,故1a x a ≤≤-,则当1a a =-时,即12a =时,函数的定义域为12x =; 当1a a ->时,即12a <时,函数的定义域为[],1a a -; 当1a a -<时,即12a >时,函数的定义域为空集. 【例1.18】设()2,x f x e =()()1f x x ϕ=-并且()0x ϕ≥,求()x ϕ及其定义域.解 因为()()2[()]1,x fx e x φϕ==-且()0x ϕ≥,故()x ϕ=,为使此式有意义,ln(1)0x -≥,所以函数()x ϕ的定义域为{}0x x ≤.【例1.19】 设()2422x xf x x ++=-,求()2f x -.解( 法一)配方法 ()2(2)422(2)2x f x x +-+=-++,所以()24224.x xf x x --=-+解(法二) 变量代换法 令2x t =-,代入得()2422t f t t -=-+,即()2422xf x x -=-+,则()24224xxf x x --=-+.【例1.20】 设()22,01,12x x f x x x ≤≤⎧=⎨<≤⎩,()ln g x x =,求()f g x ⎡⎤⎣⎦. 解 ()[]ln f g x f x =⎡⎤⎣⎦ 22ln ,0ln 1ln ,1ln 2x x x x ≤≤⎧=⎨<≤⎩[]()()222ln ,1,0, ln , ,0,x x e x x e e ⎧∈+∞⎪=⎨⎡⎤∈+∞⎪⎣⎦⎩[]222ln ,1,ln , ,x x e x x e e ⎧∈⎪=⎨⎡⎤∈⎪⎣⎦⎩【例1.21】 设()1,10,1x x x ϕ⎧≤⎪=⎨>⎪⎩,()22,12,1x x x x ψ⎧-≤⎪=⎨>⎪⎩,求 ()x ϕϕ⎡⎤⎣⎦,()x ϕψ⎡⎤⎣⎦. 解 ⑴ 当(),x ∈-∞+∞时,()01x ϕ≤≤ ,所以 ()()1,,x x ϕϕ≡∈-∞+∞⎡⎤⎣⎦.⑵ 因为 ()()()1,10,1x x x ψϕψψ⎧≤⎪=⎡⎤⎨⎣⎦>⎪⎩, 且 ()()1,12,1x x x x ψψ⎧==⎪⎨<≤≠⎪⎩ 1,故 ()1,10,1x x x ϕψ⎧=⎪=⎡⎤⎨⎣⎦≠⎪⎩. 【例1.22】 求函数()2312,1,121216,2x x f x x x x x ⎧-<-⎪=-≤≤⎨⎪->⎩的反函数.解 当21121,x y x <- -<-时,=则x =, 当312=8,x y x -≤≤ ≤≤时,-1则x =当212168,x y x > =->时, 则16,12y x +=所以()f x 的反函数为 ()111816,812x y f x x x x -⎧<-⎪⎪⎪==-≤≤⎨⎪+⎪>⎪⎩.【例 1.23】设()f x 在(,)-∞+∞上有定义,且对任意,(,)x y ∈-∞+∞有()()f x f y x y -<-,讨论()()F x f x x =+在(,)-∞+∞上的单调性.解 任取12,(,)x x ∈-∞+∞,不妨设21x x >,则由条件有()()()()21212121f x f x f x f x x x x x -<-<-=-,所以()()1221f x f x x x -<-,则可变形为()()1122f x x f x x +<+,即()()12F x F x <,故()F x 在(,)-∞+∞上单调增加.【例1.24】 求c 的一个值,使()sin()()sin()0b c b c a c a c ++-++=,这里b a >,且均为常数.解 令()sin f x x x =,则()f x 是一个偶函数,则有[]()()f b c f b c +=-+要使()(),()f b c f a c a b +=+≠成立,则有1()()()2a cbc c a b +=-+⇒=-+.极限与连续:不定式,等价关系,特殊极限 极限待定系数的确定原理 连续待定系数确定的原理【例1.4】 设2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则a = . 解 因为 233lim lim lim 1x x xx x x x a x a a a x a x a x a →∞→∞→∞+-+⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭3333lim 1x a axa x aa x a e x a --→∞⎛⎫=+= ⎪-⎝⎭再由3ln83ln 28ln 2aee e a ===⇒=.【例1.5】(2004数三)若()0sin lim cos 5x x xx b e a→-=-,则a = ,b = .解 因()0sin limcos 5x x xx b e a→-=-,而()0limsin cos 0x x x b →-=,则0lim 0x x e a →-=, 所以1a =,又0x →时,sin ,1x xx e x -,则()()000sin limcos lim cos limcos51x x x x x x x b x b x b x e →→→-=-=-=-,154b b -=⇒=-. 【例 1.6】 已知当0x →时,123(1)1ax +-与1cos x -是等价无穷小,则常数a = .解 由1230(1)1lim1,1cos x ax x→+-=-而1222ln(1)3112ln(1)2333220000(1)112limlim limlim1cos 1cos 32ax ax ax x x x x ax e a xx x x ++→→→→+--====--,故3.2a = 【例1.7】 (2004数二)设()()21lim1n n x f x nx →∞-=+,则()f x 的间断点为x = .解 ()()()22111limlim ,0110,0n n n x n x x f x xnx nx x →∞→∞⎧--=⋅=≠⎪=⎨++⎪=⎩而 ()001lim lim(0)x x f x f x→→===∞≠,故()f x 的间断点(无穷)为0x =.【例1.8】 设()1sin , 02, 0x x f x x a x ⎧≠⎪=⎨⎪=⎩,在0x =处连续,则a = . 解 要使()f x 在0x =处连续,应有()()0lim 0,x f x f a →==而()0001sin1122lim lim sin lim 222x x x xx f x x x →→→===, 所以12a =.(二)选择题 【例1.11】()1, 10,01x x f x x x --<≤⎧=⎨<≤⎩ ,则()0lim x f x →= [ ](A) -1 (B) 0 (C) 不存在 (D) 1. 解 ()0lim lim 0x x f x x →+→+==, ()()0lim lim 11x x f x x →-→-=-=-.因为()()0lim lim x x f x f x →+→-≠,所以()0lim x f x →不存在,故选 C.【例1.12】 下列结论正确的是 [ ] (A) 若1lim1n n na a +→∞=,则lim n n a →∞存在;(B) 若lim n n a A →∞=,则11lim lim1lim n n n n nn n a a A a a A ++→+∞→∞→∞===; (C) 若lim n n a A →∞=,若lim n n b B →∞=,则()lim n bB n n a A →+∞=;(D) 若数列{}2n a 收敛且()2210n n a a n --→→∞,则数列{}n a 收敛.解 (A)不正确,反例{}n a n =,(B)不正确,因为只有当lim 0n n a →∞≠时,才能运用除法法则:11lim lim lim n n n n nn n a a a a ++→+∞→∞→∞= ,(C)不正确,只有0A ≠时,()lim n b B n n a A →+∞=成立.故选 D.注意无穷大与有界量的乘积关系 【例1.13】 当0x →时,变量211sin x x是 [ ] (A) 无穷小; (C) 有界的,但不是无穷小量; (B) 无穷大; (D) 无界的,但不是无穷大量. 解 M ∀,1,22n x n ππ∃=+只要,2M n π⎡⎤>⎢⎥⎣⎦则()2,2n f x n M ππ=+> 所以211sin x x 无界.再令 12x k π=,()0,1,2,k =±±,则()20lim lim(2)x k f x k π→→∞=⋅ sin 20k π≡,故()lim x f x →∞≠∞.故选 D.趋向无穷大主要是最高次项 趋向无穷小主要是最低次项【例1.14】 当0x →时,下列4个无穷小关于x 的阶最高的是 [ ](A) 24x x + (B)1 (C)sin 1xx- (D)-解 242200lim lim(1)1x x x x x x→→+=+=,所以24x x +是x 的2阶无穷小. 当0x →111sin 22x x ,故(B )是x 的同阶无穷小. 311000sin 11sin 6lim lim lim k k k x x x x x x xx x xx ++→→→---==,要使极限存在2k =,故(C )是x 的2阶无穷小.0x x →→= 3001sin (1cos )1lim lim 24cos k k x x x x x x xx →→-==, 同理(D )是x 的3阶无穷小.故选D.指数函数的极限要注意方向【例1.15】(2005数二)设函数()111xx f x e-=-,则 [ ](A) 0x =,1x =都是()f x 的第一类间断点; (B) 0x =,1x =都是()f x 的第二类间断点;(C) 0x =是()f x 的第一类间断点,1x =是()f x 的第二类间断点; (D) 0x =是()f x 的第二类间断点,1x =是()f x 的第一类间断点. 解 因为()0lim x f x →=∞,则0x =是()f x 的第二类间断点;而()()11111111lim lim 0,lim lim 111xx x xx x x x f x f x ee++--→→→→--====---, 所以1x =是()f x 的第一类(跳跃)间断点,故选 D. (三)非客观题 求极限的各种方法(1) 用N ε-定义证明数列极限定义证明的关键是利用n x A ε-<倒推找正整数N (与ε有关),这个过程常常是通过不等式适当放大来实现.【例1.25】求证lim1n n→∞=. 证明 对0ε∀>,1ε-<成立,则需1-n n =n a n n +-<a nε=<只要1an n ⎡⎤>+⎢⎥⎣⎦,取1a N n ⎡⎤=+⎢⎥⎣⎦,当n N >时,1ε<.证毕. 【例1.26】 设常数1,a >用N ε-定义证明lim 0!nn a n →∞=. 证明 对0ε∀>,要使0!na n ε-<成立,则需[]0!1[]([]1)[]1n a n a a a a a aa k n a a n a ε-⎛⎫⋅⋅⋅⋅-=<⋅< ⎪⋅⋅+⋅⋅+⎝⎭,(其中1[]a ak a ⋅⋅=⋅⋅)只要lg []lg[]1k n a a a ε>++,为保证0,N >取lg max 1,[]lg []1k N a a a ε⎧⎫⎡⎤⎪⎪⎢⎥⎪⎪⎢⎥=+⎨⎬⎢⎥⎪⎪⎢⎥+⎪⎪⎣⎦⎩⎭,当n N >时,有 0!na n ε-<,证毕. (2)通过代数变形求数列极限 逐项平方差【例1.27】求极限2421111lim(1)(1)(1)(1)2222nn →∞++++解 2421111lim(1)(1)(1)(1)2222n n →∞++++=2111(1)(1)(1)222lim n →∞-++2n 1(1+)211-22(1)12lim(1)22n n +→∞=-=平方差公式【例1.28】求极限lim )n n n →∞.解lim )nn n →∞n =limn →∞=limn =12=. 等比求和【例1.29】 求极限221112333lim 111555nn n →∞+++++++. 解 由等比数列的求和公式2(1)1n nq q q q q q-+++=-将数列变形,则221113211113213333lim lim 11111155551515n n n n n n →∞→∞-+⨯++++-=+++-⨯-112123lim 11145n x n →∞⎛⎫+- ⎪⎝⎭=⎛⎫- ⎪⎝⎭1221014+==. 分项求和【例1.30】 求[]31lim(21)2(23)3(25)n n n n n n →∞-+-+-++.解 []31lim (21)2(23)3(25)n n n n n n →∞-+-+-++()311lim 221nn k k n k n →∞==-+∑()23111lim 212n nn k k n k k n →∞==⎡⎤=+-⎢⎥⎣⎦∑∑()()()()32111211lim 226n n n n n n n n →∞++++⎡⎤=-⎢⎥⎣⎦()()312111lim63n n n n n →∞++==.拆分原理【例1.31】 求极限2111lim()31541n n →∞+++-.解 因为()()1111212122121n n n n ⎛⎫=-⎪-+-+⎝⎭,则 2111lim()31541n n →∞+++-111111lim [(1)()()]23352121n n n →∞=-+-++--+ 111lim (1)2212n n →∞=-=+. 求和后拆分【例1.32】 求极限111lim(1)1212312n n→∞+++++++++.解 111lim(1)1212312n n→∞+++++++++(由等差数列的前n 项和公式)222lim 12334(1)n n n →∞⎡⎤=++++⎢⎥⨯⨯+⎣⎦ (逐项拆分) 111111lim 12()23341n n n →∞⎡⎤=+-+-++-⎢⎥+⎣⎦2lim 221n n →∞⎛⎫=-= ⎪+⎝⎭(3)利用夹逼准则求数列极限 【例1.33】求lim n解 11111n n ≤+<+,而1lim(1)1n n→∞+=,∴ 由夹逼准则得 lim 1n →∞=. 掌握扩大和缩小的一般方法 【例1.34】 求22212lim()12n nn n n n n n n →∞+++++++++. 解212n n n n +++++2221212nn n n n n n n<+++++++++2121n n n +++<++ 且 2121lim,2n n n n n →∞+++=++ 2121lim 21n n n n →∞+++=++, 由夹逼准则得 22212lim()12n nn n n n n n n →∞+++++++++=12. 【例1.35】 求极限226n nn →∞++.解≤≤,则2221nnnk k k===≤≤且 22111limlim 3nnn nk k →∞→∞====,由夹逼准则得原式21lim3nn k→∞===.以下两题了解一下即可 【例1.36】 证明 1;1(0)n n a ==>证明 1) 1n h =+,则22(1)(1)(1)122n nn n n n n n n n n n h nh h h h --=+=+++>,即 0n h <<由夹逼准则 lim 0,n n h →∞=从而lim(1) 1.n n n h →∞=+=2)当1a >时,0<<由夹逼准则1n =;当01a <<,令11b a=>,则lim lim 1n n →∞→∞==,从而1(0).n a =>注 【例1.36】的结果以后直接作为结论使用. 【例1.37】 求极限nk n a ++.(12,,,0k a a a >,k N ∈)解 记{}12max ,,,k aa a a =,则nk a≤++≤.且,n n n a a a ==⋅=,由夹逼准则得{}12max ,,,nk k n a a a a a ++==.(4)利用单调有界准则求数列极限给出前后项的关系,证明其单调,有界,设出极限解方程数列单调性一般采用证明110,1,nn n n x x x x ---≥≥或函数的单调性;数列的有界性方法比较灵活.【例1.38】 求lim n n a a a a →∞++++个根号.解 设n x a =++,则12x x ==…,n x =,从而 1n nx x -<,数列{}n x 单调增加;又n x =,21n nx a x -=+,111n n n n x a x x x -=+<+=,数列有上界,故{}n x 有极限.不妨设lim n n x A →∞=,将21n n x ax -=+两边取极限,有2A a A =+,故12A ±=【例1.39】 求33n .(共有n 个根号)解 设33n x =,显然1n n x x ->,{}nx单调增加;且1n x x =2x =3n x <,{}n x 有上界,所以数列极限存在.不妨设lim n n x A →∞=,将213n n x x -=两边取极限,有23A A =,则()3,0A A ==舍.【例1.40】 设2110,0,,1,2,2n n nx aa x x n x ++>>==,证明数列{}n x 收敛,并求极限.解 2102nn n na x x x x +--=≤,数列{}n x 单调递减;且21122n n n n n x a a x x x x +⎛⎫+==+ ⎪⎝⎭≥=,{}n x 有界,所以数列{}n x 收敛.令lim n n x A →∞=,对212n n nx a x x ++=两边取极限,有12a A A A ⎛⎫=+ ⎪⎝⎭,则A =. (5)利用无穷小的性质求数列极限 【例1.41】 求下列极限(1)(2)题的方法化为指数形式常用,(3)要说明无穷小乘有界量为无穷小 (1) lim 1)(0)n n a →∞-> (2)1121lim (33)n n n n +→∞- (3)2lim 1n nn →∞+解 (1)当1ln 11ln a nn e a n→∞-时, ,则 1ln lim 1)lim (1)a nn n n n e→∞→∞-=-1lim ln ln n n a a n→∞=⋅=(2)当n →∞时, 1ln 331nn-(n+1)(n+1),则11112211lim (33)lim3(31)nnn n n n n n ++→∞→∞-=-(n+1)121ln 3lim 3lim ln 3n n n n n+→∞→∞⋅=⋅=(n+1)(3)因为0n →∞=,而sin 1n ≤,由于无穷小与有界函数的乘积仍为无穷小,所以2lim 01n nn →∞=+ 注 limsin n n →∞不存在,故不能写成lim sin 0n n n n →∞→∞→∞=⋅=. 综合题了解一下即可【例1.42】 求())()22211131lim arctan !22311n n nn n n n →∞⎡⎤⎛⎫+⨯-+++⎢⎥ ⎪ ⎪⨯--⎢⎥⎝⎭⎣⎦. 解()arctan !2n π≤,()221=()2limarctan !0n n →∞∴=,有界量乘无穷小()1111lim lim 112231n n n n n →∞→∞⎡⎤⎛⎫+++=-=⎢⎥ ⎪⨯-⎝⎭⎣⎦,拆分求和2231lim 31n n n →∞+=-, 则 ()2211131lim 322311n n n n n →∞⎡⎤++++=⎢⎥⨯--⎣⎦ )()222131lim arctan !lim 1lim 1n n x n n n n n →∞→∞→∞+⎛⎫⎡⎤-- ⎪⎢⎥⎣⎦-⎝⎭故原式= 033=-=-.两极限都存在用四则运算法则注利用函数极限求数列极限见第三章;利用定积分定义求数列极限见第六章; 利用级数收敛的性质求极限见第十一章. 3.函数的极限(1)用εδ-定义或X ε-定义证明极限用εδ-定义证明函数极限关键是用倒推法适当放缩找到0x x -与ε的关系,确定()δε;而X ε-定义证明函数极限关键是用倒推法适当放缩找到x 与ε的关系,确定()X ε.【例1.43】 证明 22lim 4x x →= 此题典型要搞清楚自变量的约束范围的确定证明 对于0ε∀>,不妨设21,x -<则222225,x x x +≤+<-++< 要使242252x x x x ε-=+⋅-<⋅-<,只要取min{1,}5εδ=,当02x δ<-<时,有24x ε-<.证毕.注 函数在0x 的极限只与函数在0(,)U x δ的定义有关,与函数的整个定义范围无关.因此上例作了假设2 1.x -<也可假设122x -<等. 【例1.44】 用X ε-定义证明:232lim .33x x x →∞+=证明 对于0ε∀>,要使2322321333x x x x x xε++--==<,只要1.x ε>故取11,X ε=+当x X >时,均有23233x x ε+-<,即232lim .33x x x →∞+=(2)用极限存在的充要条件研讨极限 含有,xxe e-的表达式x →∞的极限;含有[]11,,,xxe e x x -的表达式0x →的极限;分段函数在分段点的极限,一般来说用极限存在的充要条件讨论.注意指数函数的极限,一般要考虑两边趋势【例1.45】 讨论极限 lim x xx xx e e e e --→∞-+.解 221lim lim 11x x x xx x x x e e e e e e --→-∞→-∞--==-++; 221lim lim 11x x xx x x x x e e e e e e--→+∞→+∞--==++. 所以 lim x xx xx e e e e --→∞-+不存在.【例1.46】 求1402sin lim 1x x x e x x e →⎡⎤+⎢⎥+⎢⎥+⎢⎥⎣⎦. 解 1402sin lim 1x x x e x x e +→⎡⎤+⎢⎥+⎢⎥⎢⎥+⎣⎦43402sin lim 0111x xx xe e x x e +--→-⎡⎤+⎢⎥=+=+=⎢⎥⎢⎥+⎣⎦; 1402sin lim 2111x x x e x x e -→⎡⎤+⎢⎥-=-=⎢⎥⎢⎥+⎣⎦; 所以 1402sin lim 1x x x e x x e →⎡⎤+⎢⎥+⎢⎥+⎢⎥⎣⎦1=. 【例1.47】 []x 表示不超过x 的最大整数,试确定常数a 的值,使[]210ln(1)lim ln(1)x x x e a x e →⎧⎫+⎪⎪+⎨⎬⎪⎪+⎩⎭存在,并求出此极限.解 由[]x 的定义知,[][]0lim 1,lim 0,x x x x -+→→=-=故所给极限应分左、右极限讨论. []22211110000ln(1)ln(1)lim lim lim lim .ln(1)ln(1)x x x x x x x x x x xe e e a x a a e a a e e e ----→→→→⎧⎫++⎪⎪+=-=-=-=-⎨⎬⎪⎪++⎩⎭[]222211110002ln(1)ln(1)ln (1)lim lim 0lim 01ln(1)ln (1)ln(1)x xxxx x x x x x xe e e e x a x e e e e x+++--→→→--⎧⎫+++⋅+⎪⎪+=+=+⎨⎬⎪⎪+⋅+++⎩⎭212ln(1)lim 21ln(1)xx xe e +-→-++==++.所以,当2a =-时所给极限存在,且此时极限为2.【例1.48】设21,1,()23, 1.x f x x x x ⎧≥⎪=⎨⎪+<⎩试求点1x =处的极限.解 211(10)lim ()lim(23)5x x f f x x --→→-==+=; 111(10)lim ()lim 1x x f f x x++→→+===; 即(10)(10)f f -≠+,1lim ()x f x →∴不存在.(3)通过代数变形求函数极限 【例1.49】求下列极限(1)22232lim 2x x x x x →-+++- (2)422123lim 32x x x x x →+--+ (3)11lim ,()1n x x n Z x +→-∈- 解 (1)原式222(1)(2)(1)(2)limlim (1)(1)(1)(11)x x x x x x x x x x →-→-++++==-+--++211lim.13x x x →-+==-(2)原式22211(1)(3)(1)(3)limlim 8.(2)(1)2x x x x x x x x x →→-+++===---- (3)原式121(1)(1)lim1n n x x x x x x --→-++++=- (提零因子)121lim(1)n n x xx x n --→=++++=.注 分子分母都为0必有共同的0因子① 因为分母极限为零,所以不能直接用计算法则; ② 当0x x →时,0x x ≠. 【例1.50】求下列极限注意多项式商的三种形式的规律0x x x a →∞→→,,,最高项,最低项,零因子(1)247lim 52x x x x x →∞-+++ (2)()()()3020504192lim 61x x x x →∞++- (3) 3225lim 34x x x x →∞-++解(1)原式234341170lim 0.5211x x x x x x→∞-+==++(2)原式3020501249lim 16x x x x →∞⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫- ⎪⎝⎭1030205049263⋅⎛⎫== ⎪⎝⎭. (3)3225lim 34x x x x →∞-=∞++ (因为2334lim 025x x x x →∞++=-) 注 x →∞时有理函数求极限,分子、分母同时除以x 的最高幂次.即抓“大头”.综合题也可直接用结论 0101101,lim0,,m m m n n x n a n m b a x a x a n m b x b x b n m --→∞⎧=⎪⎪+++⎪=>⎨+++⎪∞<⎪⎪⎩. 【例1.51】求下列极限了解共轭因式,尤其是N 方差公式 (1))0lim 0x aa +→>. (2)0x → (3)limx解 ⑴原式0lim x a+→=limx a+→=lim x a+→==⑵ 原式=2x x →x →=32=⑶ 原式2limx=2123lim 1x --==.(4)利用两个重要极限求极限利用0sin lim 1x x x →=,1lim 1nn e n →∞⎡⎤+=⎢⎥⎣⎦求极限,则有0sin 1lim 1,lim(1)e →→∞=+=(此两式中的形式必须相同).【例1.52】 求下列极限 (1)201cos limx xx →-)(2)22sin sin lim x a x a x a→--(3)31lim sin ln(1)sin ln(1)x x x x→∞⎡⎤+-+⎢⎥⎣⎦解 (1)原式22200212sin sin1222limlim 2()2x x x xx x →→==.(2)原式()()sin sin sin sin limx ax a x a x a→-+=-()2limsin cos sin sin 22x a x a x a x a x a →-+=+-()sin2limcos sin sin 22x a x ax a x a x a →-+=⋅+-1cos 2sin sin 2a a a =⨯⨯=. (3)3lim sin ln(1)x x x →∞+ 3sin ln(1)33lim ln(1)0 limln(1)3ln(1)x x x x x x x→∞→∞++=⋅++ 33333lim ln 1ln lim[(1)]3x x x x x x⋅→∞→∞⎛⎫=+=+= ⎪⎝⎭同理 1lim sin ln(1)1x x x→∞+=,所以 31lim sin ln(1)sin ln(1)x x x x →∞⎡⎤+-+⎢⎥⎣⎦312=-=.【例1.53】 求下列极限 趋向常数的极限通常会做变量替换 (1)1lim(1)tan2x xx π→- (2)22sin lim1x xx ππ→- 解 (1)令1,t x =-则 原式02lim tan()lim cotlimlim222tan22t t t t ttt tt t ttππππππ→→→→=⋅-=⋅===(2) 令,x t π=-则原式2222200002sin()sin sin lim lim lim lim .()2(2)221t t t t t t t t t t t t t ππππππππππ→→→→-====----- 【例1.54】 求下列极限(1)32lim 22xx x x →∞-⎛⎫ ⎪-⎝⎭ (2)cot 0lim tan 4xx x π→⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦解 (1)原式1222111lim 1lim 11222222x xx x x x x --→∞→∞⎡⎤⎛⎫⎛⎫⎛⎫=+=+⋅+⎢⎥ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦1e e =⋅=(2)原式11tan t 001tan 1t lim()lim()1tan 1t x x t x x →→--==++122t 102t lim(1)1tt t t +-⋅-+→-=++02lim1122t02tlim(1)1t t ttt e →-++--→⎡⎤-=+=⎢⎥+⎣⎦.注 1∞型极限的计算还可用如下简化公式:设(),(),u u x v v x ==且lim 1,lim u v ==∞,则lim(1)lim .u vvu e-=(因为 (1)1lim(1)1lim lim [1(1)]u vu vvu u u e---⎧⎫⎪⎪=+-=⎨⎬⎪⎪⎩⎭)和ln lim lim .v v uu e=【例1.55】 求下列极限 (1)lim hx kx ax b ax c +→∞+⎛⎫⎪+⎝⎭(2)1sin sin 20cos lim cos 2x xx x x →⎛⎫⎪⎝⎭解 (1) 原式=()()lim 1lim x x ax b b c hx k hx k ax c ax c e e→∞→∞+-⎛⎫⎛⎫-++ ⎪ ⎪++⎝⎭⎝⎭=()b c hae-=(2) 原式22000cos 1cos cos 211cos cos 2lim 1lim limcos 2sin sin 2cos 2cos 222x x x x x x x xxx xx xxx eee→→→--⎛⎫⎛⎫-⋅⎪⎪⎝⎭⎝⎭===2222220011(2)1cos 21cos 322lim []lim []22224x x x x x xx x x xeee →→----===.(5)利用函数的连续性求极限① 设()f x 在x a =连续,按定义则有 lim ()()x af x f a →=.因此对连续函数求极限就是用代入法求函数值.② 一切初等函数在它的定义域上连续.因此,若()f x 是初等函数,a 属于它的定义域,则lim ()()x af x f a →=.③ 设lim ()x ag x A →=,若补充地定义()g a A =,则()g x 在x a =连续.若又有()y f u =在u A =连续,则由复合函数的连续性得 lim (())(lim ())()x ax af g x f g x f A →→==.【例1.56】 求下列极限(1)3225lim243x x x x →+++ (2)3x →解 利用函数的连续性得 (1)332252251lim243224233x x x x →+⨯+==++⨯+⨯+,(2)x →==(6)利用无穷小的性质求极限常用的几个重要等价无穷小代换(当0→x 时)有: sin arcsin tan arctan 1ln(1)x xx x x xe x -+x cos 1-~22x , 1-xa ~)0(ln >a a x , )1(log x +α~ln x a.1)1(-+αx ~x α(α为任意实数), 3tan sin ,2x x x -3sin .6x x x - 利用等价无穷小代换时,通常代换的是整个分子、分母或分子、分母的因子. 【例1.57】求下列极限(1)201lim sin 3x x e x →- (2)cos 0lim sin x x e e x x →- (3)0x →解 (1)当0x →时,212,sin 33xex x x -,∴200122limlim sin 333x x x e x x x →→-==. (2)当0x →时,1cos 0x -→,1cos 11cos xex -∴--.原式cos 1cos 1cos cos 22000(1)(1)lim lim lim x x x xx x x e e e e x x--→→→--==⋅20(1cos )1lim2x x x→-==(因为当210,1cos 2x x x →-). (3)原式0x →=0x x →→=012x →=201112lim 1222x xx x →==⋅.【例1.58】 已知()0ln 1sin lim 231x x f x x →⎡⎤+⎢⎥⎣⎦=-,求()20lim x f x x →. 解 由()0lim 310x x →-=及()0ln 1sin lim 231x x f x x →⎡⎤+⎢⎥⎣⎦=-,必有()0limln 10sin x f x x →⎡⎤+=⎢⎥⎣⎦, 所以 ()ln 1sin f x x ⎡⎤+⎢⎥⎣⎦~()sin f x xln3311x x e -=-~ln 3x 原式()0sin lim ln 3x f x x x →=()201lim ln 3sin x f x x x x →=⋅ ()201lim ln 3x f x x→==2,则 ()2lim2ln 3x f x x→=.【例1.59】 求 30sin tan limsin x x xx→- 解 原式33001sin (1)sin (cos 1)cos limlim sin cos sin x x x x x x x x x →→--==⋅23001()1lim lim cos 22x x x x x x→→⋅-=⋅=-⋅.注 3300sin tan limlim 0.sin sin x x x x x xx x→→--≠= 【例1.60】 求 213sin 2sin lim x x xx x→∞+解 213sin 2sin lim x x xx x→∞+=13sin 1lim2lim sin 1x x x x x x→∞→∞+, 1sin1lim1;lim 0,sin 1,1x x x x x x→∞→∞==≤ 则1lim sin 0x x x →∞=, ∴原式=303+=.(7)利用其它方法求极限① 利用导数定义求极限(见第二章) 利用导数定义=')(0x f 00)()(limx x x f x f x x --→可以将某些求极限问题转化为求导数;② 利用罗必达法则(详见第三章); ③ 利用微分中值定理(详见第三章); 【例1.61】 设()()00,0f f '=存在,求()limx f x x→. 解 因为()()00,0f f '=存在,所以()0limx f x x →()()()00lim 0x f x f f x→-'== *【例1.62】 求lim x→+∞解 令()f t =,显然当0x >时,()f t 在[,1]x x +上满足拉格朗日中值定理,所以有,()()()()f b f a f b a ξ'-=⋅-.所以,原式=cos ξ 其中1x x ξ≤≤+故lim lim cos 0x ξξ→+∞→+∞==4.函数的连续性(1)函数的连续性与间断点的讨论【例1.63】 设()2,0sin ,0a bx x f x bx x x⎧+≤⎪=⎨>⎪⎩在点0x =处连续,求常数a b 与的关系.解 ()00sin sin lim lim lim x x x bx bx f x b b x bx+++→→→==⋅= ()()200lim lim x x f x a bx a --→→=+=. 因为函数在点0x =连续,所以()0lim x f x +→b =()0lim x f x a -→==,故a b =. *【例1.64】 设()2122lim 1n n n x ax bxf x x +→∞++=+,当,a b 取何值时,()f x 在(),-∞+∞处连续.解 ()2,1,11,121,12a bx x x x ab f x x a b x ⎧+ <⎪>⎪⎪--=⎨=-⎪⎪++⎪=⎩,由于()f x 在()()(),1,1,1,1-∞--+∞上为初等函数,所以是连续的,只要选取适当的,a b ,使()f x 在1x =±处连续即可. 即11lim ()lim ()(1)x x f x f x f -+→→==; ()()()11lim lim 1x x f x f x f -+→-→-==-. 得 1011a b a a b b +==⎧⎧⇒⎨⎨-=-=⎩⎩. 【例1.65】 研究函数(),111,11x x f x x x -≤≤⎧=⎨<->⎩或的连续性,并画出函数的图形.解 ()f x 在(),1-∞-与()1,-+∞内连续, 在1x =-处间断,但右连续,因为在1x =-处,()()11lim lim 11x x f x x f ++→-→-==-=-,但()11lim lim 11x x f x --→-→-==,即()()11lim lim x x f x f x +-→-→-≠.【例1.66】 指出函数22132x y x x -=-+的间断点,说明这些间断点的类型.解 ()22132x f x x x -=-+在1x =、2x =点没有定义,故1x =、2x =是函数的间断点.因为 ()()()()2211111lim lim3212x x x x x x x x x →→-+-=-+--11lim 22x x x →+==--,所以1x =为第一类可去间断点.因为2lim x y →=∞,所以2x =为第二类无穷间断点.【例1.67】 讨论函数()221lim 1nnn x f x x →∞-=+的连续性,若有间断点,判别其类型.解 ()22 11lim0 1 1 1nnn x x x f x x x x x →∞⎧->⎪-===⎨+⎪<⎩, ()11lim lim 1x x f x x ++→→=-=-,()11lim lim 1x x f x x --→→==,()()11lim lim x x f x f x +-→→≠; ()11lim lim 1x x f x x ++→-→-==-,()11lim lim 1x x f x x --→-→-=-=,()()11lim lim x x f x f x +-→-→-≠.故 1x =±为第一类跳跃间断点.(2)闭区间上连续函数的性质【例1.68】 证明方程3910x x --=恰有三个实根. 证明 令()391f x x x =--,则()f x 在[]3,4-上连续,且()()310,290,f f -=-<-=> ()()010,4270f f =-<=>所以()f x 在()()()3,2,2,0,0,4---各区间内至少有一个零点,即方程3910x x --=至少有三个实根. 又它是一元三次方程,最多有三个实根.证毕【例1.69】 若n 为奇数,证明方程110n n n x a x a -+++=至少有一个实根.证 令()11n n n f x x a x a -=+++,则()1(1)nnn a a f x x xx=+++, 于是 lim (),lim ()x x f x f x →-∞→+∞=-∞=+∞,故存在1,x 使()10f x A =>;存在2,x 使()20f x B =<.所以()f x 在[]12,x x 至少有一个零点,即方程至少有一个实根.【例1.70】 设()f x 在[],a b 上连续,且()(),f a a f b b <>,试证:在(),a b 内至少有一点ξ,使得()fξξ=.证 令()()F x f x x =-,()F x 在[],a b 连续,且()0,()0,F a F b <>由介值定理得在(),a b 内至少存在一点ξ,使得()0F ξ=,即()fξξ=.【例1.71】 设()f x 在[]0,2a ()0a >上连续,且()()02f f a =,求证存在()0,a ξ∈,使()()ff a ξξ=+.证 构造辅助函数()()()g x f x a f x =+-,则()()()00g fa f =-,()()()2g a f a f a =-()()0f a f =--⎡⎤⎣⎦()0g =-,即()0g 与()g a 符号相反,由零点存在定理知存在()0,a ξ∈,使()0g ξ=,即()()ff a ξξ=+.【例1.72】 设()f x 在[],a b 上连续,且a c d b <<<,证明:在[],a b 内至少存在一点ξ,使得()()()()pf c qf d p q f ξ+=+,其中,p q 为任意正常数.证()f x 在[],a b 上连续,∴ ()f x 在[],a b 上有最大值M 和最小值m ,则()m f x M ≤≤.由于,[,]c d a b ∈,且,0p q >,于是有(),()pm pf c pM qm qf d qM ≤≤≤≤.⇒ ()()()()p q m pf c qf d p q M +≤+≤+, ⇒()()pf c qf d m M p q+≤≤+.由介值定理,在[],a b 内至少存在一点ξ,使得()()()pf c qf d f p qξ+=+,即()()()()pf c qf d p q f ξ+=+ 5.综合杂例【例1.73】 已知lim 2003,(1)ab bn n n n →∞=--求常数,a b 的值.解 lim lim lim 11(1)[1(1)](1)1aaa bbb n n n b b b n n n n n n n n-→∞→∞→∞-==------ 1lim lim 1a b a b n n n n bb n--+→∞→∞-==- 为使极限为2003,故10,a b -+=且12003,b =所以12002,.20032003b a ==- 【例1.74】 已知221lim2,sin(1)x x ax bx →++=-求常数,a b 的值. 解 由221lim 2,sin(1)x x ax bx →++=-则分子的极限必为0,即21lim()0x x ax b →++=, 从而 10a b ++=;另一方面,当1x →时,22sin(1)1x x --,因此2222221111lim lim 10lim sin(1)11x x x x ax b x ax b x ax a a b x x x →→→+++++--=++=--- 1(1)(1)lim2(1)(1)x x x a x x →-++==-+,从而11211a ++=+,即2,a =又10a b ++=, 得 3.b =【例1.75】已知lim ())0,x ax b →+∞+=求常数,a b 的值.解lim ())lim ())0,x x bax b x a x→+∞→+∞-+=+=而lim ,x x →+∞=∞要使原式极限为0,则lim()0,x ba x→+∞-+=所以 1.a =1lim )lim )lim.2x x x b ax x →+∞→+∞=-===【例1.76】 若 30sin 6()lim 0,x x xf x x →+=求206()lim .x f x x→+ 解 因为30sin 6()lim0,x x xf x x→+=由极限存在与无穷小的关系,得 3sin 6()0,x xf x x α+=+其中0lim 0.x α→=从而 2236()6sin 6,f x xx x x α+=-+ 所以 32233300006()6sin 66sin 6(6)lim lim()lim lim 366x x x x f x x x x x x x x x xα→→→→+-=-+=== 【例1.77】 已知0()lim4,1cos x f x x →=-求10()lim 1.xx f x x →⎛⎫+ ⎪⎝⎭解 因为200()2()limlim 4,1cos x x f x f x x x→→==-则20()lim 2x f x x →=.从而 221()()lim()200()()lim 1lim 1x x f x f x xf x x x x x f x f x e e x x →⋅→→⎛⎫⎛⎫+=+== ⎪ ⎪⎝⎭⎝⎭注 此题也可用极限存在与无穷小的关系求解.【例1.78】 当0x →x 的几阶无穷小量. 解3255x-=则203limx xx→→==∴x 的23阶无穷小.三、综合测试题。

极限基础知识点总结

极限基础知识点总结

极限基础知识点总结一、极限的概念1.1 极限的概念极限是微积分中的基本概念,它描述了函数在某一点附近的行为。

在数学中,极限通常表示某一数列或函数在自变量取某一值时,与另一给定值(通常是无穷大或无穷小)的距离在很小的范围内。

1.2 极限的符号表示当趋近的过程是无穷远时,称为无穷极限。

常用符号表示:1.3 极限的定义数列极限的定义:对于任意给定的正数ε,存在正整数N,当n>N时, a_n与特定数a的距离小于ε,即 |a_n - a|<ε。

函数在x=a处的极限定义:若对于任意ε>0,存在δ>0,当0< |x-a|<δ时, |f(x)-L|<ε。

1.4 极限的性质(1)唯一性:若极限存在,则唯一。

(2)局部有界性:若函数在某点处有极限,则函数在该点的去心邻域内有界。

(3)局部保号性:若函数在某一点有极限,则该点的去心邻域内函数与该点的极限保持同号。

二、极限的求解2.1 函数在无穷远处的极限当x趋于无穷大时,通常分析函数的渐近行为,例如当x趋近无穷大时,若函数趋近某一有限值,则说明函数有水平渐近线;若函数趋近无穷大,则说明函数有垂直渐近线。

2.2 无穷小的性质与判定无穷小在极限的计算中占有重要地位,一些基本的无穷小性质与无穷小的判定方法:2.3 函数的极限存在性判定对于一些特殊类型的函数,判断其在某一点是否存在极限,例如当x趋近某一值时,函数的变化趋势是否稳定,是否可以利用夹逼定理进行求解等。

2.4 极限存在性的定理弦截定理、单调有界定理、闭区间上连续函数的性质等有助于判断函数在某一点的极限是否存在。

三、极限的计算方法3.1 函数极限的基本运算法则函数极限的基本运算法则包括极限的四则运算法则、复合函数的极限、函数乘积与函数商的极限等。

3.2 极限的计算方法极限的计算方法包括利用函数的性质、夹逼定理、洛必达法则、泰勒展开等方法。

3.3 极限的分析对于一些复杂函数极限的计算问题,需要先进行极限的分析,例如观察函数的泰勒级数展开式,取其前几项进行计算等。

专升本高数第一轮--第一章--极限与连续.

专升本高数第一轮--第一章--极限与连续.

解: lim f ( x) lim ( x 1) 1,
x 0 x 0
x 0
lim f ( x) lim ( x 1) 1,
x 0
x 0
lim f ( x) 存在。
x 0
极限运算法则
n n n
推论1. 若 lim xn A,c 为常数,则 lim cxn cA
n n
推论2. 若 lim xn A, 则 lim a n An
n
xn A 法则3. 若 lim xn A,lim yn B,且 B 0, 则 lim n n n y B n
第一章 极限和连续
§1.1 极限
(一) 数列的极限 1. 数列
数列常表示为 xn : x1 , x2 , , xn , 其中 xn 称为数列的通项。例如: 1 2 3 n 2, 4, 6, , 2n, ;,,, , , 2 3 4 n 1
若 n , xn xn1 则称 xn 为单调增数列, 单调数列:
x x0 lim f ( x) A 或 f ( x) A ( x x0 )
定理2. lim f ( x)存在 lim f ( x) , lim f ( x)
x x0 x x0 x x0
均存在且相等。
x 1,x 0 例4. 讨论函数 f ( x) 0 ,x 0 在 x 0 处是否有极限。 x 1,x 0
x
如果 lim f ( x) 0 ,则称函数 f ( x) 为 x x0 时的无穷小。
xx0
为了讨论方便,记无穷 小 为 lim 0 。
定理1 (极限与无穷小的关系) lim u A 的充要条件是 u A , 其中lim 0。

高等数学第一章第一课-2022年学习资料

高等数学第一章第一课-2022年学习资料

空集为任意集合A的子集,即Φ cA-若A与B互为子集,即AcB,且BCA,则称集合-A与B相等,记作A=B或 =A.-五、集合的运算-交集:A∩B={xxeA且xeB}:-→∩
并集:AUB={xx∈A或x∈B;-例5设A={1,2,4,6,B={2,4,7}-则AUB={1,2,3 4,6,7-A∩B={2,4-6设A={x-1≤x≤2,B={xx>0,-则AUB={xx≥-1,AnB= x0<x≤2-例7设A={xx≤1,B={x2≤x≤5}-则AUB={xx≤1,或2x≤5},AnB=D. →∩
例4设fx=x2+x-1,求f1,fa,fx+1-〔》奶-解f1=1+1-1=1-fa=a2+a-1-fx =x++x+-1-=x2+3x+1-→
f[fx]=[fx]+[fx]-1-=x2+x-1+x2+x--1-=x4+2x3-1-→∩
如果自变量在定义域内任取一个数值时-对应的函数值总是只有一个,叫做单值函数,-否则叫做多值函数.-例如:y ±V2-x2-定义:点集C={x,yy=∫x,x∈D}称为-函数y=fx的图形-→∩
第一章-函数-极限与连续-§1.1-集合-一、概念-具有某种特定性质并且可以彼此区别的事物的-总体,称为集 -集合里的每一个事物称为集合的元素。-例1方程x2-3x+2=0的根.-有限集合-→∩
例2-全体实数.常记为R.-例3-全体正实数.常记为R-例4-全体自然数.常记为N.-无限集合-若某个元素 属于集合A,则记作x∈A;-若某个元素x不属于集合A,则记作xEA.-例如:-2R,4∈N.-二、集合的表 法-1.列举法:按任意顺序列出集合的所有元素-并用花括号括起来,

经济数学第一章极限与连续

经济数学第一章极限与连续

3x 1,

2 设函数
f
(x)
1,
2 x ,
x0 x 0 ,求定义域和函数值 f (1) 、 f (0) 、 f (4) , x0
并作出此函数的图像.
解 函 数 的 定 义 域 D ,, f (1) 3 1 1 2 , f (0) 1,
f (4) 24 16 .图像如图 1.2 所示.
关系相同,那么它们就是相同的函数,与自变量和因变量用什么字母表示无关.
2.分段函数
有些函数对于定义域内的自变量 x 的不同的值,不能用一个统一的解析式表示出来,而
要用两个或两个以上的解析式来表示,这种在自变量的不同取值范围内用不同的解析式表示
的函数,称为分段函数.
例 1 我国寄到国内(外埠)信函的邮资标准是:首重 100 克内,每重 20 克(不足 20
y 按照某种对应关系,都有唯一确定的值与之对应,则称变量 y 是变量 x 的函数,记作
y f (x), x D,
其中 x 叫做自变量, y 叫做因变量. x 的取值范围 D 称为函数的定义域,而数集
f (D) y | y f (x), x D
称为函数 y f (x) 的值域.当 x x0 时,与 x0 相对应的 y 值称为函数值,记作 y xx0 或 f (x0 ) .
第一章 极限与连续
函数是现代数学最基本的概念之一.它不仅是初等数学的主要内容,也是高等数学研究 的主要对象.微积分学是研究函数关系的一门数学学科.极限方法是微积分学的基本方法, 微积分学中的许多概念都是在极限概念的基础上建立的.连续性是函数的重要性态,微积分 学是以连续函数作为主要研究对象的.
本章在中学的基础上,进一步学习函数的有关内容和经济问题中的常见函数,学习函数 极限的概念及其运算,讨论函数的连续性,为学习微积分打下基础.

第一章 函数与极限

第一章  函数与极限

第一章 函数与极限第一节 函数§1.1 函数内容网络图区间定义域 不等式 定义 集合 对应法则 表格法表达方法 图象法初等函数 解析法 非初等函数 单调性函数的特性 奇偶性函数 周期性 有界性 定义 反函数 重要的函数 存在性定理 复合函数符号函数:⎪⎩⎪⎨⎧>=<-=.0,1,0,0,0,1sgn x x x x几个具体重要的函数 取整函数:()][x x f =,其中[x ]表示不超过x 的最大整数.狄里克雷函数:()⎩⎨⎧=.,0,,1为无理数为有理数x x x D§1.2 内容提要与释疑解难一、函数的概念定义:设A 、B 是两个非空实数集,如果存在一个对应法则f ,使得对A 中任何一个实数x ,在B 中都有唯一确定的实数y 与x 对应,则称对应法则f 是A 上的函数,记为 B A f yx f →-::或.y 称为x 对应的函数值,记为 ()A x x f y ∈=,.其中x 叫做自变量,y 又叫因变量,A 称为函数f 的定义域,记为D (f ),{}A x x f A f ∈=∆)()(, 称为函数的值域,记为R (f ),在平面坐标系Oxy 下,集合{}D x x f y y x ∈=),(),(称为函数y=f(x)的图形。

函数是微积分中最重要最基本的一个概念,因为微积分是以函数为研究对象,运用无穷小及无穷大过程分析处理问题的一门数学学科。

1、由确定函数的因素是定义域、对应法则及值域,而值域被定义域和对应法则完全确定,故确定函数的两要素为定义域和对应法则。

从而在判断两个函数是否为同一函数时,只要看这两个函数的定义域和对应法则是否相同,至于自变量、因变量用什么字母,函数用什么记号都是无关紧要的。

2、函数与函数表达式的区别:函数表达式指的是解析式子,是表示函数的主要形式,而函数除了用表达式来表示,还可以用表格法、图象法等形式来表示,不要把函数与函数表达式等同起来。

§1.1数列的极限讲解

§1.1数列的极限讲解

数列的变化趋势.
1 2 3 n , , , , , 2 3 4 n1
1 1 1 ( 1)n1 1, ,, , , , 2 3 4 n
1,,, 3 5 , (2n 1),
1 ( 1)n 0,, 1 0,, 1 , , 2
什么叫数列的极限?
lim xn a 0, N Z , 当 n N 时,
n
有 xn a .
关键:正整数N的存在性证明. 其基本思路: 从
不等式 xn a 反解 n, 再确定 N .
注: 证明极限常用的方法是放缩法.
n a 思考题 (1)证明 lim n n 1; (2) lim 0( a 0). n n n !
此时也称数列{ xn }是收敛的,否则称其发散.
注:
(1)定义中的正整数 N 是与任意给定的 有关的, 它随着 的给定而选定, 是不唯一的. (2)定义的等价形式:
定义 设 { xn }为一数列, 如果存在常数a, 对于任 意给定的正数 (无论它多么小), 总存在正整数 N , 使 当 n N时, 不等式 | xn a | k
1 2 3 n , , , , , 2 3 4 n1
1 1 1 n 1 1 1, ,, , , ( 1) , 2 3 4 n
1,,, 3 5 , (2n 1),
1 ( 1)n 0,,,, 1 0 1 , , 2
数列的几何表示(一)
n1
( n 1, 2,
) 是发散的.
1 取 , 则存在 N , 使当n N 时, 有 2
1 1 a xn a 2 2
但因 xn 交替取值 1 与-1, 而此二数不可能同时落在长度

微积分第一章

微积分第一章

高等数学教案、第一章 函数、极限与与连续本章将在分别研究数列的极限与函数的极限的基础上,讨论极限的一些重要性质以及运算法则,函数的连续性,闭区间上连续函数的性质。

具体的要求如下:1. 理解极限的概念(理解极限的描述性定义,对极限的N -ε、δε-定义可在学习过程中逐步加深理解,对于给出ε求N 或δ不作过高要求)。

2. 掌握极限四则运算法则。

3. 了解极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限。

4. 了解无穷小、无穷大及无穷小的阶的概念.能够正确运用等价无穷小求极限。

5。

理解函数在一点连续的概念,理解区间内(上)连续函数的概念。

6. 了解间断点的概念,会求函数的间断点并判别间断点的类型。

7. 了解初等函数的连续性和闭区间上连续函数的性质(最大、最小值定理、零点定理、介值定理)。

第一章共12学时,课时安排如下绪论 §1.1、函数 §1.2初等函数 2课时 §1。

4数列极限及其运算法则 2课时 §1.4函数极限及其运算法则 2课时 §1。

4两个重要极限 无穷小与无穷大 2课时 §1.4函数的连续性 2课时 第一章 习题课 2课时绪论数学:数学是研究空间形式和数量关系的一门学科,数学是研究抽象结构及其规律、特性的学科.数学具有高度的抽象性、严密的逻辑性和应用的广泛性。

关于数学应用和关于微积分的评价:恩格斯:在一切理论成就中,未必再有像17世纪下叶微积分的微积分的发现那样被看作人类精神的最高胜利了。

如果在某个地方我们看到人类精神的纯粹的和唯一的功绩,那就正是这里.华罗庚:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之迷,日用之繁,无处不用数学。

张顺燕:微积分是人类的伟大结晶,它给出了一整套科学方法,开创了科学的新纪元,并因此加强和加深了数学的作用。

……有了微积分,人类才有能力把握运动和过程;有了微积分,就有了工业革命,有了大工业生产,也就有了现代的社会。

大学数学高等数学的基本概念与定理

大学数学高等数学的基本概念与定理

大学数学高等数学的基本概念与定理数学作为一门基础学科,对于大学生而言,高等数学是他们学习数学的起点。

在大学的高等数学课程中,基本概念与定理是学生们必须掌握的内容。

本文将重点介绍大学数学高等数学的基本概念与定理。

第一章数列与极限数列是数学中一系列按照一定规律排列的数的集合。

数列中的每一个数称为数列的项,用一般的小写字母an表示。

在数学中,数列是研究极限的基础。

极限概念对于分析数列的性质和行为非常重要。

1.1 数列的定义与性质数列的定义:如果对于每一个整数n,都有唯一确定的一个实数an与之对应,那么称a1, a2, a3, ...为一个数列,简记为{an}。

数列的性质:1)数列的有界性:数列有界的意义是存在两个实数M和N,使得对于每一个正整数n,都有M≤an≤N。

2)数列的单调性:数列单调有两种情况,即递增和递减。

如果对于每一个正整数n,an≤an+1,则称数列递增;如果an≥an+1,则称数列递减。

3)数列的有界单调性:数列既有界又递增或递减。

1.2 数列的极限极限是数列中最重要的概念之一,它描述了数列中的项随着自变量趋于无穷大或无穷小时的行为。

数列收敛与发散的定义:1)数列的收敛性:如果存在一个实数a,对于任意给定的正数ε,总存在正整数N,使得当n>N时,|an-a|<ε都成立,那么称数列{an}收敛于a,记作lim(n→∞)an=a。

如果数列不收敛,则称数列发散。

2)数列的无穷大:对于任意给定的正数M,总存在正整数N,使得当n>N时,an>M都成立。

如果数列有这样的性质,则称数列为无穷大数列。

第二章函数与极限函数是数学中研究量与量之间对应关系的一种映射关系。

在数学中,函数的极限是研究函数性质、行为和趋势的重要概念。

2.1 函数的基本概念函数的定义与性质:1)函数的定义:设A、B为非空数集,若对于每一个x∈A,都有唯一确定的确定用y表示的实数与之对应,那么就称y是x的函数,记作y=f(x),称f(x)为从A到B的一个函数。

高等数学教材前三章

高等数学教材前三章

高等数学教材前三章第一章:函数与极限高等数学是大学数学的一门重要课程,旨在帮助学生理解和掌握高级数学的基本概念和方法。

而高等数学教材的前三章主要涵盖了函数与极限的内容。

1.1 函数的概念及性质函数是数学中的重要概念,它描述了数之间的依赖关系。

函数由自变量和因变量组成,自变量取值的变化会导致因变量相应地改变。

在这一章节中,将介绍函数的定义、函数的图像、函数的性质以及一些常见函数的分类和图像特征。

1.2 极限的概念极限是函数与数列中的重要概念,它描述了数值序列或函数值在某一点附近的趋势。

极限的概念是高等数学中的基础,它对于解决各种数学问题具有重要意义。

本节重点介绍函数的极限概念,包括函数极限的定义、性质以及常见的计算方法。

1.3 极限的运算法则极限的运算法则是数学中的重要工具,通过运算法则可以简化复杂极限的计算过程。

本节将介绍函数极限的四则运算法则、复合函数极限的计算以及无穷小量的运算法则。

第二章:导数与微分导数是微积分中的重要概念,描述了函数在某一点的变化率。

导数的定义和性质,在解决实际问题和数学推理中发挥着重要作用。

2.1 导数的概念导数是函数变化率的度量,它反映了函数在一点处的瞬时变化情况。

本章节将介绍导数的定义和性质,通过求导数可以帮助我们了解函数的变化规律以及优化问题求解。

2.2 导数的计算方法求导是解决导数问题的核心环节。

本节将介绍一些基本导数公式,例如多项式函数的导数、三角函数的导数以及常见初等函数的导数公式。

此外,还将介绍一些常见函数求导的方法,如导数的四则运算、链式法则和隐函数求导法则等。

第三章:微分中值定理与应用微分中值定理是微积分中的重要定理,它描述了函数在某种条件下存在特殊点的性质。

微分中值定理不仅具有理论上的重要性,还在实际问题的求解中起到关键作用。

3.1 弗格罗定理弗格罗定理是微分中值定理的基本形式,它给出了函数在某个闭区间内存在一点,使得该点的切线斜率与该区间的平均斜率相等。

高等数学_清华大学出版社

高等数学_清华大学出版社

1 1 x 故 f ( x) . ( x 0) x
2
习题 1.1
7(3)、8(2)、10、13、18、19
约定: 定义域是自变量所能取的使算式有意义 的一切实数值.
D : [1,1] 例如, y 1 x 2 1 例如, y D : ( 1,1) 2 1 x 1 例如, y 1 x 2 D : [1,0) (0,1] x
注意:函数表达式形式 相同,但定义域不同, 则表示不 同的函数.
o
I
x
如果对于区间I 上任意两点x1及 x2 , 当 x1 x2时,
恒有 f ( x1 ) f ( x 2 ),
则称函数 f ( x )在区间I上是单调减少的 ;
y
y f ( x)
f ( x1 )
f ( x2 )
例:y - x 2 , x (0, ( x ) f ( x )
称 f ( x )为奇函数;
奇函数的图像关于原点 对称.
y
y f ( x)
f ( x)
-x
f ( x )
例:y sin x , x ( ,)
o
x
x
奇函数
4.函数的周期性:
正 设函数f ( x )的定义域为D, 如果存在一个不为零的
数l , 使得对任意x D, x l D, 且 f ( x l ) f ( x ) 恒成立. 则称 f ( x ) 是以 l 为周期的周期函数.
通常所说的周期是指满足上式的最小正数 .

3l 2

l 2
l 2
3l 2
1 例1 设 D ( x ) 0
xQ xQ
,
7 求D( ), D(1 2 ).并讨论D( x )的性质. 5

数学分析专题选讲教案

数学分析专题选讲教案

数学分析专题选讲教案一、第一章:极限与连续性1.1 极限的概念定义:函数f(x)当x趋近于某一值a时,如果存在一个实数L,使得f(x)趋近于L,称f(x)在x=a处极限为L。

性质:保号性、传递性、三角不等式性质。

1.2 极限的计算极限的基本性质:0.9^n→0(n→∞)、(1+1/n)^n→e(n→∞)。

极限的运算法则:lim (f(x)+g(x)) = lim f(x) + lim g(x)、lim (cf(x)) = c lim f(x)、lim (f(g(x))) = lim f(t) lim g(x)。

1.3 连续性的概念定义:函数f(x)在点x=a处连续,如果满足f(a)=lim f(x)(x→a)且对于任意ε>0,存在δ>0,使得当0<|x-a|<δ时,有|f(x)-f(a)|<ε。

1.4 连续性的性质与判定连续函数的基本性质:保号性、可积性、可微性。

连续函数的判定:函数在某一点的极限存在且等于函数在该点的函数值,则函数在该点连续。

二、第二章:导数与微分2.1 导数的定义定义:函数f(x)在点x=a处的导数,记为f'(a)或df/dx|_{x=a},表示函数在x=a 处的瞬时变化率。

导数的几何意义:函数图像在点x=a处的切线斜率。

2.2 导数的计算基本求导法则:常数倍法则、幂函数求导、指数函数求导、对数函数求导、三角函数求导。

高阶导数:f''(x)、f'''(x)等。

2.3 微分的概念与计算概念:微分表示函数在某一点的切线与x轴之间的距离,记为df(x)/dx|_{x=a}。

微分的计算:dx表示自变量的增量,微分的结果为切线的斜率乘以dx的值。

三、第三章:泰勒公式与微分中值定理3.1 泰勒公式的概念与计算概念:泰勒公式是一种将函数在某一点展开成多项式的公式,用于逼近函数在某一点的值。

泰勒公式:f(x)在某一点a处的泰勒公式为f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2++f^n(a)(x-a)^n+R_n(x)。

第一章 函数与极限 1

第一章 函数与极限 1
O
称为闭区间 称为闭区间, 记作 [a , b] 闭区间
a
b
x
{ x a ≤ x < b} 称为半闭半开区间 称为半闭半开区间 半闭半开区间, { x a < x ≤ b} 称为半开半闭区间 称为半开半闭区间 半开半闭区间, [a ,+∞ ) = { x a ≤ x }
O
记作 [a , b ) 记作 (a , b]
阶梯曲线
15
取最值函数
y = max{ f ( x ), g ( x )}
y
f ( x)
g( x )
y = min{ f ( x ), g ( x )}
y
f (x)
x
16
某运输公司规定货物的吨公里运价为: 例1. 某运输公司规定货物的吨公里运价为 在400公里 公里 以内, 每公里为K元 超过400公里每增一公里为 公里每增一公里为0.8K, 以内 每公里为 元, 超过 公里每增一公里为 求吨运价Y与里程 的函数关系. 求吨运价 与里程s的函数关系 与里程 的函数关系
例3. 设函数 f ( x )的定义域为 : [0,2),
解:
x 求函数 f ( − 1) + f ( 7 − x )的定义域 . 2 x x f ( − 1)的定义域 : 0 ≤ − 1 < 2, ⇒ x ∈ [2,6), 2 2
f (7 − x )的定义域 : 0 ≤ 7 − x < 2, ⇒ x ∈ (5,7],
当0 < s ≤ 400 Ks , 解: Y = K 400 + 0.8 K ( s − 400), 当400 < s
17
x2, x ≥ 1 例2. 求 y = 的反函数 . 2 x − 1, x < 1

一元函数极限的定义性质

一元函数极限的定义性质

xa
xa
lim[ f (x) g(x)] A B , lim[ f (x) g(x)] A B ,
xa
xa
lim[ f (x) ] A (B 0) , lim f (x)g(x) AB 。
xa g(x) B
xa
(2)设 lim f x 0 ,当 0 x a 时 g(x) 有界,则 lim[ f (x)g(x)] 0
A

f
( x0
0)
lim
xx0 0
f
(x)
A

§ 1.2 极限的性质与两个重要极限
1、数列极限的基本性质
【定理 1.1】(极限的不等式性质)
设 lim n
xn
a
, lim n
yn
b

若 a b ,则 N,当 n N , xn yn ;若 n N 时, xn yn ,则 a b 。
【定理 1.2】(收敛数列的有界性) 设 xn 收敛,则 xn 有界(即 常数 M 0 , xn M ,
1)x
e ,( lim(1
1
x) x
e , lim ln(1
x)
1)。
x0 x
x
x
xo
x0
x
§ 1.3 极限存在性的判别(极限存在的两个准则)
1、夹逼定理
【定理 1.5】(数列情形)
若 N,当 n
N
时,yn
xn
zn
,且有 lim n
yn
lim
n
zn
a,

lim
n
xn
a

【定理 1.6】(函数情形) 设 0 ,0 x x0 时,h(x) f (x) g(x) ,又

第一章函数与极限知识总结

第一章函数与极限知识总结

第一章函数与极限知识总结本章主要介绍了函数的定义、连续性、极限以及相关的定理和性质。

函数是数学中最基本的概念之一,它描述了变量之间的依赖关系。

函数的定义包括定义域、值域和对应规则等三个方面。

1.1函数的定义和基本性质函数是一种描述变量之间关系的方式,它由定义域、对应规则和值域组成。

定义域是自变量的取值范围,值域是因变量的取值范围。

函数可以用表格、图形和公式等方式表示。

在函数的定义中,一般要求对于定义域中的每一个自变量,都存在唯一的一个因变量与之对应。

对于函数在特定点的值,可以通过函数的极限来确定。

1.2函数的连续性连续性是函数的一个重要性质,它描述了函数在定义域的每一点处都能够保持连续的特性。

函数连续的三个条件是:函数在该点处有定义、函数在该点处存在极限、函数在该点处的极限等于函数在该点处的函数值。

如果函数在特定点处不连续,那么可以被分为可去间断点、跳跃间断点和无穷间断点三种情况。

可去间断点是指函数在该点处可以通过修补来使其连续,跳跃间断点是指函数在该点处存在左右极限但不相等,无穷间断点是指函数在该点处极限为无穷大或无穷小。

1.3函数的极限函数极限是描述函数在其中一点处的局部特性,它可以由函数的定义域中的一系列点的函数值所确定。

对于极限的求解,可以直接代入函数的定义,也可以通过函数的性质和定理进行推导计算。

函数极限的定义有两种形式,一种是ε-δ定义,另一种是无穷小定义。

ε-δ定义是基于函数的定义域中任意接近特定点的自变量值来确定极限。

无穷小定义是基于函数在特定点处函数值无限接近于其中一数值来确定极限。

1.4函数的基本性质函数的基本性质包括有界性、单调性、奇偶性和周期性等。

有界性是指函数在一定区间内的取值范围是有限的,单调性是指函数在一定区间上的增减性质。

奇偶性是指函数关于坐标原点对称,周期性是指函数在其中一间隔内的函数值重复出现。

在实际问题中,可以通过观察函数的图像和定义来判断函数的性质。

对于复杂的函数,可以通过求导来判断函数的单调性和凹凸性。

山东高等数学函数教材答案

山东高等数学函数教材答案

山东高等数学函数教材答案高等数学函数教材答案第一章:函数与映射1. 函数的基本概念和性质1.1 函数的定义函数是一种特殊的映射关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。

1.2 函数的性质函数具有唯一性、定义域、值域等基本性质,同时还可以进行函数的合成、求逆等运算。

2. 常用函数2.1 常量函数常量函数是一种定义域上的恒定值函数,它的函数图像为一条平行于x轴的直线。

2.2 线性函数线性函数是一种具有一次关系的函数,它的函数图像为一条经过原点的直线。

第二章:极限与连续1. 极限的定义与性质1.1 极限的定义极限是指函数逐渐接近某一确定值的过程,可以用极限值来描述函数的局部行为。

1.2 极限的性质极限具有唯一性、保号性、四则运算等基本性质,同时还可以通过夹逼定理、单调有界原理等方法进行计算。

2. 连续函数2.1 连续函数的定义连续函数是指在定义域上没有间断点的函数,它的图像是一个连续曲线。

2.2 连续函数的性质连续函数具有局部性、有界性、保号性等基本性质,同时还可以进行连续函数的运算和逆函数的求解。

第三章:导数与微分1. 导数的定义与性质1.1 导数的定义导数表示函数变化率的大小和方向,可以用斜率或变化率的极限来定义。

导数具有线性性、乘积法则、链式法则等基本性质,可以通过导数求极值、求切线等应用。

2. 高阶导数与微分2.1 高阶导数的定义高阶导数是指函数的导数再求导的过程,表示函数的变化率随着自变量的变化率的变化情况。

2.2 微分的概念微分是函数在某一点的局部线性逼近,用于描述函数的微小变化。

第四章:函数的应用1. 泰勒展开与近似计算1.1 泰勒展开的定义与性质泰勒展开是一种用多项式逼近函数的方法,可以用于计算函数的近似值。

1.2 近似计算的应用近似计算可以通过泰勒展开来实现,常用于函数求值和解方程等问题。

2. 函数的最值与最优化问题函数的最值是指函数在定义域上取得的最大值或最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y x2
1
(1,1)
y x
x
y
o
1 y x
1
x
6
指数函数类 y a x (a 0, a 1)
ye
1 x y( ) a
x
y ax
(a 1)

(0,1)
7
对数函数类 y loga x (a 0, a 1)
y ln x
y log a x
(1,0)

(a 1)
y log 1 x
a
8
三角函数类
正弦函数 y sin x
y sin x
.
.
9
余弦函数 y cos x
.
y cos x
.
10
正切函数 y tan x
y tan x
.
.
11
余切函数 y cot x
. .
y cot x
12
正割函数 y sec x
4
函数的两要素: 定义域、 对应法则.
(
x
D
对应法则f
x0 )
f ( x0 )
自变量
(
W
y
)
因变量
约定: 定义域是自变量所能取的使算式有意 义的一切实数值.
例如, y 1 x 1 例如, y 2 1 x
2
D : [1,1] D : ( 1,1)
5
基本初等函数
y x (是常数) 幂函数类 y
.
20
1.1.4 复合函数
设 函 数 y f (u) 的 定 义 域 D f , 数 y f [( x )]为 x 的复合函数. 而函数
u ( x ) 的值域为 Z , 若 D f Z , 则称函
x 自变量, u 中间变量,
y 因变量,
f u 外层函数,
例如 y arcsinu,
x 内层函数.
u 1 x;
21
y arcsin(1 x).
例1
设 f ( x) ex , x 1, ( x) x2 1, 求 f [ ( x)]及其定义域.
解 ( x) x 2 1的定义域为实数集R,且x R, 有
17
1.1.2 分段函数
在自变量的不同变化范围中, 对应法则用不同的 式子来表示的函数, 称为分段函数. 2 x 1, x 0 例如, f ( x ) 2 x 1, x 0
y x2 1
y 2x 1
18
1.1.3 有界函数
定义 若存在M > 0,对任意的x D f ,有
一元函数微积分学
一元函数的极限 微分学 积分学
1
第一章 函数的极限
1.1 函数的概念 1.2 函数的极限
1.3 函数的连续性
2
1.1 函数的概念
1.1.1 函数的定义 1.1.2 分段函数
1.1.3 有界函数
1.1.4 复合函数
3
1.1.1 函数的定义
定义 设 x 和 y 是两个变量,D是一个给定的数集,
如果对于每个数x D, 变量y 按照一定法则总有 确定的数值和它对应,则称y 是x 的函数,记作
y f ( x),
因变量 自变量
数集D 叫做这个函数的定义域.
当x0 D时,称f ( x0 )为函数在点x0处的函数值.
数集 W {y y f ( x), x D} 称为函数的值域.
f x M ,
则称 f (x )为有界函数. 例如,正弦函数 y sin x是有界函数. 因为,有常数 M = 1,x R, 使得
sin x 1 M .
19
正弦函数 y sin x
y sin x
.
y : y sin x,
x R 1, 1.
( x) x 2 1 1.
由函数f x 的定义知: f ( x) e
且 f ( x) e
( x)
e
x 2 1
.
x 2 1
的定义域为实数集R.
22
初等函数
由常数和基本初等函数经过有限多次的
四则运算和有限次的函数复合步骤所构成并 可用一个式子表示的函数, 称为初等函数.
微积分研究的主要对象是初等函数.
23
作业


P28-31 1(1)(5)(6)(11)(12) 5(2)(5)6(4)(6)
24
y sec x
.
.
13
余割函数 y csc x
Байду номын сангаас
y csc x
.
.
14
反三角函数类
反正弦函数 y arcsin x
y arcsin x
15
反余弦函数 y arccos x
y arccos x
16
反正切函数 y arctan x
y arctan x
反余切函数 y arc cot x
相关文档
最新文档