函数总结大全(很强很好很全)范文
函数知识点总结大全
函数知识点总结大全一、概念与特点1. 函数是一种特殊的关系,指的是在一个数的范围内,与这个数对应的唯一的另一个数。
2. 在数学中,函数通常用字母f, g, h等表示,函数的自变量和因变量分别是x和y。
即y=f(x)。
3. 函数的特点:单值性(对于同一个自变量,函数有唯一的因变量)、可定义域(函数的自变量的取值范围)、值域(函数的因变量的取值范围)。
二、函数的分类1. 一元函数:函数的自变量只有一个。
2. 多元函数:函数的自变量有两个或两个以上。
3. 显式函数:函数的表达式中,因变量能够用自变量唯一表示。
4. 隐式函数:函数的表达式中,因变量无法用自变量唯一表示。
5. 参数方程:函数的表达式中,因变量和自变量都用参数表示。
三、数学函数1. 常用的数学函数有:多项式函数、指数函数、对数函数、三角函数、幂函数、根函数等。
2. 多项式函数:由常数项、一次项、二次项等有限多项组成的函数。
3. 指数函数:以常数e为底的函数。
4. 对数函数:以常数e为底的对数函数。
5. 三角函数:正弦函数、余弦函数、正切函数、余切函数等。
6. 幂函数:指数为自然数的幂函数。
7. 根函数:开平方根、立方根等。
四、函数的运算1. 函数的和、差、积、商:设有函数f(x)和g(x),则它们的和、差、积、商分别为f(x)±g(x)、f(x)g(x)和f(x)/g(x)。
2. 复合函数:将一个函数作为另一个函数的自变量,形成的新函数。
3. 反函数:设有函数f(x),如果存在一个函数g(x),使得g(f(x))=x,同时f(g(x))=x,那么g(x)就是f(x)的反函数。
4. 基本初等函数的复合:常用基本初等函数的复合形成新的函数。
五、函数的图像与性质1. 函数的图像:通过函数的表达式,可以画出函数的图像,通常用直角坐标系表示。
2. 函数的奇偶性:函数在该定义域内,满足f(-x)=f(x)的函数是偶函数;满足f(-x)=-f(x)的函数是奇函数。
函数初中数学知识点总结报告(共13篇)
函数初中数学知识点总结报告(共13篇)篇1:函数初中数学知识点总结报告函数初中数学知识点总结报告一.函数的相关概念:1.变量与常量在某一变化过程中,可以取不同数值的量叫做变量,保持不变的量叫做常量。
注意:变量和常量往往是相对而言的,在不同研究过程中,常量和变量的身份是可以相互转换的.在一个变化过程中有两个变量x与y,如果对于x的每一个值,y 都有唯一的值与它对应,那么就说x是自变量,y是x的函数.说明:函数体现的是一个变化的过程,在这一变化过程中,要着重把握以下三点:(1)只能有两个变量.(2)一个变量的数值随另一个变量的数值变化而变化.(3)对于自变量的每一个确定的值,函数都有唯一的值与之对应.二.函数的表示方法和函数表达式的确定:函数关系的表示方法有三种:1..解析法:两个变量之间的关系,有时可以用一个含有这两个变量的等式表示,这种表示方法叫做解析法.用解析法表示一个函数关系时,因变量y放在等式的左边,自变量y的代数式放在右边,其实质是用x的代数式表示y;注意:解析法简单明了,能准确地反映整个变化过程中自变量与因变量的关系,但不直观,且有的函数关系不一定能用解析法表示出来.2.列表法:把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系的方法叫列表法;注意:列表法优点是一目了然,使用方便,但其列出的对应值是有限的,而且从表中不易看出自变量和函数之间的对应规律。
3..图象法:用图象表示函数关系的方法叫做图象法.图象法形象直观,是研究函数的一种很重要的方法。
三.函数(或自变量)值、函数自变量的取值范围2.函数求值的几种形式:(1)当函数是用函数表达式表示时,示函数的值,就是求代数式的值;(2)当已知函数值及表达式时,赌注相应自变量的值时,其实质就是解方程;(3)当给定函数值的取值范围,求相应的自变量的取值范围时,其实质就是解不等式(组)。
3..函数自变量的取值范围是指使函数有意义的自变量的取值的全体.求自变量的`取值范围通常从两个方面考虑:一是要使函数的解析式有意义;二是符合客观实际.下面给出一些简单函数解析式中自变量范围的确定方法.(1)当函数的解析式是整式时,自变量取任意实数(即全体实数);(2)当函数的解析式是分式时,自变量取值是使分母不为零的任意实数;(3)当函数的解析式是开平方的无理式时,自变量取值是使被开方的式子为非负的实数;(4)当函数解析式中自变量出现在零次幂或负整数次幂的底数中时,自变量取值是使底数不为零的实数。
函数毕业自我总结范文
随着大学时光的悄然流逝,我站在了人生新的起点上。
回首这四年的学习生涯,我深感时光荏苒,收获颇丰。
在此,我对自己在函数领域的学习与成长进行一次全面总结,以期更好地规划未来。
一、思想上的成长在思想上,我始终坚持与时俱进,关注国家发展,拥护党的领导。
我深知作为一名新时代的青年,要有坚定的理想信念,要有为国家和民族贡献力量的决心。
在大学期间,我积极参加学校组织的各类思想教育活动,不断提升自己的政治觉悟和道德品质。
二、专业知识的学习在专业知识方面,我以函数为核心,系统学习了高等数学、线性代数、概率论与数理统计等课程。
通过对这些课程的深入学习,我对函数理论有了较为全面的理解。
同时,我还关注函数在实际应用中的价值,通过参加科研项目和实习,将理论知识与实际相结合,提高了自己的实践能力。
三、科研能力的提升在科研方面,我积极参与导师的科研项目,努力掌握科研方法,提高自己的科研能力。
在导师的指导下,我独立完成了一篇关于函数在图像处理中的应用的论文,并在学术期刊上发表。
此外,我还参加了全国大学生数学建模竞赛,获得了省级奖项。
四、实践能力的锻炼为了将所学知识应用于实际,我积极参加各类实践活动。
在实习期间,我曾在一家互联网公司担任算法工程师,负责设计并优化函数算法。
通过实习,我不仅巩固了专业知识,还提升了团队协作和沟通能力。
五、个人品质的塑造在大学期间,我注重培养自己的个人品质。
我热爱生活,乐观向上,具有强烈的责任感。
我关心集体,乐于助人,积极参加志愿者活动,为社会贡献自己的力量。
六、不足与展望回顾过去,我深知自己还存在许多不足之处。
例如,在科研方面,我的创新能力还有待提高;在实践能力方面,我需要进一步拓宽知识面,提高自己的综合素质。
展望未来,我将继续努力,不断提升自己,为实现自己的人生目标而努力奋斗。
结语大学四年,是我人生中一段宝贵的时光。
在这段时间里,我收获了知识、友谊和成长。
我相信,在未来的道路上,我会带着这份宝贵的财富,继续前行,为实现自己的人生价值而努力拼搏。
函数的知识点总结(合集3篇)
函数的知识点总结第1篇总体上必须清楚的:1)程序结构是三种:顺序结构、选择结构(分支结构)、循环结构。
2)读程序都要从main()入口,然后从最上面顺序往下读(碰到循环做循环,碰到选择做选择),有且只有一个main函数。
3)计算机的数据在电脑中保存是以二进制的形式.数据存放的位置就是他的地址.4)bit是位是指为0或者1。
byte是指字节,一个字节=八个位.概念常考到的:1、编译预处理不是C语言的一部分,不占运行时间,不要加分号。
C语言编译的程序称为源程序,它以ASCII数值存放在文本文件中。
2、define PI ;这个写法是错误的,一定不能出现分号。
-3、每个C语言程序中main函数是有且只有一个。
4、在函数中不可以再定义函数。
5、算法:可以没有输入,但是一定要有输出。
6、break可用于循环结构和switch语句。
7、逗号运算符的级别最低,赋值的级别倒数第二。
第一章C语言的基础知识第一节、对C语言的基础认识1、C语言编写的程序称为源程序,又称为编译单位。
2、C语言书写格式是自由的,每行可以写多个语句,可以写多行。
3、一个C语言程序有且只有一个main函数,是程序运行的起点。
第二节、熟悉vc++1、VC是软件,用来运行写的C语言程序。
2、每个C语言程序写完后,都是先编译,后链接,最后运行。
(.c—.obj—.exe)这个过程中注意.c和.obj文件时无法运行的,只有.exe文件才可以运行。
(常考!)第三节、标识符1、标识符(必考内容):合法的要求是由字母,数字,下划线组成。
有其它元素就错了。
并且第一个必须为字母或则是下划线。
第一个为数字就错了2、标识xxx关键字、预定义标识符、用户标识符。
关键字:不可以作为用户标识符号。
main define scanfprintf都不是关键字。
迷惑你的地方If是可以做为用户标识符。
因为If中的第一个字母大写了,所以不是关键字。
预定义标识符:背诵define scanf printfinclude。
高一数学函数总结(优选3篇)
高一数学函数总结(优选3篇)【第1篇】总结高一数学函数的知识点1.高中数学必修一函数的基本性质——函数的概念:设a、b是非空的数集,假如根据某个确定的对应关系f,使对于集合a中的任意一个数*,在集合b中都有唯一确定的数f(*)和它对应,那么就称f:a→b为从集合a到集合b的一个函数.记作: y=f(*),*∈a.其中,*叫做自变量,*的取值范围a叫做函数的定义域;与*的值相对应的y值叫做函数值,函数值的集合{f(*)| *∈a }叫做函数的值域.留意:假如只给出解析式y=f(*),而没有指明它的定义域,那么函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数 * 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1) 分式的分母不等于零;(2) 偶次方根的被开方数不小于零;(3) 对数式的真数需要大于零;(4) 指数、对数式的底需要大于零且不等于 1.(5) 假如函数是由一些基本函数通过四那么运算结合而成的 . 那么,它的定义域是使各部分都有意义的 * 的值组成的集合 .(6)指数为零底不能等于零构成函数的三要素:定义域、对应关系和值域再留意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决断的,所以,假如两个函数的定义域和对应关系完全全都,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全全都,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域全都 (两点需要同时具备) 值域补充( 1 )、函数的值域取决于定义域和对应法那么,不论采用什么方法求函数的值域都应先考虑其定义域 . ( 2 ) . 应熟识掌控一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解繁复函数值域的基础 . ( 3 ) . 求函数值域的常用方法有:径直法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等 .3. 高中数学必修一函数的基本性质——函数图象知识归纳(1) 定义:在平面直角坐标系中,以函数 y=f(*) , (* ∈a)中的 * 为横坐标,函数值 y 为纵坐标的点 p(* , y) 的集合 c ,叫做函数 y=f(*),(* ∈a)的图象.c 上每一点的坐标 (* , y) 均满意函数关系 y=f(*) ,反过来,以满意 y=f(*) 的每一组有序实数对 * 、 y 为坐标的点 (* , y) ,均在 c 上 . 即记为 c={ p(*,y) | y= f(*) , * ∈a }图象 c 一般的是一条光滑的连续曲线 ( 或直线 ), 也可能是由与任意平行与 y 轴的直线最多只有一个交点的假设干条曲线或离散点组成 .(2) 画法a、描点法:依据函数解析式和定义域,求出 *,y 的一些对应值并列表,以 (*,y) 为坐标在坐标系内描出相应的点p(*, y) ,最末用平滑的曲线将这些点连接起来 .b、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3) 作用:1 、直观的看出函数的性质;2 、利用数形结合的方法分析解题的`思路。
《函数的基本性质》知识总结大全
《函数的基本性质》知识总结大全第一篇:《函数的基本性质》知识总结大全《函数的基本性质》知识总结1.单调性函数的单调性是研究函数在定义域内某一范围的图象整体上升或下降的变化趋势,是研究函数图象在定义域内的局部变化性质。
⑴函数单调性的定义一般地,设函数y=f(x)的定义域为A,区间I⊆A.如果对于区间I 上是单调增函数,I称为内的______两个值x1,x2,当x1x1,x2,当x1∈M,当x1<x2时,有f(x1)-f(x2)<0f(x1)-f(x2)∆y⇔(x1-x2)⋅[f(x1)-f(x2)]>0⇔>0⇔>0; x1-x2∆x②f(x)在区间M上是减函数⇔∀x1,x2∈M,当x1<x2时,有f(x1)-f(x2)>0f(x1)-f(x2)∆y<0⇔<0;⇔(x1-x2)⋅[f(x1)-f(x2)]<0⇔x1-x2∆x①f(x)在区间M上是增函数⇔∀x1,x2⑵函数单调性的判定方法①定义法;②图像法;③复合函数法;④导数法;⑤特值法(用于小题),⑥结论法等.注意:①定义法(取值——作差——变形——定号——结论):设x1,x2∈[a,b]且x1≠x2,那么f(x1)-f(x2)>0⇔f(x)在区间[a,b]上是增函数;x1-x2f(x1)-f(x2)<0⇔f(x)在区间[a,b]上是减函数。
(x1-x2)⋅[f(x1)-f(x2)]<0⇔x1-x2(x1-x2)⋅[f(x1)-f(x2)]>0⇔②导数法(选修):在反之,f(x)区间(a,b)内处处可导,若总有f'(x)>0(f'(x)<0),则f(x)在区间(a,b)内为增(减)函数;f(x)在区间(a,b)内为增(减)函数,且处处可导,则f'(x)≥0(f'(x)≤0)。
请注意两者之间的区别,可以“数形结合法”研究。
高一函数总结(推荐5篇)
高一函数总结第1篇(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称。
高一函数总结第2篇(1)若f(x)是偶函数,那么f(x)=f(-x) ;(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);(4)若所给函数的.解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;高一函数总结第3篇一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。
注意点:(1)对映射定义的理解。
(2)判断一个对应是映射的方法。
一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次xxx的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。
高一数学函数知识点总结(五篇)
高一数学函数知识点总结函数的图象函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识.高一数学函数知识点总结(二)函数的值域与最值(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(____)与其反函数f-1(____)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(____)变形为关于____的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,____],最大值是16,无最小值.再如函数的值域是(-∞,-____]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如____>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.高一数学函数知识点总结(三)函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量____有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tan____(____∈R,且k∈Z),余切函数y=cot____(____∈R,____≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(____)的定义域是[a,b],求f[g(____)]的定义域是指满足a≤g(____)≤b的____的取值范围,而已知f[g(____)]的定义域[a,b]指的是____∈[a,b],此时f(____)的定义域,即g(____)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(____)=a____+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(____)]的表达式时,可用换元法求函数f(____)的表达式,这时必须求出g(____)的值域,这相当于求函数的定义域.(4)若已知f(____)满足某个等式,这个等式除f(____)是未知量外,还出现其他未知量(如f(-____),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(____)的表达式.高一数学函数知识点总结(四)函数的单调性1、单调函数对于函数f(____)定义在某区间[a,b]上任意两点____1,____2,当____1>____2时,都有不等式f(____1)>(或<)f(____2)成立,称f(____)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数.对于函数单调性的定义的理解,要注意以下三点:(1)单调性是与“区间”紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.(2)单调性是函数在某一区间上的“整体”性质,因此定义中的____1,____具有任意性,不能用特殊值代替.(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.(4)注意定义的两种等价形式:设____1、____2∈[a,b],那么:①在[a、b]上是增函数;在[a、b]上是减函数.②在[a、b]上是增函数.在[a、b]上是减函数.需要指出的是:①的几何意义是:增(减)函数图象上任意两点(____1,f(____1))、(____2,f(____2))连线的斜率都大于(或小于)零.(5)由于定义都是充要性命题,因此由f(____)是增(减)函数,且(或____1>____2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.5、复合函数y=f[g(____)]的单调性若u=g(____)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(____)]在[a,b]上单调递增;否则,单调递减.简称“同增、异减”.在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。
初中数学函数知识点总结6篇
初中数学函数知识点总结初中数学函数知识点总结6篇总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,它可以帮助我们有寻找学习和工作中的规律,让我们抽出时间写写总结吧。
那么总结有什么格式呢?以下是小编整理的初中数学函数知识点总结,仅供参考,大家一起来看看吧。
初中数学函数知识点总结1课题3.5正比例函数、反比例函数、一次函数和二次函数教学目标1、掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质2、会用待定系数法确定函数的解析式教学重点掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质教学难点掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质教学方法讲练结合法教学过程(I)知识要点(见下表:)第三章第29页函数名称解析式图像正比例函数ykx(k0)0x反比例函数一次函数ykxb(k0)0x二次函数yax2bxc(a0)y0xy0xky (k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0图像过点(0,0)及(1,k)的直线双曲线,x轴、y轴是它的渐近线与直线ykx平行且过点(0,b)的直线抛物线定义域RxxR且xoyyR且yoRR4acb2a0时,y,4aR 值域R4acb2a0时,y,4aba0时,在-,上为增2a函数,在,-单调性k0时,在,0,k0时为增函数0,上为减函数k0时,为增函数b上为减函数2ak0时为减函数k0时,在,0,k0时,为减函数0,上为增函数ba0时,在-,上为减2a函数,在,-b上为增函数2a奇偶性奇函数奇函数b=0时奇函数b=0时偶函数a0且x-ymin最值无无无b时,2a24acb4ab时,2a24acb4aa0且x-ymax第三章第30页b24acb2注:二次函数yaxbxca(x (a0))a(xm)(xn)2a4abb4acb2对称轴x,顶点(,)2a2a4a2抛物线与x轴交点坐标(m,0),(n,0)(II)例题讲解例1、求满足下列条件的二次函数的解析式:(1)抛物线过点A (1,1),B(2,2),C(4,2)(2)抛物线的顶点为P(1,5)且过点Q(3,3)(3)抛物线对称轴是x2,它在x轴上截出的线段AB长为2且抛物线过点(1,7)。
函数总结大全(很强很好很全)范文
一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
函数作文期末总结范文高中
函数作文期末总结范文高中引言:经过一学期的学习,我们对函数这一概念有了更加深入的了解。
函数不仅仅是数学中的一个概念,更是在我们生活中处处存在的事物。
通过学习函数,我们既提高了数学能力,又培养了逻辑思维和问题解决的能力。
下面我将对本学期所学的函数知识进行总结,同时也会对自己学习状态进行反思。
正文:第一部分:函数的基本概念与性质函数是我们学习的核心,也是基础。
我们首先学习了函数的定义,即“对于一个集合的任意一个元素,它在另一个集合中有且只有一个对应元素”。
函数的概念让我对数学有了更深的认识,使我了解到数学不仅仅是一些公式和计算,更是一种思维方式。
通过函数,我们可以将问题抽象化,进行模型的建立和分析。
函数的性质是我们学习的重点。
比如函数的定义域和值域、单调性、奇偶性等。
这些性质不仅仅是为了考试和计算方便,更是为了我们能够更好地理解问题。
通过对问题的函数化,我们可以使用更简洁的方式来解决问题,让复杂的问题变得更加清晰,也提高了我们的解题能力。
第二部分:函数的运算与变换函数的运算和变换是我们学习的另一个重点。
通过学习这部分内容,我们不仅能够更好地理解函数的性质,还可以运用这些知识解决实际问题。
函数的运算包括函数的加减乘除和复合运算。
这部分内容有一定的难度,需要我们对函数的概念和性质有深入的理解。
但是通过反复的练习和思考,我渐渐掌握了这些运算的方法和技巧。
函数的变换包括平移、伸缩和翻转等。
这些变换可以让我们更好地掌握函数的特点和规律。
比如平移变换可以改变函数的位置,伸缩变换可以改变函数的形状和大小,翻转变换可以改变函数的方向和对称性。
通过学习这些变换,我们可以更加准确地描述和解决实际问题。
第三部分:特殊函数与实际问题的应用在学习函数的过程中,我们还学习了特殊函数和实际问题的应用。
特殊函数包括常函数、一次函数、二次函数、反比例函数等。
这些特殊函数都有自己的特点和应用领域。
通过学习特殊函数,我们能够更好地理解其他函数,并能够运用特殊函数解决实际生活中的问题。
高中数学知识点总结——函数5篇
高中数学知识点总结——函数5篇第1篇示例:高中数学知识点总结——函数函数是数学中一个非常重要的概念,在高中数学课程中,函数是一个比较重要的知识点,也是一个比较基础的知识点。
要想在数学学科中取得优异的成绩,掌握函数的知识是至关重要的。
在这篇文章中,我们将对高中数学中的函数知识点进行总结和分析,希望能够帮助同学们更好地掌握这一部分的知识。
一、函数的概念和性质1. 函数的概念在数学中,函数是一种特殊的关系,它把一个集合的每个元素(称为自变量)映射到另一个集合中的唯一元素(称为因变量)。
一般来说,用f(x)表示函数,其中x是自变量,f(x)是因变量。
函数的概念非常广泛,它不仅可以是一种数学关系,还可以是数学中的一种运算。
(1)单调性:函数的单调性是指函数在定义域内的增减性质。
函数可以是单调递增的,也可以是单调递减的。
(2)奇偶性:函数的奇偶性是指函数图象与坐标轴的对称性质。
奇函数的图象关于原点对称,而偶函数的图象关于y轴对称。
(3)周期性:函数的周期性是指函数在一定区间内具有相同的重复规律。
初等函数是高中数学中最基础的函数类型,包括常数函数、线性函数、幂函数、指数函数、对数函数、三角函数等等。
这些函数在数学中起着非常重要的作用,也是数学建模和实际问题求解中经常使用的函数类型。
1. 常数函数:常数函数是最简单的函数之一,它的解析式为f(x)=c,图像是一条水平直线,斜率为0。
3. 幂函数:幂函数的解析式为f(x)=x^n,其中n为常数。
幂函数的图像形状和n的取值有关,n为偶数时,图像为开口向上的抛物线;n为奇数时,图像为关于原点对称的函数图像。
4. 指数函数和对数函数:指数函数的解析式为f(x)=a^x,对数函数的解析式为f(x)=log_a(x),其中a为常数且a>0。
指数函数和对数函数是互为反函数的函数关系。
5. 三角函数:三角函数包括正弦函数、余弦函数、正切函数等。
它们的图像都是周期性的波形,具有一定的对称性和周期性。
高数函数期末总结大全
高数函数期末总结大全一、函数与极限函数是高等数学的基础,理解函数的性质和特点对于后续的学习起着重要的作用。
在这个章节中,我们学习了函数的概念、函数的性质以及各种类型的函数。
在函数的定义中,我们需要注意到定义域、值域以及函数的图像。
此外,我们学习了复合函数、反函数以及一些常见的特殊函数。
当我们研究函数时,极限是一个非常重要的概念。
通过极限,我们可以了解函数在某点的趋势和变化的情况。
极限的性质包括唯一性、局部有界性、保号性等。
我们可以通过极限的计算方法来求解一些没有定义的函数值,并且用极限的方法来证明一些相关的规律。
二、导数与微分导数与微分是函数研究的重要工具和方法。
导数的定义以及导数的性质是我们学习的重点。
导数的定义即为函数在某一点的斜率,通过导数我们可以判断函数的变化趋势和函数的极值情况。
导数的性质包括四则运算、常用函数的导数公式、链式法则以及隐函数求导。
微分是导数的推广和应用,微分的定义与导数的定义相似,微分的性质包括线性性、微分的四则运算以及高阶微分。
利用微分,我们可以求解函数的局部极值、泰勒公式以及给出函数的近似解。
三、不定积分不定积分是导数的逆运算,通过不定积分,我们可以求出函数的原函数。
不定积分的计算方法包括换元法、分部积分法以及有理函数的积分。
在计算不定积分时,我们需要注意积分常数的引入以及函数的定义域。
利用不定积分,我们可以求解一些函数的定积分,定积分是对函数在某一区间上的累加。
定积分的性质包括线性性、积分的界性以及积分的中值定理。
利用定积分,我们可以求解函数的面积、弧长以及平均值等问题。
四、定积分及其应用定积分是对函数在某一区间上的累加,通过定积分,我们可以求解函数的面积、弧长以及体积等问题。
定积分的计算方法包括分割加和、变限积分法以及极坐标变换等。
在应用中,定积分可以用来求解平均值、概率、弹性系数以及质心等问题。
通过建立模型,我们可以将实际问题转化为定积分的运算,从而求解问题的解析解。
常用函数知识点总结初中
常用函数知识点总结初中函数是数学中一种特殊关系的概念,是一种以输入变量为自变量,以输出变量为因变量的映射关系,通常用f(x)表示。
在数学中,函数是一种非常重要的概念,它在几何、代数、微积分等各个领域都有重要的应用。
在初中阶段,学习了很多种不同类型的函数,其中包括线性函数、二次函数、分段函数等。
下面将对常用的函数知识点进行总结。
一、线性函数线性函数是一种最简单的函数形式,它具有f(x) = kx + b的形式,在图像上表现为一条直线。
其中k表示斜率,b表示截距。
线性函数的图像始终是一条直线,斜率决定了直线的倾斜程度,截距决定了直线与y轴的交点位置。
线性函数的性质:1. 斜率代表了函数的变化速度,斜率越大,函数变化越快,反之亦然。
2. 直线的斜率为正,则函数是增函数;直线的斜率为负,则函数是减函数;直线的斜率为零,则函数是常数函数。
3. 直线的截距决定了直线与y轴的交点位置,截距为正则直线与y轴正向偏移,截距为负则直线与y轴负向偏移。
二、二次函数二次函数是一种常见的函数形式,它具有f(x) = ax^2 + bx + c的形式,在图像上表现为一条抛物线。
其中a决定了抛物线的开口方向以及形状,b决定了抛物线在x轴上的平移,c决定了抛物线在y轴上的平移。
二次函数的性质:1. 当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
2. 抛物线的顶点坐标为(-b/2a, f(-b/2a))。
3. 与x轴的交点称为零点,如果存在实数根,则代表了函数的图像与x轴的交点。
4. 当a>0时,函数的最小值为f(-b/2a);当a<0时,函数的最大值为f(-b/2a)。
三、分段函数分段函数是指由不同函数片段组成的函数形式,通常以数学表达式加上对应定义域的方式来表示。
在不同的定义域内,函数可以采用不同的函数形式,这种函数称为分段函数。
分段函数的性质:1. 在各个定义域内,分段函数采用不同的函数形式,可以是线性函数、二次函数、常数函数等。
函数总结大全(很全)
高一函数知识汇总一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x 轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
很好很强很全(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
高中函数总结(合集7篇)
高中函数总结第1篇(1)高中函数公式的变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
(2)一次函数:①若两个变量,间的关系式可以表示成(为常数,不等于0)的形式,则称是的一次函数。
②当=0时,称是的正比例函数。
(3)高中函数的一次函数的图象及性质①把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
②正比例函数=的图象是经过原点的一条直线。
③在一次函数中,当0,O,则经2、3、4象限;当0,0时,则经1、2、4象限;当0,0时,则经1、3、4象限;当0,0时,则经1、2、3象限。
④当0时,的值随值的增大而增大,当0时,的值随值的增大而减少。
(4)高中函数的二次函数:①一般式:,对称轴是顶点是;②顶点式:,对称轴是顶点是;③交点式:,其中,是抛物线与x轴的交点高中函数总结第2篇(1)配方法:若函数为一元二次函数,则可以用这种方法求值域,关键在于正确化成完全平方式。
(2)换元法:常用代数或三角代换法,把所给函数代换成值域容易确定的另一函数,从而得到原函数值域,如y=ax+b+_cx-d(a,b,c,d均为xxxac不等于0)的函数常用此法求解。
(3)判别式法:若函数为分式结构,且分母中含有未知数x,则常用此法。
通常去掉分母转化为一元二次方程,再由判别式△0,确定y的范围,即原函数的值域(4)不等式法:借助于重要不等式a+bab(a0)求函数的值域。
用不等式法求值域时,要注意均值不等式的使用条件“一正,二定,三相等。
”(5)反函数法:若原函数的值域不易直接求解,则可以考虑其反函数的定义域,根据互为反函数的两个函数定义域与值域互换的特点,确定原函数的值域,如y=cx+d/ax+b(a 0)型函数的值域,可采用反函数法,也可用分离常数法。
(6)单调性法:首先确定函数的定义域,然后在根据其单调性求函数值域,常用到函数y=x+p/x(p0)的单调性:增区间为(-,-p)的左开右闭区间和(p,+)的左闭右开区间,减区间为(-p,0)和(0,p)(7)数形结合法:分析函数解析式表达的集合意义,根据其图像特点确定值域。
全部函数知识点总结归纳
全部函数知识点总结归纳一、函数的基本概念函数是一段封装了特定功能的代码块,它可以被多次调用,起到代码复用、模块化的作用。
在不同的编程语言中,函数也被称为方法、子程序等。
函数可以分为内置函数和自定义函数,内置函数由编程语言提供,而自定义函数则由程序员根据自己的需求创建。
二、函数的定义和调用在大多数编程语言中,定义一个函数需要指定函数名、参数列表和函数体,具体语法有所差异。
以下是一个函数定义的通用语法框架:def function_name(parameter1, parameter2, ...):# 函数体# 可以包含多条语句return value在定义完函数之后,可以通过函数名和实际参数的方式来调用函数。
例如:result = function_name(argument1, argument2)在函数定义时,参数列表中的参数称为形参,而在函数调用时,传入的实际参数称为实参。
三、函数的参数函数的参数是指在函数定义和调用过程中用于传递数据的变量。
函数的参数可以分为位置参数和关键字参数两种类型。
位置参数是按照参数列表中的顺序进行匹配的,而关键字参数则是通过指定参数名进行匹配的。
某些编程语言还支持默认参数和可变参数的定义。
四、函数的返回值在函数执行完毕之后,可以通过return语句返回一个值,该值可以被调用者所接收并进行后续的处理。
如果函数没有返回值,也可以省略return语句。
在函数体执行完毕或者执行到return语句时,函数将会结束并返回到调用点。
五、函数的作用域函数体内部定义的变量拥有自己的作用域,即变量的可见范围。
对于大多数编程语言来说,函数内部定义的变量在函数外部是不可见的。
而在一些编程语言中,还支持全局作用域和局部作用域的定义,这使得程序员可以更灵活地控制变量的可见性。
六、递归函数递归函数是指在函数定义中调用函数本身的情况。
递归函数通常用于解决具有递归结构的问题,比如求阶乘、斐波那契数列等。
函数性质知识点总结优秀4篇
函数性质知识点总结优秀4篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!函数性质知识点总结优秀4篇函数是高中数学中比较重要的课程内容,也贯穿了整个高中数学的学习。
月考函数知识点总结
月考函数知识点总结一、函数的定义和性质1. 函数的定义函数是一种特殊的关系,它将一个或多个输入值映射到一个输出值。
通常用f(x)表示函数,其中x为输入值,f(x)为输出值。
函数的定义包括定义域、值域、对应法则和图像等内容。
2. 函数的性质函数的值域和对应法则决定了函数的性质。
函数的连续性、单调性、奇偶性和周期性等都是函数的重要性质。
二、初等函数1. 基本初等函数常见的基本初等函数包括幂函数、指数函数、对数函数、三角函数和反三角函数。
这些函数在数学中的各种领域都有着重要的应用。
2. 常用初等函数常用初等函数包括常值函数、线性函数、二次函数、多项式函数等。
这些函数在数学建模和现实生活中有着广泛的应用。
三、函数的运算1. 函数的加减运算函数的加减运算是指将两个函数进行加减操作,得到一个新的函数。
2. 函数的乘除运算函数的乘除运算是指将两个函数进行乘除操作,得到一个新的函数。
3. 复合函数复合函数是指将一个函数的输出值作为另一个函数的输入值,得到一个新的函数。
四、函数的图像和性质1. 函数的图像函数的图像是函数在平面直角坐标系中的表示,通常用一条曲线表示。
2. 函数的性质函数的性质包括函数的连续性、单调性、奇偶性和周期性等。
这些性质反映了函数在数学中的特点和应用。
五、反函数和函数方程1. 反函数反函数是指原函数的输入值和输出值互换后得到的新函数。
反函数的存在和求解需要满足一定的条件。
2. 函数方程函数方程是指涉及未知函数的方程,通常需要通过一定的方法求解。
函数方程的解决方法有很多种,包括代入法、化简法、迭代法等。
六、函数的极限与连续1. 函数的极限函数的极限是指当自变量趋于某个值时,函数的变化趋势。
极限的计算需要满足一定的条件和方法,包括非定点极限、无穷极限和复合函数极限等。
2. 函数的连续函数的连续是指在一定范围内函数的局部性质。
函数的连续性需要满足一定的条件,包括一致连续性、间断点、极值点等。
七、导数与微分1. 导数的概念导数是函数在一点处的变化率,通常用f'(x)表示。
函数的应用知识点总结五
函数的应用知识点总结五篇13:函数性质知识点总结函数性质知识点总结1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为i,如果对于定义域i内的某个区间d内的任意两个自变量x1,x2,当x12时,都有f(x1)2),那么就说f(x)在区间d上是增函数.区间d称为y=f(x)的单调增区间.如果对于区间d上的任意两个自变量的值x1,x2,当x12 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间d称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2) 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(a) 定义法:1 任取x1,x2∈d,且x12;2 作差f(x1)-f(x2);3 变形(通常是因式分解和配方);4 定号(即判断差f(x1)-f(x2)的正负);5 下结论(指出函数f(x)在给定的区间d上的单调性).(b)图象法(从图象上看升降)(c)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:1首先确定函数的定义域,并判断其是否关于原点对称;2确定f(-x)与f(x)的关系;3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:1) 凑配法2) 待定系数法3) 换元法4) 消参法10.函数最大(小)值(定义见课本p36页)1 利用二次函数的性质(配方法)求函数的最大(小)值2 利用图象求函数的最大(小)值3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);例题:1.求下列函数的定义域:⑴ ⑵2.设函数的定义域为,则函数的定义域为_ _3.若函数的定义域为,则函数的定义域是4.函数,若,则 =5.求下列函数的值域:⑴ ⑵(3) (4)6.已知函数,求函数,的解析式7.已知函数满足,则 = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
设水池中原有水量S。
g=S-ft。
六、常用公式:(不全,希望有人补充)1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:|x1-x2|/23.求与y轴平行线段的中点:|y1-y2|/24.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI 越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁,0)和 B(x₂,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2a6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax^2+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0).7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。
因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.反比例函数形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
如图,上面给出了k分别为正和负(2和-2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数当K<0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。
2.对于双曲线y=k/x ,若在分母上加减任意一个实数 (即 y=k /(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。
(加一个数时向左平移,减一个数时向右平移)对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x 的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
指数函数指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。
可以看到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X 轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性注图:(1)为奇函数(2)为偶函数1.定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)③判断或证明函数是否具有奇偶性的根据是定义2.奇偶函数图像的特征:定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
f(x)为奇函数《==》f(x)的图像关于原点对称点(x,y)→(-x,-y)奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数在某一区间上单调递增,则在它的对称区间上单调递减。
3. 奇偶函数运算(1) . 两个偶函数相加所得的和为偶函数.(2) . 两个奇函数相加所得的和为奇函数.(3) . 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.(4) . 两个偶函数相乘所得的积为偶函数.(5) . 两个奇函数相乘所得的积为偶函数.(6) . 一个偶函数与一个奇函数相乘所得的积为奇函数.定义域(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。
其中,x叫作自变量,x的取值范围A叫作函数的定义域;值域名称定义函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合常用的求值域的方法(1)化归法;(2)图象法(数形结合),(3)函数单调性法,(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等关于函数值域误区定义域、对应法则、值域是函数构造的三个基本“元件”。
平时数学中,实行“定义域优先”的原则,无可置疑。
然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。
如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。
才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。
“范围”与“值域”相同吗?“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。
“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。
也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。