2013年高考数学试卷分析(理)
2013大纲版高考数学理科试题及解析
2013年普通高等学校招生全国统一考试数学(理科)乐享玲珑,为中国数学增光添彩 免费玲珑3D 画板,全开放的几何教学软件,功能强大,好用实用 一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中的元素个数为(A )3 (B )4 (C )5 (D )62.()3=(A )8- (B )8 (C )8i - (D )8i3.已知向量()()1,1,2,2m n λλ=+=+,若()()m n m n +⊥- ,则=λ(A )4- (B )3- (C )2- (D )-1 4.已知函数()f x 的定义域为()1,0-,则函数()21f x -的定义域为(A )()1,1- (B )11,2⎛⎫- ⎪⎝⎭ (C )()-1,0 (D )1,12⎛⎫ ⎪⎝⎭5.函数()()21=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - (A )()1021x x >- (B )()1021xx ≠- (C )()21x x R -∈ (D )()210x x -> 6.已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于 (A )()10613--- (B )()101139-- (C )()10313-- (D )()1031+3- 7.()()8411+x y +的展开式中22x y 的系数是(A )56 (B )84 (C )112 (D )1688.椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是(A )1324⎡⎤⎢⎥⎣⎦, (B )3384⎡⎤⎢⎥⎣⎦, (C )112⎡⎤⎢⎥⎣⎦, (D )314⎡⎤⎢⎥⎣⎦,9.若函数()21=f x x ax x ++在1,+2⎛⎫∞ ⎪⎝⎭是增函数,则a 的取值范围是 (A )[-1,0] (B )[1,)-+∞ (C )[0,3] (D )[3,)+∞10.已知正四棱柱1111ABCD A BC D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于(A )23 (B (C )3(D )13 11.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k =(A )12 (B)2(C(D )2 12.已知函数()=cos sin 2f x x x ,下列结论中错误的是(A )()y f x =的图像关于(),0π中心对称 (B )()y f x =的图像关于直线2x π=对称(C )()f x的最大值为2(D )()f x 既奇函数,又是周期函数 二、填空题:本大题共4小题,每小题5分.13.已知α是第三象限角,1sin 3a =-,则cot a = .14.6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答)。
2013年数学试卷(理科)解析卷
2013年高考数学试卷(理科)(全国新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2013•新课标Ⅰ)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选B.2.(5分)(2013•新课标Ⅰ)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4 B.C.4 D.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.3.(5分)(2013•新课标Ⅰ)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.4.(5分)(2013•新课标Ⅰ)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y= C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.5.(5分)(2013•新课标Ⅰ)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选A.6.(5分)(2013•新课标Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C. D.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选A.7.(5分)(2013•新课标Ⅰ)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6与a m,进而得到公差d,由前n项和公式【分析】由a n与S n的关系可求得a m+1及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,故选C.8.(5分)(2013•新课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选A.9.(5分)(2013•新课标Ⅰ)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5 B.6 C.7 D.8【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.10.(5分)(2013•新课标Ⅰ)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E 的方程为()A.B.C.D.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选D.11.(5分)(2013•新课标Ⅰ)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D12.(5分)(2013•新课标Ⅰ)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n 的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣【分析】由a n+12a1=及b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,又由题意,b n+1﹣c n+1=,∴=a1﹣b n,∴b n+1﹣a1=,∴b n﹣a1=,∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选B.二.填空题:本大题共4小题,每小题5分.13.(5分)(2013•新课标Ⅰ)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.14.(5分)(2013•新课标Ⅰ)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣115.(5分)(2013•新课标Ⅰ)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣16.(5分)(2013•新课标Ⅰ)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2013•新课标Ⅰ)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.18.(12分)(2013•新课标Ⅰ)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB ⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos<,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.19.(12分)(2013•新课标Ⅰ)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:故EX=400×+500×+800×=506.2520.(12分)(2013•新课标Ⅰ)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.21.(12分)(2013•新课标Ⅰ)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(2013•新课标Ⅰ)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.23.(2013•新课标Ⅰ)(选修4﹣4:坐标系与参数方程)已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)【分析】(Ⅰ)对于曲线C1利用三角函数的平方关系式sin2t+cos2t=1即可得到圆C1的普通方程;再利用极坐标与直角坐标的互化公式即可得到C1的极坐标方程;(Ⅱ)先求出曲线C2的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标的互化公式即可求出C1与C2交点的极坐标.【解答】解:(Ⅰ)曲线C1的参数方程式(t为参数),得(x﹣4)2+(y﹣5)2=25即为圆C1的普通方程,即x2+y2﹣8x﹣10y+16=0.将x=ρcosθ,y=ρsinθ代入上式,得.ρ2﹣8ρcosθ﹣10ρsinθ+16=0,此即为C1的极坐标方程;(Ⅱ)曲线C2的极坐标方程为ρ=2sinθ化为直角坐标方程为:x2+y2﹣2y=0,由,解得或.∴C1与C2交点的极坐标分别为(,),(2,).24.(2013•新课标Ⅰ)(选修4﹣5:不等式选讲)已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当时,f(x)≤g(x),求a的取值范围.【分析】(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x ﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,画出函数y的图象,数形结合可得结论.(Ⅱ)不等式化即1+a≤x+3,故x≥a﹣2对都成立.故﹣≥a ﹣2,由此解得a的取值范围.【解答】解:(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,则y=,它的图象如图所示:结合图象可得,y<0的解集为(0,2),故原不等式的解集为(0,2).(Ⅱ)设a>﹣1,且当时,f(x)=1+a,不等式化为1+a≤x+3,故x≥a﹣2对都成立.故﹣≥a﹣2,解得a≤,故a的取值范围为(﹣1,].。
2013年高考理科数学试题解析
2013年高考理科数学试题解析(课标Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷 一、 选择题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( ) A 、A∩B=∅ B 、A ∪B=R C 、B ⊆A D 、A ⊆B【命题意图】本题主要考查一元二次不等式解法、集合运算及集合间关系,是容易题. 【解析】A=(-∞,0)∪(2,+∞), ∴A ∪B=R,故选B.2、若复数z 满足错误!未找到引用源。
(3-4i)z =|4+3i |,则z 的虚部为 ( ) A 、-4(B )-45错误!未找到引用源。
(C )4(D )45【命题意图】本题主要考查复数的概念、运算及复数模的计算,是容易题.【解析】由题知z =|43|34i i +-=2243(34)(34)(34)i i i ++-+=3455i+,故z 的虚部为45,故选D.3、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( ) A 、简单随机抽样 B 、按性别分层抽样错误!未找到引用源。
C 、按学段分层抽样 D 、系统抽样【命题意图】本题主要考查分层抽样方法,是容易题.【解析】因该地区小学、初中、高中三个学段学生的视力情况有较大差异,故最合理的抽样方法是按学段分层抽样,故选C.4、已知双曲线C :22221x y a b -=(0,0a b >>)的离心率为52,则C 的渐近线方程为 A .14y x =± B .13y x =± C .12y x=± D .y x =± 【命题意图】本题主要考查双曲线的几何性质,是简单题.【解析】由题知,52c a=,即54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x=±,故选C . 5、运行如下程序框图,如果输入的[1,3]t ∈-,则输出s 属于A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]【命题意图】本题主要考查程序框图及分段函数值域求法,是简单题.【解析】有题意知,当[1,1)t ∈-时,3s t =[3,3)∈-,当[1,3]t ∈时,24s t t =-[3,4]∈,∴输出s 属于[-3,4],故选A .6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( ) A 、500π3cm 3B 、866π3cm 3错误!未找到引用源。
2013辽宁高考数学试卷分析与点评(理科)
2013辽宁高考数学试卷分析与点评(理科)
2013辽宁高考数学试卷分析与点评(理科)
2013年辽宁高考数学的一个明显变化是:在试卷中增设了选考题,旨在体现学生的个性及自主选择性。
与去年相比,2013年辽宁高考数学试题相对难度比较大。
主要原因是:和去年不同,去年是前面的客观题相对简单,后面主观题相对难, 2013年则相反,前面的客观题难,后面的主观题相对简单。
2013年的试卷中,文科数学和理科数学都是选择和填空题相对较难,其中选择题的后两道题较难,文科数学考的是函数,理科数学则是函数和导数结合的题。
而后面大题方面则相对简单,其中立体几何部分相对简单。
文科数学第20题大题打破了常规,之前5年都是考的椭圆,2013年考的是抛物线,这让很多老师和考生都没有预料到。
这在答题方面,“先易后难”和“先难后易”对考生来说,显然有个心态的变化过程。
2013年这种“先难后易”的模式对考生的心理素质是个极大的考验。
不过先难后易,学生后面答题会相对轻松些。
由此可见,辽宁高考的命制越来越注重对考生个人综合素质的考查。
建议考生和老师在2014备考过程中在注重知识学习的同时,勿忘各方面综合素质的提升。
2013年山东高考数学理试题解析
2013年山东高考数学理试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数z 满足(z-3)(2-i)=5(i 为虚数单位),则z 的共轭复数为( )A. 2+iB.2-iC. 5+iD.5-i【答案】D(2)设集合A={0,1,2},则集合B={x-y |x ∈A, y ∈A }中元素的个数是( )A. 1B. 3C. 5D.9【答案】C【解析】因为,x y A ∈,所以2,1,0,1,2x y -=--,即{2,1,0,1,2}B =--,有5个元素,选C.【解析】因为函数为奇函数,所以(1)(1)(11)2f f -=-=-+=-,选A.OPPAO OA∠==即3PAO π∠=,选B.,42kk Z ϕπ+=+∈,即,4k k Z ϕπ=+∈,所以选B.(6)在平面直角坐标系xOy 中,M 为不等式组:2x y 20x 2y 103x y 80--≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动【解析】作出可行域如图,由图象可知当M 位于点D 处时,OM 的斜率最小。
由210380x y x y +-=⎧⎨+-=⎩得31x y =⎧⎨=-⎩,即(3,1)D -,此时OM 的斜率为1133-=-,选C.(7)给定两个命题p 、q ,若﹁p 是q 的必要而不充分条件,则p 是﹁q 的(A )充分而不必条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】B【解析】因为﹁p 是q 的必要而不充分条件,所以﹁q 是p 的必要而不充分条件,即p 是﹁q 的充分而不必要条件,选A.(8)函数y=xcosx + sinx 的图象大致为(A ) (B ) (C) (D) 【答案】 D【解析】函数y=xcosx + sinx 为奇函数,所以图象关于原点对称,所以排除B ,C.当x π=时,()0f ππ=-<,排除A,选D.(9)过点(3,1)作圆(x-1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 (A )2x+y-3=0 (B )2x-y-3=0 (C )4x-y-3=0 (D )4x+y-3=0 【答案】A【解析】由图象可知,(1,1)A 是一个切点,所以代入选项知,,B D 不成立,排除。
2013年山东高考数学试卷分析 (理科)
2013年山东高考数学试卷分析
一、整体分析:
1、总体评价
2013高考整体难度和2012年相差不大。
但稍微比2011年和2012年的难一些。
今年的理科考题传承了山东省考题的一贯风格,但对于导数的考察和去年相比变得稍微容易一些,但最后一题对圆锥曲线的考察较去年稍难,选择题中对命题的考察变得比较灵活,填空题中把概率和分段函数结合起来充分体现了素质教育的思想及方向,最后一个填空题扔然是给出新题型来用已有知识解答,为学生进入大学学习的内容做了很好的交接,和去年不同的是选择填空题中没有出现数列题。
大题中17、18题和往年一样,都是考察三角函数、立体几何中的经典题型,用的都是常见、经典解法,突出了高考题中数学基本能力的地位,第19题为概率题,和往年难度相差不大,但比2010年的简单,也是属于概率题中的中等难度题型。
最后一道大题和去年相比难度变大。
所以综合今年整套试卷来说,难度系数仍为中等。
2
- 2 -
二、逐题分析
- 3 -
- 4 -
三、教学反思
- 5 -
1.今后更要加强对中等题目的训练
2.在教学中多讲解一些各模块相结合的题目,训练学生解题技巧的能力
3.在教学中加大对模块的训练,使学生掌握知识循序渐近、系统完整。
- 6 -。
2013年高考数学试卷分析(理)
2013年高考数学试卷分析(理)承担校区 试卷分析人三、解答题18、本题主要考查等差数列、等比数列的概念,等差数列通项公式、求和公式等基础知识,同时考查运算求解能力。
满分14分。
(Ⅰ)由题 意得**22213,64,11,41.043)22(5Nn n a N n n a d d d d a a a n n ∈+=∈+-==-==--+=⋅或所以 或故 即 (Ⅱ)设数列{}由因为项和为的前,0,<d S n a n n (Ⅰ)得则,11,1+-=-=n a d n 当.22121112321n n S a a a a n n n +-=+⋯⋯+++≤=时, 当.11022121212211321+-=+-+⋯⋯+++≥n n S S a a a a n n n =时,综上所述,.)12(11022121)11(2212122321⎪⎪⎩⎪⎪⎨⎧≥+-≤+-+⋯⋯+++n n n n n n a a a a n =19.本题主要考查随机事件的概率和随机量的分布列、数学期望、数学方差等概念,同时考查抽象概括、运算求解能力和应用意识。
满分14分。
(Ⅰ) ,由题意得.6,5,4,3,2=ξ 故 ;1856622132)4(;3166232)3(;416633)2(=⨯⨯+⨯⨯===⨯⨯⨯===⨯⨯==ξξξP P P3616611)6(;9166122)5(=⨯⨯===⨯⨯⨯==ξξP P 所以ξ的分布列为(Ⅱ)由题意知η的分布列为 所以.95)353()352()351()(222=++⋅-+++⋅-+++⋅-=c b a c c b a b c b a a D η化简得:⎩⎨⎧=-+=--0114042c b a c b a解得.1:2:3::,2,3===c b a c b c a 故 20.(本题满分15分)如图,在四面体A BCD -中,AD BCD ⊥平面,BC CD ⊥,2AD =,BD =M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且3AQ QC =. (1)证明://PQ BCD 平面;(2)若二面角C BM D --的大小为60︒,求BDC ∠的大小.BAPCDMQ【分析】本题主要考查空间点、线、面位置关系,二面角等基础知识,空间向量的运用,同时考查空间想象能力和运算求解能力。
2013年全国高考理科数学试题及答案详解
绝密*启用前2013年普通高等学校招生全国统一考试(新课标)理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C∆21F PF 是底角为30 的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯= (8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =;则C 的实轴长为( )()A ()B()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(A-(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2013年高考全国卷理科数学高清解析版
2013年普通高等学校招生全国统一考试理科数学注意事项:1. 本试卷分为两部分, 第一部分为选择题,第二部分为非选择题.。
2. 考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.。
3. 所有解答必须填写在答题卡上指定区域内。
考试结束后,将本试卷和答题卡一并交回。
第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R ,函数()f x M , 则C M R 为(A) [-1,1](B) (-1,1)(C) ,1][1,)(∞-⋃+∞-(D) ,1)(1,)(∞-⋃+∞-【答案】D【解析】()f x 的定义域为M=[-1,1],故2. 根据下列算法语句, 当输入x 为60输出y 的值为 (A) 25 (B) 30 (C) 31 (D) 61【答案】C【解析】故选择C3. 设a , b 为向量, 则“||||||=a a b b ·”是“a //b ”的 (A) 充分不必要条件(B) 必要不充分条件(C) 充分必要条件(D) 既不充分也不必要条件【答案】A 【解析】4. 某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, …, 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 (A) 11 (B) 12 (C) 13 (D) 14 【答案】B【解析】由题设可知区间[481,720]长度为240,落在区间内的人数为12人。
5. 如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是(A)14π-(B)12π-(C) 22π-(D) 4π【答案】A【解析】由题设可知矩形ABCD 面积为2,曲边形DEBF 的面积为22124ππ-=-,选A.6. 设z 1, z 2是复数, 则下列命题中的假命题是 (A) 若12||0z z -=, 则12z z = 2z =(C) 若12||z z =, 则2112··z z z z =(D) 若12||||z z =, 则2122z z =【答案】D【解析】设12,,z a bi z c di =+=+若12||0z z -=,则12||()()z z a c b d i -=-+-,12z z =,则,a c b d ==-,所以12z z =,故22c d =+,所以1122..z z z z =,故C 项正确;a ,b ,c , 若cos cos sin b C c B a A +=, 则△ABC 的形 (A) 锐角三角形 (B) 直角三角形(C) 钝角三角形(D) 不确定【答案】B【解析】因为cos cos sin b C c B a A +=,所以由正弦定理得2sin cos sin cos sin B C C B A +=,所以2sin()sin B C A +=,所以2sin sin A A =,所以sin 1A =,所以△ABC 是直角三角形。
2013高考 数学(理)真题专业解析(全国卷)汇总
2013年普通高等学校招生全国统一考试数学试卷(理科)(全国卷)解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合={1,2,3}M∈∈,则M中元素的个数为,,={x|x=a+b,a A,b B}A,B={45}()A.3 B.4 C.5 D.6答案:B思路分析:考点解剖:本题主要考查集合的性质与分类讨论思想.解题思路:弄清集合M中的元素与集合A和集合B中元素的关系,从而求集合M中的元素即可.解答过程:集合B中的元素4分别与集合A中的元素求和为5、6、7,集合B中的元素5分别与集合A中的元素求和得6、7、8.所以M={5,6,7,8},元素个数为4.故选B.规律总结:要弄清集合的表示方法,特别是描述法,容易忽略互异性.2.3(1)=()A.-8 B.8 C.8i- D.8i答案:A思路分析:考点解剖:本题考查复数的运算.解题思路:运用完全平方和公式与平方差公式化简复数.解答过程:3=-=-.故选A.(1)(12)8规律总结:要记住21i=-这个复数里面最常用的结论,还容易计算出错.3.已知向量(1,1)+⊥-,则λ=()=+,若()()m n m nmλ=+,(2,2)nλA.-4 B.-3 C.-2 D.-1答案:B思路分析:考点剖析:本题主要考查向量的坐标运算与两向量垂直.解题思路:运用“若a b ⊥,则有0a b ⋅=”及“22||a a =”即可求解.解答过程:因为()()m n m n +⊥-,所以有22222()()[(1)1][(2)2]0m n m n m n λλ+⋅-=-=++-++=,从而有3λ=-.故选B.规律总结:要记住两向量垂直的充要条件是它们的数量积为零,可能数量积分式会用错. 4.已知函数f(x)的定义域为(1,0)-,则函数(21)f x +的定义域( ) A .(1,1)- B .1(1,)2-- C .(1,0)- D .1(,1)2答案:B 思路分析:考点剖析:本题主要考查复合函数的定义域.解题思路:弄清函数()f x 与(21)f x +定义域的关系求解即可. 解答过程:由1210x -<+<,得112x -<<-.故选B.规律总结:由两函数的定义域的关系,列出不等式,求解. 5.函数21()log (1)f x x=+(x>0)的反函数1()f x -=( )A .1(0)21x x >- B .1(0)21x x ≠- C .21()x x R -∈ D .21(0)x x -> 答案:A 思路分析:考点剖析:本题主要考查求反函数的解析式.解题思路:由原函数的解析式解出x (即用y 表示x ),即可得反函数的解析式. 解答过程:由121yx =+,得121y x =-.因此11()(0)21x f x x -=>-.故选A. 规律总结:对于求反函数的解析式,关键是把原函数的解析式中的x 当作未知数求解. 需要特别注意要求反函数的定义域也就是求原函数的值域.6.已知数列{}n a 满足130n n a a ++=,243a =-,则{}n a 的前10项和等于( )A .106(13)--- B .101(13)9- C .103(13)-- D .103(13)-+ 答案:C 思路分析:考点剖析:本题主要考查等比数列的判断方法与求和公式. 解题思路:先判断数列为等比数列,再用求和公式求解. 解答过程:由于113n n a a +=-,从而知数列{}n a 是首项14a =,公比13q =-的等比数列,因此前101014[1()]33(13)113---=++.故选C. 规律总结:根据数列的递推关系,若为特殊数列直接代公式求解,若为其它数列再选用其它方法.7.84(1)(1)x y ++的展开式中22x y 的系数是( )A .56B .84C .112D .168 答案:D 思路分析:考点解析:本题主要考查二项式定理解题思路:运用求二项式定理展开式系数的方法求解. 解答过程:8(1)x +展开式中2x 的系数是2828C =,4(1)y +展开式中2y 的系数是246C =,所以84(1)(1)x y ++的展开式中22x y 的系数是286168⨯=.故选D.规律总结:解决二项式定理系数问题常用通项公式k n kkna b C-求解,容易计算出错或用错公式.8.椭圆C:22143x y +=的左右顶点分别为12,A A ,点P 在C 上且直线2PA 斜率的取值范围是[2,1]--,那么直线1PA 斜率的取值范围是( )A .13[,]24B .33[,]84C .1[,1]2D .3[,1]4答案:B 思路分析:考点剖析:本题主要考查直线与椭圆的位置关系、数形结合的思想. 解题思路:先设出点P 的坐标,然后得直线2PA 与直线1PA 斜率的积为常数求解.解答过程:设P 点坐标为00(,)x y ,则2200143x y +=,2002pA y k x =-,1002pA y k x =+,于是122200222003334244PA PA x y k k x x -⋅===---,故12314PA PA k k =-.2[2,1]PA k ∈--133[,]84PA k∴=.故选B. 规律总结:设出点P 的坐标,再由斜率公式是求解此类问题的常用方法.容易分析计算出错.9.若函数21()f x x ax x =++在1(,)2+∞是增函数,则a 的取值范围是( ) A .[1,0]- B .[1,)-+∞ C .[0,3] D .[3,)+∞ 答案:D 思路分析:考点剖析:本题主要考查导数判断函数的单调性、恒成立问题,考查化归转化思想. 解题思路:先将问题转化为不等式恒成立问题,再转化为求函数最值问题. 解答过程:由条件知21()20f x x a x =+-≥在1(,)2+∞上恒成立,212a xx≥-在1(,)2+∞上恒成立. 212y x x =-在1(,)2+∞上为减函数,max 211232()2y <-⨯=,3a ∴≥,故选D. 规律总结:运用函数的导数的应用将含有参数的函数的单调性转化为不等式恒成立问题是解决此类问题的常用方法.10.已知正四棱柱1111ABCD A BC D -中,12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( )A .23B.3D .13答案:A 思路分析:考点剖析:本题主要考查直线与平面所成的角解题思路:先证明线面垂直,找出线面角的平面角,再求三角形的内角. 解答过程:如下图,连接AC 交BD 于点O ,连接1C O ,过C 作1CH C O ⊥于H11BD ACBD AA AC AA A ⊥⎫⎪⊥⇒⎬⎪⋂=⎭1111BD ACC A CH ACC A ⊥⎫⎬⊂⎭平面平面11CH BDCH C O BD C O O ⊥⎫⎪⇒⊥⎬⎪⋂=⎭1CH C BD ⇒⊥平面HDC ∴∠为CD 与平面1BDC设122AA AB ==,则2AC OC ==,1C O ====由等面积法,得11C O CH OC CC ⋅=⋅,即222CH =⋅,23CH ∴=,223sin 13HC HDC DC ∴∠===.故选A.规律总结:求线面角的常用方法是先找出线面角的平面角再转化为求三角形的内角,易出现平面角找不对而出错.11.已知抛物线C:28y x =与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B两点,若0MA MB ∙=,则k=( )A .12B.2C.2 答案:D 思路分析:考点剖析:本题主要考查直线与抛物线的位置关系与向量知识的交汇.解题思路:先设出A 、B 两点的坐标,再将0MA MB ∙=化成只含k 的等式求解. 解答过程:由题意知抛物线C 的焦点坐标为,则直线AB 的方程为(2)y k x =-, 其代入28y x =得22224(2)40k x k x k -++=设11(,)A x y ,22(,)B x y ,则21224(2)k x x k ++=,124x x =. ①由1122(2)(2)y k x y k x =-⎧⎨=-⎩有1212212()4[122(12)4]y y k x x k y y k x x x x +=+-⎧⎨⋅=-++⎩②0MA MB ⋅=∴ 1122(2,2)(2,2)0x y x y +-∙+-=所以:121212122()2()80x x x x y y y y +++-++= ③ 由①②③解得k=2,故选D规律总结:解这类问题通常用一种设而不求(本题设出点A 、B 的坐标而不必求出)的方法求解,易选错方法与增加计算量.12.已知函数()cos sin 2f x x x =,下列结论中错误的是( )A .()y f x =的图像关于点(,0)π中心对称B .()y f x =的图像关于直线2x π=对称C .()f x.()f x 既是奇函数,又是周期函数 答案:C 思路分析:考点剖析:本题主要考查三角恒等变换与三角函数的图象和性质.解题思路:本题首先用同角三角函数的基本关系式中的平方关系,通过换元,再用导数求最值.解答过程:由题意知22()2cos sin 2(1sin )sin f x x x x x ==-令sin ,[1,1],t x t =∈- 则23()2(1)22g t t t t t =-=-令2`()260g t t =-=,得t =当1t =±时,函数值为0;(1)0g ±=,(g =,g =所以max()g x =,即()f x.故选C.规律总结:解本类选择题通过观察从容易判断的选项入手,恰好选项C 求最值是一种非常常见需要熟练掌握的,易看错求错,换成正确答案;对称性,奇偶性,最值判断方法没有掌握导致出错.二、填空题:本大题共4小题,每小题5分. 13.已知α是第三象限角,1sin 3α=-,则cot α=答案:思路分析:考点剖析:本题主要考查三角恒等变换化简求值. 解题思路:先求出cos α,再用公式cos cot sin ααα=求解.解答过程:由题意知cos 3α===-,故c o sc o t 22s i nααα==规律总结:求解三角三函数的问题须要牢记公式并灵活运用,易忽略象限角致符号出错. 14. 6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答) 答案:480 思路分析:考点剖析:本题主要考查排列问题;解题思路:先将排除甲、乙外的4人,再排甲、乙. 解答过程:先排除甲、乙外的4人,方法有44A 再将甲、乙插入这4人形成的5个间隔中,有25A 的排法,因此甲、乙不相邻的不同排法有4245A A =480规律总结:不相邻问题常用的解决方法就是插空法. D.若直15.记不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,所表示的平面区域为线(1)y a x =+与D 有公共点,则a 的取值范围是答案:1[,4]2思路分析:考点剖析:本题主要考查线性规划问题.解题思路:先作出平面区域D ,再由直线(1)y a x =+的过定点求解. 解答过程:作出题中不等式组表示的可行域如图中阴影部分所示.∵直线(1)y a x =+过定点(1,0)C -,由图并结合题意可知12BCk =,4AC k =,若直线(1)y a x =+与平面区域D 有公共点,则142a ≤≤. 规律总结:解决此类问题常用的方法是准确作图运用数形结合的思想方法求解. 16.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,32OK =,且圆O 与圆K 所在的平面所成的一个二面角为060,则球O 的表面积等于答案:16π思路分析:考点剖析:本题主要考查空间几何体、空间想象能力与分析问题的能力. 解题思路:先由二面角求出球的半径,再用表面积公式求解.解答过程:如右图,没MN 为两圆的公共弦,E 为MN 的中点,则OE MN ⊥,KE MN ⊥ 结合题意可知60OEK ∠=︒,又MN=R ,OMN ∴∆为正三角形,OE R∴=又OK EK ⊥,3sin 602OE R ∴=⋅︒=2R ∴=.2416S R ππ∴== 规律总结:解决球类问题常运用弦的中点与球(圆)心的连线将空间问题转化为平面问题.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 等差数列{}n a 的前n 项和为n S .已知232S a =,且124,,S S S 成等比数列,求{}na 的通项公式.答案:3n a =或21n a n =-思路分析:考点剖析:本题主要考查等差数列的通项公式与前n 项和公式及等比中项的概念. 解题思路:(1)先求出2a 与公差,(2)求通项公式.解答过程:设数列{}na 的公差为d .由232S a =得2223a a =,故20a =或23a =. 由124,,S S S 成等比数列得2214S S S =⋅.又12S a d =-,222S a d =-,4242S a d =+. 故2222(2)()(42)a d a d a d -=-+.若20a =,则222d d =-,所以0d =,此时0n S =,不合题意;若23a =,则2(6)(3)(122)d d d-=-+,解得0d =或2d =.因此{}na 的通项公式为3n a =或21na n =-规律总结:关于等差、等比数列的问题,通常的解法是灵活运用通项公式与求和公式. 18.(本小题满分12分)设ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,()()a b c a b c ac ++-+=.(Ⅰ)求B;(Ⅱ)若sin sin A C =,求C.答案:(Ⅰ)120B =︒;(Ⅱ)15C =︒或45C =︒ 思路分析:考点剖析:本题主要考查解斜三角形.解题思路:(1)先用佘弦定理求得角B ,(2)用c o s ()c o s ()2s i n s i n A C A C A C-=++求解.解答过程:(Ⅰ)因为()()a b c a b c ac ++-+=,所以222a c b ac +-=-由佘弦定理得2221cos 22a cb B ac +-==-,因此120B =︒ (Ⅱ)由(Ⅰ)知60A C +=︒,所以cos()cos cos sin sin cos cos sin sin 2sin sin cos()2sin sin 112242A C A C A CA C A C A C A C A C -=+=-+=++=+⨯=故30A C -=︒或30A C -=-︒,因此15C =︒或45C =︒规律总结:通常解正佘弦定理的运用问题要根据已知条件的特点恰当选用定理求解,若与三角函数综合还须要恰当凑角灵活运用公式,三角形求角通常还要用内角和定理.19.(本小题满分12分)如图,四棱锥P-ABCD 中,090ABC BAD ∠=∠=,2BC AD =,PAB ∆和PAD ∆都是等边三角形.(Ⅰ)证明:PB CD ⊥; (Ⅱ)求二面角A-PD-C 的大小. 答案:(Ⅰ)详见解答过程;(Ⅱ)arccos3π-思路分析:考点剖析:本题主要考查空间直线与直线垂直的证明和求二面角.解题思路:(1)运用三垂线定理证明空间线线垂直,(2)找出二面角的平面角转化为解三角形或用空间向量求解.解答过程:(Ⅰ)取BC 的中点为E ,连结DE ,则ABED 为正方形.过P 作PO ⊥平面ABCD ,垂足为O.连结OA ,OB ,OD ,OE.由PAB ∆和PAD ∆都是等边三角形知PA=PB=PD.所以OA=OB=OD ,即点O 为正方形ABED 对角线的交点,故OE BD ⊥,从而PB OE ⊥.因为O 是BD 的中点,E 是BC 的中点,所以//OE CD .因此PB CD ⊥(Ⅱ)解法一:由(Ⅰ)知PB CD ⊥,PO CD ⊥,PB PO P ⋂=.故CD ⊥平面PBD.又PD PBD ⊂平面,所以CD PD ⊥. 取PD 的中点为F ,PC 的中点G ,连结FG. 则FG//CD ,FG ⊥PD连结AF ,由APD ∆为等边三角形可得AF PD ⊥. 所以AFG ∠为二面角A-PD-C 的平面角. 连结AG ,EG ,则EG//PB. 又PB AE ⊥,所以EG AE ⊥. 设AB=2,则AE=112EG PB == 故3AG ==在AFG ∆中,12FG CD ==AF ,3AG =.所以222cos 2FG AF AG AFG FG AF +-∠==⨯⨯.因此二面角A-PD-C的大小为π-.解法二:由(Ⅰ)知,OE ,OB ,OP 两两垂直.以O 为坐标原点,OE 的方向为z 轴的正方向建立如图所示的空间直角坐标系O-xyz. 设||2AB =,则(A,(0,D,C,PPC =,(0,PD =,(2,0,AP =,(2,AD =.设平面PCD 的法向量为1(,,)n x y z=,则1(,,)0n PC x y z ⋅=⋅=,1(,,)(0,0n PD x y z ⋅=⋅=.可得20x y z --=,0y z +=. 取1y =-,得0,1x z ==,故1(0,1,1)n =-设平面PAD 的法向量为2(,,)n m p q,则2(,,)0n AP m p q ⋅=⋅=,2(,,)0n AD m p q ⋅=⋅=,可得0m q +=,0m q -=.取1m =,得1p =,1q =-,故2(1,1,1)n =-.于是121212cos ,3||||n n n n n n ⋅<>==-⋅由于12,n n <>等于二面角A-PD-C 的平面角,所以二面角A-PD-C 的大小为a r c c π-.规律总结:解决立体几何问题通常有几何法与向量法.用几何法求解时,考查空间想象能力运用化归转化的数学思想方法,有时需要灵活运用线线、线面、面面位置关系的判定定理与性质定理,有时需要把空间问题转化为平面几何问题求解;运用向量法关键是找三条共点两两垂直的直线建立坐标系并运用好法向量与相关公式.20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结束相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)X 表示前4局中乙当裁判的次数,求X 的数学期望. 答案:(Ⅰ)14(Ⅱ)98思路分析:考点剖析:本题主要考查独立性事件的概率与随机变量的数学期望.解题思路:(1)运用独立性事件的概率公式求得第4局甲当裁判的概率,(2)分别求出各个随机变量对应的概率再运用数学期望的公式求解.解答过程:(Ⅰ)记1A 表示事件“第2局结果为甲胜“,2A 表示事件“第3局甲参加比赛时,结果为甲负“.A 表示事件“第4局甲当裁判“. 则A=12A A ⋅.12121()()()()4P A P A A P A P A =⋅=⋅=(Ⅱ)X 的可能值为0,1,2.记3A 表示事件“第3局乙和丙比赛时,结果为乙胜丙“1B 表示事件“第1局结果为乙和丙”.2B 表示事件“第2局乙和甲比赛时,结果为乙胜甲”.3B 表示事件“第3局乙参加比赛时,结果为乙负”.则1231231(0)()()()()8P X P B B A P B P B P A ==⋅⋅=⋅⋅=13131(2)()()()4P X P B B P B P B ==⋅=⋅=115(1)1(0)(2)1848P X P X P X ==-=-==--=.90(0)1(1)2(2)8EX P X P X P X =⋅=+⋅=+⋅==规律总结:解决概率问题时,通常要认真读题弄清独立事件与互斥事件正确求出概率,求解数学期望时可用随机变量的分布列的性质检验计算结果并掌握快速准确计算的方法.21.(本小题满分12分) 已知双曲线C:22221x y a b -=(a>0,b>0)的左、右焦点分别为1F 、2F ,离心率为3,直线y=2与C(Ⅰ)求a,b;(Ⅱ)设过2F 的直线l 与C 的左、右两支分别交于A 、B 两点,且11||||AF BF =,证明:2||AF 、||AB 、2||BF 成等比数列.答案:(Ⅰ)1,a b ==(Ⅱ)详见解答过程思路分析:考点剖析:本题主要考查双曲线的几何性质和直线与双曲线的位置关系.解题思路:(1)由离心率即可得a 和b 的关系,(2)再由直线y=2与C 的两个交点间的(Ⅰ),(3)由直线l 与C 的方程联立消y 后运用一元二次方程根与系数的关系和两点间的距离公式求解.解答过程:(Ⅰ)由题设知3ca=,即2229a b a+=,故228b a =.所以C 的方程为22288x y a -=.将2y =代入上式,求得x =由题设知=21a =.所以1,a b ==(Ⅱ)由(Ⅰ)知,1(3,0)F -,2(3,0)F ,C 的方程为2288x y -= ①由题意可设l 的方程为(3)y k x =-,||k <,代入①并化简得2222(8)6980k x k x k --++=.设11(,)A x y ,22(,)B x y ,则11x ≤,21x ≥,212268k x x k +=-,2122988k x x k +⋅=-.于是,11||(31)AF x ==-+.12||31BF x ===+.由12||||AF BF =得12(31)31x x -+=+,即1223x x +=-.226283k k =--,解得245k =,从而12199x x ⋅=-由于21||13AF x ===-.22||31BF x ===-.故2212||||||23()4AB AF BF x x =-=-+=.221212||||3()9116AF BF x x x x ⋅=+--=因而222||||||AF BF AB ⋅=,所以2||AF 、||AB 、2||BF 成等比数列.规律总结:解决圆锥曲线类的解答题时,需要熟练掌握圆锥曲线的几何性质、定义、标准方程,对于直线与圆锥曲线问题通常的解决方法是联立直线与双曲线的方程然后消元运用一元二次方程根与系数的关系及其它解析几何的常见的公式(如两点间的距离公式,斜率公式…)求解.22.(本小题满分12分) 已知函数(1)()ln(1)1x x f x x xλ+=+-+.(Ⅰ)若0x ≥时,()0f x ≤,求λ的最小值; (Ⅱ)设数列{}n a 的通项111123n a n =++++,证明:21ln 24n n a a n-+>. 答案:(Ⅰ)12;(Ⅱ)详见解答过程思路分析:考点剖析:本题考察函数与数列的综合应用,是一创新性题目,主要考察了学生对问题的分析、推理、解决;掌握函数、数列的性质,具有良好的分析、逻辑推理能力是解决本题的前提.解题思路:(1)运用导数即可求得λ的最小值,(2)运用所要证明的不等式与问题(Ⅰ)中结论的联系即可求解.解答过程:(Ⅰ)由已知(0)0f =,2'2(12)()(1)x x f x x λλ--=+,'(0)0f =.若12λ<,则当02(12)x λ<<-时,'()0f x >,所以()0f x >. 若12λ≥,则当0x >时,'()0f x <,所以当0x >时,()0f x <. 综上,λ的最小值是12.(Ⅱ)证明:令12λ=.由(Ⅰ)知,当0x >时,()0f x <, 即(2)ln(1)22x x x x+>++.取1x k =,则211ln()2(1)k k k k k++>+. 于是212111()422(1)n n n k n a a n k k -=-+=++∑21212(1)n k n k k k -=+=+∑211lnn k nk k -=+>∑ln 2ln n n =- ln 2=.所以21ln 24n n a a n-+>. 规律总结:函数与数列综合题考在解答案题中考查,通过构造、推理、分类、放缩等方法,融知识、能力与素质与一体,综合问题对分析问题,解决问题能力具有很高要求.。
2013新课标全国2卷高考理科数学试题、解析与分析
2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数 学 (理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合{}R x x x M ∈<-=),4)1(|2,{}3,2,1,0,1-=N ,则M N = ( ) (A ){0,1,2} (B ){-1,0,1,2}(C ){-1,0,2,3} (D ){0,1,2,3} 【答案】A【解析】因为{}31|<<-=x x M ,{}3,2,1,0,1-=N ,所以M N {}2,1,0=,选A.2、设复数z 满足,2)1(i z i =-则z =( )(A )i +-1 (B )i --1 (C )i +1 (D )i -1【答案】A 【解析】i i i i i i i z +-=+-+=-=1)1)(1()1(212,所以选A. 3、等比数列{}n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则1a =( )(A ) 31(B ) 31- (C )91 (D )91- 【答案】C4、已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l ⊥m ,l ⊥n ,l ⊄α, l ⊄β,则( )(A ) α∥β且l ∥α (B )α⊥β且l ⊥β (C )α与β相交,且交线垂直于l (D )α与β相交,且交线平行于l 【答案】D5、已知5)1)(1(x ax ++的展开式中2x 的系数是5,则a =( ) (A ) -4 (B ) -3 (C )-2 (D )-1 【答案】D6、执行右面的程序框图,如果输入的10=N ,那么输出的S =( )【答案】B【解析】第一次循环,1,1,2T S k ===;第二次循环,11,1,322T S k ==+=;第三次循环,111,1,423223T S k ==++=⨯⨯,第四次循环,1111,1,5234223234T S k ==+++=⨯⨯⨯⨯⨯,依此类推,选B.7、一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )(A) (B) (C) (D) 【答案】A【解析】在空间直角坐标系中,先画出四面体O ABC -的直观图,以zOx 平面为投影面,则得到正视图(坐标系中红色部分),所以选A.8、设6log 3=a ,10log 5=b ,14log 7=c ,则( )(A ) a b c >> (B )b c a >> (C )a c b >> (D )C b a >>【答案】D9、已知a >0, ,x y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≥)3(31x a y y x x , 若23z x y =-+y 的最小值是1,则a =( )(A )41 (B )21 (C )1 (D )210、已知函数32()f x x ax bx c =+++,下列结论中错误的是( ) (A )0x R ∃∈,0()0f x =(B )函数()y f x =的图象是中心对称图形(C )若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减 (D )若0x 是()f x 的极值点,则0'()0f x = 【答案】C【解析】若0c =则有(0)0f =,所以A 正确。
2013高考理数数学分析
(13) 如图, △ABC 为圆的内接三角形, BD 为圆
的弦, 且 BD//AC. 过点 A 做圆的切线与 DB 的延 长线交于点 E, AD 与 BC 交于点 F. 若 AB = AC,
AE= 6, BD = 5, 则线段 CF 的长为
解析:这道题是几何证明选讲的题型,比平常做得题稍复杂一点,因为这道题 放在了填空倒数第二题的位置上,而且更趋近于初中的解法。由切割线定理可 以直接求出 EB=4,又因为 EA 与圆相切,AB=AC BD//AC 可以推出四边形 EACB 为 平行四边形,即 AC=AB=4,连接 AF,△ABE∽△AFC,即可求出 CF=8/3.这道题的 已知条件过多,一定要缕清每个条件的作用。
(B) (D)
⎛1− 3 ⎞ ⎜ ⎜ 2 ,0 ⎟ ⎟ ⎝ ⎠
解析:这道题是函数与不等式的结合题,选第八题比较难,高考时直接做比较 花费时间,建议使用比较巧的方法做这种题。以这道题为例,有 ABCD 四个不同 范围的选项,用直接代数法,根据四个选项,代入
1− 3 和 1 就可以选出选项。 2
如果想直接得出结果的话,则需要代入函数,分类讨论,利用单调性和 A 的范 围求出结果,比较繁琐。
2, E 为棱 AA1 的中点.
1
以此类
(Ⅰ) 证明 B1C1⊥CE; (Ⅱ) 求二面角 B1-CE-C1 的正弦值. (Ⅲ) 设点 M 在线段 C1E 上, 且直线 AM 与平面 ADD1A1 所成角的正弦 值为
2 6
, 求线段 AM 的长.
解析:正如之前的分析一样,又是一个正正方方的立体,特别容易进行建系, 只要以 AD、AA1、AB 分别为 x、y、z 轴建系,列坐标,所有的点均可以用坐标 表示,一二问就迎刃而解;第三问类似动点的问题,有一种固定的作法,设点
2013年山东省高考数学试卷(理科)word版试卷及解析
2013年普通高等学校招生全国统一考试(山东卷) 理 科 数 学参考公式:如果事件A 、B 互斥,那么()()+()P A B P A P B += 如果事件A 、B 独立,那么()()()=•P AB P A P B 。
第Ⅰ卷(共60分)一、选择题:本大题共12小题。
每小题5分共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、复数z 满组(3)(2)5--=z i (z 为虚数单位),则z 的共轭复数z 为(A) 2+i (B) 2-i (C) 5+i (D) 5-i2、已知集合{}0,1,2=A ,则集合{},=-∈∈B x y x A y A 中元素的个数是(A) 1 (B) 3 (C) 5 (D) 93、已知函数()f x 为奇函数,且当0>x 时,21(),=+f x x x则(1)-=f (A) -2 (B) 0 (C) 1 (D) 2 4、已知三棱柱111-ABC A B C 的侧棱与底面垂直,体积为94,的正三角形,若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为 (A)512π (B) 3π (C) 4π (D) 6π 5、将函数sin(2)ϕ=+y x 的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为 (A)34π (B) 4π (C) 0 (D) 4π- 6、在平面直角坐标系xOy 中,M 为不等式组220210,380,--≥⎧⎪+-≥⎨⎪+-≤⎩x y x y x y 所表示的区域上一动点,则直线OM的斜率的最小值为(A) 2 (B) 1 (C) 13- (D) 12- 7、给定两个命题,.p q若⌝p 是q 的必要不充分条件,则p 是⌝q 的(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件8、函数cos sin =+y x x x 的图象大致为(A)(B) (C) (D)9、过点(3,1)作圆22(1)1-+=x y 的两条切线,切点分别为,A B ,则直线AB 的方程为(A) 230+-=x y (B) 230--=x y (C) 430--=x y (D) 430+-=x y 10、用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(A) 243 (B) 252 (C) 261 (D) 27911、抛物线211:(0)2=>C y x p p 的焦点与双曲线222:13-=x C y 的右焦点的连线交1C 于第一象限的点.M若1C 在点M 处的切线平行于2C 的一条渐近线,则=p(A)(B)(C)(D)12、设正实数,,x y z 满足22340.-+-=x xy y z 则当xyz取得最大值时,212+-的最大值为(A) 0 (B) 1 (C) 94(D) 3第Ⅱ卷(共90二、填空题:本大题共4小题,每小题4分,共16分。
2013高考数学试卷分析
全国新课标2(7)一个四面体的顶点Байду номын сангаас空间直角坐标系O-xyz中的坐标分 别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四 面体三视图中的正视图时,以zOx平面为投影面,则得到正视 图可以为
(A)
(B)
(C)
(D)
全国新课标卷2
(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。直线l满足l⊥m,l⊥n, ,则( ) (A)α∥β且l∥α (B)α⊥β且l⊥β (C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l
8、某几何函数的三视图如图所示,则该几何的体积为( A、18+8π B、8+8π C、16+16π D、8+16π
)
答案A
【解析】 根据三视图可以判断该几何体由上下两部分 组成,其中上面部分为长方体,下面部分为半个圆柱, 所以组合体的体积为16+8 选择A
〖命题意图〗 此题意在考查空间组合题的三视图及组合体的计算能力,考生的识 图能力空间想象能力以及计算能力。先根据三视图判断出组合体的结构特征,再根 据几何体的体积公式进行计算 广东卷(5),山西卷(12),湖北卷(8),重庆卷(5),浙江卷(12),辽宁卷 (13)都是考查这类问题。而全国新课标卷2第(7)题考查了平面图的三视图,四川卷第 (3)题考查了由三视图怎样得到直观图。只有山西卷(7)出现判断三角形形状问题 四川卷 (3).一个几何体的三视图如图所示,则该几何体的直观图可以是( )
2013高考试卷分析 一 试卷总体评价 2013年高考数学新课标全国卷是以《课程标准》、《考试大纲》为依据,试卷的结构 保持了新课程高考数学试卷的一贯风格,试题设计体现了“大稳定、小创新”的稳健、 成熟设计理念.今年试卷贴近中学教学实际,在坚持对五个能力、两个意识考查的同时, 注重对数学思想与方法的考查,体现了数学的基础性、应用性和工具性的学科特色.以支 撑学科知识体系的重点内容为考点来挑选合理背景,善于应用知识之间的内在联系进行 融合构建试卷的主体结构,在新课程新增内容和传统内容的结合处寻找创新点,考查更加 科学.试卷从多视角、多维度、多层次地考查数学思维品质,考查考生对数学本质的理解, 考查考生的数学素养和学习潜能.从考试性质上审视这份试卷,它有利于中学数学教学和 课程改革,有利于高校选拔有学习潜能的新生,是具有较高的信度、效度,必要的区分度 和适当的灵活度的可圈可点的试卷. 其中立体几何是全国各省市所考知识的必考内容,它是考察学生 空间思维,空间想象的主要形式。就新课标全国卷1来说,小题 (6),(8),大题(18)为立体几何,分值22,难度适中,不 算难。主要知识包括线面的平行与垂直,三视图,以及三棱柱, 三棱锥,四棱柱,四棱锥中线面角,二面角的求解。
2013全国高考1卷理科数学试题及答案解析
WORD 格式整理2012 年普通高等学校招生全国统一考试理科数学 第 I 卷一、选择题: 本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合 A {1,2,3,4,5} , B {( x, y) | xA, y A, x y A} ,则 B 中所含元素的个数为(A ) 3(B ) 6(C ) 8(D ) 10(2)将 2 名教师, 4 名学生分成 2 个小组,分别安排到甲、乙两地参加社会实践活动,每个小组有1名教师和 2 名学生组成,不同的安排方案共有 (A ) 12 种 (B ) 10 种(C ) 9 种(D )8 种(3)下面是关于复数z 2 1 i的四个命题p : |z | 2p 2 :122zip 3 : z 的共轭复数为 1 i p 4 : z 的虚部为1其中真命题为(A )p ,p 3(B ) p 1 ,p 2(C )p 2 , p 4 (D ) p 3 , p 42(4)设FF 是椭圆 1, 222x yE : 1(a b 0)22ab的左、右焦点, P 为直线3ax上的一点,2F PF 是底角为 30 的等腰三角形,则21E的离心率为(A)1 2(B)23(C)3 4(D)45(5)已知 {a } 为等比数列, a 4a 72, a 5a 68 ,则 a 1 a 10n(A)7(B)5(C)5(D)7(6)如果执行右边的程序图,输入正整数N (N 2)和实数 a 1,a 2 ,..., a N 输入 A, B , 则(A) A B 为 a 1,a 2,..., a N 的和(B ) A B 2为a a a 的算式平均数1, 2 ,..., N(C ) A和B 分别是a 1,a 2,..., a N 中最大的数和最小的数专业技术参考资料WORD 格式整理(D)A和B分别是a1,a2,..., a N 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6 (B)9 (C)12 (D)18(8)等轴双曲线 C 的中心在原点,焦点在x轴上,C 与抛物线 2 16y x的准线交于A, B 两点,| AB | 4 3 ,则C 的实轴长为(A) 2 (B)2 2 (C)4 (D)8(9)已知0,函数( ) sin( )f x x 在,4 2单调递减,则的取值范围(A)1 5[ , ]2 4(B)1 3[ , ]2 4(C)1(0, ]2(D) (0, 2](10)已知函数 f (x)1ln( x 1) x,则y f ( x) 的图像大致为(11)已知三棱锥S ABC 的所有顶点都在球O 的球面上,ABC 是边长为1的正三角形,SC 为 O 的直径,且SC 2 ,则此棱锥的体积为(A)26(B)36(C)23(D)22(12)设点P 在曲线1xy e 上,点Q 在曲线y ln(2 x) 上,则| PQ |的最小值为2(A) 1 ln 2 (B) 2(1 ln 2) (C) 1 ln 2 (D) 2(1 ln 2)专业技术参考资料WORD 格式整理第Ⅱ卷本卷包括必考题和选考题两部分。
2013年全国统一高考数学试卷(理科)(新课标Ⅱ)及答案(分析解答)
2013年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本大题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={x|(x﹣1)2<4,x∈R},N={﹣1,0,1,2,3},则M ∩N=()A.{0,1,2}B.{﹣1,0,1,2} C.{﹣1,0,2,3} D.{0,1,2,3} 2.(5分)设复数z满足(1﹣i)z=2i,则z=()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i3.(5分)等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D.4.(5分)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l ⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l5.(5分)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.﹣4 B.﹣3 C.﹣2 D.﹣16.(5分)执行右面的程序框图,如果输入的N=10,那么输出的S=()A.B.C.D.7.(5分)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.8.(5分)设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c9.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.10.(5分)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃xα∈R,f(xα)=0B.函数y=f(x)的图象是中心对称图形C.若xα是f(x)的极小值点,则f(x)在区间(﹣∞,xα)单调递减D.若xα是f(x)的极值点,则f′(xα)=011.(5分)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.(5分)已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是()A.(0,1) B.C.D.二、填空题:本大题共4小题,每小题5分.13.(5分)已知正方形ABCD的边长为2,E为CD的中点,则=.14.(5分)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=.15.(5分)设θ为第二象限角,若tan(θ+)=,则sinθ+cosθ=.16.(5分)等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n的最小值为.三.解答题:解答应写出文字说明,证明过程或演算步骤:17.(12分)△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面积的最大值.18.(12分)如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.(Ⅰ)证明:BC1∥平面A1CD(Ⅱ)求二面角D﹣A1C﹣E的正弦值.19.(12分)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为x的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x=105的概率等于需求量落入[100,110)的频率,求T 的数学期望.20.(12分)平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线x+y﹣=0交M于A,B两点,P为AB的中点,且OP的斜率为.(Ⅰ)求M的方程(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD 面积的最大值.21.(12分)已知函数f(x)=e x﹣ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.选考题:(第22题~第24题为选考题,考生根据要求作答.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分评分,作答时请写清题号)22.(10分)【选修4﹣1几何证明选讲】如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB与弦AC上的点,且BC•AE=DC•AF,B、E、F、C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.23.选修4﹣﹣4;坐标系与参数方程已知动点P,Q都在曲线C:上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(Ⅰ)求M的轨迹的参数方程(Ⅱ)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).2013年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•新课标Ⅱ)已知集合M={x|(x﹣1)2<4,x∈R},N={﹣1,0,1,2,3},则M∩N=()A.{0,1,2}B.{﹣1,0,1,2} C.{﹣1,0,2,3} D.{0,1,2,3}【分析】求出集合M中不等式的解集,确定出M,找出M与N的公共元素,即可确定出两集合的交集.【解答】解:由(x﹣1)2<4,解得:﹣1<x<3,即M={x|﹣1<x<3},∵N={﹣1,0,1,2,3},∴M∩N={0,1,2}.故选A2.(5分)(2013•新课标Ⅱ)设复数z满足(1﹣i)z=2i,则z=()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i【分析】根据所给的等式两边同时除以1﹣i,得到z的表示式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,得到结果.【解答】解:∵复数z满足z(1﹣i)=2i,∴z==﹣1+i故选A.3.(5分)(2013•新课标Ⅱ)等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D.【分析】设等比数列{a n}的公比为q,利用已知和等比数列的通项公式即可得到,解出即可.【解答】解:设等比数列{a n}的公比为q,∵S3=a2+10a1,a5=9,∴,解得.∴.故选C.4.(5分)(2013•新课标Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l【分析】由题目给出的已知条件,结合线面平行,线面垂直的判定与性质,可以直接得到正确的结论.【解答】解:由m⊥平面α,直线l满足l⊥m,且l⊄α,所以l∥α,又n⊥平面β,l⊥n,l⊄β,所以l∥β.由直线m,n为异面直线,且m⊥平面α,n⊥平面β,则α与β相交,否则,若α∥β则推出m∥n,与m,n异面矛盾.故α与β相交,且交线平行于l.故选D.5.(5分)(2013•新课标Ⅱ)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.﹣4 B.﹣3 C.﹣2 D.﹣1【分析】由题意利用二项展开式的通项公式求得展开式中x2的系数为+a•=5,由此解得a的值.【解答】解:已知(1+ax)(1+x)5=(1+ax)(1+x+x2+x3+x4+x5)展开式中x2的系数为+a•=5,解得a=﹣1,故选:D.6.(5分)(2013•新课标Ⅱ)执行右面的程序框图,如果输入的N=10,那么输出的S=()A.B.C.D.【分析】从赋值框给出的两个变量的值开始,逐渐分析写出程序运行的每一步,便可得到程序框图表示的算法的功能.【解答】解:框图首先给累加变量S和循环变量i赋值,S=0+1=1,k=1+1=2;判断k>10不成立,执行S=1+,k=2+1=3;判断k>10不成立,执行S=1++,k=3+1=4;判断k>10不成立,执行S=1+++,k=4+1=5;…判断i>10不成立,执行S=,k=10+1=11;判断i>10成立,输出S=.算法结束.故选B.7.(5分)(2013•新课标Ⅱ)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.【分析】由题意画出几何体的直观图,然后判断以zOx平面为投影面,则得到正视图即可.【解答】解:因为一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),几何体的直观图如图,是正方体的顶点为顶点的一个正四面体,所以以zOx平面为投影面,则得到正视图为:故选A.8.(5分)(2013•新课标Ⅱ)设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c【分析】利用log a(xy)=log a x+log a y(x、y>0),化简a,b,c然后比较log32,log52,log72大小即可.【解答】解:因为a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,因为y=log2x是增函数,所以log27>log25>log23,∵,,所以log32>log52>log72,所以a>b>c,故选D.9.(5分)(2013•新课标Ⅱ)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.10.(5分)(2013•新课标Ⅱ)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃xα∈R,f(xα)=0B.函数y=f(x)的图象是中心对称图形C.若xα是f(x)的极小值点,则f(x)在区间(﹣∞,xα)单调递减D.若xα是f(x)的极值点,则f′(xα)=0【分析】利用导数的运算法则得出f′(x),分△>0与△≤0讨论,列出表格,即可得出.【解答】解:f′(x)=3x2+2ax+b.(1)当△=4a2﹣12b>0时,f′(x)=0有两解,不妨设为x1<x2,列表如下由表格可知:①x2是函数f(x)的极小值点,但是f(x)在区间(﹣∞,x2)不具有单调性,故C不正确.②∵+f(x)=+x3+ax2+bx+c=﹣+2c,=,∵+f(x)=,∴点P为对称中心,故B正确.③由表格可知x1,x2分别为极值点,则,故D正确.④∵x→﹣∞时,f(x)→﹣∞;x→+∞,f(x)→+∞,函数f(x)必然穿过x轴,即∃xα∈R,f(xα)=0,故A正确.(2)当△≤0时,,故f(x)在R上单调递增,①此时不存在极值点,故D正确,C不正确;②B同(1)中②正确;③∵x→﹣∞时,f(x)→﹣∞;x→+∞,f(x)→+∞,函数f(x)必然穿过x轴,即∃xα∈R,f(xα)=0,故A正确.综上可知:错误的结论是C.由于该题选择错误的,故选:C.11.(5分)(2013•新课标Ⅱ)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x【分析】根据抛物线方程算出|OF|=,设以MF为直径的圆过点A(0,2),在Rt△AOF中利用勾股定理算出|AF|=.再由直线AO与以MF为直径的圆相切得到∠OAF=∠AMF,Rt△AMF中利用∠AMF的正弦建立关系式,从而得到关于p的方程,解之得到实数p的值,进而得到抛物线C的方程.【解答】解:∵抛物线C方程为y2=2px(p>0),∴焦点F坐标为(,0),可得|OF|=,∵以MF为直径的圆过点(0,2),∴设A(0,2),可得AF⊥AM,Rt△AOF中,|AF|==,∴sin∠OAF==,∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,∵|MF|=5,|AF|=∴=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x.故选:C.方法二:∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.所以抛物线C的方程为y2=4x或y2=16x.故答案C.12.(5分)(2013•新课标Ⅱ)已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是()A.(0,1) B.C.D.【分析】解法一:先求得直线y=ax+b(a>0)与x轴的交点为M(﹣,0),由﹣≤0可得点M在射线OA上.求出直线和BC的交点N的坐标,①若点M和点A重合,求得b=;②若点M在点O和点A之间,求得<b<;③若点M在点A的左侧,求得>b>1﹣.再把以上得到的三个b的范围取并集,可得结果.解法二:考查临界位置时对应的b值,综合可得结论.【解答】解:解法一:由题意可得,三角形ABC的面积为=1,由于直线y=ax+b(a>0)与x轴的交点为M(﹣,0),由直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,可得b>0,故﹣≤0,故点M在射线OA上.设直线y=ax+b和BC的交点为N,则由可得点N的坐标为(,).①若点M和点A重合,则点N为线段BC的中点,故N(,),把A、N两点的坐标代入直线y=ax+b,求得a=b=.②若点M在点O和点A之间,此时b>,点N在点B和点C之间,由题意可得三角形NMB的面积等于,即=,即=,可得a=>0,求得b<,故有<b<.③若点M在点A的左侧,则b<,由点M的横坐标﹣<﹣1,求得b>a.设直线y=ax+b和AC的交点为P,则由求得点P的坐标为(,),此时,由题意可得,三角形CPN的面积等于,即•(1﹣b)•|x N﹣x P|=,即(1﹣b)•|﹣|=,化简可得2(1﹣b)2=|a2﹣1|.由于此时b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2 .两边开方可得(1﹣b)=<1,∴1﹣b<,化简可得b>1﹣,故有1﹣<b<.再把以上得到的三个b的范围取并集,可得b的取值范围应是,故选:B.解法二:当a=0时,直线y=ax+b(a>0)平行于AB边,由题意根据三角形相似且面积比等于相似比的平方可得=,b=1﹣,趋于最小.由于a>0,∴b>1﹣.当a逐渐变大时,b也逐渐变大,当b=时,a不存在,故b<.综上可得,1﹣<b<,故选:B.二、填空题:本大题共4小题,每小题5分.13.(5分)(2013•新课标Ⅱ)已知正方形ABCD的边长为2,E为CD的中点,则=2.【分析】根据两个向量的加减法的法则,以及其几何意义,可得要求的式子为()•(),再根据两个向量垂直的性质,运算求得结果.【解答】解:∵已知正方形ABCD的边长为2,E为CD的中点,则=0,故=()•()=()•()=﹣+﹣=4+0﹣0﹣=2,故答案为2.14.(5分)(2013•新课标Ⅱ)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=8.【分析】列出从n个正整数1,2,…,n中任意取出两个不同的数的所有取法种数,求出和等于5的种数,根据取出的两数之和等于5的概率为列式计算n 的值.【解答】解:从n个正整数1,2,…,n中任意取出两个不同的数,取出的两数之和等于5的情况有:(1,4),(2,3)共2种情况;从n个正整数1,2,…,n中任意取出两个不同的数的所有不同取法种数为,由古典概型概率计算公式得:从n个正整数1,2,…,n中任意取出两个不同的数,取出的两数之和等于5的概率为p=.所以,即,解得n=8.故答案为8.15.(5分)(2013•新课标Ⅱ)设θ为第二象限角,若tan(θ+)=,则sinθ+cosθ=﹣.【分析】已知等式利用两角和与差的正切函数公式及特殊角的三角函数值化简,求出tanθ的值,再根据θ为第二象限角,利用同角三角函数间的基本关系求出sinθ与cosθ的值,即可求出sinθ+cosθ的值.【解答】解:∵tan(θ+)==,∴tanθ=﹣,而cos2θ==,∵θ为第二象限角,∴cosθ=﹣=﹣,sinθ==,则sinθ+cosθ=﹣=﹣.故答案为:﹣16.(5分)(2013•新课标Ⅱ)等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n的最小值为﹣49.【分析】由等差数列的前n项和公式化简已知两等式,联立求出首项a1与公差d 的值,结合导数求出nS n的最小值.【解答】解:设等差数列{a n}的首项为a1,公差为d,∵S10=10a1+45d=0,S15=15a1+105d=25,∴a1=﹣3,d=,∴S n=na1+d=n2﹣n,∴nS n=n3﹣n2,令nS n=f(n),∴f′(n)=n2﹣n,∴当n=时,f(n)取得极值,当n<时,f(n)递减;当n>时,f(n)递增;因此只需比较f(6)和f(7)的大小即可.f(6)=﹣48,f(7)=﹣49,故nS n的最小值为﹣49.故答案为:﹣49.三.解答题:解答应写出文字说明,证明过程或演算步骤:17.(12分)(2013•新课标Ⅱ)△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面积的最大值.【分析】(Ⅰ)已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式变形,求出tanB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(Ⅱ)利用三角形的面积公式表示出三角形ABC的面积,把sinB的值代入,得到三角形面积最大即为ac最大,利用余弦定理列出关系式,再利用基本不等式求出ac的最大值,即可得到面积的最大值.【解答】解:(Ⅰ)由已知及正弦定理得:sinA=sinBcosC+sinBsinC①,∵sinA=sin(B+C)=sinBcosC+cosBsinC②,∴sinB=cosB,即tanB=1,∵B为三角形的内角,∴B=;=acsinB=ac,(Ⅱ)S△ABC由已知及余弦定理得:4=a2+c2﹣2accos≥2ac﹣2ac×,整理得:ac≤,当且仅当a=c时,等号成立,则△ABC面积的最大值为××=××(2+)=+1.18.(12分)(2013•新课标Ⅱ)如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.(Ⅰ)证明:BC1∥平面A1CD(Ⅱ)求二面角D﹣A1C﹣E的正弦值.【分析】(Ⅰ)通过证明BC1平行平面A1CD内的直线DF,利用直线与平面平行的判定定理证明BC1∥平面A1CD(Ⅱ)证明DE⊥平面A1DC,作出二面角D﹣A1C﹣E的平面角,然后求解二面角平面角的正弦值即可.【解答】解:(Ⅰ)证明:连结AC1交A1C于点F,则F为AC1的中点,又D是AB中点,连结DF,则BC1∥DF,因为DF⊂平面A1CD,BC1⊄平面A1CD,所以BC1∥平面A1CD.(Ⅱ)因为直棱柱ABC﹣A1B1C1,所以AA1⊥CD,由已知AC=CB,D为AB的中点,所以CD⊥AB,又AA1∩AB=A,于是,CD⊥平面ABB1A1,设AB=2,则AA1=AC=CB=2,得∠ACB=90°,CD=,A1D=,DE=,A1E=3故A1D2+DE2=A1E2,即DE⊥A1D,所以DE⊥平面A1DC,又A1C=2,过D作DF⊥A1C于F,∠DFE为二面角D﹣A1C﹣E的平面角,在△A1DC中,DF==,EF==,所以二面角D﹣A1C﹣E的正弦值.sin∠DFE=.19.(12分)(2013•新课标Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为x的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x=105的概率等于需求量落入[100,110)的频率,求T 的数学期望.【分析】(Ⅰ)由题意先分段写出,当x∈[100,130)时,当x∈[130,150)时,和利润值,最后利用分段函数的形式进行综合即可.(Ⅱ)由(I )知,利润T 不少于57000元,当且仅当120≤x ≤150.再由直方图知需求量X ∈[120,150]的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T 不少于57000元的概率的估计值.(Ⅲ)利用利润T 的数学期望=各组的区间中点值×该区间的频率之和即得. 【解答】解:(Ⅰ)由题意得,当x ∈[100,130)时,T=500x ﹣300(130﹣x )=800x ﹣39000,当x ∈[130,150)时,T=500×130=65000, ∴T=.(Ⅱ)由(Ⅰ)知,利润T 不少于57000元,当且仅当120≤x ≤150. 由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度的利润T 不少于57000元的概率的估计值为0.7. (Ⅲ)依题意可得T 的分布列如图,所以ET=45000×0.1+53000×0.2+61000×0.3+65000×0.4=59400.20.(12分)(2013•新课标Ⅱ)平面直角坐标系xOy 中,过椭圆M :(a>b >0)右焦点的直线x +y ﹣=0交M 于A ,B 两点,P 为AB 的中点,且OP的斜率为. (Ⅰ)求M 的方程(Ⅱ)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.【分析】(Ⅰ)把右焦点(c ,0)代入直线可解得c .设A (x 1,y 1),B (x 2,y 2),线段AB 的中点P (x 0,y 0),利用“点差法”即可得到a ,b 的关系式,再与a 2=b 2+c 2联立即可得到a ,b ,c .(Ⅱ)由CD⊥AB,可设直线CD的方程为y=x+t,与椭圆的方程联立得到根与系数的关系,即可得到弦长|CD|.把直线x+y﹣=0与椭圆的方程联立得到根与=即可得到关于t 系数的关系,即可得到弦长|AB|,利用S四边形ACBD的表达式,利用二次函数的单调性即可得到其最大值.【解答】解:(Ⅰ)把右焦点(c,0)代入直线x+y﹣=0得c+0﹣=0,解得c=.设A(x1,y1),B(x2,y2),线段AB的中点P(x0,y0),则,,相减得,∴,∴,又=,∴,即a2=2b2.联立得,解得,∴M的方程为.(Ⅱ)∵CD⊥AB,∴可设直线CD的方程为y=x+t,联立,消去y得到3x2+4tx+2t2﹣6=0,∵直线CD与椭圆有两个不同的交点,∴△=16t2﹣12(2t2﹣6)=72﹣8t2>0,解﹣3<t<3(*).设C(x3,y3),D(x4,y4),∴,.∴|CD|===.联立得到3x2﹣4x=0,解得x=0或,∴交点为A(0,),B,∴|AB|==.===,∴S四边形ACBD∴当且仅当t=0时,四边形ACBD面积的最大值为,满足(*).∴四边形ACBD面积的最大值为.21.(12分)(2013•新课标Ⅱ)已知函数f(x)=e x﹣ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.【分析】(Ⅰ)求出原函数的导函数,因为x=0是函数f(x)的极值点,由极值点处的导数等于0求出m的值,代入函数解析式后再由导函数大于0和小于0求出原函数的单调区间;(Ⅱ)证明当m≤2时,f(x)>0,转化为证明当m=2时f(x)>0.求出当m=2时函数的导函数,可知导函数在(﹣2,+∞)上为增函数,并进一步得到导函数在(﹣1,0)上有唯一零点x0,则当x=x0时函数取得最小值,借助于x0是导函数的零点证出f(x0)>0,从而结论得证.【解答】(Ⅰ)解:∵,x=0是f(x)的极值点,∴,解得m=1.所以函数f(x)=e x﹣ln(x+1),其定义域为(﹣1,+∞).∵.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g (x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.当m=2时,函数在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x0∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得,ln(x0+2)=﹣x0.故f(x)≥=>0.综上,当m≤2时,f(x)>0.选考题:(第22题~第24题为选考题,考生根据要求作答.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分评分,作答时请写清题号)22.(10分)(2013•新课标Ⅱ)【选修4﹣1几何证明选讲】如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB与弦AC上的点,且BC•AE=DC•AF,B、E、F、C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.【分析】(1)已知CD为△ABC外接圆的切线,利用弦切角定理可得∠DCB=∠A,及BC•AE=DC•AF,可知△CDB∽△AEF,于是∠CBD=∠AFE.利用B、E、F、C四点共圆,可得∠CFE=∠DBC,进而得到∠CFE=∠AFE=90°即可证明CA是△ABC外接圆的直径;(2)要求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.只需求出其外接圆的直径的平方之比即可.由过B、E、F、C四点的圆的直径为CE,及DB=BE,可得CE=DC,利用切割线定理可得DC2=DB•DA,CA2=CB2+BA2,都用DB 表示即可.【解答】(1)证明:∵CD为△ABC外接圆的切线,∴∠DCB=∠A,∵BC•AE=DC•AF,∴.∴△CDB∽△AEF,∴∠CBD=∠AFE.∵B、E、F、C四点共圆,∴∠CFE=∠DBC,∴∠CFE=∠AFE=90°.∴∠CBA=90°,∴CA是△ABC外接圆的直径;(2)连接CE,∵∠CBE=90°,∴过B、E、F、C四点的圆的直径为CE,由DB=BE,得CE=DC,又BC2=DB•BA=2DB2,∴CA2=4DB2+BC2=6DB2.而DC2=DB•DA=3DB2,故过B、E、F、C四点的圆的面积与△ABC面积的外接圆的面积比值==.23.(2013•新课标Ⅱ)选修4﹣﹣4;坐标系与参数方程已知动点P,Q都在曲线C:上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(Ⅰ)求M的轨迹的参数方程(Ⅱ)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.【分析】(I)根据题意写出P,Q两点的坐标:P(2cosα,2sinα),Q(2cos2α,2sin2α),再利用中点坐标公式得PQ的中点M的坐标,从而得出M的轨迹的参数方程;(II)利用两点间的距离公式得到M到坐标原点的距离d==,再验证当α=π时,d=0,故M的轨迹过坐标原点.【解答】解:(I)根据题意有:P(2cosα,2sinα),Q(2cos2α,2sin2α),∵M为PQ的中点,故M(cosα+cos2α,sin2α+sinα),∴求M的轨迹的参数方程为:(α为参数,0<α<2π).(II)M到坐标原点的距离d==(0<α<2π).当α=π时,d=0,故M的轨迹过坐标原点.24.(2013•新课标Ⅱ)【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).【分析】(Ⅰ)依题意,由a+b+c=1⇒(a+b+c)2=1⇒a2+b2+c2+2ab+2bc+2ca=1,利用基本不等式可得3(ab+bc+ca)≤1,从而得证;(Ⅱ)利用基本不等式可证得:+b≥2a,+c≥2b,+a≥2c,三式累加即可证得结论.【解答】证明:(Ⅰ)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca得:a2+b2+c2≥ab+bc+ca,由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(Ⅱ)因为+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即++≥a+b+c.所以++≥1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年高考数学试卷分析(理)
一选择题
1、答案 B
解析:i i i i i i i 3113222)2)(1(2-=+--=----=-+-
2、答案 C
解析:]1,(],1,4[),,2(-∞=⋃-=+∞-=T S C T S R )则(
3、答案 D
解析D y x y x xy 故选,2222lg lg lg lg )lg(==+
4、答案 B
解析
不充分条件为奇函数,所以是必要时,当)为奇函数时,(当)(2,2k 2x f x f π
ϕπ
πϕ=+=
5、答案 A
解析 S k 关系如图所示 k S
1
2
3 2 3
5 3 4
7 4 59 由程序框图结果是59 ,答案A
6、答案 C
解析 2
5cos 4cos sin 4sin ,210cos 2sin 22=++=
+a a a a a a 两边平方得,2
5cos sin cos 4cos sin 4sin 2222=+++a a a a a a 则,两边同时除以a 2cos ,得到251tan tan 41,251tan 1tan 4tan 222=++=+++a a a a a 既,则432tan -=a
7 答案 D
解析 由题意得,既在4等分点时,取最小值,过C 点在AB 边上做垂线CD ,则,)(=+=既在四等分点处,使PB*PD 取最大值,则当D 点为中点时,取最大值,既AC=BC
8、答案 C
解析 当k=2时,
0)(1,0)()1,0(),1)(1(2)1()(''2'>><∈--+-=x f x x f x e x x e x f x x 时,当时,当,则C 选项正确
9、答案 D
解析 若四边形21BF AF 为矩形,则三角形21AF F 为直角三角形,有双曲线与椭圆的定义得,22
12212124,2,3,4c AF AF a AF AF c AF AF =+=-==+,则通过解方程的方法可以解得2
6,2==e a 则
10、答案 A
解析 用带特殊选项的思维来看,将每一个选项进行带入,很容易发现A 选项为符合题意的。