抛物线专题测试卷含答案

合集下载

抛物线练习题(含答案)

抛物线练习题(含答案)

抛物线练习题一、选择题1.在直角坐标平面内,到点(1,1)和直线x +2y =3距离相等的点的轨迹是( )A .直线B .抛物线C .圆D .双曲线 2.抛物线y 2=x 上一点P 到焦点的距离是2,则P 点坐标为( )3.抛物线y =ax 2的准线方程是y =2,则a 的值为( )B .-18C .8D .-8 4.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )A .4B .6C .8D .12 5.设过抛物线的焦点F 的弦为AB ,则以AB 为直径的圆与抛物线的准线的位置关系是( )A .相交B .相切C .相离D .以上答案都有可能6.过点F (0,3)且和直线y +3=0相切的动圆圆心的轨迹方程为( )A .y 2=12xB .y 2=-12xC .x 2=12yD .x 2=-12y 7.抛物线y 2=8x 上一点P 到x 轴距离为12,则点P 到抛物线焦点F 的距离为( )A .20B .8C .22D .24 8.抛物线的顶点在坐标原点,焦点是椭圆4x 2+y 2=1的一个焦点,则此抛物线的焦点到准线的距离为( )A .2 3 3 39.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点(k ,-2)与F 点的距离为4,则k 的值是( )A .4B .4或-4C .-2D .2或-210.抛物线y =1mx 2(m <0)的焦点坐标是( )11.抛物线的顶点在原点,对称轴是x 轴,抛物线上的点(-5,25)到焦点的距离是6,则抛物线的方程为( )A .y 2=-2xB .y 2=-4xC .y 2=2xD .y 2=-4x 或y 2=-36x12.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )B .1C .2D .4 二、填空题13.过抛物线焦点F的直线与抛物线相交于A、B两点,若A、B在抛物线准线上的射影是A1、B1,则∠A1FB1= 。

高中抛物线试题及答案

高中抛物线试题及答案

高中抛物线试题及答案一、选择题1. 抛物线的标准方程为 \( y = ax^2 + bx + c \),其中 \( a \)、\( b \)、\( c \) 是常数,且 \( a \neq 0 \)。

下列哪个选项不是抛物线的标准形式?A. \( y = 3x^2 - 4x + 5 \)B. \( y = -2x^2 + 3 \)C. \( x = 4y^2 - 6y + 7 \)D. \( y = 0 \)答案:D2. 对于抛物线 \( y = ax^2 + bx + c \),如果 \( a > 0 \),抛物线的开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A3. 抛物线 \( y = x^2 \) 的焦点坐标是:A. (0, 0)B. (0, 1/4)C. (0, -1/4)D. (1/4, 0)答案:B二、填空题4. 抛物线 \( y = 2x^2 - 4x + 3 \) 的顶点坐标是 _________ 。

答案:(1, 1)5. 抛物线 \( y = -3x^2 + 6x - 5 \) 的对称轴方程是 _________ 。

答案:x = 1三、解答题6. 已知抛物线 \( y = ax^2 + bx + c \) 经过点 (1, 2) 和 (-1, 6),求抛物线的方程。

解:将点 (1, 2) 代入方程得 \( 2 = a(1)^2 + b(1) + c \),即\( a + b + c = 2 \)。

将点 (-1, 6) 代入方程得 \( 6 = a(-1)^2 + b(-1) + c \),即\( a - b + c = 6 \)。

解得 \( b = -2 \),\( a + c = 4 \)。

假设 \( a = 1 \),则 \( c = 3 \),抛物线方程为 \( y = x^2- 2x + 3 \)。

7. 已知抛物线 \( y = x^2 + 4x + 5 \),求其焦点坐标。

高考数学专题《抛物线》习题含答案解析

高考数学专题《抛物线》习题含答案解析

专题9.5 抛物线1.(2020·全国高考真题(理))已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2 B .3 C .6 D .9【答案】C 【解析】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C.2.(2020·北京高三二模)焦点在x 轴的正半轴上,且焦点到准线的距离为4的抛物线的标准方程是( ) A .x 2=4y B .y 2=4x C .x 2=8y D .y 2=8x【答案】D 【解析】根据题意,要求抛物线的焦点在x 轴的正半轴上, 设其标准方程为22(0)y px p =>, 又由焦点到准线的距离为4,即p =4, 故要求抛物线的标准方程为y 2=8x , 故选:D.3.(全国高考真题)设F 为抛物线2:4C y x =的焦点,曲线()0ky k x=>与C 交于点P ,PF x ⊥轴,则k =( )A .12B .1C .32D .2【答案】D 【解析】由抛物线的性质可得(1,2)221kP y k ⇒==⇒=,故选D. 4.(2020·全国高考真题(文))设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)练基础【答案】B 【解析】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.5.(2019·四川高三月考(文))若抛物线22y px =的准线为圆2240x y x ++=的一条切线,则抛物线的方程为( ) A.216y x =- B.28y x =-C.216y x =D.24y x =【答案】C 【解析】∵抛物线22y px =的准线方程为x=2p-,垂直于x 轴. 而圆2240x y x ++=垂直于x 轴的一条切线为4x =-, 则42p=,即8p =. 故抛物线的方程为216y x =. 故选:C .6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】(x -1)2+y 2=4. 【解析】抛物线y 2=4x 中,2p =4,p =2, 焦点F (1,0),准线l 的方程为x =-1, 以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.7.(2019·山东高三月考(文))直线l 与抛物线22x y =相交于A ,B 两点,当AB 4=时,则弦AB 中点M 到x 轴距离的最小值为______. 【答案】32【解析】由题意,抛物线22x y =的焦点坐标为(0,12),根据抛物线的定义如图,所求d=111A B AF BF 113M 2222A B AB M ++--==≥= 故答案为:32. 8.(2021·沙湾县第一中学(文))设过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,且直线AB 的倾斜角为4π,则线段AB 的长是____,焦点F 到A ,B 两点的距离之积为_________.【答案】8 8 【分析】由题意可得直线AB 的方程为1y x =-,然后将直线方程与抛物线方程联立方程组,消去y 后,利用根与系数的关系,结合抛物线的定义可求得答案 【详解】解:由题意得(1,0)F ,则直线AB 的方程为1y x =-,设1122(,),(,)A x y B x y ,由241y x y x ⎧=⎨=-⎩,得2610x x -+=, 所以12126,1x x x x +==, 所以12628AB x x p =++=+=,因为11221,122=+=+=+=+p pAF x x BF x x , 所以()()1212121116118AF BF x x x x x x ⋅=+⋅+=+++=++=, 故答案为:8,89.(2021·全国高三专题练习)已知抛物线顶点在原点,焦点在坐标轴上,又知此抛物线上的一点(),3A m -到焦点F 的距离为5,则m 的值为__________;抛物线方程为__________. 【答案】答案见解析 答案见解析 【分析】由于抛物线的开口方向未定,根据点(),3A m -在抛物线上这一条件,抛物线开口向下,向左、向右均有可能,以此分类讨论,利用焦半径公式列方程可得p 的值,根据点(),3A m -在抛物线上可得m 的值. 【详解】根据点(),3A m -在抛物线上,可知抛物线开口向下,向左、向右均有可能, 当抛物线开口向下时,设抛物线方程为22x py =-(0p >), 此时准线方程为2py =,由抛物线定义知(3)52p --=,解得4p =.所以抛物线方程为28x y ,这时将(),3A m -代入方程得m =±当抛物线开口向左或向右时,可设抛物线方程为22y ax (0a ≠),从p a =知准线方程为2ax =-,由题意知()25232am am⎧+=⎪⎨⎪-=⎩,解此方程组得11192a m =⎧⎪⎨=⎪⎩,22192a m =-⎧⎪⎨=-⎪⎩,33912a m =⎧⎪⎨=⎪⎩,44912a m =-⎧⎪⎨=-⎪⎩,综合(1)、(2)得92m =,22y x =; 92m =-,22y x =-;12m =,218y x =; 12m =-,218y x =-;m =±28xy .故答案为:92,92-,12,12-,±22y x =,22y x =-,218y x =,218y x =-,28x y .10.(2019·广东高三月考(理))已知F 为抛物线2:4T x y =的焦点,直线:2l y kx =+与T 相交于,A B 两点.()1若1k =,求FA FB +的值;()2点(3,2)C --,若CFA CFB ∠=∠,求直线l 的方程.【答案】(1)10(2)3240x y +-= 【解析】(1)由题意,可得()0,1F ,设221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,联立方程组224y kx x y=+⎧⎨=⎩,整理得2480x kx --=,则124x x k +=,128x x =-,又由22121144x x FA FB +++=+()2121222104x x x x +-=+=.(2)由题意,知211,14x FA x ⎛⎫=- ⎪⎝⎭,222,14x FB x ⎛⎫=- ⎪⎝⎭,()3.3FC =--, 由CFA CFB ∠=∠,可得cos ,cos ,FA FC FB FC =又2114x FA =+,2214x FB =+,则FA FC FB FC FA FC FB FC =, 整理得()1212420x x x x ++-=,解得32k =-, 所以直线l 的方程为3240x y +-=.1.(2021·吉林长春市·高三(理))已知M 是抛物线24y x =上的一点,F 是抛物线的焦点,若以Fx 为始边,FM 为终边的角60xFM ∠=,则FM 等于( ) A .2 B C .D .4【答案】D 【分析】设点200,4y M y ⎛⎫ ⎪⎝⎭,取()1,0a =,可得1cos ,2FM a <>=,求出20y 的值,利用抛物线的定义可求练提升得FM 的值. 【详解】设点()00,M x y ,其中2004y x =,则()1,0F ,2001,4y FM y ⎛⎫=- ⎪⎝⎭,取()1,0a =,则211cos ,2y FM a FM a FM a-⋅<>===⋅⎛,可得4200340480y y -+=,因为20104y ->,可得204y >,解得2012y =,则20034y x ==,因此,014MF x=+=. 故选:D.2.(2017·全国高考真题(文))过抛物线2:4C y x =的焦点F 的直线交C 于点M (在x 轴上方),l 为C 的准线,点N 在l 上且MNl ⊥,则点M 到直线NF 的距离为()A. B. D.【答案】A 【解析】设直线l 与x 轴相交于点P ,与直线MN 相交于点Q ,(1,0)F ,设||||MN MF m ==,因为||2,30PF NQM =∠=,所以||4,||2QF QM m ==, 所以42m m +=,解得:4m =,设00(,)M x y ,由焦半径公式得:014x +=, 所以03x=,0y =,所以sin sin 42NP MNF NFP NF ∠=∠===,所以点M 到直线NF 的距离为||sin 4NM MNF ⋅∠=⋅=3.(2020·广西南宁三中其他(理))已知抛物线28C y x =:的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,Q 是直线PF 与抛物线C 的一个交点,若PQ =,则直线PF 的方程为( )A .20x y --=B .20x y +-=C .20x y -+=D .20x y ++=【答案】B 【解析】过Q 点作QH PM ⊥于H ,因为PQ =,由抛物线的定义得PQ =,所以在Rt PQH ∆中,4PQH π∠=,所以4PFM π∠=,所以直线PF 的斜率为1k =-,所以直线PF 的方程为()()012y x -=--, 即20x y +-=, 故选B.4.(2020·浙江高三月考)如图,已知抛物线21:4C y x =和圆222:(1)1C x y -+=,直线l 经过1C 的焦点F ,自上而下依次交1C 和2C 于A ,B ,C ,D 四点,则AB CD ⋅的值为( )A .14B .12C .1D .2【答案】C 【解析】因为抛物线21:4C y x =的焦点为(1,0)F ,又直线l 经过1C 的焦点F ,设直线:(1)l y k x =-,由24(1)y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=, 设1122(,),(,)A x y B x y ,则121=x x由题意可得:1111=-=+-=AB AF BF x x , 同理2=CD x ,所以12cos01︒⋅=⋅⋅==AB CD AB CD x x . 故选C5.【多选题】(2022·全国高三专题练习)已知抛物线21:C y mx =与双曲线222:13y C x -=有相同的焦点,点()02,P y 在抛物线1C 上,则下列结论正确的有( )A .双曲线2C 的离心率为2B .双曲线2C 的渐近线为y x = C .8m =D .点P 到抛物线1C 的焦点的距离为4【答案】ACD 【分析】由双曲线方程写出离心率、渐近线及焦点,即可知A 、B 、C 的正误,根据所得抛物线方程求0y ,即知D 的正误. 【详解】双曲线2C 的离心率为2e ==,故A 正确;双曲线2C 的渐近线为y =,故B 错误; 由12,C C 有相同焦点,即24m=,即8m =,故C 正确; 抛物线28y x =焦点为()2,0,点()02,P y 在1C 上,则04y =±,故()2,4P 或()2,4P -,所以P 到1C 的焦点的距离为4,故D 正确. 故选:ACD .6.【多选题】(2021·海南鑫源高级中学)在下列四个命题中,真命题为( )A .当a 为任意实数时,直线(a -1)x -y +2a +1=0恒过定点P ,则过点P 且焦点在y 轴上的抛物线的标准方程是243x y =B .已知双曲线的右焦点为(5,0),一条渐近线方程为2x -y =0,则双曲线的标准方程为221205x y -= C .抛物线y =ax 2(a ≠0)的准线方程14y a=-D .已知双曲线2214x y m +=,其离心率()1,2e ∈,则m 的取值范围(-12,0)【答案】ACD 【分析】求出直线定点设出抛物方程即可判断A ;根据渐近线方程与焦点坐标求出,a b 即可判断B ;根据抛物线方程的准线方程公式即可判断C ;利用双曲线离心率公式即可判断D . 【详解】对A 选项,直线(a -1)x -y +2a +1=0恒过定点为()2,3P -,则过点P 且焦点在y 轴上的抛物线的标准方程设为22x py =,将点()2,3P -代入可得23p =,所以243x y =,故A 正确;对B 选项,知5,2bc a==,又22225a b c +==,解得225,20a b ==,所以双曲线的标准方程为221520x y -=,故B 错; 对C 选项,得21x y a =,所以准线方程14y a=-,正确;对D 选项,化双曲线方程为2214x y m-=-,所以()1,2e =,解得()12,0m ∈-,故正确.故选:ACD7.(2021·全国高二课时练习)已知点M 为抛物线2:2(0)C y px p =>上一点,若点M 到两定点(,)A p p ,,02p F ⎛⎫⎪⎝⎭的距离之和最小,则点M 的坐标为______.【答案】,2p p ⎛⎫⎪⎝⎭【分析】过点M 作抛物线准线的垂线,垂足为B ,根据抛物线的定义可得||||MF MB =, 易知当A ,B ,M 三点共线时||MB MA +取得最小值且为||AB ,进而可得结果. 【详解】过点M 作抛物线准线的垂线,垂足为B ,由抛物线的定义,知点M 到焦点,02p F ⎛⎫⎪⎝⎭的距离与点M 到准线的距离相等,即||||MF MB =,所以||||||||MF MA MB MA +=+, 易知当A ,B ,M 三点共线时,||MB MA +取得最小值, 所以min 3(||||)||2p MF MA AB +==,此时点M 的坐标为,2p p ⎛⎫⎪⎝⎭. 故答案为:2p p ⎛⎫⎪⎝⎭,8.(2021·全国高二课时练习)抛物线()220y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为______.【分析】设=AF a ,=BF b ,根据中位线定理以及抛物线定义可得()12MN a b =+,在AFB △中,由余弦定理以及基本不等式可得)AB a b ≥+,即可求得MN AB 的最大值.【详解】设=AF a ,=BF b ,作AQ 垂直抛物线的准线于点Q ,BP 垂直抛物线的准线于点P .由抛物线的定义,知AF AQ =,BF BP =.由余弦定理得()2222222cos120AB a b ab a b ab a b ab =+=︒=++=+-.又22a b ab +⎛⎫≤ ⎪⎝⎭,∴()()()()22221344a b ab a b a b a b +-≥+-+=+,当且仅当a b =时,等号成立,∴)AB a b ≥+,∴()1a b MN AB +≤=MN AB9.(2020·山东济南外国语学校高三月考)抛物线C :22y x =的焦点坐标是________;经过点()4,1P 的直线l 与抛物线C 相交于A ,B 两点,且点P 恰为AB 的中点,F 为抛物线的焦点,则AF BF +=________.【答案】1,02⎛⎫⎪⎝⎭9【解析】抛物线C :22y x =的焦点1,02F ⎛⎫⎪⎝⎭. 过A 作AM ⊥准线交准线于M ,过B 作BN ⊥准线交准线于N ,过P 作PK ⊥准线交准线 于K ,则由抛物线的定义可得AM BN AF BF +=+. 再根据P 为线段AB 的中点,119(||||)||4222AM BN PK +==+=, ∴9AF BF +=,故答案为:焦点坐标是1,02⎛⎫ ⎪⎝⎭,9AF BF +=.10.(2019·四川高考模拟(文))抛物线C :()220x py p =>的焦点为F ,抛物线过点(),1P p .(Ⅰ)求抛物线C 的标准方程与其准线l 的方程;(Ⅱ)过F 点作直线与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线的切线,证明两条切线的交点在抛物线C 的准线l 上.【答案】(Ⅰ)抛物线的标准方程为24x y =,准线l 的方程为1y =-;(Ⅱ)详见解析. 【解析】(Ⅰ)由221p p =⨯,得2p =,所以抛物线的标准方程为24x y =,准线l 的方程为1y =-.(Ⅱ)根据题意直线AB 的斜率一定存在,又焦点()0,1F ,设过F 点的直线方程为1y kx =+,联立241x yy kx ⎧=⎨=+⎩,得,2440x kx --=. 设()11,A x y ,()22,B x y ,则124x x k +=,124x x =-.∴()22221212122168x x x x x x k +=+-=+.由214y x =得,1'2y x =,过A ,B 的抛物线的切线方程分别为 ()()1112221212y y x x x y y x x x ⎧-=-⎪⎪⎨⎪-=-⎪⎩, 即21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,两式相加,得()()2212121148y x x x x x =+-+,化简,得()221y kx k =-+,即()21y k x k =--, 所以,两条切线交于点()2,1k -,该点显然在抛物线C 的准线l :1y =-上.1.(2021·全国高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( ) A .1 B .2 C .D .4【答案】B 【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【详解】抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,其到直线10x y -+=的距离:d == 解得:2p =(6p =-舍去). 故选:B.2.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( ) A B C .2D .3练真题【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c ,所以222212a cbc =-=,所以双曲线的离心率ce a== 故选:A.3.(2020·北京高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ). A .经过点O B .经过点P C .平行于直线OP D .垂直于直线OP【答案】B 【解析】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.4.(2021·全国高考真题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【详解】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±, 不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =, (6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.5.的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点F AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=, 解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-= 解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:1636.(2020·浙江省高考真题)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【答案】(Ⅰ)1(,0)32;【解析】 (Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,?22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,p ≤ 所以,p,此时A . 法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当m t ==p .。

抛物线基础题(含答案)

抛物线基础题(含答案)

抛物线(A)一.选择题:1. 准线为x =2的抛物线的标准方程是A .24y x =- B.28y x =- C.24y x = D.28y x = (答:B) 2. 焦点是(-5,0)的抛物线的标准方程是A.25y x =B.210y x =-C.220y x =-D.220x y =- (答:C)3. 抛物线F 是焦点,则p 表示A. F到准线的距离B.F 到准线距离的14 B. C. F 到准线距离的18D. F 到y轴距离的 (答:B) 4. 动点M (x,y)到点F(4,0)的距离比它到直线x+5=0的距离小1,则点M 的轨迹方程是A.40x += B.40x -= C.28y x = D.216y x = (答:D ) 5. 若抛物线2(1)y a x =+的准线方程是x=-3,那么抛物线的焦点坐标是A.(3,0) B.(2,0) C.1,0) D.(-1,0) (答:C)6. 24x y =点于直线0x y -=对称的抛物线的焦点坐标为 A 10,16⎛⎫ ⎪⎝⎭ B 10,16⎛⎫- ⎪⎝⎭ C 1,016⎛⎫ ⎪⎝⎭D1,016⎛⎫- ⎪⎝⎭ (答:A) 7. 动点P 到直线40x +=的距离减去它到()2,0M 的距离之差等于2,则点P的轨迹是A 直线B 椭圆 C双曲线 D抛物线 (答:D)8. 抛物线的顶点在原点,焦点在y 轴上,抛物线上一点(),3P m -到焦点的距离为5,则抛物线的准线方程是A 4y = B4y =- C 2y = D 2y =- (答:C )9. 抛物线()20y ax a =<的焦点坐标和准线方程分别为 A 11,044x a a ⎛⎫= ⎪⎝⎭B 11,044x a a ⎛⎫-=- ⎪⎝⎭C 110,44y a a ⎛⎫=- ⎪⎝⎭D 110,44y a a⎛⎫-=- ⎪⎝⎭ (答:C) 10. 在28y x =上有一点P,它到焦点的距离是20,则P 点的坐标是A ()8,12 B()18,12- C ()18,12或()18,12- D ()12,18或()12,18-(答:C)11. 物线210y x =的焦点到准线的距离是 A.10 B.5 C.20 D.52 (答:B) 12. 抛物线28x y =-的焦点坐标是A.()4,0- B .()0,4- C.()2,0- D.()0,2- (答:D)二.填空题:1. 2(0)y ax a =≠的焦点坐标是 答:(,0)4a2. 24y x =的焦点坐标是准线方程是 (答:(0,116),116y =- 3. 顶点在原点,焦点为(0,-2)的抛物线的方程为 (答:28x y =-)4. 抛物线22(0)y px p =>上一点M到焦点的距离是()2p a a >,则点M 到准线的距离是点M的横坐标是 (答:,2p a a -) 5. 一条隧道的顶部是抛物拱形,拱高1.1米,跨度是2.2米,则拱形的抛物线方程是(答:21.1x y =-)6. 抛物线22(0)y px p =>点()23-,到其焦点的距离是5,则p =_______(答:4) 7. 抛物线()()12,1812,18-24x y =上一点A 的纵坐标为4,则点A与抛物线的焦点为_______(答:5)三.解答题:1. 根据下列条件写出抛物线的标准方程(1) 焦点是F(3,0) (答:212y x =)(2) 准线方程是14x =- (答:2y x =) (3) 焦点到准线距离是2 (答:2x y =±24y x =±)2. 求顶点在原点,对称轴为坐标轴,过点(2,-8)的抛物线方程,并指出焦点和准线。

抛物线(考题猜想,易错必刷25题4种题型)(解析版)—高二数学上学期期中

抛物线(考题猜想,易错必刷25题4种题型)(解析版)—高二数学上学期期中

抛物线(易错必刷25题4种题型专项训练)➢抛物线的定义➢抛物线的方程➢抛物线的焦半径➢直线与抛物线的位置关系一.抛物线的定义(共5小题)1.已知抛物线214y x =上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为( )A .1716B .5C .6D .【答案】B【详解】依题意,由抛物线的定义知,点A 到抛物线焦点的距离即点A 到准线1y=-的距离,即4(1)5--=.故选:B.2.(多选)已知抛物线的焦点在y 轴上,抛物线上一点(),3M m -到焦点的距离为5,则m 的值为( )A .B .-C .D .-3.,P Q 分别是抛物线 22x y = 和 x 轴上的动点, ()2,1M - ,则 PM PQ + 的最小值为( )A .5B .52C D .24.已知点()01,P y 是抛物线2:2(0)C y px p =>上一点,且点P 到C 的焦点距离为2,则p = .【答案】2【详解】抛物线准线方程为故答案为:2.5.已知抛物线2:4C y x =的焦点为F ,点M 在C 上,且点M 到直线2x =-的距离为6,则MF = .二.抛物线的方程(共3小题)6.已知曲线()2024log 3y x =-过抛物线2:C y mx =的焦点,则C 的准线方程为( )A .14=-x B .4y =-C .4x =-D .14y =-【答案】C【详解】易知函数()2024log 3y x =-过x 轴上定点()4,0,即为C 的焦点,故C 的准线方程为4x =-.故选:C.7.过抛物线C :22y px =(0p >)的顶点O ,且倾斜角为60°的直线与抛物线的另一个交点为A ,若8OA =,则抛物线的方程为 .由题意可知4,OB AB ==代入抛物线方程得488p =故答案为:212y x=8.抛物线()220y px p =>的焦点为F ,其准线与双曲线22142x y-=的渐近线相交于A 、B 两点,若ABF △的周长为42,则抛物线方程是 .故答案为:24y x=三.抛物线的焦半径(共8小题)9.设F 为抛物线2:8C y x =的焦点,点()00,P x y 为C 上一点,过P 作y 轴的垂线,垂足为A ,若3PF PA =,则cos FPA Ð=( )A .223B .2-C .13D .13-所以022,y O =为原点,10.已知抛物线24x y =的焦点为F ,过F 的直线l 交抛物线于A 、B 两点,若4AF BF =,则AF = .11.已知M 是抛物线28y x =上一点,F 是抛物线的焦点,O 为坐标原点.若120MFO Ð=o ,则线段MF 的长为 .【答案】8【详解】如图所示:设MF a =,易求(F 因为 120MFO Ð=o 所以在Rt MEF V ,ME 所以 132,22M a æ+ççè12.已知抛物线216y x =,的焦点为F ,P 点在抛物线上,Q 点在圆C :()()22624x y -+-=上,则PQ PF +的最小值为 .13.已知抛物线C :24y x =的焦点为F ,点A 、B 是抛物线C 上不同的两点,且A 、B 中点的横坐标为2,则AF BF += .【答案】6【详解】设()()1122,,,A x y B x y ,由A ,B 中点的横坐标为2,可得124x x +=,所以||||+=AF BF 12116x x +++=.故答案为:6.14.直线l 经过抛物线24y x =的焦点F ,且与抛物线交于A ,B 两点.若3AF BF =,则AB =( )A .83B .3C .163D .32设1122()A x y B x y ,,(,),则由3AF BF =,得1y 由3AF BF =,得1x 联立解得3x =,x =15.(多选)设抛物线24y x =,F 为其焦点,P 为抛物线上一点,则下列结论正确的是( )A .抛物线的准线方程是=1x -B .焦点到准线的距离为4C .若()2,1A ,则PA PF +的最小值为3D .以线段PF 为直径的圆与y 轴相切由抛物线的定义,得PF因此,以PF 为直径的圆与故选:ACD16.(多选)已知抛物线24y x =的焦点为F ,过原点O 的动直线l 交抛物线于另一点P ,交抛物线的准线于点Q ,下列说法正确的是.( )A .若O 为线段PQ 中点,则l 的斜率为±2B .若4PF =,则OP =C .存在直线l ,使得PF QF ^D .PFQ △面积的最小值为2若O 为PQ 中点,则OHP △即H 与焦点F 重合,所以x 代入方程24y x =,得P y =±所以直线l 的斜率为2PPy x =±B 项,若4=PF ,则PF =四.直线与抛物线的位置关系(共9小题)17.(多选)在平面直角坐标系中,过抛物线C :24y x =的焦点F 作一条与坐标轴不平行的直线l ,与C 交于()11,A x y ,()22,B x y 两点,则下列说法正确的是( )A .若直线OB 与准线交于点D ,则0AD k =B .对任意的直线l ,121x x =C .2AF BF +的最小值为3+D .以AF 为直径的圆与y 轴的公共点个数为偶数【答案】ABC【详解】对于A ,点A (x 1,y 1),B (x 2,y 2)在抛物线C :24y x =上,18.已知抛物线2:4C y x =的焦点为,,F A B 为C 上的两点.若直线FA 的斜率为12,且0FA FB ×=,延长,AF BF 分别交C 于,P Q 两点,则四边形ABPQ 的面积为.【答案】50【详解】由题可知,抛物线的焦点坐标为119.斜率为2的直线l 与抛物线2y px =相交于A 、B 两点,若A 、B 两点的中点为()2,1M ,则p 的值是 20.已知抛物线24C y x =:的焦点为F ,过F 的直线l 交C 于,A B 两点,y 轴被以AB 为直径的圆所截得的弦长为6,则AB = .【答案】10【详解】抛物线C :24y x =的焦点故设直线AB 的方程为y 设A (x 1,y 1),B (x 2,y 2).则()24,1,y x y k x ì=ïí=-ïî即22k x ()2222Δ244k k k =+-×21.已知椭圆C :()222210+=>>x y a b a b 的左、右焦点分别为1F ,2F ,椭圆C 的右焦点与抛物线24y x =的焦点重合,两曲线在第一象限的交点为P ,12PF F V (1)求椭圆C 的方程;(2)过点P 的直线l 交椭圆C 于另一点A ,若212PAF PF F S S =△△,求l 的方程.直线()1:261AF y x =-+,联立()22261143y x x y ì=-+ïí+=ïî,消去y 得,23364280x x ++=,解得23x =-或1411x =-,当23x =-时,22626133y æö=--+=-ç÷èø,22.已知椭圆22221(0)x y a b a b +=>>的离心率为12,抛物线24x y =的焦点为点F ,过点F 作y 轴的垂线交椭圆于P ,Q 两点,||PQ =.(1)求椭圆的标准方程;(2)过抛物线上一点A 作抛物线的切线l 交椭圆于B ,C 两点,设l 与x 轴的交点为D ,BC 的中点为E ,BC 的中垂线交x 轴于点G ,若GED V ,FOD V 的面积分别记为1S ,2S ,且121849S S =,点A 在第一象限,求点A 的坐标.23.已知椭圆2222:1(0)x y C a b a b +=>>过点,且其一个焦点与抛物线28y x =的焦点重合.(1)求椭圆C 的方程;(2)设直线AB 与椭圆C 交于A ,B 两点,若点(2,1)M -是线段AB 的中点,求直线AB 的方程.24.已知抛物线21:3C y x =及抛物线22:2(0)C y px p =>,过2C 的焦点F 的直线与1C 交于A ,B 两点,O 为坐标原点,OA OB ^.过F 的两条直线MN ,PQ 与2C 交于M ,N ,P ,Q 四点,其中M ,P 在第一象限,若直线MP 与x 轴的交点为(),0T t .(1)求2C 的方程;(2)若2t=-,求直线NQ与x轴的交点的坐标;(3)是否存在点T,使得M,N,P,Q四点共圆?若存在,求出t的值;若不存在,请说明理由.(2)由(1)可得设直线MN的方程为由2123y xx myì=í=+î,得(3)由(2)可得1y y 若M ,N ,P ,Q 四点共圆,则有即2212331212y y æöæö++=ç÷ç÷èøèø即22223124y y y y +=+,所以25.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,且||AB =(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,且90MFN Ð=°,求MFN △面积的最小值.【答案】(1)2p =;∵F(1,0),显然直线MN的斜率不可能为零,设直线MN:x my n=+,M由24y xx my nì=í=+î可得,24y-。

抛物线试题 (含答案)

抛物线试题  (含答案)

题型一:抛物线的基本量1.抛物线214y x =的焦点坐标是( C ) A.1(0)16, B.1(0)16, C.(0,1) D.(1,0)2.抛物线28y x =的焦点到准线的距离是( C )A.1B.2C.4D.83.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A 、 B 两点,|AF |=2,则|BF |=___2_____.4. 已知椭圆的焦点重合,则该椭圆的离心率是5. 两个正数的等差中项是,一个等比中项是,且,则抛物线的焦点坐标( C )A .B .C .D . 6.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( C )A. 12B. 1C. 2D. 47. 抛物线2y ax =的焦点坐标为CA .1(0,)aB .(0,)4aC .1(0,)4a D .1(,0)4a 题型二:求抛物线的标准方程1.已知抛物线C:22(y px =p>0)过点A(1,-2). 则其方程为 24y x =,2. 已知抛物线上一点M (1,m )到其焦点的距离为5,则该抛物线的准线方程为( A )A .x=8B .x=-8C .x=4D .x=-4 3.设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点的面积为4,则抛物线方程为( B )A.24y x =±B.28y x =±C.24y x =D.28y x =4.已知F 是抛物线y =14x 2的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是 (A ) x y k k ky x 12)0(3222=>=+的一个焦点与抛物线23,a b 92a b >2b y x a =-5(,0)16-2(,0)5-1(,0)5-1(,0)522y px =A. x 2=2y -1B. x 2=2y -116C. x 2=y -12D. x 2=2y -2题型三:抛物线的实际应用1. 已知抛物线型拱桥的顶点距离水面2米时,测量水面宽为8米,当水面上升12米后,水面的宽度是__43__米.题型四:利用抛物线的定义解题1. 在22y x = 上有一点P ,它到(1,3)A 的距离与它到焦点的距离之和最小,则点P 的坐标是( B )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)2. 已知点P 在抛物线24y x =上,那么点P 到点(21)Q -,的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为_1(,1)4-_题型五:抛物线的焦半径和焦点弦问题1.过抛物线22(0)y px p =>的焦点F 作倾斜角为45 的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p= 2 .2. 已知过抛物线24y x =的焦点F 的直线交该抛物线于A 2B AF BF ,,||=,||=两点则 2 .3. 设点为的焦点,、、为该抛物线上三点,若,则 612 .4.已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( B )A.x=1B.x=-1C.x=2D.x=-2题型六:抛物线与直线的位置关系1. 正三角形的一个顶点位于原点,另外两个顶点在抛物线上,则这个正三角形的边长为( B )A .B .C .8D .162.已知抛物线C:28y x =的焦点为F,准线与x 轴的交点为K,点A 在抛物线C 上且|AK|=则△AFK 的面积为(B )A.4B.8C.16D.323.直线y =x -3与抛物线y 2=4x 交于A ,B 两点,过A ,B 两点向抛物线的准线作垂线,垂足分别为P ,Q ,则梯形APQB 的面积为( A )A. 48B. 56C. 64D. 724.. 设O 是坐标原点,F 是抛物线y 2=2px (p >0)的焦点,A 是抛物线上的一点,FA →与x 轴正向的夹角为60°,则|OA →|为____ 212p ____. F 24y x =A B C 0FA FB FC ++= ||||||FA FB FC ++= 24y x =。

初三抛物线试题及答案

初三抛物线试题及答案

初三抛物线试题及答案一、选择题1. 抛物线y = ax^2 + bx + c的顶点坐标是什么?A. (-b, c)B. (-b/2a, c - b^2/4a)C. (-b/2a, c + b^2/4a)D. (-b/a, c)答案:B2. 如果抛物线y = x^2 + 2x + 1的对称轴是直线x = -1,那么a的值是多少?A. 1B. -1C. 0D. 2答案:A3. 抛物线y = 2x^2 - 4x + 3的开口方向是:A. 向上B. 向下C. 水平D. 无法确定答案:A二、填空题4. 已知抛物线y = 3x^2 - 6x + 5,求抛物线的顶点坐标。

答案:顶点坐标为(1, 2)5. 抛物线y = -x^2 + 4x - 3的焦点坐标是什么?答案:焦点坐标为(2, -2)三、解答题6. 已知抛物线y = 2x^2 - 8x + 7,求其与x轴的交点。

答案:首先将方程化为标准形式:y = 2(x - 2)^2 - 1。

抛物线与x轴的交点即为y = 0时的x值。

解方程2(x - 2)^2 - 1 = 0,得到x= 2 ± √(1/2),即x = 2 ± √2/2。

7. 已知抛物线y = ax^2 + bx + c经过点(1, 3)和(-1, 1),求a和b 的值。

答案:将点(1, 3)和(-1, 1)代入方程,得到两个方程:3 = a(1)^2 + b(1) + c1 = a(-1)^2 + b(-1) + c解这两个方程,得到a + b + c = 3和a - b + c = 1。

相减消去c,得到2b = 2,即b = 1。

将b的值代入任一方程,得到a + 1 + c = 3,即a + c = 2。

由于c = 3 - a - b = 3 - a - 1 = 2 - a,代入得到a + 2 - a = 2,这是一个恒等式,说明a可以是任意实数。

四、应用题8. 一个物体从地面向上抛,其高度h(米)与时间t(秒)的关系为h = -5t^2 + 20t。

初中抛物线试题及答案

初中抛物线试题及答案

初中抛物线试题及答案
一、选择题
1. 抛物线y = x^2 - 2x + 1的顶点坐标是()。

A. (1, 0)
B. (1, -1)
C. (0, 1)
D. (0, -1)
答案:A
2. 如果抛物线y = ax^2 + bx + c的对称轴是直线x = -2,那么b的值是()。

A. 4a
B. -4a
C. 2a
D. -2a
答案:B
二、填空题
1. 抛物线y = 2x^2 + 4x + 3的顶点坐标是()。

答案:(-1, 1)
2. 抛物线y = -3x^2 + 6x - 2的对称轴方程是()。

答案:x = 1
三、解答题
1. 已知抛物线y = x^2 - 6x + 9,求抛物线与x轴的交点坐标。

答案:抛物线与x轴的交点坐标为(3, 0)。

2. 抛物线y = 2x^2 - 4x + 3,求抛物线的顶点坐标和对称轴。

答案:抛物线的顶点坐标为(1, 1),对称轴为直线x = 1。

四、应用题
1. 一个抛物线形的桥拱,其方程为y = -0.5x^2 + 4x + 1,桥拱的最高点离水面的高度是5米。

求桥拱的跨度。

答案:桥拱的跨度为8米。

2. 一个物体从地面以一定的初速度向上抛,其运动轨迹可以用抛物线y = -5x^2 + 20x + 2描述,其中x表示时间(秒),y表示高度(米)。

求物体达到最高点时的时间。

答案:物体达到最高点时的时间是2秒。

抛物线基础训练题经典含答案

抛物线基础训练题经典含答案

抛物线基础训练题1.动点P 到点A (0,2)的距离比到直线l :y =-4的距离小2,则动点P 的轨迹方程为 D A. x y 42= B. x y 82= C.y x 42= D.y x 82=2.已知直线l 与抛物线x y 82=交于A 、B 两点,且l 经过抛物线的焦点F ,A 点的坐标为(8,8),则线段AB 的中点到准线的距离是 A A.425 B.225 C.825D.253.已知抛物线的焦点在直线y x 2--4=0上,则此抛物线的标准方程是C A.x y 162= B.y x 82-= C. x y 162=或y x 82-= D. x y 162=或y x 82=4.直线y =kx -2与抛物线x y 82=交于A 、B 两点,且AB 的中点横坐标为2,则k 的值是 BA.-1B.2C.-1或2D.以上都不是5.动圆M 经过点A (3,0)且与直线l :x =-3相切,则动圆圆心M 的轨迹方程是 A A. x y 122= B. xy 62= C. xy 32= D.x y 242=6.θ是任意实数,则方程x2+y2sinθ=4的曲线不可能是(C )A.椭圆 .双曲线 .抛物线 .圆7.双曲线ky x 224+=1的离心率e∈(1,2),则k 的取值范围是(B ) .(-∞,0) B.(-12,0) C.(-3,0) D.(-60,-12)8.以12422y x -=1的焦点为顶点,顶点为焦点的椭圆方程为(D ) A.1121622=+y x B.1161222=+y x C. 141622=+y x D.116422=+y x9.抛物线y =x 2上到直线2x -y =4距离最近的点的坐标是( B ).(45,23) .(1,1) .( 49,23) .(2,4)10.1122222222=-=-ay b x b y a x 与(a>b>0)的渐近线(D ).重合 B.不重合,但关于x 轴对应对称 .不重合,但关于y 轴对应对称 D.不重合,但关于直线y =x 对应对称 11.抛物线22x y =的焦点坐标是( C )A .)0,1(B .)0,41(C .)81,0(D . )41,0(12 已知抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为( D ) A .y x 82= B .y x 42= C .y x 42-= D .y x 82-=13.抛物线x y 122=截直线12+=x y 所得弦长等于 ( A )A .15 B .152C .215 D .1514.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( B ) A .y x 292-=或x y 342=B .x y 292-=或y x 342= C .y x 342=D .x y 292-=15.抛物线x y =2上到其准线和顶点距离相等的点的坐标为 )42,81(±______________.16.已知圆07622=--+x y x ,与抛物线)0(22>=p px y 的准线相切,则=p _2__________.17抛物线22y x =的准线方程为( B ) A .14y =-B .18y =-C .1y =D .12y =18抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是( B )A .1617B .1615C .87D .019抛物线28x y =-的准线方程是 ( B )A . 321=x B . 2=y C . 321=y D . 2-=y20抛物线2x y =在点M (21,41)处的切线的倾斜角是( B )A .30°B .45°C .60°D .90°21若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( D )。

抛物线运动练习题(含答案)

抛物线运动练习题(含答案)

抛物线运动练习题(含答案)抛物线运动练题 (含答案)问题一一颗子弹以水平速度100 m/s 射向离地面20m的点,以重力加速度10 m/s²作用下,子弹射出后多久击中地面?答案:使用抛物线运动的公式,可以计算出子弹击中地面所需的时间。

抛物线运动公式为:h = v₀t + 1/2gt²其中,v₀表示初始速度,g表示重力加速度,h表示高度,t表示时间。

代入已知数据:h = 20mv₀ = 100 m/sg = 10 m/s²将公式稍作变形,得到:t² + 20t - 40 = 0解这个二次方程,可求得:t ≈ -23.3 秒或t ≈ 1.7 秒因为时间不能为负数,所以子弹射出约1.7秒后击中地面。

问题二一个人从离地面15m的点以速度20 m/s斜抛一个物体,物体飞行的距离是多少?答案:根据抛物线运动的公式,可以计算出物体的飞行距离。

抛物线运动公式为:d = v₀x t其中,v₀x表示初始水平速度,t表示时间,d表示距离。

我们需要找到物体运动的总时间,然后将其代入公式中计算距离。

首先,我们可以使用重力加速度的公式计算物体运动所需的时间 t₀:h = v₀yt₀ + 1/2gt₀²将公式代入已知数据:h = 15 mv₀y = 20 m/sg = 10 m/s²可得到:15 = 20t₀ + 1/2 * 10 * t₀²将这个方程稍作整理,得到二次方程:5t₀² + 20t₀ - 30 = 0解这个二次方程,可求得:t₀ ≈ -1.85 秒或 t₀ ≈ 0.85 秒因为时间不能为负数,所以物体运动约0.85秒后落地。

然后,我们将求得的 t₀代入公式:d = v₀x * t₀代入已知数据:v₀x = 20 m/st₀ ≈ 0.85 s计算得到物体的飞行距离d ≈ 17 m。

问题三一颗炮弹以45°角发射,速度为400 m/s。

抛物线习题精选(带答案)

抛物线习题精选(带答案)

抛物线习题精选一、选择题1.过抛物线焦点的直线与抛物线相交于,两点,若,在抛物线准线上的射影分别是,,则为().A.45°B.60°C.90°D.120°2.过已知点且与抛物线只有一个公共点的直线有().A.1条B.2条C.3条D.4条3.已知,是抛物线上两点,为坐标原点,若,且的垂心恰好是此抛物线的焦点,则直线的方程是().A.B.C.D.4.若抛物线()的弦PQ中点为(),则弦的斜率为()A.B.C.D.5.已知是抛物线的焦点弦,其坐标,满足,则直线的斜率是()A.B.C.D.6.已知抛物线()的焦点弦的两端点坐标分别为,,则的值一定等于()A.4 B.-4 C.D.7.已知⊙的圆心在抛物线上,且⊙与轴及的准线相切,则⊙的方程是()A.B.C.D.8.当时,关于的方程的实根的个数是()A.0个B.1个C.2个D.3个9.将直线左移1个单位,再下移2个单位后,它与抛物线仅有一个公共点,则实数的值等于()A.-1 B.1 C.7 D.910.以抛物线()的焦半径为直径的圆与轴位置关系为()A.相交 B.相离 C.相切 D.不确定11.过抛物线的焦点作直线交抛物线于,两点,如果,那么长是()A.10 B.8 C.6 D.412.过抛物线()的焦点且垂直于轴的弦为,为抛物线顶点,则大小()A.小于B.等于C.大于D.不能确定13.抛物线关于直线对称的曲线的顶点坐标是()A.(0,0)B.(-2,-2)C.(2,2)D.(2,0)14.已知抛物线()上有一点,它到焦点的距离为5,则的面积(为原点)为()A.1 B.C.2 D.15.记定点与抛物线上的点之间的距离为,到此抛物线准线的距离为,则当取最小值时点的坐标为()A.(0,0)B.C.(2,2)D.16.方程表示()A.椭圆 B.双曲线 C.抛物线 D.圆17.在上有一点,它到的距离与它到焦点的距离之和最小,则的坐标为()A.(-2,8)B.(2,8)C.(-2,-8)D.(-2,8)18.设为过焦点的弦,则以为直径的圆与准线交点的个数为()A.0 B.1 C.2 D.0或1或219.设,为抛物线上两点,则是过焦点的()A.充分不必要B.必要不充分C.充要D.不充分不必要20.抛物线垂点为(1,1),准线为,则顶点为()A.B.C.D.21.与关于对称的抛物线是()A.B.C.D.二、填空题1.顶点在原点,焦点在轴上且通径(过焦点和对称轴垂直的弦)长为6的抛物线方程是_________.2.抛物线顶点在原点,焦点在轴上,其通径的两端点与顶点连成的三角形面积为4,则此抛物线方程为_________.3.过点(0,-4)且与直线相切的圆的圆心的轨迹方程是_________.4.抛物线被点所平分的弦的直线方程为_________.5.已知抛物线的弦过定点(-2,0),则弦中点的轨迹方程是________.6.顶点在原点、焦点在轴上、截直线所得弦长为的抛物线方程为____________.7.已知直线与抛物线交于、两点,那么线段的中点坐标是__ _.8.一条直线经过抛物线()的焦点与抛物线交于、两点,过、点分别向准线引垂线、,垂足为、,如果,,为的中点,则 =__________.9.是抛物线的一条焦点弦,若抛物线,,则的中点到直线的距离为_________.10.抛物线上到直线的距离最近的点的坐标是____________.11.抛物线上到直线距离最短的点的坐标为__________.12.已知圆与抛物线()的准线相切,则 =________.13.过()的焦点的弦为,为坐标原点,则=________.14.抛物线上一点到焦点的距离为3,则点的纵坐标为__________.15.已知抛物线(),它的顶点在直线上,则的值为__________.16.过抛物线的焦点作一条倾斜角为的弦,若弦长不超过8,则的范围是________.17.已知抛物线与椭圆有四个交点,这四个交点共圆,则该圆的方程为__________.18.抛物线的焦点为,准线交轴于,过抛物线上一点作于,则梯形的面积为_______________.19.探照灯的反射镜的纵断面是抛物线的一部分,安装灯源的位置在抛物线的焦点处,如果到灯口平面的距离恰好等于灯口的半径,已知灯口的半径为30cm,那么灯深为_________.三、解答题1.知抛物线截直线所得的弦长,试在轴上求一点,使的面积为392.若的焦点弦长为5,求焦点弦所在直线方程3.已知是以原点为直角顶点的抛物线()的内接直角三角形,求面积的最小值.4.若,为抛物线的焦点,为抛物线上任意一点,求的最小值及取得最小值时的的坐标.5.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上一宽4米,高6米的大木箱,问能否安全通过.6.抛物线以轴为准线,且过点,()求证不论点的位置如何变化,抛物线顶点的轨迹是椭圆,且离心率为定值.7.已知抛物线()的焦点为,以为圆心,为半径,在轴上方画半圆,设抛物线与半圆交于不同的两点、,为线段的中点.①求的值;②是否存在这样的,使、、成等差数列,若存在,求出的值;若不存在,说明理由.8.求抛物线和圆上最近两点之间的距离.9.正方形中,一条边在直线上,另外两顶点、在抛物线上,求正方形的面积.10.已知抛物线的一条过焦点的弦被焦点分为,两个部分,求证.11.一抛物线型拱桥的跨度为,顶点距水面.江中一竹排装有宽、高的货箱,问能否安全通过.12.已知抛物线上两点,(在第二象限),为原点,且,求当点距轴最近时,的面积.13.是抛物线上的动点,连接原点与,以为边作正方形,求动点的轨迹方程.参考答案:一、1.C;2.C;3.D;4.B;5.C;6.B;7.B;8.D;9.C10.C;11.B;12.C;13.C;14.C;15.C;16.C;17.B;18.B;19.C;20.A;21.D二、1.;2.;3.;4.5.;6.(在已知抛物线内的部分)7.或;8.(4,2);9.10.;11.;12.2;13.-414.2;15.0,,,;16.17.;18.3.14;19.36.2cm三、1.先求得,再求得或2.3.设,,则由得,,,于是当,即,时,4.抛物线的准线方程为,过作垂直准线于点,由抛物线定义得,,要使最小,、、三点必共线,即垂直于准线,与抛物线交点为点,从而的最小值为,此时点坐标为(2,2).5.建立坐标系,设抛物线方程为,则点(26,-6.5)在抛物线上,抛物线方程为,当时,,则有,所以木箱能安全通过.6.设抛物线的焦点为,由抛物线定义得,设顶点为,则,所以,即为椭圆,离心率为定值.7.①设、、在抛物线的准线上射影分别为、、,则由抛物线定义得,又圆的方程为,将代入得②假设存在这样的,使得,由定义知点必在抛物线上,这与点是弦的中点矛盾,所以这样的不存在8.设、分别是抛物线和圆上的点,圆心,半径为1,若最小,则也最小,因此、、共线,问题转化为在抛物线上求一点,使它到点的距离最小.为此设,则,的最小值是9.设所在直线方程为,消去得又直线与间距离为或从而边长为或,面积,10.焦点为,设焦点弦端点,,当垂直于轴,则,结论显然成立;当与轴不垂直时,设所在直线方程为,代入抛物线方程整理得,这时,于是,命题也成立.11.取抛物线型拱桥的顶点为原点、对称轴为轴建立直角坐标系,则桥墩的两端坐标分别为(-26,-6.5),(26,-6.5),设抛物线型拱桥的方程为,则,所以,抛物线方程为.当时,,而,故可安全通过.12.设,则,因为,所以,直线的方程为,将代入,得点的横坐标为(当且仅当时取等号),此时,,,,所以.13.设,,过,分别作为轴的垂线,垂足分别为,,而证得≌,则有,,即、,而,因此,即为所求轨迹方程.。

抛物线练习题及答案

抛物线练习题及答案

抛物线练习题及答案1.抛物线上的一点到焦点的距离为1,则点的纵坐标是( ) A. B. C. D.0B.提示:用抛物线的定义.2.已知两点M(-2,0),N(2,0),点P为坐标平面内的动点,满足||·||+·=0,则动点P(x,y)的轨迹方程是()A.y2=8x B.y2=-8x C.y2=4x D.y2=-4xB.提示:坐标代入.3.已知P是抛物线y=2x2+1上的动点,定点A(0,―1),点M分所成的比为2,则点M的轨迹方程是()A、y=6x2―B、x=6y2-C、y=3x2+D、y=―3x2―1B.提示:用坐标转移法.4.有一个正三角形的两个顶点在抛物线y2=2x上,另一个顶点在原点,则这个三角形的边长是.12.提示:有两个顶点关于x轴对称,进而得到直线的倾斜角是和.5.对正整数,设抛物线,过任作直线交抛物线于两点,则数列的前项和公式是..提示:求出数列的通项公式.6.焦点在x轴上的抛物线被直线y=2x+1截得的弦长为,求抛物线的标准方程.解:y2=12x或y2=-4x.提示:设抛物线方程后,用韦达定理及弦长公式.7.定长为3的线段AB的两个端点在抛物线y2=x上移动,AB的中点为M,求点M到y轴的最短距离,并求出点M的坐标.解:M()或().提示:数形结合得到当且仅当AB过焦点时M到y轴距离最小.设出此时的直线方程,用弦长公式解得直线AB的斜率,并得到AB的坐标.8.在直角坐标系中,已知点(p>0), 设点F关于原点的对称点为B,以线段FA为直径的圆与y轴相切.(1)点A的轨迹C的方程;(2)PQ为过F点且平行于y轴的曲线C的弦,试判断PB与QB与曲线C的位置关系.是曲线C的平行于y轴的任意一条弦,若直线FM1与BM2的交点为M,试证明点M在曲线C上.(1)解:设A(x,y),则,化简得:y2=2px(2)由对称性知,PB和QB与曲线C的位置关系是一致的,由题设,不妨P()而∴直线PB的方程为y=x+,代入y2=2px,消去y得到关于x的一元二次方程 x2+px+=0,=0 ∴直线PB和QB均与抛物线相切.(3)由题意设,,则直线FM1:;直线BM2:联立方程组解得M点坐标为,,经检验,,∴点M在曲线C上.。

抛物线测试题含答案

抛物线测试题含答案

抛物线测试题一、选择题(本大题共10小题,每小题5分,共50分)1.抛物线22x y =的焦点坐标是 ( )A .)0,1(B .)0,41(C .)81,0(D . )41,0( 2.已知抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为 ( )A .y x 82=B .y x 42=C .y x 42-=D .y x 82-= 3.抛物线x y 122=截直线12+=x y 所得弦长等于 ( )A .15B .152C .215D .154.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( )A.y x 292-=或x y 342= B.x y 292-=或y x 342= C.y x 342= D.x y 292-= 5.点)0,1(P 到曲线(其中参数R t ∈)上的点的最短距离为 ( )A .0B .1C .2D .26.抛物线)0(22>=p px y 上有),,(),,(2211y x B y x A ),(33y x C 三点,F 是它的焦点,若CF BF AF ,, 成等差数列,则( ) A .321,,x x x 成等差数列 B .231,,x x x 成等差数列C .321,,y y y 成等差数列D .231,,y y y 成等差数列7.若点A 的坐标为(3,2),F 为抛物线x y 22=的焦点,点P 是抛物线上的一动点,则PB PA + 取得最小值时点P 的坐标是 ( )A .(0,0)B .(1,1)C .(2,2)D .)1,21( 8.已知抛物线)0(22>=p px y 的焦点弦AB 的两端点为),(),,(2211y x B y x A , 则关系式的值一定等于 ( )A .4B .-4C .p 2D .-p9.过抛物线)0(2>=a ax y 的焦点F 作一直线交抛物线于P ,Q 两点,若线段PF 和FQ 的长分别是q p ,,则= ( )A .a 2B .a21 C .a 4 D .a 4 10.若AB 为抛物线y 2=2p x (p>0)的动弦,且|AB|=a (a >2p),则AB 的中点M 到y 轴的最近距离是 ( )A .2aB .2pC .D .二、填空题(本大题共5小题,每小题5分,共25分)11、抛物线x y =2上到其准线和顶点距离相等的点的坐标为 ______________.12、直线x y --=10截抛物线y x 28=,所截得的弦中点的坐标是13、抛物线y px p 220=>()上,横坐标为4的点到焦点的距离为5,则此抛物线焦点和准线的距离为14、设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0,则FA FB FC ++=15、对于顶点在原点的抛物线,给出下列条件;(1)焦点在y 轴上; (2)焦点在x 轴上;(3)抛物线上横坐标为1的点到焦点的距离等于6;(4)抛物线的通径的长为5;(5)由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).其中适合抛物线y 2=10x 的条件是(要求填写合适条件的序号) ______.三、解答题16.(12分)已知点A (2,8),B (x 1,y 1),C (x 2,y 2)在抛物线px y 22=上,△ABC 的重心和此抛物线的焦点F 重合(如图)(1)写出该抛物线的方程和焦点F 的坐标;(2)求线段BC 中点M 的坐标;(3)求BC 所在直线的方程.17.(12分)已知抛物线12-=ax y 上恒有关于直线0=+y x 对称的相异两点,求a 的取值范围.18.(12分)抛物线x 2=4y 的焦点为F ,过点(0,-1)作直线L 交抛物线A 、B 两点,再以AF 、BF 为邻边作平行四边形FARB ,试求动点R 的轨迹方程.19、(12分)已知抛物线C 的方程C :)0(22>=p px y 过点A (1,-2). (I )求抛物线C 的方程,并求其准线方程;(II )是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 和抛物线C 有公共点,且直线OA 和l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由.20.(13分)已知抛物线y 2=4ax (0<a <1=的焦点为F ,以A(a +4,0)为圆心,|AF |为半径在x 轴上方作半圆交抛物线于不同的两点M 和N ,设P 为线段MN 的中点.(1)求|MF |+|NF |的值;(2)是否存在这样的a 值,使|MF |、|PF |、|NF |成等差数列?如存在,求出a 的值,若不存在,说明理由.21.(14分)如图, 直线y=21x 和抛物线y=81x 2-4交于A 、B 两点, 线段AB 的垂直平分线和直线y=-5交于Q 点.(1)求点Q 的坐标;(2)当P 为抛物线上位于线段AB 下方(含A 、B )的动点时, 求ΔOPQ 面积的最大值.参考答案答案 C D A B B A CB C D11. 12. 13. 15. (2),(5)三、解答题(本大题共6题,共76分) 15.(12分)[解析]:(1)由点A (2,8)在抛物线px y 22=上,有2282⋅=p ,解得p=16. 所以抛物线方程为x y 322=,焦点F 的坐标为(8,0).(2)如图,由于F (8,0)是△ABC 的重心,M 是BC 的中点,所以F 是线段AM 的 定比分点,且,设点M 的坐标为),(00y x ,则02128,8212200=++=++y x ,解得4,1100-==y x ,所以点M 的坐标为(11,-4).(3)由于线段BC 的中点M 不在x 轴上,所以BC 所在的直线不垂直于x 轴.设BC 所在直线的方程为:).0)(11(4≠-=+k x k y由消x 得0)411(32322=+--k y ky ,所以,由(2)的结论得,解得.4-=k因此BC 所在直线的方程为:.0404=-+y x16.(12分)[解析]:设在抛物线y=ax 2-1上关于直线x +y=0对称的相异两点为P(x ,y),Q(-y,-x ),则②①,由①-②得x +y=a (x +y)(x -y),∵P、Q 为相异两点,∴x +y≠0,又a ≠0,∴,代入②得a 2x 2-ax -a +1=0,其判别式△=a 2-4a 2(1-a )>0,解得43>a . 17.(12分)[解析]:设R(x ,y),∵F(0,1), ∴平行四边形FARB 的中心为)21,2(+y x C ,L:y=k x -1,代入抛物线方程得x 2-4k x +4=0, 设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=4k,x 1x 2=4,且△=16k 2-16>0,即|k|>1 ①,2442)(4221221222121-=-+=+=+∴k x x x x x x y y ,∵C 为AB 的中点. ∴⇒,消去k 得x 2=4(y+3),由① 得,4>x ,故动点R 的轨迹方程为x 2=4(y+3)( 4>x ).18.19.(14分)[解析]:(1)F (a ,0),设),(),,(),,(002211y x P y x N y x M ,由0)8()4(222=++-+⇒a a x a x ,)4(2,021a x x -=+∴>∆ ,8)()(21=+++=+a x a x NF MF(2)假设存在a 值,使的NF PF MF ,,成等差数列,即42=⇒+=PF NF MF PF a x -=4042)2(41616)24(16)(212221221202202022020y y y y y y y a a y y a y a x ++=+=-=⇒=+-⇒=+-212121212)(444244x x a x x a ax ax ax ax ++=++==⇒++-a a a a a 82)4(22=++-a a a a a 82)4(222416a a -1=⇒a100000202121<<⇒⎪⎪⎩⎪⎪⎨⎧>>>+>∆a y x x x x 矛盾.∴假设不成立.即不存在a 值,使的NF PF MF ,,成等差数列.或解: 4=PF a x -=40⇔40=+a x 知点P 在抛物线上. 矛盾.20.(14分)【解】(1) 解方程组 得 或即A(-4,-2),B(8,4), 从而AB 的中点为M(2,1).由k AB ==21,直线AB 的垂直平分线方程 y -1=21(x -2). 令y=-5, 得x =5, ∴Q(5,-5). (2) 直线OQ 的方程为x +y=0, 设P(x , 81x 2-4).∵点P 到直线OQ 的距离 d==,25=OQ ,∴S ΔOPQ =21d OQ =. ∵P 为抛物线上位于线段AB 下方的点, 且P 不在直线OQ 上, ∴-4≤x <43-4或43-4<x ≤8.∵函数y=x 2+8x -32在区间[-4,8] 上单调递增, ∴当x =8时, ΔOPQ 的面积取到最大值30.。

抛物线的试题及答案高中

抛物线的试题及答案高中

抛物线的试题及答案高中一、选择题1. 已知抛物线方程为 \( y^2 = 4px \),其中 \( p > 0 \),该抛物线的焦点坐标是()。

A. \( (0, 0) \)B. \( (p, 0) \)C. \( (0, p) \)D. \( (2p, 0) \)答案:B2. 若抛物线 \( y = ax^2 + bx + c \) 经过点 \( (1, 0) \),则下列哪个条件一定成立?()A. \( a + b + c = 0 \)B. \( a + b + c = 1 \)C. \( a - b + c = 0 \)D. \( a - b + c = 1 \)答案:A二、填空题3. 抛物线 \( x^2 = 4y \) 的准线方程是 ________。

答案:\( y = -1 \)4. 抛物线 \( y = -2x^2 + 4x + 5 \) 的顶点坐标是 ________。

答案:\( (1, 6) \)三、解答题5. 已知抛物线 \( y = 2x^2 - 4x + 5 \),求其焦点坐标和准线方程。

解:首先,将抛物线方程 \( y = 2x^2 - 4x + 5 \) 转化为标准形式\( x^2 = \frac{1}{2}(y - 5) \)。

由此可知,\( p = \frac{1}{4} \),焦点坐标为 \( (0, \frac{5}{4}) \),准线方程为 \( y = -\frac{3}{4} \)。

6. 抛物线 \( x^2 = 6y \) 与直线 \( y = mx + 2 \) 相交于两点 A 和 B。

求直线 AB 的斜率。

解:将直线方程 \( y = mx + 2 \) 代入抛物线方程 \( x^2 = 6y \) 得 \( x^2 = 6(mx + 2) \)。

整理得 \( x^2 - 6mx - 12 = 0 \)。

设A 点坐标为 \( (x_1, y_1) \),B 点坐标为 \( (x_2, y_2) \),由韦达定理得 \( x_1 + x_2 = 6m \),\( x_1x_2 = -12 \)。

(完整版)抛物线练习题(含答案)

(完整版)抛物线练习题(含答案)

抛物线练习题一、选择题1.在直角坐标平面内,到点(1,1)和直线x +2y =3距离相等的点的轨迹是( )A .直线B .抛物线C .圆D .双曲线2.抛物线y 2=x 上一点P 到焦点的距离是2,则P 点坐标为( )A.⎝⎛⎭⎫32,±62B.⎝⎛⎭⎫74,±72C.⎝⎛⎭⎫94,±32D.⎝⎛⎭⎫52,±102 3.抛物线y =ax 2的准线方程是y =2,则a 的值为( )A.18 B .-18C .8D .-8 4.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )A .4B .6C .8D .125.设过抛物线的焦点F 的弦为AB ,则以AB 为直径的圆与抛物线的准线的位置关系是( )A .相交B .相切C .相离D .以上答案都有可能6.过点F (0,3)且和直线y +3=0相切的动圆圆心的轨迹方程为( )A .y 2=12xB .y 2=-12xC .x 2=12yD .x 2=-12y7.抛物线y 2=8x 上一点P 到x 轴距离为12,则点P 到抛物线焦点F 的距离为( )A .20B .8C .22D .248.抛物线的顶点在坐标原点,焦点是椭圆4x 2+y 2=1的一个焦点,则此抛物线的焦点到准线的距离为( )A .2 3 B. 3 C.12 3 D.143 9.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点(k ,-2)与F 点的距离为4,则k 的值是( )A .4B .4或-4C .-2D .2或-210.抛物线y =1mx 2(m <0)的焦点坐标是( ) A.⎝⎛⎭⎫0,m 4 B.⎝⎛⎭⎫0,-m 4 C.⎝⎛⎭⎫0,14m D.⎝⎛⎭⎫0,-14m 11.抛物线的顶点在原点,对称轴是x 轴,抛物线上的点(-5,25)到焦点的距离是6,则抛物线的方程为( )A .y 2=-2xB .y 2=-4xC .y 2=2xD .y 2=-4x 或y 2=-36x12.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )A.12 B .1 C .2 D .4二、填空题13.过抛物线焦点F的直线与抛物线相交于A、B两点,若A、B在抛物线准线上的射影是A1、B1,则∠A1FB1= 。

高考数学抛物线大题专练30题(含详解)经典收藏版

高考数学抛物线大题专练30题(含详解)经典收藏版

目录目录-------------------------------------------------------------------------------------------------1抛物线大题专练(一)--------------------------------------------------------------------------------2抛物线大题专练(二)--------------------------------------------------------------------------------5抛物线大题专练(三)--------------------------------------------------------------------------------8抛物线大题专练---------------------------------------------------------------------------------------11参考答案与试题解析---------------------------------------------------------------------------------11抛物线大题专练(一)1.已知抛物线C的方程为x2=2py,设点M(x0,1)(x0>0)在抛物线C上,且它到抛物线C的准线距离为;(1)求抛物线C的方程;(2)过点M作倾斜角互补的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(M、A、B三点互不相同),求当∠MAB为钝角时,点A的纵坐标y1的取值范围.2.在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线方程为x=﹣,过点M(0,﹣2)作抛物线的切线MA,切点为A(异于点O).直线l过点M与抛物线交于两点B,C,与直线OA交于点N.(1)求抛物线的方程;(2)试问:的值是否为定值?若是,求出定值;若不是,说明理由.3.如图所示,设F是抛物线E:x2=2py(p>0)的焦点,过点F作斜率分别为k1、k2的两条直线l1、l2,且k1•k2=﹣1,l1与E相交于点A、B,l2与E相交于点C,D.已知△AFO外接圆的圆心到抛物线的准线的距离为3(O为坐标原点).(1)求抛物线E的方程;(2)若•+•=64,求直线l1、l2的方程.4.已知抛物线C:y2=2px(p>0),点A、B在抛物线C上.(Ⅰ)若直线AB过点M(2p,0),且|AB|=4p,求过A,B,O(O为坐标原点)三点的圆的方程;(Ⅱ)设直线OA、OB的倾斜角分别为α,β且α+β=,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.5.已知点A(2,1)在抛物线E:x2=ay上,直线l1:y=kx+1(k∈R,且k≠0)与抛物线E相交于B,C两点,直线AB,AC分别交直线l2:y=﹣1于点S,T.(1)求a的值;(2)若|ST|=2,求直线l1的方程;(3)试判断以线段ST为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.6.已知抛物线y2=2px(p>0),焦点为F,一直线l与抛物线交于A、B两点,且|AF|+|BF|=8,且AB的垂直平分线恒过定点S(6,0)①求抛物线方程;②求△ABS面积的最大值.7.已知抛物线y2=4x,直线l:y=﹣x+b与抛物线交于A,B两点.(Ⅰ)若x轴与以AB为直径的圆相切,求该圆的方程;(Ⅱ)若直线l与y轴负半轴相交,求△AOB面积的最大值.8.抛物线M:y2=2px(p>0)的准线过椭圆N:+y2=1的左焦点,以原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的图象以及y轴的正半轴相交于点A和B,直线AB与x轴相交于点C.(Ⅰ)求抛物线M的方程;(Ⅱ)设点A的横坐标为a,点C的横坐标为c,抛物线M上点D的横坐标为a+2,求直线CD的斜率.9.已知抛物线y2=4x的焦点为F2,点F1与F2关于坐标原点对称,以F1,F2为焦点的椭圆C,过点(1,),(Ⅰ)求椭圆C的标准方程;(Ⅱ)设T(2,0),过点F2作直线l与椭圆C交于A,B两点,且=λ,若λ∈[﹣2,﹣1],求|+|2的最小值.抛物线大题专练(二)10.(2015•福建模拟)如图,已知抛物线y2=4x的焦点为F,过点P(2,0)且斜率为k1的直线交抛物线于A(x1,y1),B(x2,y2)两点,直线AF、BF分别与抛物线交于点M、N.(Ⅰ)证明•的值与k1无关;(Ⅱ)记直线MN的斜率为k2,证明为定值.11.已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且•=﹣3,其中O为坐标原点.(1)求p的值;(2)当|AM|+4|BM|最小时,求直线l的方程.12.已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且•=﹣3,其中O为坐标原点.(1)求p的值;(2)若圆x2+y2﹣2x=0与直线l相交于以C,D(A,C两点均在第一象银),且线段AC,CD,DB长构成等差数列,求直线l的方程.13.已知点A(﹣4,4)、B(4,4),直线AM与BM相交于点M,且直线AM的斜率与直线BM的斜率之差为﹣2,点M的轨迹为曲线C.(Ⅰ)求曲线C的轨迹方程;(Ⅱ)Q为直线y=﹣1上的动点,过Q做曲线C的切线,切点分别为D、E,求△QDE的面积S的最小值.14.如图所示,已知过抛物线x2=4y的焦点F的直线l与抛物线相交于A,B两点.(1)求证:以AF为直径的圆与x轴相切;(2)设抛物线x2=4y在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程:(3)设过抛物线x2=4y焦点F的直线l与椭圆+=1的交点为C、D,是否存在直线l使得|AF|•|CF|=|BF|•|DF|,若存在,求出直线l的方程,若不存在,请说明理由.15.已知抛物线C:y2=2px(p>0),直线交此抛物线于不同的两个点A(x1,y1)、B(x2,y2)(1)当直线过点M(p,0)时,证明y1.y2为定值;(2)如果直线过点M(p,0),过点M再作一条与直线垂直的直线l′交抛物线C于两个不同点D、E.设线段AB的中点为P,线段DE的中点为Q,记线段PQ的中点为N.问是否存在一条直线和一个定点,使得点N到它们的距离相等?若存在,求出这条直线和这个定点;若不存在,请说明理由.16.(2014•陕西)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为.(Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.17.(2014•山东)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.18.(2014•安徽)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.19.(2014•福建)已知曲线Γ上的点到点F(0,1)的距离比它到直线y=﹣3的距离小2.(Ⅰ)求曲线Γ的方程;(Ⅱ)曲线Γ在点P处的切线l与x轴交于点A.直线y=3分别与直线l及y轴交于点M,N,以MN为直径作圆C,过点A作圆C的切线,切点为B,试探究:当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论.20.(2014•江西)如图,已知抛物线C:x2=4y,过点M(0,2)任作一直线与C相交于A,B两点,过点B作y轴的平行线与直线AO相交于点D(O为坐标原点).(1)证明:动点D在定直线上;(2)作C的任意一条切线l(不含x轴),与直线y=2相交于点N1,与(1)中的定直线相交于点N2,证明:|MN2|2﹣|MN1|2为定值,并求此定值.抛物线大题专练(三)21.(2014•杭州二模)设抛物线Γ:y2=2px(p>0)过点(t,)(t是大于0的常数).(Ⅰ)求抛物线Γ的方程;(Ⅱ)若F是抛物线Γ的焦点,斜率为1的直线交抛物线Γ于A,B两点,x轴负半轴上的点C,D满足|FA|=|FC|,|FD|=|FB|,直线AC,BD相交于点E,当时,求直线AB的方程.22.(2014•包头一模)设抛物线C:y2=2px(p>0)的焦点为F,准线为l,l与x轴交于点R,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(1)若∠BFD=120°,△ABD的面积为8,求p的值及圆F的方程;(2)在(1)的条件下,若A,B,F三点在同一直线上,FD与抛物线C交于点E,求△EDA的面积.23.(2014•长春三模)已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.(1)求抛物线C的方程;(2)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求的最小值.24.(2014•长沙二模)已知A、B为抛物线C:y2=4x上的两个动点,点A在第一象限,点B在第四象限,l1、l2分别过点A、B且与抛物线C相切,P为l1、l2的交点.(Ⅰ)若直线AB过抛物线C的焦点F,求证:动点P在一条定直线上,并求此直线方程;(Ⅱ)设C、D为直线l1、l2与直线x=4的交点,求△PCD面积的最小值.25.(2015•上海模拟)如图,直线l:y=kx+b与抛物线x2=2py(常数p>0)相交于不同的两点A(x1,y1)、B(x2,y2),且|x2﹣x1|=h(h为定值),线段AB的中点为D,与直线l:y=kx+b平行的切线的切点为C(不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点为切点).(1)用k、b表示出C点、D点的坐标,并证明CD垂直于x轴;(2)求△ABC的面积,证明△ABC的面积与k、b无关,只与h有关;(3)小张所在的兴趣小组完成上面两个小题后,小张连AC、BC,再作与AC、BC平行的切线,切点分别为E、F,小张马上写出了△ACE、△BCF的面积,由此小张求出了直线l与抛物线围成的面积,你认为小张能做到吗?请你说出理由.26.(2014•乌鲁木齐三模)已知抛物线y2=2px(p>0)的焦点过F,过H(﹣,0)引直线l交此抛物线于A,B两点.(1)若直线AF的斜率为2,求直线BF的斜率;(2)若p=2,点M在抛物线上,且+=t,求t的取值范围.27.(2014•太原二模)已知抛物线y2=4x的焦点为F,直线l1与抛物线交于不同的两点A、B,直线l2与抛物线交于不同的两点C、D.(Ⅰ)当l1过F时,在l1上取不同于F的点P,使得=,求点P的轨迹方程;(Ⅱ)若l1与l2相交于点Q,且倾斜角互补时,|QA|•|QB|=a|QC|•|QD|,求实数a的值.28.(2014•合肥一模)已知△ABC的三个顶点都在抛物线y2=2px(p>0)上,且抛物线的焦点F满足,若BC边上的中线所在直线l的方程为mx+ny﹣m=0(m,n为常数且m≠0).(Ⅰ)求p的值;(Ⅱ)O为抛物线的顶点,△OFA、△OFB、△OFC的面积分别记为S1、S2、S3,求证:为定值.29.(2014•呼和浩特一模)已知抛物线C:y2=2px(p>0),直线l过定点A(4,0)且与抛物线C交于P、Q两点,若以弦PQ为直径的圆E过原点O.(Ⅰ)求抛物线C的方程;(Ⅱ)当圆E的面积最小时,求E的方程.30.(2014•普陀区一模)已知点P(2,0),点Q在曲线C:y2=2x上.(1)若点Q在第一象限内,且|PQ|=2,求点Q的坐标;(2)求|PQ|的最小值.抛物线大题专练参考答案与试题解析1.已知抛物线C的方程为x2=2py,设点M(x0,1)(x0>0)在抛物线C上,且它到抛物线C的准线距离为;(1)求抛物线C的方程;(2)过点M作倾斜角互补的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(M、A、B三点互不相同),求当∠MAB为钝角时,点A的纵坐标y1的取值范围.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)由抛物线的定义,求出p,即可求抛物线C的方程;(2)设直线AM的方程为:y=k(x﹣1)+1,与抛物线方程联立,求出k的范围,利用,即可求出点A的纵坐标y1的取值范围.解答:解:(1)由定义得,则抛物线C的方程:x2=y(2)设直线AM的方程为:y=k(x﹣1)+1联立方程得x2﹣kx+k﹣1=0,A(k﹣1,(k﹣1)2),△1>0即k≠2同理B(﹣k﹣1,(﹣k﹣1)2),△2>0即k≠﹣2,令,则所以k>2或,所以点评:本题考查抛物线的定义与方程,考查直线与抛物线的位置关系,考查学生的计算能力,属于中档题.2.(2015•淮安一模)在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线方程为x=﹣,过点M(0,﹣2)作抛物线的切线MA,切点为A(异于点O).直线l过点M与抛物线交于两点B,C,与直线OA交于点N.(1)求抛物线的方程;(2)试问:的值是否为定值?若是,求出定值;若不是,说明理由.考点:抛物线的简单性质.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)由抛物线的准线方程可得p,进而得到抛物线方程;(2)求出函数y=﹣的导数,求出切线的斜率,以及切线方程,联立切线方程和抛物线方程求得切点A,进而直线OA的方程,设出直线BC的方程,联立抛物线方程运用韦达定理,求出N的坐标,代入所求式子化简即可得到定值2.解答:解:(1)由题设知,,即,所以抛物线的方程为y2=x;(2)因为函数的导函数为,设A(x0,y0),则直线MA的方程为,因为点M(0,﹣2)在直线MA上,所以﹣2﹣y0=﹣•(﹣x0).联立,解得A(16,﹣4),所以直线OA的方程为.设直线BC方程为y=kx﹣2,由,得k2x2﹣(4k+1)x+4=0,所以.由,得.所以,故的为定值2.点评:本题考查抛物线的方程和性质,考查直线方程和抛物线方程联立,运用韦达定理,以及导数的运用:求切线方程,考查运算能力,属于中档题和易错题.3.(2014•九江三模)如图所示,设F是抛物线E:x2=2py(p>0)的焦点,过点F作斜率分别为k1、k2的两条直线l1、l2,且k1•k2=﹣1,l1与E相交于点A、B,l2与E相交于点C,D.已知△AFO外接圆的圆心到抛物线的准线的距离为3(O为坐标原点).(1)求抛物线E的方程;(2)若•+•=64,求直线l1、l2的方程.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)确定△AFO外接圆的圆心在线段OF的垂直平分线y=上,求出p,即可求抛物线E的方程;(2)利用•+•=64,结合韦达定理,基本不等式,即可求直线l1、l2的方程.解答:解:(1)由题意,F(0,),△AFO外接圆的圆心在线段OF的垂直平分线y=上,∴+=3,∴p=4.∴抛物线E的方程是x2=8y;(2)设直线l1的方程y=k1x+2,代入抛物线方程,得y2﹣(8k12+4)y+4=0设A(x1,y1),B(x2,y2),则y1+y2=8k12+4,y1y2=4设C(x3,y3),D(x4,y4),同理可得y3+y4=+4,y3y4=4∴•+•=32+16(k12+)≥64,当且仅当k12=,即k1=±1时取等号,∴直线l1、l2的方程为y=x+2或y=﹣x+2.点评:本题考查抛物线的方程,考查直线与抛物线的位置关系,考查向量知识的运用,属于中档题.4.(2014•浙江二模)已知抛物线C:y2=2px(p>0),点A、B在抛物线C上.(Ⅰ)若直线AB过点M(2p,0),且|AB|=4p,求过A,B,O(O为坐标原点)三点的圆的方程;(Ⅱ)设直线OA、OB的倾斜角分别为α,β且α+β=,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)求出A,B的坐标,可得三角形ABO是Rt△,从而可求过A,B,O三点的圆方程;(Ⅱ)直线AB的方程为:x=my+b,代入抛物线方程,利用韦达定理,结合α+β=,可得b=﹣2p﹣2mp,即可得出结论.解答:解:(Ⅰ)∵直线AB过点M(2p,0),且|AB|=4p,∴直线x=2p与抛物线y2=2px的两个交点坐标分别是:A(2p,2p),B(2p,﹣2p),∴三角形ABO是Rt△,∴过A,B,O三点的圆方程是:(x﹣2p)2+y2=4p2;(Ⅱ)设点,直线AB的方程为:x=my+b,它与抛物线相交,由方程组消去x可得y2﹣2mpy﹣2pb=0,故y1+y2=2mp,y1y2=﹣2pb,这样,tan==即1=,所以b=﹣2p﹣2mp,∴直线AB的方程可以写成为:x=my﹣2p﹣2mp,即x+2p=m(y﹣2p),∴直线AB过定点(﹣2p,2p).点评:本题考查圆的方程,考查直线与抛物线的位置关系,考查和角的正切公式,考查直线过定点,属于中档题.5.(2014•广州二模)已知点A(2,1)在抛物线E:x2=ay上,直线l1:y=kx+1(k∈R,且k≠0)与抛物线E相交于B,C两点,直线AB,AC分别交直线l2:y=﹣1于点S,T.(1)求a的值;(2)若|ST|=2,求直线l1的方程;(3)试判断以线段ST为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)根据点A(2,1)在抛物线E:x2=ay上,可求a的值;(2)y=kx+1代入抛物线方程,利用韦达定理,确定S,T的坐标,根据|ST|=2,即可求直线l1的方程;(3)确定以线段ST为直径的圆的方程,展开令x=0,即可求这两个定点的坐标.解答:解:(1)∵点A(2,1)在抛物线E:x2=ay上,∴a=4.…(1分)(2)由(1)得抛物线E的方程为x2=4y.设点B,C的坐标分别为(x1,y1),(x2,y2),依题意,,y=kx+1代入抛物线方程,消去y得x2﹣4kx﹣4=0,解得.∴x1+x2=4k,x1x2=﹣4.…(2分)直线AB的斜率,故直线AB的方程为.…(3分)令y=﹣1,得,∴点S的坐标为.…(4分)同理可得点T的坐标为.…(5分)∴=.…(6分)∵,∴.由,得20k2=16k2+16,解得k=2,或k=﹣2,…(7分)∴直线l1的方程为y=2x+1,或y=﹣2x+1.…(9分)(3)设线段ST的中点坐标为(x0,﹣1),则=.…(10分)而|ST|2=,…(11分)∴以线段ST为直径的圆的方程为=.展开得.…(12分)令x=0,得(y+1)2=4,解得y=1或y=﹣3.…(13分)∴以线段ST为直径的圆恒过两个定点(0,1),(0,﹣3).…(14分)点评:本题考查抛物线的方程,考查直线与抛物线的位置关系,考查圆的方程,考查学生的计算能力,属于中档题.6.(2015•兴国县一模)已知抛物线y2=2px(p>0),焦点为F,一直线l与抛物线交于A、B两点,且|AF|+|BF|=8,且AB的垂直平分线恒过定点S(6,0)①求抛物线方程;②求△ABS面积的最大值.考点:抛物线的标准方程;抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:①利用点差法,确定AB中点M的坐标,分类讨论,根据AB的垂直平分线恒过定点S(6,0),即可求抛物线方程;②分类讨论,求出△ABS面积的表达式,即可求得其最大值.解答:解:①设A(x1,y1),B(x2,y2),AB中点M(x0,y0)当直线的斜率存在时,设斜率为k,则由|AF|+|BF|=8得x1+x2+p=8,∴又得,∴所以依题意,∴p=4∴抛物线方程为y2=8x﹣﹣﹣﹣(6分)当直线的斜率不存在时,2p=8,也满足上式,∴抛物线方程为y2=8x②当直线的斜率存在时,由(2,y0)及,令y=0,得又由y2=8x和得:∴=﹣﹣﹣﹣(12分)当直线的斜率不存在时,AB的方程为x=2,|AB|=8,△ABS面积为∵,∴△ABS面积的最大值为.点评:本题考查抛物线的标准方程,考查三角形面积的计算,考查学生的计算能力,属于中档题.7.(2015•路南区二模)已知抛物线y2=4x,直线l:y=﹣x+b与抛物线交于A,B两点.(Ⅰ)若x轴与以AB为直径的圆相切,求该圆的方程;(Ⅱ)若直线l与y轴负半轴相交,求△AOB面积的最大值.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)联立得y2+8y﹣8b=0.由此利用根的判别式、弦长公式,结合已知条件能求出圆的方程.(Ⅱ)由直线l与y轴负半轴相交,得﹣1<b<0,由点O到直线l的距离d=,得S△AOB=|AB|d=4.由此利用导数性质能求出△AOB的面积的最大值.解答:解:(Ⅰ)联立得:y2+8y﹣8b=0.依题意应有△=64+32b>0,解得b>﹣2.设A(x1,y1),B(x2,y2),设圆心Q(x0,y0),则应有x0=,y0==﹣4.因为以AB为直径的圆与x轴相切,得到圆半径为r=|y1|=4,又|AB|==.所以|AB|=2r,即=8,解得b=﹣.所以x0==2b+8=,所以圆心为(,﹣4).故所求圆的方程为(x﹣)2+(y+4)2=16..(Ⅱ)因为直线l与y轴负半轴相交,∴b<0,又l与抛物线交于两点,由(Ⅰ)知b>﹣2,∴﹣2<b<0,直线l:y=﹣x+b整理得x+2y﹣2b=0,点O到直线l的距离d==,所以∴S△AOB=|AB|d=﹣4b=4.令g(b)=b3+2b2,﹣2<b<0,g′(b)=3b2+4b=3b(b+),∴g(b)在(﹣2,﹣)增函数,在(﹣,0)是减函数,∴g(b)的最大值为g(﹣)=.∴当b=﹣时,△AOB的面积取得最大值.点评:本题主要考查圆的方程的求法,考查三角形面积的最大值的求法,考查直线与抛物线、圆等知识,同时考查解析几何的基本思想方法和运算求解能力.8.(2015•大庆二模)抛物线M:y2=2px(p>0)的准线过椭圆N:+y2=1的左焦点,以原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的图象以及y轴的正半轴相交于点A和B,直线AB与x轴相交于点C.(Ⅰ)求抛物线M的方程;(Ⅱ)设点A的横坐标为a,点C的横坐标为c,抛物线M上点D的横坐标为a+2,求直线CD的斜率.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)由椭圆方程求出椭圆左焦点坐标,得到抛物线准线方程,从而求得p值,则抛物线方程可求;(Ⅱ)写出A的坐标,由|OA|=t列式求得t与A的坐标间的关系,求出直线BC的方程,把A代入BC方程,得到a,c的关系,然后直接代入斜率公式求直线CD的斜率.解答:解:(Ⅰ)∵椭圆N:+y2=1,∴c2=a2﹣b2=﹣1=,∴椭圆的左焦点为F1(﹣,0),∴﹣=﹣,则p=1.故M:y2=2x;(Ⅱ)由题意知,A(a,2a),∵|OA|=t,∴a2+2a=t2.由于t>0,故有t=①由点B(0,t),C(c,0)的坐标知,直线BC的方程为+=1.又∵A在直线BC上,故有+=1.将①代入上式,得:+=1,解得c=a+2+.又∵D(a+2,2),∴直线CD的斜率为:k CD====﹣1.点评:本题主要抛物线方程的求法,考查了直线与圆锥曲线位置关系的应用,解答此题的关键是对抛物线定义的灵活应用,是高考试卷中的压轴题.9.(2015•黄冈模拟)已知抛物线y2=4x的焦点为F2,点F1与F2关于坐标原点对称,以F1,F2为焦点的椭圆C,过点(1,),(Ⅰ)求椭圆C的标准方程;(Ⅱ)设T(2,0),过点F2作直线l与椭圆C交于A,B两点,且=λ,若λ∈[﹣2,﹣1],求|+|2的最小值.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设椭圆的半焦距为c,由y2=4x求得c=1.设椭圆C的标准方程为(a>b>0),由于椭圆C过点(1,),代入椭圆方程结合a2=b2+c2,联立解得即可;(II)设l:x=ky+1,与椭圆的方程联立可得根与系数的关系,由λ∈[﹣2,﹣1)可得到k2的取值范围.由于=(x1﹣2,y1),=(x2﹣2,y2),通过换元,令t=∈[,],即可得出|+|2的最小值.解答:解:(Ⅰ)设椭圆的半焦距为c,由y2=4x得c=1,设椭圆C的标准方程为(a>b>0),∵椭圆C过点(1,),∴,又a2=b2+1,联立解得b2=1,a2=2.故椭圆C的标准方程为椭圆方程为+y2=1…(5分)(Ⅱ)由题意可设l:x=ky+1,由得(k2+2)y2+2ky﹣1=0…(6分)设A(x1,y1),B(x2,y2),则有将①2÷②得+2=﹣⇒λ++2=…(8分)由λ∈[﹣2,﹣1]得﹣≤λ++2≤0⇒﹣≤≤0,0≤k2≤…(9分)=(x1﹣2,y1),=(x2﹣2,y2),+=(x1+x2﹣4,y1+y2)x1+x2﹣4=k(y1+y2)﹣2=﹣,|+|=+==16﹣+令t=∈[,],|+|2=8t2﹣28t+16∴t=时|+|2的最小值是4点评:本题综合考查了椭圆与抛物线的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数、换元法、分类讨论、向量相等及其向量运算和向量的模等基础知识与基本技能方法,考查了分析问题和解决问题的能力,考查了推理能力和计算能力,属于中档题.10.(2015•福建模拟)如图,已知抛物线y2=4x的焦点为F,过点P(2,0)且斜率为k1的直线交抛物线于A(x1,y1),B(x2,y2)两点,直线AF、BF分别与抛物线交于点M、N.(Ⅰ)证明•的值与k1无关;(Ⅱ)记直线MN的斜率为k2,证明为定值.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)依题意,设直线AB的方程为x=my+2,与抛物线方程联立消x得关于y的一元二次方程,根据韦达定理即可求得y1y2,进而求出x1x2,根据向量数量积运算公式,可得•的值与k1无关;(Ⅱ)设M(x3,y3),N(x4,y4),设直线AM的方程为x=ny+1,将其代入y2=4x,消去x,得到关于y的一元二次方程,从而得y1y3=﹣4,同理可得y2y4=﹣4,根据斜率公式可把表示成关于y1与y2的表达式,再借助(Ⅰ)的结果即可证明.解答:证明:(Ⅰ)依题意,设直线AB的方程为x=my+2(m≠0).…(1分)将其代入y2=4x,消去x,整理得y2﹣4my﹣8=0.…(2分)从而y1y2=﹣8,于是,…(3分)∴与k 1无关.…(5分)(Ⅱ)设M(x3,y3),N(x4,y4).则.…(8分)设直线AM的方程为x=ny+1(n≠0),将其代入y2=4x,消去x,整理得y2﹣4ny﹣4=0∴y1y3=﹣4.同理可得y2y4=﹣4.…(10分)故,…(11分)由(Ⅰ)知,y1y2=﹣8,∴为定值.…(12分)点评:本题考查直线与圆锥曲线的位置关系及抛物线的简单性质,考查学生综合运用知识分析问题解决问题的能力,难度较大.11.(2015•洛阳一模)已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且•=﹣3,其中O为坐标原点.(1)求p的值;(2)当|AM|+4|BM|最小时,求直线l的方程.考点:直线与圆锥曲线的关系.专题:计算题;平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,运用韦达定理,及平面向量的数量积的坐标表示,即可得到p=2;(2)运用抛物线的定义,及均值不等式,即可得到最小值9,注意等号成立的条件,求得B的坐标,代入直线方程,求得m,即可得到直线l的方程.解答:解:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,消去x,得,y2﹣2pmy﹣p2=0,y1+y2=2pm,y1y2=﹣p2,由于•=﹣3,即x1x2+y1y2=﹣3,x1x2==,即有﹣p2=﹣3,解得,p=2;(2)由抛物线的定义,可得,|AM|=x1+1,|BM|=x2+1,则|AM|+4|BM|=x 1+4x2+5+5=9,当且仅当x1=4x2时取得最小值9.由于x1x2=1,则解得,x2=(负的舍去),代入抛物线方程y2=4x,解得,y2=,即有B(),将B的坐标代入直线x=my+1,得m=.则直线l:x=y+1,即有4x+y﹣4=0或4x﹣y﹣4=0.点评:本题考查抛物线的定义、方程和性质,考查直线方程和抛物线方程联立,消去未知数,运用韦达定理,考查基本不等式的运用:求最值,考查运算能力,属于中档题.12.(2015•洛阳一模)已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且•=﹣3,其中O为坐标原点.(1)求p的值;(2)若圆x2+y2﹣2x=0与直线l相交于以C,D(A,C两点均在第一象银),且线段AC,CD,DB长构成等差数列,求直线l的方程.考点:直线与圆锥曲线的关系;直线的一般式方程.专题:计算题;平面向量及应用;圆锥曲线的定义、性质与方程.分析:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,运用韦达定理,及平面向量的数量积的坐标表示,即可得到p=2;(2)求出AB的长,用m表示,再由等差数列的性质,以及CD为圆的直径,即可得到m的方程,解出m,即可得到直线l的方程.解答:解:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,消去x,得,y2﹣2pmy﹣p2=0,y1+y2=2pm,y1y2=﹣p2,由于•=﹣3,即x1x2+y1y2=﹣3,x1x2==,即有﹣p2=﹣3,解得,p=2;(2)由(1)得,y1+y2=4m,y1y2=﹣4,则(y1﹣y2)2=(y1+y2)2﹣4y1y2=16(1+m2),|AB|2=(y1﹣y2)2+(x1﹣x2)2=(y1﹣y2)2+()2=y1﹣y2)2[1+()2]=16(1+m2)2,即有|AB|=4(1+m2),由于线段AC,CD,DB长构成等差数列,则2|CD|=|AC|+|DB|=|AC|+|BC|﹣|CD|=|AB|﹣|CD|,又CD为圆x2+y2﹣2x=0的直径,即有|CD|=2,则4(1+m2)=6,解得,m=,则直线l的方程是x+y﹣=0或x﹣y﹣=0.点评:本题考查抛物线的定义、方程和性质,考查直线方程和抛物线方程联立,消去未知数,运用韦达定理,考查等差数列的性质,考查运算能力,属于中档题.13.(2015•衡水模拟)已知点A(﹣4,4)、B(4,4),直线AM与BM相交于点M,且直线AM的斜率与直线BM的斜率之差为﹣2,点M的轨迹为曲线C.(Ⅰ)求曲线C的轨迹方程;(Ⅱ)Q为直线y=﹣1上的动点,过Q做曲线C的切线,切点分别为D、E,求△QDE的面积S的最小值.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(I)设M(x,y),由题意可得:,化简可得曲线C的轨迹方程为x2=4y且(x≠±4).(II)设Q(m,﹣1),切线方程为y+1=k(x﹣m),与抛物线方程联立化为x2﹣4kx+4(km+1)=0,由于直线与抛物线相切可得△=0,即k2﹣km﹣1=0.解得x=2k.可得切点(2k,k2),由k2﹣km﹣1=0.可得k1+k2=m,k1•k2=﹣1.得到切线QD⊥QE.因此△QDE为直角三角形,|QD|•|QE|.令切点(2k,k2)到Q的距离为d,则d2=(2k﹣m)2+(k2+1)2=(4+m2)(k2+1),利用两点之间的距离公式可得|QD|=,|QE|=,代入即可得出.解答:解:(I)设M(x,y),由题意可得:,化为x2=4y.∴曲线C的轨迹方程为x2=4y且(x≠±4).(II)设Q(m,﹣1),切线方程为y+1=k(x﹣m),联立,化为x2﹣4kx+4(km+1)=0,由于直线与抛物线相切可得△=0,即k2﹣km﹣1=0.∴x2﹣4kx+4k2=0,解得x=2k.可得切点(2k,k2),由k2﹣km﹣1=0.∴k1+k2=m,k1•k2=﹣1.∴切线QD⊥QE.∴△QDE为直角三角形,|QD|•|QE|.令切点(2k,k2)到Q的距离为d,则d2=(2k﹣m)2+(k2+1)2=4(k2﹣km)+m2+(km+2)2=4(k2﹣km)+m2+k2m2+4km+4=(4+m2)(k2+1),∴|QD|=,|QE|=,∴(4+m2)=≥4,当m=0时,即Q(0,﹣1)时,△QDE的面积S取得最小值4.点评:本题考查了直线与抛物线相切的性质、切线方程、相互垂直的斜率之间的关系、两点之间的距离公式、三角形的面积计算公式、二次函数的性质,考查了推理能力与计算能力,属于难题.14.(2015•郴州二模)如图所示,已知过抛物线x2=4y的焦点F的直线l与抛物线相交于A,B两点.(1)求证:以AF为直径的圆与x轴相切;(2)设抛物线x2=4y在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程:(3)设过抛物线x2=4y焦点F的直线l与椭圆+=1的交点为C、D,是否存在直线l使得|AF|•|CF|=|BF|•|DF|,若存在,求出直线l的方程,若不存在,请说明理由.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(1)如图所示,设线段AF的中点为O1,过O1作O1O2⊥x轴,垂足为点O2,作AA1⊥x轴.利用抛物线的定义及梯形的中位线定理可得可得r====|O1O2|,即可证明;(2)设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2).与抛物线方程联立化为x2﹣4kx﹣4=0,可得根与系数的关系,由x2=4y,可得.可得k MA•k MB==﹣1,可得△MAB为直角三角形,可得△MAB的外接圆的圆心为线段AB的中点.设线段AB的中点为P,可得⊙P与抛物线的准线相切,切点为点M,利用中点坐标公式与根与系数的关系可得圆心P(2,3),半径r=|MP|=|3﹣(﹣1)|=4,即可得出所求的△MAB的外接圆的方程.(3)假设存在直线l使得|AF|•|CF|=|BF|•|DF|,设=λ,可得,,设C(x3,y3),D (x4,y4).利用向量的坐标运算可得x1=﹣λx2,x4=﹣λx3.把x1=﹣λx2代入根与系数的关系可得.把y=kx+1代入椭圆方程可得(3k2+6)x2+6kx﹣1=0,把根与系数的关系与x4=﹣λx3联立可得,联立解得即可.解答:(1)证明:如图所示,设线段AF的中点为O1,过O1作O1O2⊥x轴,垂足为点O2,作AA1⊥x轴.则r====|O1O2|,∴r=|O1O2|,∴以AF为直径的圆与x轴相切;(2)解:设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2).联立,化为x2﹣4kx﹣4=0,∴x1+x2=4k,x1x2=﹣4.。

抛物线测试题及答案

抛物线测试题及答案

抛物线测试题及答案1. 抛物线的定义抛物线是二次函数的图像,它由一条平滑的曲线组成,这条曲线是在平面上的所有离定点等距的点的轨迹。

抛物线的标准方程为 y = ax^2 + bx + c,其中 a、b 和 c 为常数。

2. 抛物线的性质- 对称性:抛物线关于 y 轴对称,即对于任意 x,有 y = ax^2 + bx + c,则对于相对应的 -x,仍满足 y = a(-x)^2 + b(-x) + c。

- 顶点:抛物线的顶点是曲线的最高点或最低点,形式为 (h, k),其中 h 为对称轴上的横坐标,k 为顶点的纵坐标。

- 开口方向:抛物线的开口方向由二次项系数 a 的正负决定。

当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

- 零点:抛物线与 x 轴交点的纵坐标为 0,可通过解一元二次方程找到零点的横坐标。

3. 抛物线的常见问题3.1 抛物线的参数- 如何确定抛物线的参数 a、b 和 c?通常可以通过已知的点的坐标来确定。

- 如何求取抛物线的顶点坐标?可以通过横坐标的公式 h = -b / (2a) 来计算,然后代入方程求得 k。

- 什么情况下抛物线不存在实零点?当抛物线开口向上时,且顶点的纵坐标 k 大于或等于 0 时,抛物线不存在实零点。

3.2 抛物线的应用- 抛物线在物理学、经济学和工程学等领域中有广泛的应用。

例如,抛物线可以用来描述物体在自由落体中的运动轨迹、图像的放大和缩小等现象。

- 在建筑学中,抛物线也被用于设计拱形桥、碗状天花板等结构。

4. 抛物线测试题答案- 问题一:已知抛物线公式为 y = 2x^2 + 3x + 1,求抛物线的顶点坐标。

- 答案:根据公式 h = -b / (2a),得到 h = -(3) / (2*2) = -3/4。

将h 代入原方程可求得 k = -1/8。

所以顶点坐标为 (-3/4, -1/8)。

- 问题二:求抛物线 y = x^2 + x - 2 的零点。

高中数学抛物线大题精选30道(含答案)

高中数学抛物线大题精选30道(含答案)

抛物线大题30题1 .已知抛物线的顶点在原点,焦点与椭圆224520x y +=的一个焦点相同,(1)求椭圆的焦点坐标与离心率;(2)求抛物线方程.2 .过抛物线y 2=4x 的焦点作直线AB 交抛物线于 A .B,求AB 中点M 的轨迹方程。3 .已知直线l 过定点()0,4A ,且与抛物线2:2(0)C ypx p = >交于P 、Q 两点,若以PQ 为直径的圆经过原点O ,求抛物线的方程.4 .已知p :方程2212x y m m+=-表示椭圆;q :抛物线y =221x mx ++与 x 轴无公共点,若p 是真命题且q 是假命题,求实数m 的取值范围.5 .在平面直角坐标系xoy 中,抛物线C 的顶点在原点,经过点A (2,2),其焦点F 在x 轴上。

(1)求抛物线C 的标准方程;(2)求过点F ,且与直线OA 垂直的直线的方程;(3)设过点(,0)(0)M m m >的直线交抛物线C 于D .E 两点,ME=2DM , 记D 和E 两点间的距离为()f m ,求()f m 关于m 的表达式。

6 .直线y=2x 与抛物线y=-x 2-2x+m 相交于不同的两点 A .B ,求(1)实数m 的取值范围;(2)∣AB ∣的值(用含m 的代数式表示).7 .已知抛物线1C :24(0)y px p =>,焦点为2F ,其准线与x 轴交于点1F ;椭圆2C :分别以12F F 、为左、右焦点,其离心率12e =;且抛物线1C 和椭圆2C 的一个交点记为M .(1)当1p =时,求椭圆2C 的标准方程;(2)在(1)的条件下,若直线l 经过椭圆2C 的右焦点2F ,且与抛物线1C 相交于,A B 两点,若弦长||AB 等于12MF F ∆的周长,求直线l 的方程.8 .如图,已知直线l :2y kx =-与抛物线C :22(0)x py p =->交于A ,B 两点,O 为坐标原点,(4,12)OA OB +=--。(Ⅰ)求直线l 和抛物线C 的方程; (Ⅱ)抛物线上一动点P 从A 到B 运动时, 求△ABP 面积最大值.9.设圆Q 过点P (0,2), 且在x 轴上截得的弦RG 的长为4.(Ⅰ)求圆心Q 的轨迹E 的方程;(Ⅱ)过点F (0,1),作轨迹E 的两条互相垂直的弦AB ,CD ,设AB 、CD 的中点分别为M ,N ,试判断直线MN 是否过定点?并说明理由. 10.已知抛物线2:2C y px =的准线方程14x =-,C 与直线1:y x =在第一象限相交于点1P ,过1P 作C的切线1m ,过1P 作1m 的垂线1g 交x 轴正半轴于点1A ,过1A 作1的平行线2交抛物线C 于第一象限内的点2P ,过2P 作抛物线1C 的切线2m ,过2P 作2m 的垂线2g 交x 轴正半轴于点2A ,…,依此类推,在x 轴上形成一点列1A ,2A ,3A ,…,(*)n A n N ∈,设点n A 的坐标为(,0).n a(Ⅰ)试探求1n a +关于n a 的递推关系式; (Ⅱ)求证:13322n n a -≤⋅-; (Ⅲ)求证:()()1234211(23)2(23)6(23)13321n n n a a a n n n ++++≥-+⋅+⋅+⋅⋅+⋅⋅+. 11.已知直线1:++=k kx y l ,抛物线x y C 4:2=,定点M(1,1)。(I)当直线l 经过抛物线焦点F 时,求点M 关于直线l 的对称点N 的坐标,并判断点N 是否在抛物线C 上;(II)当)0(≠k k 变化且直线l 与抛物线C 有公共点时,设点P(a,1)关于直线l 的对称点为Q(x 0,y 0),求x 0关于k 的函数关系式)(0k f x =;若P 与M 重合时,求0x 的取值范围。12.位于函数4133+=x y 的图象上的一系列点 ),,(,),,(),,(222111n n n y x P y x P y x P ,这一系列点的横坐标构成以25-为首项,1-为公差的等差数列{}n x . (Ⅰ)求点n P 的坐标;(Ⅱ)设抛物线 ,,,,,321n C C C C 中的每一条的对称轴都垂直于x 轴,对于n ∈*N 第n 条抛物线n C 的顶点为n P ,抛物线n C 过点)1,0(2+n D n ,且在该点处的切线的斜率为n k ,求证:10111113221<+++-n n k k k k k k . 13.已知抛物线24y x =的焦点为F , A .B 为抛物线上的两个动点.(Ⅰ)如果直线AB 过抛物线焦点,判断坐标原点O 与以线段AB 为直径的圆的位置关系, 并给出证明;(Ⅱ)如果4OA OB ⋅=-(O 为坐标原点),证明直线AB 必过一定点,并求出该定点.14.已知点F(2 ,0) ,直线:1l x =-,动点N 到点F 距离比到直线l 的距离大1;(1)求动点N 的轨迹C 的方程; (2)直线2y x =-与轨迹C 交于点A,B,求ABO ∆的面积.15.(本小题共13分)已知抛物线C :2y x =,过定点()0,0A x 01()8x ≥,作直线l 交抛物线于,P Q (点P 在第一象限). (Ⅰ)当点A 是抛物线C 的焦点,且弦长2PQ =时,求直线l 的方程;(Ⅱ)设点Q 关于x 轴的对称点为M ,直线PM 交x 轴于点B ,且BQ BP ⊥.求证:点B 的坐标是0(,0)x -并求点B 到直线l 的距离d 的取值范围.16.抛物线()2:20C ypx p=上横坐标为32的点到焦点F 的距离为2(I )求p 的值;(II )过抛物线C 的焦点F.,作相互垂直的两条弦AB 和CD , 求AB CD +的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级:____________姓名:___________
§2.3 抛物线巩固案(2010年课改区高考题)
1.(基础题)抛物线22x y =的焦点坐标是 ( )
A .)0,1(
B .)0,4
1( C .)81,0( D . )41,0( 2.(基础题)已知抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,抛物线方程
A .y x 82=
B .y x 42=
C .y x 42-=
D .y x 82-=
3.(基础题)抛物线x y 122=截直线12+=x y 所得弦长等于 ( )
A .15
B .152
C .215
D .15
4.(基础题)顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( )
A.y x 2
92-=或x y 342= B.x y 292-=或y x 342= C.y x 342= D.x y 292-= 5. (基础题)设R a a ∈≠,0,则抛物线24ax y =的焦点坐标为( )
A、 (a,0) B、 (0,a) C、 (0,a
161) D、 随a 的符号而定 6. (基础题)顶点在原点,准线为y=2的抛物线方程为( )
A .y 2=8x
B .y 2=-8x
C .x 2=8y
D .x 2=-8y
7. (基础题)顶点为原点,抛物线对称轴为y 轴,且过点(-4,5),则抛物线的准线方程为( )
A .y=-45
B .y=45
C .x=-45
D .x=45
8. (基础题)抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是( )
A .1716
B .1516
C .78
D .0 9.(2010四川文)抛物线28y x =的焦点到准线的距离是( )
(A ) 1 (B )2 (C )4 (D )8
10(2010安徽文)抛物线2
8y x =的焦点坐标是
11.(2010全国卷2理)已知抛物线2:2(0)C y px p =>的准线为l ,过(1,0)M l 相交于点A ,与C 的一个交点为B .若AM MB = ,则p = .
12.(2010重庆文)已知过抛物线24y x =的焦点F 的直线交该抛物线于A 、B 两点,2AF =,则
BF =____________ .
13.(2010·福建高考理科·T2)以抛物线24=y x 的焦点为圆心,且过坐标原点的圆的方程为( )
A.2220++=x y x
B.220++=x y x
C.220+-=y x χ
D.2220+-=x y x
14.(2010·陕西高考理科·T8)已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6 x -7=0相切,则p 的值为( ) (A) 12
(B) 1 (C) 2 (D) 4 15.(2010·辽宁高考理科·T7)设抛物线y 2=8x 的焦点为F ,准线为l,P 为抛物线上一点,PA ⊥l,A 为垂足.如
果直线AF 的斜率为,那么|PF|=( )
(A)16.(2010·山东高考文科·T9)已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线与A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )
(A )1x = (B)1x =- (C)2x = (D)2x =-
17.(2010·湖南高考理科·T5) 设抛物线28y x =上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A. 4 B. 6 C. 8 D. 12
18.(2010·浙江高考理科·T13)设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________.
19.(2010·福建高考文科·T19)已知抛物线C :22(0)y px p =>过点A (1 , -2).
(I )求抛物线C 的方程,并求其准线方程;
(II )是否存在平行于OA (O 为坐标原点)的直线L ,使得直线L 与抛物线C 有公共点,且直线OA 与L
L 的方程;若不存在,说明理由.
1—5CDABC 6.D 7.A 8.B 9.C
10. 答案:(2,0)
11. 【答案】2 【解析】过B 作BE 垂直于准线l 于E ,∵AM MB = ,∴M 为中点,∴1BM AB 2
=,又
0BAE 30∠=,∴1BE AB 2
=,∴BM BE =,∴M 为抛物线的焦点,∴p =2.
12AF AA KF ===
A B x ∴⊥轴
故AF =BF =2 13.选D ,抛物线的焦点为)0,1(F ,又圆过原点,所以1=R ,方程为021)1(2222=+-⇔=+-y x x y x .
【方法技巧】方法一:(设圆的标准方程) 抛物线的焦点为()1,0,∴圆心为()1,0,设圆的方程为()()222x 1y r r 0-+=>,又 圆过原点()0,0, ()()222010r r 0∴-+=>,2r 1∴=,∴所求圆的方程
为()22x 1y 1-+=即为22x 2x y 0-+= ; 方法二:(设圆的一般方程)设圆的方程为220x y Dx Ey F ++++=, 抛物线的焦点为()1,0,∴圆心为
()1,0, 122,0
02
D D
E E ⎧=⎪=⎧⎪∴∴⎨⎨=⎩⎪=⎪⎩,又圆过原点,0
F =,2r 1∴=,∴所求圆的方程为22x 2x y 0-+= 14.选C 由y 2=2px ,得准线2p x =-
,圆x 2+y 2-6 x -7=0可化为22(3)16x y -+=,由圆心到准线的距离等于半径得:34, 2.2
p p +=∴= 15. 【规范解答】选B .由抛物线方程28y x =,可得准线l 方程为:
2,F x =-焦点坐标(2,0)设点A 坐
标为(-2,n )
,0 2
2n n -∴∴=--=
,。

∴P 点纵坐标为
由2(=8x,得x=6,∴P 点坐标为(6,,∴|PF|=|PA|=|6-(-2)|=8,故选B . 16. 【规范解答】选B ,设11(,)A x y ,22(,)B x y ,则因为A 、B 两点在抛物线上,得
2112y px = ① ,2222y px = ②,① - ②得 121212()()2()y y y y p x x -+=-,又线段AB 的中点的纵坐
标为2,即124y y +=,直线AB 的斜率为1,故24,2p p ==,因此抛物线的准线方程为 1.2
p x =-
=- 【方法技巧】弦中点问题 1、对于弦中点问题常用“根与系数的关系”或“点差法”求解,在使用根与系数的关系时,要注意使用条件是0.∆≥
2、在椭圆22221x y a b +=中,以00(,)P x y 为中点的弦所在直线的斜率2020
b x k a y =-. 3、在双曲线22221x y a b -=中,以00(,)P x y 为中点的弦所在直线的斜率2020
b x k a y =. 4、在抛物线22(0)y px p =>中,以00(,)P x y 为中点的弦所在直线的斜率0p k y =
. 17. 【思路点拨】过点P 向准线引垂线,连接点P 和焦点,联想到抛物线的定义.
【规范解答】选B.∵点P 到y 轴的距离是4,延长使得和准线相交于点Q ,则PQ 等于点P 到焦点的距离,而PQ=6,
18. 【思路点拨】先求出抛物线的焦点F ,计算出点B 的坐标,代入到抛物线方程,解出p ,从而可求出抛物线的方程,点B 的坐标及准线方程.
F (,0)2
p ,FA 中点(,1)4p B 在抛物线上,2124p p ∴=⨯
,p ∴=
B ∴
,抛物线的准线方程为x =,∴点B 到该抛物
线准线的距离为|(|42--= 19. 【思路点拨】第一步用待定系数法求出抛物线方程及其准线方程;第二步依题意假设直线l 的方程为y 2x t =-+,联立直线与抛物线的方程,利用判别式限制参数t 的范围,再由直线OA 与直线l
列出方程,求解出t 的值,注意判别式对参数t 的限制. 【规范解答】(I )将()12-,代入22y px =,得()2
221p -=⋅,2p ∴=,故所求的抛物线方程为24y x =,其准线方程为1x =-; (II )假设存在符合题意的直线l ,其方程为2y x t =-+,由242y x y x t
⎧=⎨=-+⎩得2220y y t +-=,因为直线l
与抛物线C 有公共点,所以480t ∆=+≥,解得12t ≥-。

另一方面,由直线OA 与直线l
1t =∴=±,由于111,,1,,22⎡⎫⎡⎫-∉-+∞∈-+∞⎪⎪⎢⎢⎣⎭⎣⎭
,所以符合题意的直线l 存在,其方程为21y x =-+.
【方法技巧】在求解直线与圆锥曲线的位置关系中的相交弦问题时,我们一定要注意判别式∆的限制.因为抛物与直线有交点,注意应用0∆>进行验证可避免增根也可以用来限制参数的范围.。

相关文档
最新文档