1-s2.0-S1359835X11001059-main

合集下载

Enhanced low energy fusion rate in palladium (Pd) due to vibrational deuteron dipole-dipole

Enhanced low energy fusion rate in palladium (Pd) due to vibrational deuteron dipole-dipole

where K is proportional to the DOS at the Fermi surface. K is typically much greater than a reciprocal lattice vector. The static Coulomb H-H interaction between nearest neighbours is consequently small, typically not more than a few meV, and essentially state-independent. By contrast, the attenuation of the electromagnetic field due to a transition between levels is negligible over the dimensions of a lattice cell. Since the interparticle interaction is so strongly frequency dependent, the full Hamiltonian cannot be written in closed analytical form. However, matrix elements between pairs of two-site states are simply given by: Hi1 ,j1;i2 ,j2 = e2 j1 , j2 | e−K |r1−r2 −R|δ(ǫi1 −ǫj1 )δ(ǫi2 −ǫj2 ) |i1 , i2 |r1 − r2 − R | (3)
Preprint submitted to Elsevier 5 February 2008

Tron 产品说明书

Tron 产品说明书

COMPASS01-0226-03GYROTRAC SYSTEM FOC-WO 1.00SET21F COMPASS01-0226-03GYROTRAC SYSTEM FOC-WO 1.00SET PHLIA WIND DATA SYSTEM05106RM YOUNG WIND MONITOR - MA P221-1334 1.00SET XXX WIND DATA SYSTEM05108RM YOUNG WIND MONITOR HD P222-14537.00SET19F WIND DATA SYSTEM06206-27RM YOUNG MARINE WIND TRACKER -110/220VAC P222-1453 3.00SET19F WIND DATA SYSTEM06206-27RM YOUNG MARINE WIND TRACKER -110/220VAC SHAC31 P221-0710 1.00SET SHAC 101700TRON TR30 AIR EMERGENCY VHF AM RADIO P222-0087 1.00SET19F103170EPRIB - TRON 60AIS WITH FLOAT FREE BRACKET P223-0001 4.00SET19F103170EPRIB - TRON 60AIS WITH FLOAT FREE BRACKET P222-0670 1.00SET SHAT1305118DM100 VDR G2P221-1683*3 1.00SET BOND710S-00607SAFESEA S100 SART WITH MOUNTING POLE P222-00748.00SET PHLIA EPIRB8305083050 TRON 40S MKII (WITHOUT BRACKET)FOC-P218-2570 1.00SET19F EPIRB83310TRON 60S EPIRB W/FF BRACKET P222-0776 1.00SET19F EPIRB83310TRON 60S EPIRB W/FF BRACKET P222-0331 1.00SET GZLF EPIRB83310TRON 60S EPIRB W/FF BRACKET P222-0776 2.00SET SHAT EPIRB83310TRON 60S EPIRB W/FF BRACKET P222-0776 1.00SET XXX19 83330TRON 60GPS EPIRB WITH FLOAT FREE BRACKET P222-07767.00SET19F83330TRON 60GPS EPIRB WITH FLOAT FREE BRACKET P222-0776 1.00SET SHAT VHF / UHF87950P221-0958 1.00SET19F VHF / UHF87950P222-067039.00SET19F VHF / UHF87950SHAC26 P221-0014 1.00SET SHAC VHF / UHF87950P221-0631 1.00SET SHAT A45P & E ANEMOMETER P221-1367 1.00SET PANYUAC3161200407222A-00500 SAILOR 7222 VHF DSC Class A P222-0139 3.00SET19FAC3496400C1-70-A00S INTELLIAN C700 CERTUS TERMINAL P221-1117 1.00SET PHLIA AUTOPILOT ALPHAPILOT-IU*AUTOPILOT (CONTACT O/P) CONNECTION TERMINAL (LOCAL MADE)FOC 4.00SET19F GYROCOMPASS CMZ-900B2GYRO COMPASS P222-1289 1.00SET19F ECHO SOUNDER CVS-126KODEN ECHO SOUNDER (600W, 200KHZ, DC24V OPERATION)P221-0821 1.00SET PHLIA ECHO SOUNDER CVS-126KODEN ECHO SOUNDER (600W, 200KHZ, DC24V OPERATION)P222-0118 3.00SET PHLIA ECHO SOUNDER CVS-126KODEN ECHO SOUNDER (600W, 200KHZ, DC24V OPERATION)P222-090520.00SET PHLIA ECHO SOUNDER CVS-128KODEN ECHO SOUNDER(8.4-INCH COLOR LCD)P222-0905 2.00SET19F ECHO SOUNDER CVS-128KODEN ECHO SOUNDER(8.4-INCH COLOR LCD)P222-0905 1.00SET PHLIA ECHO SOUNDER CVS-FX2KODEN DIGITAL BROADBAND ECHO SOUNDER C/W TRANSDUCER & STANDARD ACCESSORIES FOC-WO-P215-1160 1.00SET PHLIA NAVTEX DPU-414-50B-E PRINTER P222-0996 1.00SET DL NAVTEX DPU-414-50B-E PRINTER SHAC21 P219-0539 1.00SET DL NAVTEX DPU-414-50B-E PRINTER SHAC21 P219-0538 1.00SET FZ NAVTEX DPU-414-50B-E PRINTER P219-0538 1.00SET PANYU NAVTEX DPU-414-50B-E PRINTER CONSIGNMENT 1.00SET PHLIA NAVTEX DPU-414-50B-E PRINTER P221-0068 2.00SET PHLIA NAVTEX DPU-414-50B-E PRINTER P222-1020 1.00SET SHAI DT885FF ENTEL FIRE FIGHTER RADIO (UHF), ATEX IIB P221-014712.00SET19FDT885FF ENTEL FIRE FIGHTER RADIO (UHF), ATEX IIB ENT-P221-0011 6.00SET SHACDT985FF ENTEL FIRE FIGHTER RADIO (UHF), ATEX IIC P221-14248.00SET19FDT985FF ENTEL FIRE FIGHTER RADIO (UHF), ATEX IIC P222-118720.00SET19F VHF / UHF DX482ENTEL UHF P218-1451 1.00SET19F VHF / UHF DX482ENTEL UHF P218-1451 2.00SET SHAT VHF / UHF DX482ENTEL UHF P218-1451*2 3.00SET SHAT DX585M-IS UL913 INTRINSICALLY SAFE UFH (NON EU)P222-11417.00SET19F FAX / WEATHER FAX FAX-236BROTHER FAX MACHINE ( AC 220V )FOC-WO-P211-0201 1.00SET21F FAX / WEATHER FAX FAX-236BROTHER FAX MACHINE ( AC 220V )FOC-WO-P211-0201 1.00SET PHLIA VHF / UHF FM8800S*VHF (SECOND HAND)FOC-WO-P215-0960 1.00SET SGP GC80SIMRAD GYRO COMPASS P221-1563 1.00SET PHLIA GPS / DGPS GP-170GPS P222-0649 1.00SET PHLIA PUBLIC ADDRESSER HPA-7300PUBLIC ADDRESSER/ TALK-BACK SYSTEM CONSIGNMENT-PGH270210.70SET PANYU PUBLIC ADDRESSER HPA-9200PUBLIC ADDRESSER/ TALK BACK SYSTEM CONSIGNMENT-PGH27021 1.00SET PANYU VHF / UHF HT544ENTEL HANDHELD VHF (I.S. TYPE) WITH LCD DISPLAY ENT-P220-0003 2.00SET SHAC VHF / UHF HT583(RED-BEZEL)ENTEL I.S. UHF P221-0147 4.00SET19F VHF / UHF HT583(RED-BEZEL)ENTEL I.S. UHF P221-106117.00SET19F VHF / UHF HT583(RED-BEZEL)ENTEL I.S. UHF P221-1061 3.00SET SHAT VHF / UHF HT649-GMDSS/P2ENTEL 2-WAY VHF P222-163411.00SET19F VHF / UHF HT649-GMDSS/P2ENTEL 2-WAY VHF P222-1634 6.00SET SHAT VHF / UHF HT782UHF P221-1424 1.00SET19F VHF / UHF HT782UHF ENT-P220-0003 2.00SET SHAC VHF / UHF HT883ENTEL I.S. UHF P218-12858.00SET19F VHF / UHF HT883ENTEL I.S. UHF ENT-P220-0003 1.00SET SHAC VHF / UHF HT883(RED-BEZEL)ENTEL I.S. UHF P218-1201 6.00SET13F VHF / UHF HT883(RED-BEZEL)ENTEL I.S. UHF P218-0235 4.00SET19F VHF / UHF HT883(RED-BEZEL)ENTEL I.S. UHF P218-0699 4.00SET19F VHF / UHF HT883(RED-BEZEL)ENTEL I.S. UHF ENT-P220-0003 6.00SET SHAC VHF / UHF HT883(RED-BEZEL)ENTEL I.S. UHF P218-0235 1.00SET SHATVHF / UHF HT982ENTEL I.S. UHF P220-0104 4.00SET19F TELEPHONE HX-26AUTO EXCHANGE TELEPHONE SYSTEM CONSIGNMENT-PGH27021 1.00SET PANYU TELEPHONE HX-72AUTO-TELEPHONE SYSTEM CONSIGNMENT-PGH27021 1.00SET PANYU ECDIS JAN-2000JRC ECDIS FOC-WO-P216-0876 1.00SET PHLIA NECST JAN-470-4ANN NECST CONSIGNMENT 1.00SET PHLIA JAN-5203-26D ROUTE PLANNING SYSTEM, 26", DESK TOP TYPE P220-1749 2.00SET19F ECDIS JAN-701B*ECDIS (SECOND HAND)FOC-WO-P213-1313*10.90SET SHAT FAX / WEATHER FAX JAX-90*WEATHER FAX (SECOND HAND)FOC-WO-P213-1313 1.00SET SGP VDR SVDR JCY-1850*JRC SIMPLIFIED VOYAGE DATA RECORDER (SECOND HAND)FOC-WO-P215-0960 2.00SET SGP ECHO SOUNDER JFC-7050-W/OTD FISH FINDER (WITHOUT TRANSDUCER)FOC-WO-P215-1346 1.00SET PHLIA ECHO SOUNDER JFE-400-25ECHO SOUNDER WITH 200KHZ + 50KHZ DUAL TRANSDUCER (BB TYPE)P222-0682 1.00SET19F ECHO SOUNDER JFE-570S*NAVIGATION ECHO SOUNDER (SECOND HAND)FOC-WO-P213-1313 1.00SET SGP ECHO SOUNDER JFE-680JRC ECHO SOUNDER (WITHOUT TRANSDUCER)P221-0849 1.00SET19F AIS JHS-183AUTOMATIC IDENTIFICATION SYSTEM (AIS)P221-0837 1.00SET19F VHF / UHF JHS-32A*JRC VHF (SECOND HAND)FOC-WO-P213-1313 1.00SET PHLIA VHF / UHF JHS-32A*JRC VHF (SECOND HAND)FOC-WO-P215-0960*10.90SET SGP VHF / UHF JHS-32A*JRC VHF (SECOND HAND)FOC-WO-P215-0960 1.00SET SGP VHF / UHF JHS-32B*VHF/FM RADIOTELEPHONE (SECOND HAND)CONSIGNMENT 1.00SET PHLIA VHF / UHF JHS-7 2 WAY VHF RADIOTELEPHONE P219-1575*1 1.00SET19F GPS / DGPS JLR-21GPS COMPASS P222-0030 1.00SET19F GPS / DGPS JLR-4340GPS RECEIVER GPS-124 (WITH 15M CABLE)P218-0312*2 1.00SET19F GPS / DGPS JLR-7700MKII*GPS NAVIGATOR (SECOND HAND)FOC-WO-P215-0960 1.00SET SGP RADAR JMA-3336RADAR - X-BAND 6KW, 3.9FT OPEN SCANNER 10.4" DISPLAY P222-0318 1.00SET PHLIA JMA-3404JRC MARINE RADAR X-BAND, 4KW DOME SCANNER, 12/24VDC FOC-WO-P220-0946 3.00SET PHLIAJMA-3406JRC MARINE RADAR X-BAND, 6KW OPEN SCANNER, 12/24VDC P220-0946 1.00SET PHLIA RADAR JMR-9225-6XC X-BAND COLOR RADAR, 6FT ANTENNA OUTPUT POWER: 25KW STAND-ALONE TYPE P222-0744 1.00SET21F RADAR JMR-9225-6XC X-BAND COLOR RADAR, 6FT ANTENNA OUTPUT POWER: 25KW STAND-ALONE TYPE P222-0744 1.00SET BOND RADAR JMR-9230-SC S-BAND COLOR RADAR, 12FT ANTENNA OUTPUT POWER: 30KW STAND-ALONE TYPE P222-06990.90SET21F RADAR JMR-9230-SC S-BAND COLOR RADAR, 12FT ANTENNA OUTPUT POWER: 30KW STAND-ALONE TYPE P222-0170 1.00SET BOND RADAR JMR-9230-SC S-BAND COLOR RADAR, 12FT ANTENNA OUTPUT POWER: 30KW STAND-ALONE TYPE P222-06990.10SET GD MF/HF RADIO JSB-196GM*150W MHF/HF SSB RADIOTELEPHONE (SECOND HAND)FOC-P215-0960*1 1.00SET SGP INMARSAT JUE-85*INMARSAT-C MARINE MOBILE EARTH STATION (SECOND HAND)FOC-WO-P215-09600.90SET SGP INMARSAT JUE-95SA INMARSAT MINI-C MARINE MOBILE EARTH STATION P222-0682 1.00SET19F AIS KAT-100KODEN AIS TRANSCEIVER (DC OPERATION)P218-19660.50SET PHLIA KAT-330KODEN AIS TRANSCEIVER P222-0118 1.00SET19FKAT-330KODEN AIS TRANSCEIVER P222-0118 2.00SET PHLIAKAT-330KODEN AIS TRANSCEIVER P222-0905 6.00SET PHLIA ECHO SOUNDER KDS-6000BB KODEN DIGITAL BROADBAND SEARCH LIGHT SONAR P222-1707 2.00PC1PHLIA GPS / DGPS KGP-915KODEN GPS GLONASS P222-0905 3.00SET19F GPS / DGPS KGP-915KODEN GPS GLONASS P221-0821 2.00SET PHLIA GPS / DGPS KGP-915KODEN GPS GLONASS P222-0905 2.00SET PHLIA GPS / DGPS KGP-922GPS NAVIGATOR P222-0118 1.00SET19F GPS / DGPS KGP-922GPS NAVIGATOR P222-0118 1.00SET PHLIA GPS / DGPS KTN-70A PLOTTER P216-1791 1.00PC1PHJUN GPS / DGPS KTN-70A PLOTTER P219-172215.00PC1PHLIA RADAR MDC-204010.4-INCH COLOR LCD MARINE RADAR FOC-WO-P220-0861 2.00PC1PHLIA RADAR MDC-7912P-6X-BAND RADAR P222-1023 2.00SET19F RADAR MDC-7912P-6X-BAND RADAR P222-1023 2.00SET PHLIA RADAR MDC-941A KODEN 8.4 INCH COLOUR RADAR WITH 25" RADOME P222-0905 3.00SET19F RADAR MDC-941A KODEN 8.4 INCH COLOUR RADAR WITH 25" RADOME P220-0294*10.90SET PHLIA RADAR MDC-941A KODEN 8.4 INCH COLOUR RADAR WITH 25" RADOME P219-0298 1.00SET PHLIA RADAR MDC-941A KODEN 8.4 INCH COLOUR RADAR WITH 25" RADOME P222-0118 1.00SET PHLIA RADAR MDC-941A KODEN 8.4 INCH COLOUR RADAR WITH 25" RADOME P222-170712.00SET PHLIA RADAR MDC-941A KODEN 8.4 INCH COLOUR RADAR WITH 25" RADOME P222-090514.00SET PHLIA COMPASS MS-100MAGNETIC COMPASS A/D CONVERTOR FOC-WO-P210-0101 1.00SET21F COMPASS MS-100MAGNETIC COMPASS A/D CONVERTOR FOC-WO-P210-0261 2.00SET21F VHF / UHF NCM-1770-E CONTROLLER SHAC14 P219-1237*1 2.00SET SHAC NAVTEX NCR-333NAVTEX RECEIVER P222-1108 2.00SET19F NAVTEX NCR-333NAVTEX RECEIVER P219-1511*20.20SET PHLIA NAVTEX NCR-333NAVTEX RECEIVER P220-1728*10.80SET PHLIA NAVTEX NCR-333*NAVTEX RECEIVER (SECOND HAND)FOC-WO-P215-0960 2.00SET SGP NEB-2000NSR EPRIB WITH AIS P222-129515.00SET PHLIANEB-2000C NSR EPRIB P222-0737*10.90SET PHLIANEB-2000C NSR EPRIB P222-0737 1.00SET PHLIA VHF / UHF NKG-52*PRINTER (SECOND HAND)FOC-P215-0960 1.00PC1SGP NKG900A NKG-900 PRINTER P222-0682 1.00PC19FNKG900A NKG-900 PRINTER P222-04918.00PC19FNKG900A NKG-900 PRINTER P222-0144 1.00PC SHAT ECHO SOUNDER NKG-901PRINTER (FLUSH MOUNT)P222-0597 2.00PC119F ECHO SOUNDER NKG-91PRINTER (FLUSH MOUNT) REFER TO NKG-901FOC 1.00PC119FRADAR NRT-1000RADAR SART P222-0737 3.00SET PHLIA AIS NTE-183-E AIS TRANSPONDER SHAC30 P220-0605*1 1.00SET DL VHF / UHF NTE-770S-E VHF TRANSCEIVER SHAC13 P219-1237*1 2.00SET SHAC NVR-3000VHF P222-1386 2.00SET19F VDR SVDR NW-6000NETWAVE VDR P219-2455*5 1.00SET19F AUTOPILOT PR-8000*TOKIMEC AUTOPILOT (SECOND HAND)FOC-WO-P213-1313 1.00SET SGP AUTOPILOT PT900AWOCMZ900S AUTOPILOT (WITHOUT CMZ-900S)P218-1659*1 1.00SET21F AIS R4*AIS (SECOND HAND)FOC-P215-0960 2.00PC1SGP AUTOPILOT RFU ANSCHUTZ (FEEDBACK UNIT) WITH LINKAGE FOR NP60FOC 1.00SET19F AUTOPILOT RFU ANSCHUTZ (FEEDBACK UNIT) WITH LINKAGE FOR NP60FOC-P218-1009 1.00SET19F VHF / UHF RT5022*SAILOR RT5022 VHF DSC (2nd HAND)CONSIGNMENT 1.00SET SGP GYROCOMPASS TG-5000*TOKIMEC GYROCOMPASS (SECOND HAND)FOC-P215-0960 1.00SET SGP GYROCOMPASS TG-5000*TOKIMEC GYROCOMPASS (SECOND HAND)FOC-WO-P213-1313 1.00SET SGP VHF / UHF TLKR8PACKAGE C/W RECHARGABLE BATTERY, BATTERY CHARGER, EARBUD & USER MANUAL FOC-WO-P213-0004 2.00SET21F TRANSPONDER TRONSART20JOTRON RADAR TRANSPONDER P222-0087 1.00SET19F TRANSPONDER TRONSART20JOTRON RADAR TRANSPONDER P222-195530.00SET19F TRANSPONDER TRONSART20JOTRON RADAR TRANSPONDER P222-0087 2.00SET DL TRANSPONDER TRONSART20JOTRON RADAR TRANSPONDER P222-0087 2.00SET PANYU。

ARIES ARIES-P -Ver.04- 8 0 2 7 9 0 8 1 1 3 7 4 0 产

ARIES ARIES-P -Ver.04- 8 0 2 7 9 0 8 1 1 3 7 4 0 产

ISTRUZIONI D'USO E DI INSTALLAZIONE INSTALLATION AND USER'S MANUALINSTRUCTIONS D'UTILISATION ET D'INSTALLATION INSTALLATIONS-UND GEBRAUCHSANLEITUNG INSTRUCCIONES DE USO Y DE INSTALACION INSTRUÇÕES DE USO E DE INSTALAÇÃOCENTRALINA DI COMANDO D811184A ver. 04 08-02-02I CONTROL UNIT GB UNITÉ DE COMMANDE F STEUERZENTRALE D CENTRAL DE MANDO E CENTRAL DO MANDOP ARIES - ARIES P8027908113740a“WARNINGS” leaflet and an “INSTRUCTION MANUAL”.These should both be read carefully as they provide important information about safety, installation, operation and maintenance. This product complies with the recognised technical standards and safety regulations. We declare that this product is in conformity with the following European Directives: 89/336/EEC and 73/23/EEC (and subsequent amendments).1) GENERAL OUTLINEThe ARIES control unit has been designed for swing gates. It can be used for one or two gate controllers.The control unit mod. ARIES P can also be used to perform opening of a single actuator while keeping the other one closed (pedestrian access).2) FUNCTIONSSTOP: In all cases: it stops the gate until a new start command is given.PHOT:Functions can be set with Dip-Switch.Activated during closing.Activated during opening and closing.Rapid closingON: When the position of the gate photocells is exceeded, during both opening and closing, the gate automatically starts to close even if TCA is activated. We recommend setting DIP3 to ON (photocells only activated during closing).Blocks impulsesON: During opening, START commands are not accepted.OFF: During opening, START commands are accepted.PhotocellsON: Photocells only activated during closing.OFF: Photocells activated during opening and closing.Automatic closing time (TCA)ON: Automatic closing activated (can be adjusted from 0 to 90s)Preallarm (mod. ARIES P only)ON: The flashing light turns on abt 3 seconds before the motors start.FOR THE INSTALLER: check the boxes you are interested in.START:four-step logic Gate closedGate openDuring openingDuring closingAfter stop START: two-step logic SCA: Gate open indicating lightit opens it opensit stops and activates TCAit closesit stops and does not activate TCAit starts opening it stops and activats TCA (if activated)it closesit opensit opensoffononflashingATTENTION:Dip non used in mod. ARIES (always in OFF set).3) MAINTENANCE AND DEMOLITIONThe maintenance of the system should only be carried out by qualified personnel regularly. The materials making up the set and its packing must be disposed of according to the regulations in force.Batteries must be properly disposed of.WARNINGSCorrect controller operation is only ensured when the data contained in the present manual are observed. The company is not to be held responsible for any damage resulting from failure to observe the installation standards and the instructions contained in the present manual.The descriptions and illustrations contained in the present manual are not binding. The Company reserves the right to make any alterations deemed appropriate for the technical, manufacturing and commercial improvement of the product, while leaving the essential product features unchanged, at any time and without undertaking to update the present publication.D 811184A _04Thank you for buying this product, our company is sure that you will be more than satisfied with the product ’s performance. The product is supplied with a “WARNINGS ” leaflet and an “INSTRUCTION MANUAL ”.These should both be read carefully as they provide important information about safety, installation, operation and maintenance.This product complies with the recognised technical standards and safety regulations. We declare that this product is in conformity with the following European Directives: 89/336/EEC and 73/23/EEC (and subsequent amendments).1) GENERAL OUTLINEThe ARIES control unit has been designed for swing gates. It can be used for one or two gate controllers.The control unit mod. ARIES P can also be used to perform opening of a single actuator while keeping the other one closed (pedestrian access).2) GENERAL SAFETYWARNING! An incorrect installation or improper use of the product can cause damage to persons, animals or things.•The “Warnings ” leaflet and “Instruction booklet ” supplied with this product should be read carefully as they provide important information about safety, installation, use and maintenance.•Scrap packing materials (plastic, cardboard, polystyrene etc) according to the provisions set out by current standards. Keep nylon or polystyrene bags out of children ’s reach.•Keep the instructions together with the technical brochure for future reference.•This product was exclusively designed and manufactured for the use specified in the present documentation. Any other use not specified in this documentation could damage the product and be dangerous.•The Company declines all responsibility for any consequences resulting from improper use of the product, or use which is different from that expected and specified in the present documentation.•Do not install the product in explosive atmosphere.•The Company declines all responsibility for any consequences resulting from failure to observe Good Technical Practice when constructing closing structures (door, gates etc.), as well as from any deformation which might occur during use.•The installation must comply with the provisions set out by the following European Directives: 89/336/EEC, 73/23/EEC, 98/37/ECC and subsequent amendments.•Disconnect the electrical power supply before carrying out any work on the installation. Also disconnect any buffer batteries, if fitted.•Fit an omnipolar or magnetothermal switch on the mains power supply,having a contact opening distance equal to or greater than 3mm.•Check that a differential switch with a 0.03A threshold is fitted just before the power supply mains.•Check that earthing is carried out correctly: connect all metal parts for closure (doors, gates etc.) and all system components provided with an earth terminal.•The Company declines all responsibility with respect to the automation safety and correct operation when other manufacturers ’ components are used.•Only use original parts for any maintenance or repair operation.•Do not modify the automation components, unless explicitly authorised by the company.•Instruct the product user about the control systems provided and the manual opening operation in case of emergency.•Do not allow persons or children to remain in the automation operation area.•Keep radio control or other control devices out of children ’s reach, in order to avoid unintentional automation activation.•The user must avoid any attempt to carry out work or repair on the automation system, and always request the assistance of qualified personnel.•Anything which is not expressly provided for in the present instructions,is not allowed.3) TECHNICAL SPECIFICATIONSPower supply:...............................................................230V ±10% 50Hz Absorption on empty:.................................................................0.5A max Output power for accessories:..........................................24V~ 6VA max Max relay current:................................................................................8A Max power of motors:...............................................................300 W x 2Torque limiter:.................................................Self-transformer with 4 pos Limit switch:................................................................Adjustable run timePanel dimensions:.........................................................................See fig.1Cabinet protection:............................................................................IP55Working temperature:...............................................................-20 +55°C 4) TERMINAL BOARD CONNECTIONS(Fig.2)CAUTION: Keep the low voltage connections completely separated from the power supply connections.Fig.3 shows the fixing and connection method of the drive condensers whenever they are not fitted to the motor.JP51-2 Single-phase power supply 230V ±10%, 50 Hz (1=L/2=N).For connection to the mains use a multiple-pole cable with a minimum cross section of 3x1.5mm 2 of the type indicated in the above-mentioned standard (by way of example, if the cable is not shielded it must be at least equivalent to H07 RN-F while, if shielded, it must be at least equivalent to H05 VV-F with a cross section of 3x1.5mm 2).JP33-4 (mod.ARIES-P) 230V 40W max. blinker connection.5-6 (mod.ARIES) 230V 40W max. blinker connection.7-8-9 Motor M1 connection - 8 common, 7-9 start.10-11-12 Motor M2(r) connection - 11 common, 10-12 start.JP413-14 Open-close button and key switch (N.O.).13-15 Stop button (N.C.). If unused, leave bridged.13-16 Photocell or pneumatic edge input (N.C.). If unused, leave bridged.17-18 24V 3W max. gate open warning light.18-19 24V~ 0.25A max. (6VA) output (for supplying photocell or other device).20-21 Antenna input for radio-receiver board (20 signal - 21 braid).22 Common terminal (equivalent to terminal 13).23 Terminal for pedestrian control. It moves the leaf of motor M2 connected to terminal 10-11-12. This terminal is available only in ARIES-P control unit.JP225-26 2nd radio channel output of the double-channel receiver board (terminals not fitted on ARIES but fitted on ARIES-P) contact N.O.JP1 Radio-receiver board connector 1-2 channels.5) FUNCTIONSDL1:Power-on LedIt is switched on when the board is electrically powered.START: four-step logic: (DIP5 OFF)gate closed:..................................................................................it opens during opening:............................................... it stops and activates TCA gate open:................................................................................... it closes during closing:.................................... it stops and does not activate TCA after stop:.........................................................................it starts opening START: two-step logic: (DIP5 ON)gate closed:..................................................................................it opens during opening:................................it stops and activats TCA (if activated)gate open:....................................................................................it closes during closing:..............................................................................it opens after stop:.....................................................................................it opens STOP: In all cases: it stops the gate until a new start command is given.PHOT:Functions can be set with DIP-SWITCH.Activated during closing if DIP3-ON.Activated during opening and closing if DIP3-OFF.SCA: Gate open indicating light.with gate closed:...................................................................................off when gate is opening:...........................................................................on with gate open:.......................................................................................on when gate is closing:.....................................................................flashing 6) DIP-SWITCH SELECTION DIP1 Rapid closingON: When the position of the gate photocells is exceeded, during both opening and closing, the gate automatically starts to close even if TCA is activated. We recommend setting DIP3 to ON (photocells only activated during closing).OFF: Function not activated.DIP2 Blocks impulsesON: During opening, START commands are not accepted.OFF: During opening, START commands are accepted.DIP3 PhotocellsON: Photocells only activated during closing.OFF: Photocells activated during opening and closing.D 811184A _04DIP4 Automatic closing time (TCA)ON: Automatic closing activated (can be adjusted from 0 to 90s).OFF: Automatic closing not activated.DIP5 Control logicON: 2-step logic is activated (see start paragraph).OFF: 4-step logic is activated (see start paragraph).DIP6: Preallarm (mod.ARIES P only)ON: The flashing light turns on abt 3 seconds before the motors start.OFF The flashing light turns on simultaneously with the start of the motors.ATTENTION:Dip non used in mod. ARIES (always in OFF set).7) TRIMMER ADJUSTMENTTCA This adjusts the automatic closing time, after which time the gate automatically closes (can be adjusted from 0 to 90s).TW This adjusts the motor working time, after which time the motor stops (can be adjusted from 0 to 40s).TDELAY This adjusts the closing delay time of the second motor (M2).8) MOTOR TORQUE ADJUSTMENTThe ARIES control unit has electric torque adjustment which allows the motor force to be adjusted.The adjustment should be set for the minimum force required to carry out the opening and closing strokes completely.Adjustment is carried out by moving the connection 55 (fig.3) on the tran-sformer sockets as described below:Pos.T1 1st TORQUE (MINIMUM TORQUE)Pos.T2 2nd TORQUE Pos.T3 3rd TORQUEPos.T4 4th TORQUE (MAXIMUM TORQUE)4 motor torque values can be obtained.To gain access to the torque adjustment sockets, disconnect the mains supply and remove the protective case “P ” of the transfomer.CAUTION: Excessive torque adjustment may jeopardise the anti-squash safety function. On the other hand insufficient torque adjustment may not guarantee correct opening or closing strokes.9) MAINTENANCE AND DEMOLITIONThe maintenance of the system should only be carried out by qualified personnel regularly. The materials making up the set and its packing must be disposed of according to the regulations in force.Batteries must be properly disposed of.WARNINGSCorrect controller operation is only ensured when the data contained in the present manual are observed. The company is not to be held responsible for any damage resulting from failure to observe the installation standards and the instructions contained in the present manual.The descriptions and illustrations contained in the present manual are not binding. The Company reserves the right to make any alterations deemed appropriate for the technical, manufacturing and commercial improvement of the product, while leaving the essential product features unchanged, at any time and without undertaking to update the present publication.D811184A_04ARIES/ARIES-P - Ver. 04 -23。

1-s2.0-S0024379513004217-main

1-s2.0-S0024379513004217-main
Linear Algebra and its Applications 439 (2013) 2479–2493
Contents lists available at SciVerse ScienceDirect
Linear Algebra and its Applications
/locate/laa
where i = 1, . . . , n. Then we have |x| = T z x, where z = sign x ∈ Y n . For a given interval matrix A = [ A c − A , A c + A ] ∈ IRm×n , and for each vector y ∈ Y m and each vector z ∈ Y n , we introduce the matrices
m
b
b ,
where b, b ∈ R , and b b . The set of all m-by-n interval matrices will be denoted by IRm×n and the set of all m-dimensional interval vectors by IRm . Denote by A c and A the center and radius matrices given by
Ac =
1 2 1 2
( A + A ),
A
= ( A − A ),
2
1
respectively. Then A = [ A c − A , A c + A ]. Similarly, the center and radius vectors are defined as

Parker Hannifin Corporation Sporlan Division - P-S

Parker Hannifin Corporation Sporlan Division - P-S

Parker Hannifin CorporationSporlan Division - Refrigeration Business Unit 2445 South 25th AvenueBroadview, IL 60155-3891 USA Phone: (708) 681-6300Fax: (708) 681-6306ISO 9001 CERTIFIED1234112341234X4X4X4Discard5OperationPrior to installing the P-Series Electronic Valve (PEV) the included safety bulletins must be read and understood.ENGLISHRefrigerantsSuitable for ammonia, CO 2, and other common refrigerantsLiquid Temperature Range -60ºC to 120ºC (-76ºF to 248ºF)Ambient Temperature Range -40ºC to 50ºC (-40ºF to 122ºF)Maximum Rated Pressure (MRP)52 barg (754 psig)Maximum Operating Pressure Differential (MOPD)Figure 1: Components 1 - Port Plate Assembly 2 - Bolts, Port Plate 3 - Valve Body4 - Gasket, Port Plate (New)PortBolt Size Nm Ft Lb 20 mm (3⁄4”) to 25 mm (1”)M12 x 1.75614532 mm (11⁄4”) to 40 mm (11⁄2”)M16 x 2149110Figure 5: Re-Assembly1 - Gasket, Port Plate (New)InstallationAll personnel working on valves must be qualified to work on refrigeration systems. If there are any questions contact Sporlan Division - Refrigeration Business Unit before proceeding with the work.All valves are packed for a maximum protection. Unpack carefully. Check the carton to make sure all items are unpacked, see Figure 1 for the list of items included. Do not remove the protective coverings from the inlet and outlet of the valve until the valve is ready to be installed. Protect the inside of the valve from dirt and chips before and during installation. In the event the valve is left disassembled for any length of time, protecting the components is essential. Place the components in a plastic bag and store them in an area where they will not be damaged.The valve should be installed in a location where it is easily accessible foradjustment and maintenance. The location should be such that the body cannot be easily damaged by material handing equipment. Proper indicating gauges should be installed to be easily visible to the operating engineer for system checks and adjustment purposes.The valve should be disassembled before welding to prevent damage to o-rings and teflon (PTFE) components. First remove the port plate by unbolting the bolts as shown in Figure 2. If the port plate does not come apart easily, rotate the port plate 45º and use the corners to pry the port plate out. If using a tool, such as a screw driver, it is important to be careful not to damage any gasket surfaces.The current port plate gasket must be removed, as shown in Figure 3, anddiscarded. A replacement gasket is provided with every purchase of a new valve.The PEV valves must be mounted in the upright horizontal position with the actuator on the top. The valve must be installed with the arrow pointing in the direction of flow for the valve to function properly.Installers need to follow a WPS (Welding Procedure Specification) for all welding. The procedure and welder doing the weld must be qualified to perform that procedure.The codes applicable to the welding of socket weld valves require that the pipe be inserted into the socket until bottomed against the stop, then backed out approximately 1⁄16 of an inch (1.6 mm) before welding. Use of welding rings isoptional but recommended for butt weld valves. They help alignment, control gap for full penetration welding, and reduce welding debris entry.Figure 6: Port Plate Torque SpecsPort MOPD 20 mm (3⁄4”) to 25 mm (1”)52 bard (754 psid)32 mm (11⁄4”) to 40 mm (11⁄2”)28 bard (406 psid)Connection TypesSW, BW ANSI, and BW Metric (DN)P/N 313906RSD B Date: 11-20 ECO: 0345229Parker Electronic Valve (PEV)Installation InformationWARNING – USER RESPONSIBILITY。

2SJ598中文资料

2SJ598中文资料

TOTAL POWER DISSIPATION vs. CASE TEMPERATURE 30
25
20
15
10
5
0 0 20 40 60 80 100 120 140 160 TC - Case Temperature - ˚C
ID - Drain Current - A
TC = 25˚C
Single Pulse –0.1
Body Diode Forward Voltage
VF(S-D) IF = 12 A, VGS = 0 V
Reverse Recovery Time
trr
IF = 12 A, VGS = 0 V
Reverse Recovery Charge
Qrr
di/dt = 100 A /µs
MIN.
–1.5 5
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
2SJ598
FORWARD TRANSFER CHARACTERISTICS –100
–10
–1
TA = −55˚C

Inovance H2U Series PLC用户手册说明书

Inovance H2U Series PLC用户手册说明书

1423H2U Series PLC User ManualCode: 19010034 V2.0Thank you for purchasing the H2U series programmable logic controller (PLC) independently developed by Inovance Control Technology Co., Ltd. Read the manual carefully to be familiar with the product features and be able to use the product safely.This manual describes the specification, features and usage of the H2U series PLC. For the developing environment and design method of user programs, see the Autoshop On-line Help of Inovance.The H2U series PLC has the following features:◆The built-in program memory space reaches up to 16K steps.◆The internal large-capacity power supply can directly apply power tosensors, HMI, and external auxiliary relays.◆It provides multiple high-speed I/O terminals, and has rich motion andpositioning control functions.◆It has four independent communication ports and supports variouscommunication protocols including Modbus, facilitating system integration.◆The comprehensive encryption function protects intellectual propertyrights of the user.◆It comes with fast execution speed and supports up to 128subprograms and 21 interrupt subprograms. Each subprogram has the parameter call and independent password security functions.Safety Information and PrecautionsIn Design◆Provide a safety circuit outside the PLC in the application so that thecontrol system can still work safely even if external power failure or PLC fault occurs.◆In the external circuit of the PLC, an emergency stop circuit, aprotection circuit, an interlock circuit of forward/reverse rotation operation, and position upper/lower limit interlock circuit are necessary to prevent equipment damage ◆The PLC is designed for indoor electric environment and is installed in an overvoltage category 2 environment. A lightning protection device must be installed for the power supply system, so that lighteningovervoltage is not applied on terminals of the PLC, avoiding damage to the equipment.During Installation◆Install the PLC in places free from dust, oil smoke, conducting dust,corrosive gas, combustible gas, high temperature, condensation, wind & rain, vibration and shock. In addition, electric shock, fi re, malfunction may also cause damage and deterioration to the equipment.◆During screw hole processing and wiring, ensure that no metal filingand cable end fall into the ventilation hole of the controller, because such stuff may cause a fi re, fault, or malfunction.◆After installation of the newly purchased PLC is complete, ensure thatthere is no foreign stuff on the surface of ventilation. Failure to comply may result in poor cooling effect during running, which may lead to a fi re, fault or malfunction.◆The installation and wiring must be secure and reliable. Poor contactmay cause malfunction.◆Ensure that all power supplies are cut off before installation or wiring.◆During screw hole processing and wiring, ensure that no metal filings or cable end drops into ventilation holes of the controller. Failure to comply may result in a fi re, fault or malfunction.◆Perform wiring or plug/remove the cable connector only after power-off.◆The specification and installation requirement of external cables mustcomply with the local safety regulations and related IEC standards. The size in the table below is for recommendation.Copper Wire Cross-section Area Recommended CodeAC power wire 1.0–2.0 mm²AWG 12, 18Earthing wire 2.0 mm²AWG12Input signal wire0.8–1.0 mm²AWG18, 20◆The terminal of wire must be insulated according to the local safetyregulations. Ensure that the insulation distance shall not be reduced when the wire is connected to the terminals. Otherwise, electric shock or damage to circuit may result .During Running and Maintenance◆Connection or removal of the communication cable, cables of theextension card and cables of the control unit, or other servicing can be performed only after power-off. Failure to comply may result in damage to the equipment or malfunction.◆Operations such as online modification, forcible output, RUN and STOPProduct Information■Designation RulesH2u-3232MRAX-XP123456789No. NameDescription1Product information H: Inovance controller2Series No.2U: Second generation of controller 3Input points 32: 32 inputs 4Output points 32: 32 outputs5Module classifi cation M: Main module of general-purpose controller, P: Positioning controller, N: Network controller, E: Extension module 6Output type R: Relay, T: Transistor7Power supply type A: 220 VAC (220 VAC by default if null), B: 110 VAC, C: 24 VAC output, D: 24 VDC8Special functionHigh-speed input/output, analog function9XP auxiliary version -◆Basic ParametersPLC Model Total I/Os I/O Features (Input Voltage: 24 VDC)Order Code Total Inputs Hi-Speed Inputs Total Outputs High-Speed Outputs Output TypeH2U-1010MR-XP 2010 2 x 60 kHz6 x 10 kHz 10-Relay 01022078H2U-1010MT-XP 3 x 100 kHz Transistor01022079H2U-1616MR-XP 3216 6 x 60 kHz 16-Relay01022040H2U-1616MT-XP 3 x 100 kHz Transistor01022041H2U-2416MR-XP 4024 2 x 60 kHz4 x 10 kHz 16-Relay 01022048H2U-2416MT-XP 2 x 100 kHzTransistor01022049H2U-2416MTQ-F01 6 x 100 kHz 5 x 100 kHz01028063H2U-3624MR-XP 6036 2 x 60 kHz4 x 10 kHz 24-Relay 01022046H2U-3624MT-XP 2 x 100 kHz Transistor01022047H2U-3232MR-XP 6432 6 x 60 kHz32-Relay01022050H2U-3232MT-XP 3 x 100 kHzTransistor01022045H2U-3232MTQ 6 x 100 kHz 5 x 100 kHz 01022015H2U-3232MTP -8 x 100 kHz01022061H2U-4040MR-XP 8040 6 x 60 kHz 40-Relay01022042H2U-4040MT-XP 3 x 100 kHz Transistor01022062H2U-6464MR-XP 12864 6 x 60 kHz 64-Relay01022043H2U-6464MT-XP3 x 100 kHz Transistor01022044Note: Total inputs include hi-speed inputs. High-speed input terminals can be used for common inputs. Total frequency of H2U-XP high-speed inputs cannot exceed 70 kHz. Total frequency of H2U-3232MTQ and H2U-2416MTQ high-speed inputs cannot exceed 600 kHz. Total frequency of high-speed inputs of other H2U models cannot exceed 100 kHz.At Wiring◆Use shielded cables for high-frequency signal input/output inapplications with severe interference to enhance anti-interference capacity of the system.◆Suitable earthing connection shall be provided by the end system. Theearth wire must be connected only to the earthing point on terminal which is marked with the earth symbol. The earth must be over 2 mm².◆Installation or removal of the extension card can be performed only afterpower-off.◆Make sure to replace button cell after power-off. If replacement at power-on is required, only authorized electrical technician is allowed to complete replacement within 30 seconds. Failure to comply may result in data loss. ◆Treat scrapped PLC as ordinary industrial waste.Environment ParametersUse TransportationStorageTypeParameterUnit M e c h a n i c a l s t r e sSine vibration Shift mm 3.5 (5–9 Hz)--Acceleration m/s 210 (9–150 Hz)--Random vibrationAcceleration spectral density m 2/s 3 (dB/Oct)-5–20 Hz: 1.92 dB 20–200 Hz: -3 dB-Frequency range Hz -5–200-Vibration direction --X/Y/Z -Shock Type--Half-sine -Acceleration m/s 2-180-DipDip heightm-1-Mechanical DesignModel Total I/Os Mounting Dimension Dimension W × H × D (mm)A (mm) B (mm)H2U-1010M_2012080130 x 90 x 88H2U-1616M_32 16080170 x 90 x 88H2U-2416M_4016080170 x 90 x 88H2U-3624M_6021080220 x 90 x 88H2U-3232M_6421080220 x 90 x 88H2U-4040M_8027580285 x 90 x 88H2U-6464M_12834080350 x 90 x 88■Requirements on Installation Position1) Do not remove the paper tape that prevents foreign objects from droppinginto the unit during installation. Once installation is completed, remove the paper tape before power-on so as to prevent overheating.2) To prevent overheating inside the PLC, wall-mount PLC with 300 mmclearance at top and bottom for heat dissipation, as shown in Figure 2.3) Leave 50 mm or more space between PLC and other devices orstructures. Keep PLC far away from high-voltage cables and devices, and power devices.■Mounting Methods1) Mounting or removing PLC Figure 1 Mount or remove PLCDAW BHMounting Hole Ф5 × 4■ Product Structure11. Special function adapter board knock-down hole (It need be cut off before installation of the board.); 12. Wiring terminal for RS485 communication port (COM1/COM2); 13. Special function extension card and special function adapter board interface; 14. System program downloading port (Unauthorized operation is prevented here.); 15. Battery socket (BAT) (Neber reverse the polarity.); 16. Coin battery (provided by Inovance); 17. Special function extension card and special function adapter board fi xed bolts; 18. RUN/STOP switch; 19. User program downloading port (COM0)Note: Fix PLC at both ends with DIN rail slot dampers to prevent it from sliding left and right.2) Mounting and fi xing PLC with screws (wall-mounting mode)In applications with big impct, mount and fi x PLC with four M4 screws.Figure 2 Mount and fi x PLC with four M4 screws2. Buckle the catching groove of PLC base into the DIN rail .3. Press PLC vertically down to the DIN rail .1. Fix the DIN rail onto the mounting plate4. Ensure that the PLC tongue shaped card is locked into the DIN rail .Mounting plate1. Pull down the tongue shape card to make PLC away from the DIN rail .2. Lift the PLC toward you.■Communication Interface Defi nitionThe H2U series PLC has two communication ports and H2U-XP has four communication ports. The COM0 hardware is standard RS485 and RS422, determined by jumper JP0. If JP0 is connected, RS422 is selected. If JP0 is disconnected, the RS422 and RS485 are compatible. COM0 hardware of H2U-XP is standard RS422, which does not require jumper connection. Otherwise, the PLC cannot work normally. The terminal interface is mini-DIN8 socket.⑧①②③④⑤⑥⑦Figure 3 User program downloading port 421485+ 485-COM13485+ 485-COM2Figure 4 RS 485 communication port 421485+ 485-COM13485+ 485-COM25GNDFigure 5 RS 485 communication portNote: Figure 4 is the communication port of H2U-XP . Figure 5 is the communication port of H2U-1010M_XP . COM2 is the COM0 of H2U.PLC can be connected to PC or HMI through COM0 in the following ways:1) (JP0 connected): PLC side is RS422 and PC side is USB. PC isconnected to the PLC COM0 port via the dedicated USB downloading cable (see Figure 3). (The H2U-XP does not require JP0 connection.)2) (JP0 connected): PLC side is RS422 and the PC side is RS232. PC isconnected to the PLC COM0 port via the dedicated serial port download cable (see Figure 3). (The H2U-XP does not require JP0 connection.)3) (JP0 disconnected): PLC side is RS485 and PC side is RS485. They areconnected through the terminal as shown in Figure 4. The connecting cable is determined by the user.■General Specifi cationsEnvironment ParametersUse Transportation Storage Type Parameter Unit C l i m a t e c o n d i t i o nAmbient temperature Low temperature °C -5-40-40High temperature °C 557070Humidity Relative humidity %95 (30 ± 2 °C)95( 40 ± 2 °C)-Air pressureLow pressure kPa 707070High pressurekPa106106106Electrical DesignThe following fi gures show the I/O terminals of the main H2U series PLC unit. The H2U series PLC has different output types, relay and transistor, but has the same terminal confi guration.M4 screwsMounting plate1. Foldaway2. Power supply, auxiliary power supply and detachable terminals for signal input3. Input status indicators4. Running status indicators PWR: Power indicator; RUN: Running indicator: Flashing indicates PLC normal running); B AT: B a t t e r y l o w -v o l t a g e indicator; ERR: Fault indicator5. Mounting holes x 4;6. Cover of extension module interface (R: Relay; T: Transistor)7. DIN rail slot dampers x 2;8. Output status indicator LEDs;9. Detachable terminals for signal output; 10. Cover of user program downloading port (COM0)COM1/COM2 hardware is standard RS485 and is interface terminal. For defi nition of COM1/COM2 , see Figure 4. They are connected to other devices via on-site wiring by the user. Both support the half-duplex communication mode only. COM3 of H2U-XP can be available through extension card.Pin No.Signal DescriptionPin No.Signal Description1RXD-Receive negative data.5+5VProvide power supply +5 V to external devices.It is the same with the internal logic +5 V.2RXD+Receive positive data.6CCSCommunication directioncontrol cable3GNDMust be grounded.No electrical connections for 9 and 107TXD+/RXD+Send positive data toexternal devices.If it is RS485, it can receivepositive data.4TXD-/RXD-Send negative data to external devices.If it is RS485, it can receive negative data (H2U).8NC Non-pinThe following figure shows the internal equivalent circuit of PLC in the relay output mode. The output terminals are divided into several groups, and the groups are electrically isolated. The output contacts of different groups are connected with different power circuits.Figure 8 Internal equivalent circuit of PLC in the relay output mode The following figure shows the internal equivalent circuit of PLC in the transistor output mode.The output terminals are divided into several groups, and the groups are electrically isolated. The transistor output can be used for 24 VDC load circuit only.Figure 9 Internal equivalent circuit of PLC in the transistor output modeProduct Warranty CardCustomerinformationAddress:Company name:Postcode:Contact person:Tel or Email:ProductinformationProduct model:Serial No (Attach here):Name of supplier who supplied you the unit:Failure Description (eg. Fault code)Maintenance personnel:The soft components within [ ] are the battery backup area.• Note 1: Non-battery backup area can be changed into battery backup areavia parameter setting.• Note 2: Battery backup area can be changed into non-battery backup areavia parameter setting.• Note 3: Such permanent battery backup area cannot be changed.■ Programming requirements1) One PC with Microsoft Windows XP or Windows 7 system2) Inovance AutoShop (version 2.0 or above) for the purpose of writing anddownloading user programs3) Inovance USB-mini DIN8 download cable or mouse head download cablefor PC with DB9-type RS232 port■Input SpecificationsThe internal signal circuit composition and external wiring mode of the H2U Series PLC are desribed here. The terminal names in the wiring example vary with the PLC models.The connecting mode is effective to all input points of the PLC.■Output SpecificationsThe H2U series PLC has relay output and transistor output. Their parametersare quite differently. Please select the correct output type so as to avoid misuse. Failure to comply may result in damage to the PLC.The current of transistor output terminals must be less than the allowable maximum current. If the output current of multiple transistor terminals is greater than 100 mA, they should be evenly arranged but not be arranged adjacently, convenient for heat dissipation.It is suggested that the output points, which are set to ON simultaneously, doPLC has a built-in power supply (24 VDC) to detect user switch status, so you only need to connect input signals of dry contact. OC output type is needed if you connect an active transistor or sensor.Output group 0Output group 1Output group 3Output group 0Output group 1Output group 3and for the inductive load in DC circuit, you need add a freewheeling diode, as shown in the following figure.Figure 10 Inductive load absorption circuit,2 WPLC signal input and internal equivalent circuit are shown as Figure 6 below. Circuit of the user and the PLC internal circuit are connected by the terminal. Figure 6 shows the SINK input mode, determined by short connection of the terminal S/S and the terminal 24V.Figure 6 SINK input modeFigure 7 SOURCE input mode24VCOMS /SX0X1X2X2Xn24VDC For self-powered deviceV a r i o u s s i g n a l i n p u t d e v i c e sUser signal wiringI n t e r n a l e q u i v a l e n t c i r c u i t o f P L COutput 3 applies power to sensor. It can also provide external power supply to special function modules. Output 2 provides power supply to the main module and the relay of I/Os of expansion module. Output1 provides power to all modules. During system configuration, make sure that the demand of each power supply does not exceed its maximum capacity.■Terminal Block Definition◆Terminal block definition of H2U-1010MR-XP and H2U-1010MT-XPWhen using H2U-1010MT-XP, Y0, Y1 and Y2 require external powersupply. The user can connect 24VDC(24 V ± 20%) power supply toterminals V+ and V-. Terminal V- hasbeen shorted to COM0 internally. ◆Terminal block definition of H2U-1616MR and H2U-1616MT◆Terminal block definition of H2U-2416MR and H2U-2416MT◆Terminal block definition of H2U-2416MTQ-F01◆Terminal block definition of H2U-3232MTQ (same as that of H2U-3232MTP)■Power S upply Capacitance and Expansion CapacityThe main module and active expansion module of PLC provide power supply toexpansion modules, extension cards and adapters. The I/O points of expansion modules and the number of special function expansion modules must be within the power supply capacitance of the main module or active expansion module.For calculation on power supply capacitance, take the following aspects into considerations:• Each power supply capacitance should be calculated independently.• The expansion capacity is decided by the smaller power supplycapacitance.For example: 24VDD allows connection of six expansion modules, while +5V only allows connection of eight expansion modules. So the system can only be extended up to six expansion modules.■Selection of Extension DeviceWhen designing an H2U series PLC system, we must consider the followingaspects:◆Total I/Os should be within 256 for a main PLC system.◆Power supply capacitance (see Power Supply Specification)◆main modules and active expansion modules can provide 24 VDC and 5VDC power supply to expansion modules and special modules. But total power consumption of all expansion units should be restricted within the power supply capacitance of main module or the active expansion module. ◆The H2U series PLC can be connected to maximum 8 special modules.◆Terminal block definition of H2U-3232MTQ (same as that of H2U-3232MTP)◆Terminal block definition of H2U-6464MR and H2U-6464MT◆。

件数单位代码

件数单位代码

六、計量單位【代碼簡介】主管機關:經濟部標準檢驗局海關維護單位:關稅總局(統計室、資料處理處)轉發布機關:關稅總局編碼原則:一、本計量單位代碼係採用聯合國〝Trade Data Elemants Directory UNTDED1990〞版內列 5.6節(Codes for Units of Measurement Used inInternational Trade)所編計量代碼編訂,其建立編碼為3位文字碼。

二、以「*」表示之計量單位代碼係未編列於上開聯合國UNTDED之代碼,經與相關機關協商統一編訂。

三、本代碼前由關稅總局函請標準檢驗局核定為國家標準,業經經濟部標準檢驗局於82年2月20日公布為「中國國家標準(CNS)」,總號為13161,類號為X5018。

四、本代碼遇有修訂時,應同步函請經濟部標準檢驗局修訂該標準之代碼。

通關作業使用本代碼之訊息:空運:5101、5102、5105、5110、5116、5201、5202、5203、5204、5302海運:5101S、5102S、5105S、5110、5116S、5117S、5153、5162、5157、5201S、5202S、5203S、5204S、5253、5302S【本次修訂部分簡述】一、將Decigram代碼「DGM*」之中文意義「公釐」修訂為「公糎」二、將Millimeter代碼「MMT」之中文意義「公益」修訂為「公釐」計量單位Units of Measurement代碼代碼意義英文說明備註(一)常用計量單位ADT* 氣乾噸Air Dried Metric TonAML*Ampoule(Ampule, Ampul)安瓿(注射液用之小玻璃瓶)BAG* 袋,包BagBLE* 包,件BaleBLL 桶,一桶的份量Barrel(Petroleum) (158.987dm3)BSN* 輛,部BasinBSK* 籃BasketBEM* 樑,桁BeamBLT* 帶,條BeltBharaBHR*馬來西亞重量單位(400LB)MLD (美)十億Billion USBIL (歐洲)萬億Billion EURBRD* 隻BirdBLA* 片BladeBLK* 塊BlockBFT 木材材積單位Board FootBMF* 木材材積單位Board Measure FootBBN* 線軸BobbinBOM* 顆BombBOT* 瓶BottleBOX* 箱BoxBGA* 英國加侖British Gallon (Imperial Gallon) BKT* 桶BucketBUL* 堆,散裝量BulkBUH* 串,束BunchBDL* 捆BundleBUA蒲式耳(35.2391 立方公寸) Bushel (35.2391dm3)代碼代碼意義英文說明備註BUI蒲式耳(36.36874 立方公寸) Bushel (36.36874dm3)CAK* 個(糕餅單位) CakeCAN* 罐CanCAP* 膠囊,粒,顆(藥用) CapsuleCBY*用藤罩(木箱)保護的大玻璃瓶CarboyCAR* 屠體Carcase,Carcass CRD* 卡CardCTN* (紙)箱CartonCAT* 匣CartridgeCAS* 箱,盒CaseCSC* 桶CaskCSK*(放貴重物品的)小箱Casket,首飾盒CTY* 斤CattyCGM 公亳CentigramCLT 公勺CentiliterCMT 公分CentimeterCHS* 箱,匣ChestCHK* 隻ChickCOL* 捲CoilCON* 筒ConeCTR* 罐,箱,容器,貨櫃ContainerCBC* 散裝貨櫃Container Bulk Cargo CPY* 冊,本CopyCRT* 板條箱CrateCMQ 立方公分Cubic Centimeter DMQ 立方公寸Cubic Decimeter FTQ 立方呎Cubic FootINQ 立方吋Cubic InchMTQ 立方公尺Cubic MeterYDQ 立方碼Cubic YardCUC* 立方桶Cubican居禮(放射能的單CURCurie位)CutCUT*亞麻等之長度單位(三百碼)代碼代碼意義英文說明備註CYL* 汽缸,圓筒CylinderDCG* 公錢Decagram (Dekagram)DEL* 公斗Decaliter (Dekameter)DKM* 公丈Decameter (Dekameter)DAS* 十立方公尺Decastere (Dekastere)修訂中文意DGM* 公糎(十分之一公克) Decigram義DLT 公合DeciliterDMT 公寸DecimeterDMKSquare Decimeter平方公寸(日本皮革面積單位)DSC* 盤Disc(Disk)DoseDOS* 一劑Doyle FootDFT* 木材材積單位DozenDZN 一打Dozen PairsDPR 雙/打Dozen SetDST* 套/打DRM打蘭Drachm GB (3.887935g),Dram(重量名,3.887935克)DrumDRU* 桶BLDDry Barrel (115.627dm3)乾桶的份量(115.627立方公寸)Dry BulkDBK* 乾散裝櫃Dry KilogramKGD* 乾公斤Dry PoundLBD* 乾磅Dry Metric TonTND* 乾公噸EachEAC* 每個EnvelopENV* 包,袋FiberiteFIB* 箱OZAFluid Ounce (29.5735 cm3) 英美液量,容量單位(29.5735立方公分)OZIFluid Ounce (28.413 cm3)英美液量,容量單位(28.413立方公分)Foot (0.3048 m)FOT 呎FrameFRM* 框,架子,套FutFUT* 一呎(俄國長度單位)Gallon (4.546092 dm3)GLI 加侖代碼代碼意義英文說明備註Grain GB, US (64.798910 mg)GRN個,顆,喱(衡量的最小單位64.8亳克),真珠的重量單位(50亳克或1/4克拉)GRMGram(Gramme)公克Gram/ActiveGMA*每公克之活性效用(抗生素單位)Great Gross (12 gross)GGR大籮,十二籮GrossGRO籮,十二打GRY*Gross Yard碼/籮HamperHMP*籃HAN*Hank束,捲HeadHED*頭Head SetHDS*腸衣單位HGMHectogram公兩HectoliterHLT公石HMTHectometer公引HogsheadHHD*英美容量單位(英:52.5加侖,美:63加侖)Hoppus TonHPT*木材材積單位HubHUB*輪軸,捲(錄音帶單位)Hundred BoxesHBX百箱DTNQuintal, metric (100 kg) 百公斤(100公斤)Hundred PiecesHPC*百個HLB*Hundred Pounds百磅HST*Hundred Sets百套HSH*Hundred Sheets百張,百片HSK* 百支(紙菸單位) Hundred SticksCWA 擔Hundredweight US(45.3592 kg)INH 吋InchIGT* 錠,條,塊IngotJAR* 罐,瓶JarKegKEG*小桶(容量通常在十加侖以下)KGM 公斤Kilogram(Kilogramme)Kilogram weightKGW*以重量計算每公斤之價格(抗生素單位)代碼代碼意義英文說明備註Kilogram/ActiveKGA*每公斤活性效用(抗生素單位)KLT* 公秉KiloliterKMT 一千公尺,一公里KilometerKTN 千公噸KilotonKVA 千伏安Kilovolt AmpereKIT* 套,組KitKOK*Koku木材材積單位(100才)一次搬起或運起之LFT*Lift量LVN* 搬運量單位Lift VanLIN* 英國長度單位(1/12") LineLingotsLNG*錠、條、塊(指金屬而言)LNK* 節,環LinkLBK* (液體貨物)散裝櫃Liquid BulkLTR 公升LiterLOG*Log圓木Long Ton GB, US (1.016046 gt) LTN長噸LotLOT*一堆,一批LugLUG*簍Meter(Metre)MTR公尺Metric Carat(200mg)CTM克拉(寶石單位)Metric TonTNE公噸MilliardMLD(英)十億MGM公絲Milligram(Milligramme)MLT公撮MilliliterMMT公釐Millimeter修訂中文意義MIU百萬國際單位Million International UnitsMLU*百萬單位Million UnitMUS*百萬單位酵素Million Unit Strepto Kinase(MUSK)MOM*珊瑚計量單位MommeMYG*公衡MyrlagramNDR*新桶New Condition DrunNIU國際單位Number of International UnitsNPR雙(數量)Number of PairsNUT*個、粒、顆Nut代碼代碼意義英文說明備註ONZ英兩,盎斯(28.349523公克)Ounce GB, US (28.349523g)APZ英兩,盎斯(用於金量、藥量時Ounce GB, US (31.103548g)為31.10348公克)OuterOUT*筒PackPAC*包,綑,副,組PackagePKG*件,包PacketPKT*小包,捆PailPAL*桶PST*Pair Set套/雙PalletPLT*墊板,金屬或木材之低臺PCK*Pancake個,捲(錄音帶單位)PanelPNL*板PCL*Parcel包,裹PiculPIC*擔(100斤)PiecePCE個,片,塊,段,枝Pint (0.568262 dm3) PTI品脫PLN*Plant棵PlatePLA*板,片POT*Pot瓶,壺PolybagsPOL*塑膠袋LBRPound GB, US (0.45359237kg)磅QTIQuart (1.136523 dm3)夸爾(液量單位)QTRQuarter GB (12.700586kg)夸特(英重量單位12.700586kg)DTN公擔(公制:100公斤) Quintal,Metric(100 kg)QUI*Quire刀(紙張數量單位)RackRAC*架(網架、槍架、刀、帽子架等)ReamREM*令(紙張數量單位)Reconditioned DrumRDR*舊桶ReelREL*捲,軸RingRIN*環,圈RodROD*支,竿,棒,桿RollROL*捲代碼代碼意義英文說明備註RunnerRUN*腸衣單位SachetSAC*小袋SAK*Sack包,袋SegmentSEG*節,片SETSet組,套SheetSHE*張,片Short(Net)Ton GB,US(0.90718474 t) STN短噸SKD*Skid墊板,件SkinSKN*張SLA*Slab板,片SpoolSPL*捲,軸Square CentimeterCMK平方公分DMKSquare Decimeter平方公寸Square FootFTK平方呎INKSquare Inch平方吋Square Meter(S,Q,M)MTK平方公尺Square YardYDK平方碼StackSTA*一堆Standard CasesSTC*標準箱StickSTK*支STR*String一串,一連,一列,一隊STP*Strip片,條SUT*Suit一套,一副SyringeSYR*注射器TabletTAB*錠,片TAL*Tail尾,條TankTNK*桶TML*Ten Thousand一萬Ten KilogramTKG*十公斤MBFThousond Board Foot (2.36m3)木材材積單位Thousand FootKFT*一千呎KLF*Thousand Linear Feet千呎Thousand PiecesKPC*千個Thousand PoundsKLB*一千磅KST*Thousand Sets千套Thousand Square InchKSI*千平方吋代碼代碼意義英文說明備註Thousand Square MeterKSM*千平方公尺Thousand SticksKSK*千支(紙菸單位)TinTIN*聽,罐TNETonne (1000kg) 噸Tote BinTBN*箱TrayTRA*盤,碟TSB*Tsubo坪TubeTBE*支,管,筒TrunkTRK*捆,束(鋼條計量單位)U.S Gallon UGA*美國加侖UNT*Unit單位,部,輛(車輛)VanVAN*件(大木箱)VPK*Van Pack包裝箱數量單位VAT*Vat大桶VSL*Vessel壺,瓶,桶,艘(船舶)VialVIA*小玻璃瓶VOL*Volume冊,卷WebWEB*捲(錄音帶單位)WDC*Wooden Case 木箱YardYRD碼(二)其他用於國際貿易之計量單位(續下頁)代碼英文說明備註(二)其他用於國際貿易之計量單位:ACR Acre (4840 Ydzs)ASM Alcoholic Strength by MassASV Alcoholic Strength by VolumeAMP AmpereAMH Ampere-hour (3.6 kC)ARE Are (100 m2)BAR BarBQL BecquerelBHP Brake Horse Power (245.7 watts)BTU British Thermal Unit (1.055 kilojoules)CDL CandelaCCT Carrying Capacity in Metric TonnesCNT Cental GB (45.359237 kg)WCD Cord (3.63 m3)COU CoulombCKG Coulomb Per KilogramMQH Cubic Metre Per HourMQS Cubic Metre Per SecondMMQ Cubic MillimetreDAY DayDEC Decade (ten years)DAA DecareDTN DecitonneCEL Degree CelsiusFAH Degree FahrenheitKEL Degree Kelvin: See KelvinDPT Displacement TonnageDZP Dozen PacksDPC Dozen PiecesDRL Dozen RollsDRI Dram GB (1.771745 g)DRA Dram US (3.887935 g)GLD Dry Gallon (4.404884 dm3)PTD Dry Pint (0.55061 dm3)QTD Dry Quart (1.101221 dm3)FAR Farad代碼英文說明備註GBQ GigabecquerelGWH Gigawatt-hour (1 million KW/h)GII Gill (0.142065 dm3)GIA Gill (11.8294 cm3)GFI Gram of Fissile IsotopesGRT Gross [Register] TonSAN Half Year (six months)HAR HectareHBA HectobarDTH HectokilogramHPA Hectolitre of Pure AlcoholHTZ HertzHUR HourCEN HundredHIU Hundred International UnitsCLF Hundred LeavesCNP Hundred PacksJOU JouleKEL KelvinKBA KilobarKPH Kilogram of Caustic PotashKSH Kilogram of Caustic SodaKNS Kilogram of Named SubstanceKNI Kilogram of NitrogenKPP Kilogram of Phosphoric AnhydrideKPP Kilogram of Phosphorus PentoxideKPH Kilogram of Potassium HydroxideKPO Kilogram of Potassium OxideKSH Kilogram of Sodium HydroxideKSD Kilogram of Substance 90 per Cent DryKUR Kilogram of UraniumKMQ Kilogram Per Cubic MeterKGS Kilogram Per SecondKHZ KilohertzKJO KilojouleKMH Kilometre Per HourKPA Kilopascal代碼英文說明備註KVR KilovarKVT KilovoltKWT KilowattKWH Kilowatt-hourKNT Knot (1 nautical mile per hour)LEF LeafGLL Liquid Gallon (3.78541 dm3)PTL Liquid Pint (0.473176 dm3)QTL Liquid Quart (0.946353 dm3)LPA Litre of Pure AlcoholCWI (Long) Hundredweight GB (50.802345 kg)LUM LumenLUX LuxMHZ MegahertzMAL MegalitreMAM MegametreMPA MegapascalMVA Megavolt-ampere (1000 KVA)MAW MegawattMWH Megawatt-hour (1000 kw/h)MTS Metre Per SecondMSK Metre Per Second SquaredMBR MillibarMCU MillicurieMIO MillionHMQ Million Cubic MetresMIN MinuteMON MonthNMI Nautical Mile (1852 m)NTT NET [Register] TonNEW NewtonNMB NumberNAR Number of ArticlesNBB Number of BobbinsNCL Number of CellsNMP Number of PacksNPR Number of Pairs代碼英文說明備註NPL Number of ParcelsNPT Number of PartsNRL Number of RollsOHM OhmPAL PascalDWT Pennyweight GB, US (1.555174 g)PGL Proof GallonQAN Quarter (of a year)RPM Revolution Per MinuteRPS Revolution Per SecondSCO ScoreSCR Scruple GB, US (1.295982 g)SEC SecondSHT Shipping TonSST Short Standard (7200 matches)STN Short Ton GB, US (0.90718474 t)SIE SiemensKMK Square KilometreMIK Square MileMMK Squair MillimetreWSD StandardATM Standard Atmosphere (101325 pa)SMI (Statute) Mile (1609.344 m)STI Stone GB (6.350293 kg)ATT Technical Atmosphere (98066.5 pa)DAD Ten DaysTPR Ten PairsMIL ThousandTAH Thousand Ampere-hourTQD Thousand Cubic Metres Per DayMBE Thousand Standard Brick EquivalentTSH Ton of Steam Per HourTSD Tonne of Substance 90 Per Cent DryTRL Trillion EURBIL Trillion USAPZ Troy OunceLBT Troy Pound, US (373.242 g)代碼英文說明備註VLT VoltWTT WattWHR Watt-hourWEB WeberWEE WeekANN YearZZZOther Measurement(註)註:未列入表中之計量單位,填報或傳輸「ZZZ」,另於報單「其他申報事項」欄報明全名(如ZZZ=○○○○○○)。

ascii码表

ascii码表
八进制 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17 20 21 22 23 24 25 26 27 30 31 32 十六进制 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 十进制 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 字符 nul soh stx etx eot enq ack bel bs ht nl vt ff er so si dle dc1 dc2 dc3 dc4 nak syn etb can em sub 八进制 100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117 120 121 122 123 124 125 126 127 130 131 132 十六进制 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55 56 57 58 59 5a 十进制 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 字符 @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
33 34 35 36 37 40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57 60 61 62 63 64 65 66 67 70 71 72 73

《OS机代码表》(Word)

《OS机代码表》(Word)

001:中国银联100:邮政储蓄银行102:工商银行103:农业银行104:中国银行105:建设银行301:交通银行302:中信实业银行303:中国光大银行304:华夏银行305:中国民生银行306:广东发展银行307:深圳发展银行308:招商银行309:兴业银行310:上海浦东发展银行403:北京银行418:北京农信北京市1100天津市1200山东省3700辽宁省2100山西省1400河北省1300吉林省2200黑龙江省2300陕西省6100甘肃省6200青海省6300宁夏区6400新疆区6500海南省4600香港区8100澳门区8200上海市2900重庆市5000广东省4400广西区4500湖南省4300湖北省4200江苏省3200浙江省3300内蒙古区1500安徽省3400福建省3500江西省3600四川省5100云南省5300西藏区5400台湾省7100表 1 商户类别代码表 (1)Q/CUP 004—2007II前言本标准对金融零售业务的商户类别代码做了规定.本标准由中国银联股份有限公司在中国人民银行组织制定的《银行卡联网联合技术规范》相关内容的基础上修订.本标准主要修订单位:中国银联技术管理部.本标准主要修订人:刘钟,孙平,黄发国,徐志忠,张爱民,蔡丽薇,徐静雯.Q/CUP 004—20071商户类别代码1 范围本标准规定了金融零售业务的商户类别代码.本标准适用于中国银联股份有限公司成员机构对商户进行分类.本标准中商户类别代码的维护机制参见正在制定的国家标准.2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款.凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本.凡是不注日期的引用文件,其最新版本适用于本标准.ISO 18245:2007 金融零售业务-商户类别代码3 术语和定义商户类别代码 Merchant Category Code根据商户业务,贸易和服务类型对商户进行分类,标识每一类别的代码称为商户类别代码.商户类别代码只对可能会发生金融零售业务的商户类别作了规定.4 商户类别代码规定表1列出了根据数字排序的商户类别代码.商户类别代码表范围代码描述0001-0499 ISO保留使用0500-0599 国家保留使用0000-0699保留使用0600-0699 行业保留使用0700-0741 ISO保留使用0742 兽医服务0743 葡萄酒生产商0744 香槟生产商0745-0762 ISO保留使用0763 农业合作0764-0779 ISO保留使用0780 景观美化和园艺服务0781-0819 ISO保留使用0820-0879 国家保留使用0700-0999农业服务0880-0999 行业保留使用1000-1499保留使用1000-1499 ISO保留使用Q/CUP 004—20072范围代码描述1500-1519 ISO保留使用1520 一般承包商—住宅和商业楼1521-1710 ISO保留使用1711 供暖,管道,空调承包商1712-1730 国家保留使用1731 电气承包商1732-1739 ISO保留使用1740 砖,石,瓦,石膏和绝缘工程承包商1741-1749 ISO保留使用1750 木工工程承包商1751-1760 ISO保留使用1761 屋顶,屋围,金属片(铁皮)安装工程承包商1762-1770 国家保留使用1771 混凝土工程承包商1772-1798 ISO保留使用1799 未列入其它代码的专项贸易承包商1800-2199 ISO保留使用2200-2740 行业保留使用2741 各种出版和印刷服务2742-2790 国家保留使用2791 排版,刻版及相关服务2792-2841 国家保留使用2842 专业清洁,抛光和卫生服务1500-2999承包服务2843-2999 国家保留使用3000-3999保留使用3000-3999 行业保留使用4000-4010 ISO保留使用4011 铁路运输4012-4110 ISO保留使用4111 本地和市郊通勤旅客运输(包括轮渡) 4112 铁路客运4113-4118 ISO保留使用4119 救护车服务4120 ISO保留使用4121 出租车和豪华轿车服务4122-4130 ISO保留使用4131 公共汽车4214 长短途机动车与卡车货运,搬运公司,仓储公司,本地专运公司4215 快递服务(空运,地面运输或海运)4216-4224 ISO保留使用4000-4799运输4225 公共仓储服务-农产品,冷冻品和家用产品Q/CUP 004—20073范围代码描述4226-4299 ISO保留使用4300-4410 国家保留使用4411 轮船及巡游航线服务4412-4456 行业保留使用4457 出租船只4458-4467 行业保留使用4468 船舶,海运服务和供给4469-4510 行业保留使用4511 航空公司4512-4581 行业保留使用4582 机场服务4583-4656 行业保留使用4657-4721 国家保留使用4722 旅行社和旅游服务4723-4783 行业保留使用4784 路桥通行费4789 未列入其它代码的运输服务4790-4799 国家保留使用4800-4811 ISO保留使用4812 通信设备和电话销售4813 行业保留使用4814 电信服务,包括本地和长途电话,信用卡电话,磁卡电话和传真4815 月结电话收费4816 计算机网络/信息服务4817-4820 ISO保留使用4821 电报服务4822-4828 国家保留使用4829 电汇和汇票服务4830-4895 ISO保留使用4896-4898 行业保留使用4899 有线和其它付费电视服务4900 公用事业(电力,煤气,自来水,清洁服务)4901-4974 行业保留使用4800-4999公共事业4975-4999 国家保留使用5000-5012 ISO保留使用5013 机动车供应及新零件5014-5020 ISO保留使用5021 办公及商务家俱5022-5038 ISO保留使用5000-5499零售商店5039 未列入其它代码的建筑材料Q/CUP 004—20074范围代码描述5040-5043 ISO保留使用5044 办公,摄影,影印及缩微摄影器材5045 未列入其它代码的计算机,计算机外围设备5046 未列入其它代码的商用器材5047 牙科/实验室/医疗/眼科医院器材和用品5048-5050 ISO保留使用5051 金属产品服务商和公司5052-5064 ISO保留使用5065 电器零件和设备5066-5071 ISO保留使用5072 五金器材及用品5073 ISO保留使用5074 管道和供暖设备5075-5084 ISO保留使用5085 未列入其它代码的工业用品5086-5093 ISO保留使用5094 宝石和贵金属,手表及珠宝5095-5098 ISO保留使用5099 未列入其它代码的耐用品5100-5110 ISO保留使用5111 文具,办公用品,复印纸和书写纸5112-5121 ISO保留使用5122 药品,药品经营者5123-5130 ISO保留使用5131 布料,缝纫用品和其他纺织品5132-5136 ISO保留使用5137 男女及儿童制服和服装5138 ISO保留使用5139 鞋类5140— 5168 国家保留使用5169 未列入其它代码的化学制品和相关产品5170-5171 ISO保留使用5172 石油和石油产品5173-5191 国家保留使用5192 书,期刊和报纸5193 花木栽种用品,苗木和花卉5194-5197 ISO保留使用5198 油漆,清漆用品5199 未列入其它代码的非耐用品5200 家庭用品大卖场5201-5210 ISO保留使用Q/CUP 004—20075范围代码描述5211 木材和建材卖场5231 玻璃,油漆涂料,壁纸商店5232-5250 ISO保留使用5251 五金商店5252-5260 ISO保留使用5261 草坪花园用品商店(包括苗圃) 5262-5270 ISO保留使用5271 活动房车经销商5272-5291 ISO保留使用5292-5299 行业保留使用5300 会员制批量零售店5301-5308 行业保留使用5309 免税商店5310 折扣商店5311 百货商店5312-5330 行业保留使用5331 杂货店5332-5398 行业保留使用5399 各类综合超市5400-5410 行业保留使用5411 食品杂货店和超级市场5412-5421 行业保留使用5422 冷藏和冷冻肉类供应商5423-5440 行业保留使用5441 糖果店5451 乳制品店5452-5461 行业保留使用5462 面包房5463-5498 行业保留使用5499 各类食品店—便利及专营店5500-5510 ISO保留使用5511 汽车和卡车经销商(新车和旧车)—销售,服务,修理, 零件和出租5512-5520 行业保留使用5521 轿车和卡车经销商(旧车)—销售,服务,维修,零件和出租5522-5530 行业保留使用5531 汽车和家庭用品店5532 汽车轮胎商店5533 汽车配件商店550-5599汽车和运输工具5534-5540 行业保留使用Q/CUP 004—20076范围代码描述5541 汽车服务站5542 自助加油站5543-5550 行业保留使用5551 船只经销商5552-5560 ISO保留使用5561 露营,娱乐和公共事业活动车经销商5571 摩托车商店和经销商5572-5591 国家保留使用5592 房车商5593-5597 国家保留使用5598 雪车商5599 未列入其它代码的各种机动车商,航空器材商和农具商5600-5610 ISO保留使用5611 男子和男童服装及用品商店5612-5620 ISO保留使用5621 妇女时装商店5622-5630 ISO保留使用5631 妇女用品商店5632-5640 国家保留使用5641 儿童婴儿服装商店5642-5650 行业保留使用5651 家庭服装商店5652-5654 国家保留使用5655 运动和马术服装商店5656-5660 国家保留使用5661 鞋店5662-5680 行业保留使用5681 皮货商店5682-5690 行业保留使用5691 男女服装店5697 裁缝,修补,改衣店5698 假发商店5600-5699服装商店5699 各种服装及饰物店5700-5711 ISO保留使用5712 家具,家庭摆品,家用设备销售,制造商(不包含电器)5713 地板铺设服务5714 帏帐,窗帘,室内装潢商店5715 酒精饮料批发商5700-5999各类商店5716-5717 ISO保留使用Q/CUP 004—2007--------------------------------------------------------------------7范围代码描述5718 壁炉,壁炉防护网及配件商店5719 各种家庭装饰专营店5720-5721 ISO保留使用5722 家用电器商店5723-5731 ISO保留使用5732 电子设备商店5733 音乐商店—乐器,钢琴,乐谱5734 计算机软件商店5735 音像制品商店5811 宴会承包商5812 饭店,餐厅5813 饮品店(酒精饮料)—酒吧,酒馆,夜总会,鸡尾酒馆和迪斯科舞厅5814 快餐店5815-5820 ISO保留使用5820-5911 行业保留使用5912 药店,药房5913 未列入其它代码的批发类5914-5915 行业保留使用5915-5920 国家保留使用5921 瓶装酒小卖店(啤酒,果酒,白酒)5922-5930 国家保留使用5931 旧商品店,二手店5932 古玩店-销售,维修和修复服务5933 当铺5934 国家保留使用5935 海上船只遇难救助场5936 国家保留使用5937 古玩复制店5938-5939 国家保留使用5940 自行车商店—销售和服务5941 体育用品店5942 书店5943 文具,办公,学校用品商店5944 珠宝,手表,钟表和银器商店5945 玩具游戏店5946 照相器材店5947 礼品,卡片,装饰品,纪念品商店5948 箱包,皮具店5949 缝纫,刺绣,织物和布料商店5950 玻璃器具和水晶饰品商店Q/CUP 004—20078范围代码描述5951-5959 国家保留使用5960 直销-保险服务5961 国家保留使用5962 电话销售—旅行相关的服务5963 送货上门销售5964 直销—目录邮购商5965 直销—目录邮购与零售兼营的商户5966 直销—呼出型电话行销商5967 直销—接入型电话行销商5968 直销—长期定购或会员制商户5969 未列入其它代码的直销业务和直销商5970 工艺美术商店5971 艺术商和画廊5972 邮票和纪念币商店5973 宗教品商店5974 国家保留使用5975 助听器—销售,服务和用品5976 假肢店5977 化妆品商店5978 打字机商店—销售,服务和出租5979-5982 国家保留使用5983 燃料经销商—燃油,木材,煤炭和液化石油5984-5991 国家保留使用5992 花店5993 雪茄店5994 报亭,报摊5995 宠物商店,宠物食品及用品5996 游泳池—销售,供应和服务5997 电动剃刀商店—销售和服务5998 帐篷和遮阳篷商店5999 其它专营零售店6000-6009 国家保留使用6010 金融机构—人工现金支付6011 金融机构—自动现金支付6012 金融机构—购买商品和服务6013-6049 ISO保留使用6050 行业保留使用6051 非金融机构—外币兑换,非电子转帐的汇票,临时支付凭证和旅行支票6052-6210 ISO保留使用6211 证券公司—经纪人和经销商6000-7299服务提供商6212-6299 ISO保留使用Q/CUP 004—20079范围代码描述6300 保险销售,保险业和保险金6301-6528 ISO保留使用6529-6759 行业保留使用6760 储蓄6761-7010 行业保留使用7011 住宿服务(旅馆,酒店,汽车旅馆,度假村) 7012 分时使用的别墅或度假用房7013-7031 行业保留使用7032 运动和娱乐露营地7033 活动房车场及露营场所7034-7041 行业保留使用7042-7211 国家保留使用7210 洗衣服务7211 洗熨服务—家庭和商业7212-7215 国家保留使用7216 干洗店7217 室内清洁服务(地毯,沙发,家具表面) 7218-7220 国家保留使用7221 摄影工作室7222-7229 国家保留使用7230 美容理发店7231-7250 国家保留使用7251 修鞋店,擦鞋店,帽子清洗店7252-7260 国家保留使用7261 丧仪殡葬服务7262-7272 国家保留使用7273 婚姻介绍及陪同服务7274-7275 国家保留使用7276 交税准备服务7277 咨询服务—债务,婚姻和个人私事7278 购物服务及会所7279-7294 国家保留使用7295 家政服务7296 出租衣物—服装,制服和正式场合服装7297 按摩店7298 健身及美容室7299 未列入其它代码的其他个人服务7300-7310 ISO保留使用7311 广告服务7312-7320 ISO保留使用7300-7529商业服务7321 消费者信用报告机构Q/CUP 004—200710范围代码描述7322 债务催收机构7323-7332 ISO保留使用7333 商业摄影,工艺,绘图服务7334-7337 ISO保留使用7338 快速复印,复制及绘图服务7339 速记和秘书类服务7340-7341 ISO保留使用7342 灭虫(蝇等)及消毒服务7343-7348 ISO保留使用7349 清洁,保养,门卫服务7350-7360 ISO保留使用7361 职业中介,临时帮佣服务7362-7371 ISO保留使用7372 计算机编程,数据处理和系统集成设计服务7373-7374 ISO保留使用7375 信息检索服务7376-7378 ISO保留使用7379 未列入其它代码的计算机维护和修理服务7380-7391 ISO保留使用7392 管理,咨询和公共关系服务7393 侦探,保安,安全服务(包括防弹车和警犬) 7394 设备,工具,家俱和电器出租7395 照相洗印服务7396-7398 ISO保留使用7399 未列入其它代码的商业服务7400-7406 ISO保留使用7407-7487 行业保留使用7488-7510 国家保留使用7511 行业保留使用7512 汽车出租7513 卡车及拖车出租7514-7518 国家保留使用7519 房车和娱乐车辆出租7520-7522 国家保留使用7523 停车场及车库7524-7529 国家保留使用7530 ISO保留使用7531 车体维修店7532-7533 ISO保留使用7534 轮胎翻新,维修店7530-7799维修服务7535 汽车喷漆店Q/CUP 004—200711范围代码描述7536-7537 ISO保留使用7538 汽车服务商店(非经销商) 7539-7541 ISO保留使用7542 洗车7543-7548 ISO保留使用7549 拖车服务7550-7600 ISO保留使用7601-7606 国家保留使用7607-7621 行业保留使用7622 电器维修7623 空调及冷藏设备维修店7624-7628 国家保留使用7629 电气设备及小家电维修店7630 国家保留使用7631 手表,钟表和首饰维修店7632-7640 国家保留使用7641 家俱维修,翻新7642-7690 行业保留使用7691 国家保留使用7692 焊接维修服务7693-7698 国家保留使用7699 各类维修店及相关服务7700-7799 ISO保留使用7800-7828 ISO保留使用7829 电影和录像带制片,发行7830-7831 ISO保留使用7832 电影院7833-7840 ISO保留使用7841 出租录像带服务7842-7893 国家保留使用7894-7910 行业保留使用7911 歌舞厅,舞蹈工作室和学校7912-7921 行业保留使用7922 戏剧制片(不含电影),演出,票务7923-7928 行业保留使用7929 未列入其它代码的乐队,管弦乐队和各类演艺人员7930-7931 行业保留使用7932 台球,撞球场所7933 保龄球馆7934-7940 行业保留使用7800-7999娱乐场所7941 商业体育场馆,职业体育俱乐部,运动场和体育推广公司Q/CUP 004—200712范围代码描述7942-7959 行业保留使用7960-7990 国家保留使用7991 旅游,展览7992 公共高尔夫球场7993 电子游戏供给7994 大型游戏机和游戏场所7995 博彩业(包括彩票等)7996 游乐园,马戏团,嘉年华等7997 成员俱乐部(体育,娱乐,运动),乡村俱乐部和私人高尔夫球场7998 水族馆,海洋馆和海豚馆7999 未列入其它代码的其他娱乐服务8000-8010 ISO保留使用8011 未列入其它代码的医生和医师8012-8020 ISO保留使用8021 牙科医生,整牙医生8022-8030 ISO保留使用8031 正骨医生8032-8040 国家保留使用8041 按摩医生8042 验光配镜师,眼科医生8043 光学仪器商,光学产品和眼镜商8044-8048 国家保留使用8049 手足病医生8050 护理和照料服务8051-8061 ISO保留使用8062 医院8063-8070 ISO保留使用8071 医学和牙科实验室8072-8098 ISO保留使用8099 未列入其它代码的医疗保健服务8100-8110 ISO保留使用8111 法律服务和律师事务所8112-8210 ISO保留使用8211 小学和中校8212-8219 ISO保留使用8220 大学,学院,专科和职业学院8221-8240 ISO保留使用8241 函授学校8242-8243 ISO保留使用8244 商业和文秘学校8000-8999专业服务和成员服务8245-8248 ISO保留使用Q/CUP 004—200713范围代码描述8249 贸易和职业学校8250-8298 ISO保留使用8299 未列入其它代码的学校与教育服务8300-8350 ISO保留使用8351 儿童保育服务8352-8397 国家保留使用8398 慈善和社会公益服务组织8399-8492 ISO保留使用8493-8640 行业保留使用8641 公民社团和共济会8642-8650 国家保留使用8651 政治组织8652-8660 国家保留使用8661 宗教组织8662-8674 行业保留使用8675 汽车协会8676-8698 行业保留使用8699 未列入其它代码的会员组织8700-8733 行业保留使用8734 测试实验室(非医学)8735-8910 行业保留使用8911 建筑,工程和测量服务8912 装修,装潢,园艺8913-8930 行业保留使用8931 会计,审计,财务服务8932-8998 国家保留使用8999 未列入其它代码的其他专业服务9000-9199 ISO保留使用9200-9210 ISO保留使用9211 法庭费用,包括赡养费和子女抚养费9212-9221 ISO保留使用9222 罚款9223 保释金9224-9291 ISO保留使用9311 纳税9312-9388 行业保留使用9389-9398 国家保留使用9399 未列入其它代码的政府服务9400 使领馆收费9401 国家保留使用9200-9402政府服务9402 邮政服务—仅限政府Q/CUP 004—200714范围代码描述9403-9410 行业保留使用9411 政府贷款9412-9499 行业保留使用9500-9699 ISO保留使用9700-9799 行业保留使用9403-9999其它9800-9999 国家保留使用(注:文件素材和资料部分来自网络,供参考。

ASCII码表 0-127

ASCII码表 0-127

Bin Dec Hex缩写/字符解释000NUL(null)空字符111SOH(start of headling)标题开始1022STX (start of text)正文开始1133ETX (end of text)正文结束10044EOT (end of transmission)传输结束10155ENQ (enquiry)请求11066ACK (acknowledge)收到通知11177BEL (bell)响铃100088BS (backspace)退格100199HT (horizontal tab)水平制表符1010100A LF (NL line feed, new line)换行键1011110B VT (vertical tab)垂直制表符1100120C FF (NP form feed, new page)换页键1101130D CR (carriage return)回车键1110140E SO (shift out)不用切换1111150F SI (shift in)启用切换100001610DLE (data link escape)数据链路转义100011711DC1 (device control 1)设备控制1 100101812DC2 (device control 2)设备控制2 100111913DC3 (device control 3)设备控制3 101002014DC4 (device control 4)设备控制4 101012115NAK (negative acknowledge)拒绝接收101102216SYN (synchronous idle)同步空闲101112317ETB (end of trans. block)传输块结束110002418CAN (cancel)取消110012519EM (end of medium)介质中断11010261A SUB (substitute)替补11011271B ESC (escape)溢出11100281C FS (file separator)文件分割符11101291D GS (group separator)分组符11110301E RS (record separator)记录分离符11111311F US (unit separator)单元分隔符1000003220(space)空格1000013321!1000103422"1000113523#1001003624$1001013725%1001103826&1001113927'1010004028(1010014129)101010422A*101011432B+101100442C,101101452D-101110462E.101111472F/110000483001100014931111001050322110011513331101005234411010153355 11011054366 11011155377 11100056388 11100157399 111010583A: 111011593B; 111100603C< 111101613D= 111110623E> 111111633F? 10000006440@ 10000016541A 10000106642B 10000116743C 10001006844D 10001016945E 10001107046F 10001117147G 10010007248H 10010017349I 1001010744A J 1001011754B K 1001100764C L 1001101774D M 1001110784E N 1001111794F O 10100008050P 10100018151Q 10100108252R 10100118353S 10101008454T 10101018555U 10101108656V 10101118757W 10110008858X 10110018959Y 1011010905A Z 1011011915B[ 1011100925C\ 1011101935D] 1011110945E^ 1011111955F_ 11000009660` 11000019761a 11000109862b 11000119963c 110010010064d 110010110165e 110011010266f 110011110367g 110100010468h 110100110569i 11010101066A j11010111076B k11011001086C l11011011096D m11011101106E n11011111116F o111000011270p111000111371q111001011472r111001111573s111010011674t111010111775u111011011876v111011111977w111100012078x111100112179y11110101227A z11110111237B{11111001247C|11111011257D}11111101267E~11111111277F DEL (delete)删除。

LSHT Torqmotors

LSHT Torqmotors

LSHT Torqmotors™ and Nichols™ MotorsBG Series Brake MotorHY13-1590-011/US,EU Exceptional Strength andDurability in a High Performance Motor/Brake PackageThis brake motor consists of a BG Series motor integrat-ed into a wet disc, spring applied, hydraulically released brake. Standard holding capacity is 12,000 lb in of holding torque. The brake is front mounted for reliable operation even in the event of a system failure. The brake release port is capable of pressures to 3000 PSI.Technical Information /TechnischeInformation / Segni/Informacion TecnicaRated Brake Holding Capacity Minimum Full @ Zero Release Pressure Release Pressure Nm (in-lbs) bar (PSI)1350 (12,000)22 (315)12,000 in-lbs is standard holding capacity. For other holding capacities, see page 287.For performance data curves, see TG section.Shaded areas indicate custom order components. Standard pricing and delivery terms may not apply to these* shuttle port position as viewed from the shaft end of the motor with theports up (12:00)** Not applicable to TA365&390, TB365&390, TC365&390, TE365&390,TG625,785&960, TH625,785&960Shaded areas indicate custom order components. Standard pricing and delivery terms may not apply to theseLSHT Torqmotors™ and Nichols™ MotorsBG Series Brake MotorHY13-1590-011/US,EURadial Load / Radiale Wellenbelastung Charges Radiale / Carga Radial The maximum load curve is defined by bearing static load ca-pacity. This curve should not be exceeded at any time includ-ing shock loads.Die maximale radiale Wellenbelastungskurve ist definiert als maximale statische Last ohne Drehzahl. Sie gilt als Grenze und sollte keinesfalls überschritten werden.La courbe de charge maximale est définie par la capacité de charge statique portante. Cette courbe ne devrait être dépassée en aucun moment y compris pour les charges par à-coups.La curva de carga máxima queda definida por la capacidad de carga estática del cojinete. No se deben superar los valores de esta curva, ni siquiera con cargas provisorias de impacto.The dynamic side load curve is based on uni-directional steady state loads for L 10 bearing life at 3 x 106 revolutions.Die zulässige auslegbare radiale Wellenbelastungskurve ist unter ruhenden, einseitig statisch gerichtetenLastverhältnissen auf eine L 10 Lebensdauer mit 3 x 106 Umdrehungen kalkuliert.La courbe de charge latérale permise se base sur des charges unidirectionnelles en régime permanent pour le roulement L 10 à 3 x 106 révolutions.La curva de valores admisibles de carga lateral estábasada en cargas constantes para cojinetes L 10 a 3 x 106 revoluciones.Wheel Mount/RadnabengehauseMonture à roue/ Montaje de ruedaEquation to Calculate the Expected Radial Bearing Life Gleichung zur Ermittlung der LagerlebensdauerEquation to calculate the dynamic bearing life for a given load:Bestimmung der erlaubten radialen Wellenbelastung mit vorgegebener LastUse F a , F b and S in equation to determine hours of L 10 bearing life.Die Lebensdauer in Stunden ergibt sich durch einsetzen von F a , F b , und S in die nachstehende Formel.3 x 106{ F a }3.33L = 60 x S F bWhere / Mit: S = Shaft Speed RPM / Abtriebswellendrehzahl in min -1 L = Life In Hours / Lebensdauer in StundenF a = Dynamic side load defined by above curve at a distance from mounting flange. / Erlaubte radiale Wellenbelastung als Function der LaengeF b = Application side load. / Anwendungsseitige Wellenbelastung Note: Calculations are based on L bearing life per ISO 281.Length "L" "L" Poids/PesoWeight / Gewicht Length "L""L"Code: ASFront Mounting / Front Bolting, 7/8-14 SAE O-RingCode: BM*Poids/Peso Weight / Gewicht Code AS Code BM 0140 0170 0195 0240 0280 0335 0405 0475 0530 0625 0785 0960kg 28.4 28.7 28.9 29.3 29.7 30.1 30.1 30.7 31.3 32.8 34.3 36.1 (lb) (62.6) (63.2) (63.7) (64.5) (65.4) (66.3) (67.6) (69.1) (70.7) (72.3) (75.7) (79.5) mm 233.2 236.4 239.6 244.3 249.1 255.4 262.8 271.3 277.7 287.2 306.3 325.3 (in) (9.18) (9.31) (9.43) (9.62) (9.81) (10.06) (10.35) (10.68) (10.93) (11.31) (12.06) (12.81)0140 0170 0195 0240 0280 0335 0405 0475 0530 0625 0785 0960kg 27.3 27.5 27.8 28.1 28.5 28.9 29.5 30.2 30.9 31.7 33.2 34.9 (lb) (60.2) (60.8) (61.3) (62.1) (63.0) (63.9) (65.2) (66.7) (68.3) (69.9) (73.3) (77.1) mm 192.3 195.3 198.6 203.2 208.0 214.4 221.7 230.4 236.7 246.1 265.2 284.2 (in) (7.57) (7.69) (7.82) (8.00) (8.19) (8.44) (8.73) (9.07) (9.32) (9.69) (10.44) (11.19)Length "L""L"Code: CSRear Mounting/Thru Bolting, 7/8-14 SAE O-Ring0140 0170 0195 0240 0280 0335 0405 0475 0530 0625 0785 0960kg 27.3 27.5 27.8 28.1 28.5 28.9 29.5 30.2 30.9 31.7 33.2 34.9 (lb) (60.2) (60.8) (61.3) (62.1) (63.0) (63.9) (65.2) (66.7) (68.3) (69.9) (73.3) (77.1) mm 192.3 195.3 198.6 203.2 208.0 214.4 221.7 230.4 236.7 246.1 265.2 284.2 (in) (7.57) (7.69) (7.82) (8.00) (8.19) (8.44) (8.73) (9.07) (9.32) (9.69) (10.44) (11.19)Poids/Peso Weight / Gewicht Code CSCode: CBRear Mounting/Thru-Bolting, 7/8-14 SAE Rear PortCode A & C1 1/4" KeyedCode: 051 1/4" 14 Tooth SplineCode: 081 1/4" TaperCode: 191 3/8" J501 Taper Code: 62SAE 14 Tooth Spline。

塑胶物性

塑胶物性

到<停機操作注意項目> 到<成型不良要因表> 到<成型不良的原因及調節方法詳解>3、接觸型式: M=MALE(公)F=FEMALE(母) P=公母共用型(在無區別時)4、稱謂: A:本體;J:圓蓋;B:前殼;K:支架; C:後殼;L:後塞; D:壓條;N:側蓋; E:中蓋;O:止蓋; F:扣板;Q:下蓋; G:反折蓋;R:後蓋; H:分線蓋S:擋板; 、、、、、、5、特殊規格: A: ST:STANDARD(標准型) SA:ACADEMIC(傳統型) SS:SIMPLE(簡易型) SC:CRAMP(有彈片) SP:SPECIAL(特殊型) SE:E、M、I、錢粉芯(一般) 、、、、、、 C1:二合一X對9; C2:二合一X對15; C3:三合一X對9-9; C4:三合一X對9-15; C5:三合一X對15-9; C6:三合一X對15-15; 、、、、、、 AO:3.0;DO:9.4; BO:5.08;DE:9.4錢粉芯; CO:7.2;EO:13.84; CE:7.2錢粉芯;EE:13.84錢粉芯; FO:7.0;、、、、、 LA:0.625;LD:0.6; LB:0.75;LE:0.8; LC:0.9;、、、、 NI:新型1;N2:新型2; RI:RI;、、、、 JA:傳統JACK;LO:龍傑; JB:錢頭JACK;LC:瀝晟; CH:側兩孔;HO:高腳無JACK(有中柱); CS:琪祥;H1:高腳無JACD-1(無中柱); AT:A-TYPE;H2:高腳無JACD-2; BT:B-TYPE;H3:高腳對3個JACK; JD:介大:H4:高腳對4個JACK; 、、、、、、、、B: 00:一般形;10:平面長齒; 01:有檐;11:平面短齒; 02:無檐;12:平面-2; 03:有檐排PIN;13:介大平面-2; 04:無檐排PIN;、、、、 05:有檐芨PIN; 06:無檐芨PIN; 、、、、、、 20:長齒長耳;30:縮第九針; 21:短齒長耳;31:雙 22:長齒中耳;32:雙 23:短齒中耳;、、、、、、 24:缺耳; 25:長齒; 26:短齒; 27:無齒; 、、、、、、 41:支架-1; 42:支架-2; 43:支架-3; 44:支架-4; 45:支架-5; 、、、、、、DIN之標示如下:DNO-96 M A CT SO 05 A BA: BT:B-TYPE;FT:F-TYPE; CT:C-TYPE;GT:G-TYPE; DT:D-TYPE;RT:R-TYPE; ET:D-TYPE;QT:Q-TYPE; 、、、、B: SO:STRAIGHT(180度);RO:RIGHT ANGLE(90度); 、、、、6、顏色: 01、WHITE(白色) 02、BLACK(黑色) 03、BLUE(藍色)93、PC99 BLUE(661C藍色); 04、GREEN(綠色)94、PC99 GREEN(322C草綠色) 05、GRAY(灰色) 06、RED(紅色)96、PC99 RED(235C紫紅色); 07、YELLOW(黃色)97、PC99 YELLOW(131C金黃); 08、HOARINESS(灰白色)、、、、、。

《有趣的算式》精品

《有趣的算式》精品

1×9+2= 11 12×9+3= 111 123×9+4= 1111 1234×9+5= 11111 12345×9+ 6 = 111111 123456× 9 + 7 = 1111111
1.人们在联欢时,会自然地围成圆形,为什么? 想一想,说一说。
Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!
Download prompt: This PPT courseware has been carefully prepared by our store. We hope that after downloading, it can help everyone solve practical problems. After downloading the PPT courseware, it can be customized and modified. Please adjust and use it according to actual needs. Thank you!

全员5S培训

全员5S培训

企业的活力来自每个人的智慧
每一件工作,都有很大的改进余地,改善是无止境的。自己主动发现问题,找出原 因并解决问题就叫改善;由其他部门检查发现问题后再解决问题就叫整改。全体员 工都应全身心投入,发掘每一个不起眼的改进机会,找出现场存在的问题并采取措 施解决问题,通过“改进——维持——进一步改进”的循环,把事情做得越来越好。 大体上,把事情做得更好有两种途径:一种是突破性的进展,即“创新”;另一种是 逐步改进,即“改善”。对于企业来说,二者是缺一不可的。首先我们要充分认识到“ 改善”的意义,其次要创建良好的企业文化,引导员工主动去改进工作。再次要有 适当的评价与激励手段。
整顿实例
现场规划
良品
通 道
待检品
不良品
虽然有划出区域,但规划不 合理,通道不明确。
区域清晰,规划合理,通道 明确。
确定位置
对所有物品进行标识
形迹集中
物品 整顿
有用途?
分类 集中 标识 原则 标准化 定期检查
处理Biblioteka 整顿方便 一目了然 自扫门前雪,自管各家事 规范化、永久性、传承性 红单 形式 摄影 检查表 目视 习惯
5S Training
QEHS
您能很快的找到您要找的数字吗?
1 28
10 19 37 46 22 31 13
2
20 41
29
3
21 12 15
47
11 23 50 26
30 48
39
38
4
49 40
32 14 5 44 53 45
24
42
6
9
51
33 27 18
25
16
34
7
43 52
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Modelling approach for the prediction of stitch influence during woven fabric drapingM.Duhovic a ,⇑,P.Mitschang a ,D.Bhattacharyya ba Institute for Composite Materials (IVW GmbH)Erwin-Schrödinger-Straße,Geb.5867663Kaiserslautern,GermanybCentre for Advanced Composites Materials,The University of Auckland Building 740,Tamaki Campus,Morrin Rd Glen Innes Private Bag 92019,Auckland,New Zealanda r t i c l e i n f o Article history:Received 26November 2010Received in revised form 28March 2011Accepted 29March 2011Available online 1April 2011Keywords:A.Fabrics/textilesC.Finite element analysis (FEA)E.Stitching E.Forminga b s t r a c tThe following paper focuses on the development of an accurate and efficient modelling approach for the prediction of fibre angles in woven reinforcements resulting from the influence of localised stitching pat-terns.The modelling procedure involves a process of calibration valid for both dry and wet woven fabric preform materials and has been carried out using the explicit finite element analysis code LS-DYNA.The details and capabilities of the model are discussed and comparisons are made with real fibre angle mea-surements taken from dry fabric hemispherical dome and three dimensional test shape forming experi-ments,under the influence of different stitch patterns.The current model demonstrates a high level of functionality allowing accurate prediction of yarn and stitch pattern movement as well as stresses and strains.Full-scale forming simulations for any desired sheet forming scenario can be performed within reasonable timeframes.Ó2011Elsevier Ltd.All rights reserved.1.IntroductionWoven fabrics are one of the most widely used of all textile reinforcement structures in polymer based fibre reinforced com-posite materials.The effective modelling of the forming properties of woven fabric polymer composite materials has been the focus of research for more than a decade.Perhaps the most important pre-diction for these materials is their resulting fibre orientations.This is because it is very important to be able to predict the drapability or the formation of wrinkling defects during the manufacture of components.The resulting fibre orientations also influence a whole host of other properties including fabric permeability and final component strength.Stitching is the most common method of joining or creating localised areas of reinforcement in dry composite prepregs.In par-ticular,stitching can be used to solve a number of important com-posite manufacturing issues such as the connection of layers of reinforcement fabric in the thickness direction,the creation of three dimensional reinforcement structures from two dimensional forms,and to provide a tailored connection medium between com-posite and non-composite elements in multi-material components.The flexibility of stitching can also lend itself to in-plane localised reinforcement.In the case of woven reinforcements,in-plane local-ised stitching at the manufacturing stage can help control yarn fi-bre angles and distribute strains in order to help avoid wrinkling.The placement of in-plane localised reinforcement for the control of yarn fibre angles during manufacturing is currently a costly trial and error process.The component is first formed without any stitch-ing at all and patterns are then trialled and tweaked based on obser-vations and measurements.Even for simple geometries it becomes less than intuitive to guess the appropriate pattern and placement position of the in-plane stitching to achieve the desired result.The current work is an attempt to devise the methodologies and tools required to eliminate the trial and error process and to make the process of pattern selection and placement faster and easier.The simulation of woven textile composite sheet forming contin-ues to be an intensely researched topic.Key research groups around the world include most prominently those in France led by Boisee [1–8]and Cherouat et al.[6,9–11];Belgium,Lomov and Verpoest et al.[12–15];as well as the UK and China,Clifford,Long,Harrison and Peng [16–19].These research groups continue to support the development of material modelling techniques for composites forming simulation software such as ESI’s PAMFORM,LSTC’s LS-Dyna and Simulia’s Abaqus/Explicit,amongst other leading FEA codes.Other notable efforts in the field include works by ten Thije,Sutcliffe,Pickett and Ramakrishna [20–23].In a recent article by Sar-gent et al.[24]several of the aforementioned groups,including two more from the US have been brought together in a collaboration which compares results of outputs such as fabric draw-in and result-ing shear angles following the simulated stamping of prescribed test geometry.Until now however,an efficient model which can incor-porate the influence of stitching on fabric behaviour has to the best of the authors’knowledge not yet been explored.1359-835X/$-see front matter Ó2011Elsevier Ltd.All rights reserved.doi:10.1016/positesa.2011.03.025Corresponding author.Tel.:+496312017363;fax:+496312017199.E-mail address:miro.duhovic@ivw.uni-kl.de (M.Duhovic).Various approaches to the modelling of woven fabric deforma-within reasonable timeframes.Models are also being developed at thefibre/filament level(microscale)[38],but currently require enormous amounts of computing power to consider anything other than the material on a unit cell basis.In the study carried out by Sidhu et al.[28],afinite element model which gives very accurate predictions of the resultingfibre orientations is developed using a well thought-out arrangement of beam and shell elements.A good review of the modelling ap-proaches taken by various researchers up to the date of their pub-lication is also given.Their review is clear to highlight that no model to date has considered inter-tow sliding and that very few models have takenfibre jamming into account[28].A similar ap-proach is taken by Yu et al.[29]where a‘‘restrained membrane model’’is proposed.This also utilises a combination of beam and shell(membrane)elements implemented byfinite element model-ling(FEM)simulation.The model provides a very good description of the experimental results,both tensile forces and shear angles, using empirical inputs,however,the model does not consider in-ter-tow sliding.In more recent work[34–36],the focus moves to-wards mesoscale models which provide greater detail with regards to the fabric geometry as the yarns here are modelled explicitly. However,it becomes difficult to model non-symmetric stitch con-figurations efficiently on a unit cell basis as the stitches can occur at any location and orientation.The examination of macroscale properties using a mesoscale model which includes the influence of stitches is currently considered too demanding with respect to model setup and solving time.2.Model descriptionThe current macroscale modelling approach builds on the ideas of Sidhu et al.[28].The FEM model uses a combination of shell and truss elements connected together at common nodal points in or-der to represent the behaviour of the woven fabric material.In thisTable1Fictitious material/matrix properties.Property Valuea Tensile modulus,EA,B,C(compression behaviour)5.2083eÀ04GPaPoisson’s ratio,P r BA,CA,CB0.20a Shear modulus,GAB,BC,CA1.4356eÀ02GPaa Simplified stress–straincurve(tension behaviour)r(GPa)e(mm/mm)0.000.007.8125eÀ050.15(initial jamming)7.3438eÀ040.23(final jamming)8.4863eÀ030.50b Thickness offictitiousmaterial(calibrated)0.32mm(0.0115mm)a Value calculated from fabric only specimen tensile tests.b Initial value for the thickness of thefictitious layer set to actual fabric thickness.Table2Yarn characteristic properties.Yarn property ValueYarn size:E-glass,Kevlar49204tex,127texDensity:E-glass,Kevlar49 2.54eÀ06kg/mm3,1.44eÀ06kg/mm3a Tensile modulus,E of crimped yarn in fabric forboth E-glass and Kevlar492Â2twill17.5GPa(Fibre112GPa,72GPa)b Cross sectional area,A:E-glass,Kevlar49(calibrated for both)0.08mm2,0.09mm2(0.00288mm2)Poisson’s ratio,P r0.30a Value calculated from fabric only specimen tensile tests.b Initial value for yarn cross sectional area set to actual yarn cross sectional area.M.Duhovic et al./Composites:Part A42(2011)968–978969approach,the truss elements are used to model the properties of the yarns or tows,while the shell elements represent afictitious medium that takes into account the stiffness due to interyarn scis-soring,sliding,andfibre jamming.Thefictitious medium can also be used to describe the effects a surrounding molten polymer ma-trix has on the yarn movement when dealing with thermoforming of preimpregnated materials.This is made possible by assuming that in both the cases of dry fabric draping and organosheet form-ing,the material behaviour is governed by the in-plane movement of the yarns,primarily in the form of yarn rotation(scissoring), yarn slippage and yarn jamming.For dry fabric draping it is as-sumed that the restriction to this movement comes from a combi-nation of the friction forces between individualfilaments and yarns coupled with yarn compression(fibre jamming).For an organosheet material during forming,where the yarns andfibres and Harrison[39–42]is not taken here.Rather,the input for this aspect of the material’s behaviour takes on the form of a stress–strain curve which is assigned to the shell elements present in thefinite element model.In this way,the movement of the yarns can be simulated whether they are restricted only by friction or by the presence of a molten polymer at different temperatures. In addition,the specific material models[43]assigned to the shell and truss elements account for the overall behaviour of the woven fabric material without the need to consider contact definitions within the fabric itself.For the efficient consideration of stitches,simple elements are again used together with a material model which considers the key parameters of stitch behaviour(e.g.stiffness,breaking strength,slack,and initial tension)[43].The stitching elements interact with the fabric through special contact definitions[43] so as to remain independent of the fabric mesh density and there-fore do not require connection to common nodal points.A form of tied contact offered by the LS-DYNA code,usually used to model spot welds and to tie shell edges to surfaces has been used.This type of contact interface uses a kinematic constraint method to tie the slave nodes on the ends of the stitch elements to the master segments on the shell elements representing the scissoring,sliding and jamming behaviour of the fabric in the directions as indicated in Fig.1.The formulation considers both translational and rota-tional degrees-of-freedom.During the actual simulation,the tied interface constraint is applied byfirst distributing the nodal forces and nodal mass of each stitch element slave node,n s to the four master nodes,n m defining the shell segment containing the contact point as shown in Fig.1.Note once again as described in Section2, that the master nodes,n m on the shell and beam elements defining the fabric are shared.Mathematically this can be expressed as shown in the following equation.D f im¼/iðn c;g cÞf sð1Þwhere f s is the force vector of the slave node and/i(n c,g c)is a weighting function based on the location of the contact point.A similar equation holds for the mass.For each time step,the incre-ments of mass and force for each stitch are added to the mass and force vectors of the master surface.After summation of all the stitch nodes is complete,the acceleration of the master surface is computed and the acceleration of the slave node on the stitch is then interpolated from the master segment containing the stitch contact as shown in the following equation.a iðsÞ¼X4j¼1/jðn c;g cÞa j ið2ÞNodal velocities and displacements are then updated in the nor-mal way.The interpolated contact point(n c,g c)for each stitch slave node is computed only once since its relative position on the mas-ter segment remains constant for the duration of the simulation.Coordinate data for the desired stitch patterns can be generated in any CAD software and imported automatically into the simula-tion through the spot weld generation interface.This creates zero-length stitching elements which are then adjusted to the cor-rect length by operating on the simulation inputfile using an auto-mated spreadsheet created in Microsoft Excel containing the desired stitch length and stitch direction vectors.3.Defining physical parameters3.1.Fictitious material/matrixThe implicit simulation of yarn interactions is made possible by considering the stiffness response of the fabric(initially without any stitching)due to a combination of yarn scissoring,sliding,Fig.3.Cable material model parameters used to describe lock stitch behaviour.Fig.4.Experimental stitched and unstitched dry fabric tensile test curves.970M.Duhovic et al./Composites:Part A42(2011)968–978and jamming.The material law can be simplified into a tri-linear stress–strain curve as shown in Fig.2.The dominant mechanisms are identified up to key values of strain which are based on the ini-tial andfinal yarn jamming angle.The information required to de-fine the material law can be obtained by performing tensile tests on single layer±45°fabric or composite specimens.The initial jam-ming angle can also be calculated analytically as shown by Sidhu et al.[28],using parameters derived from the fabric geometry.This information was then implemented using shell membrane ele-ments and the airbag fabric material model available in LS-DYNA [43].The material behaviour can be assigned in one(ICOMP=0) or both directions(ICOMP=1)of the shell elements,also shown schematically in Fig.2.The key parameters extracted from the shear deformation tensile test are summarised in Table1.Note that the modulus for the compression behaviour has been taken as the smallest stiffness measured in tension while the shear modulus has been calculated as half of the largest stiffness value measured in tension.Due to the nature of the shell and beam element con-nectivity the Poisson’s ratio has a negligible effect on the materialbehaviour and should be set to a typical value to ensure stability.3.2.YarnsA beam element truss formulation together with a simple linear elastic material model was used to represent the longitudinal behaviour of the yarns in the fabric.The material properties as-signed are given in Table2.Following tensile tests of fabric speci-mens in the0–90configuration,a straight line approximation to the linear portion of the curve was made and this value then used as the tensile modulus of the crimped yarn.3.3.Stitches loading.The actual values used for the aforementioned parame-ters are a function of the type and size of the yarn used for the stitches as well as the stitching machine parameters.To obtain the correct quantitative values,the force displacement response of fabric specimens with and without stitching were compared and the data for only the stitching was then isolated.Parameters for the various stages of stitch deformation were then obtained from these curves.These parameters can be compared to the ac-tual stiffness,strength,and elongation at break of the yarns used for the stitching which would in fact represent the limits of the properties that can be achieved by the stitch.For example,if the elongation at break of thefibre(Nomex)used to create the stitch is17.8%,then we would expect the stitch itself to exhibit an overall elongation greater than this value.Likewise,the tensile modulus and strength of the stitch are expected to be much lower than that of the yarn orfibre.4.Material characterisation and model verificationBefore simulations of complex three dimensional parts could be considered,a number of calibration and verification simulations were performed using simple geometries.Firstly,physical tensile tests on single-layered two dimensional fabric strip specimens with and without centreline stitching were carried out.Force displace-ment data,centrefibre angle,stitch elongation,and the overall gen-eral deformation pattern for both types of specimens were measured and recorded.Once the two dimensional properties were satisfied,three dimensional verification in the form of dome forming tests were carried out.This was performed on square sheet speci-mens,again made from a single layer of fabric,cut to two different fibre orientations(0/90°and±45°).Specimens in the0/90°configu-ration were tested in the presence of several stitch patterns which showed the most significant influence on the deformation behaviour of the fabric.For these specimens,both the fabric and stitch defor-mation behaviour were compared.Following the successful calibra-tion,tool geometry,blank size,and stitch pattern type and placement were modified to test any desired sheet forming scenario.4.1.Two dimensional forming4.1.1.Physical experimentsSpecimens taken from2Â2twill weave material comprised of a mixture of glassfibre and Kevlar49yarns with a yarn ratio of2:1 respectively,were cut to a±45°orientation and tested in tension to obtain the stress–strain data which was then used to define the parameters of the material model applied to the shell elements.Fig.5.Force displacement curves of stitch behaviour for single and double layer specimens.Table3Stitch characteristic properties.Stitch property ValueStitch material Amann Nomex70/3(Gray) Stitch type301lock stitchLinear density160Â3dtexa Material density 1.38eÀ06kg/mm3b Average elongation at break27.20%(Fibre17.80%)b Tensile modulus,E93MPa(Fibre17GPa)Stitch size3mmTensile strength of stitching yarn496MPa(1737cN)b Initial tensile force(pretension),F00kNVolume,VOL0.105mm3b Offset,(slack)19.00%(À0.57mm)Cross sectional area,CA0.035mm2Note:All other values taken from Nomex70yarn datasheet provided by Amann Nähgarne GmbH&Co.a Value retrieved from DuPont’s Nomexfibre technical guide and Matweb.b Value calculated from stitched fabric specimen tensile tests.M.Duhovic et al./Composites:Part A42(2011)968–978971The distinct difference in colour between the two yarns (yellow forglass)allowed for much easier measure-shear angles in the specimens Aver-three different sets of dry fabric tests temperature were generated and are shown average of the unstitched single layer stitched single and stitched double layer that the shapes of the curves follow one shown in Fig.2.The curves sug-of the fabric is extended by the pres-approximately 3%,while the maximum failure same increase in strain was also ob-specimens.The parameters required for the stitching elements were ob-tained by considering the difference of each type of sample with and without The force displacement curves showing are presented in Fig.5.In the current parameters to be extracted are the offset sile force (pretension),elongation stitch (tensile modulus).It can be seen in Fig.5that for both the single and imens,very little load take-up is developed also indicates the absence of any pretension types of specimens then exhibit linear failure strain of approximately 27%.The Fig.6.Experimental and numerical tensile test curves for plain and 2Â2twill weaves.the curve are summarised in Table3.For describing more complex types of stitch behaviour,the assignment of a stress–strain curve is also possible.4.1.2.Numerical simulationThefirst set of simulationstensile tests carried out for thedata obtained from the physicalPrior to this,force displacementusing the dry fabric data given inallowed the concurrentphysical experiments on anyalso provided the data todifferent characteristics could beinput parameters.Thement curves for the twotogether in Fig.6.It can be seental curves for both are in goodthe parameters taken from therial behaviour wasfirst(ICOMP=0).It is shown in Fig.6iour to both(perpendicular)(ICOMP=1)further improvedall simulations thereafter.Thisscenarios could also beThe compression behaviourand investigated.This was takenculated from the simplifieda sensitivity study on thisany significant influence on theunless very large unrealisticbehaviour of the material in thepath taken by the loadingthe unloading stress–strainnot required to follow the sameway hysteresis of the materialThe second way to ensurefor the two dimensionalangle versus the strain ofimen.Fig.7shows the change incentre of the specimen,againmeasurements taken from theplied material models.Thenumerical and physical tensileother in Fig.8a–d.For clarity ofKevlar49yarns have beenmation pattern of the simulatededge effects of the specimento slide apart severely.4.2.Three dimensional forming4.2.1.Physical experimentsTo provide a basis for three250mm square sheet specimenssingle layer specimens wereforming a70mm diameterproduced incorporating asigned to influence the shearrial.Details of the physicaltogether with stitch patternment techniques are discussed innar and Mitschang[44,45].Thisinformation for verifying thedimensional forming numerical 4.2.2.Numerical simulationFollowing on from the material model development presented in Section4.1,a comparison of the three dimensional deformation behaviour of a selection of dry fabric specimens with and without8.Image overlay of overall deformation pattern of experimental and simulatedfabric tensile specimen(a)0%strain,(b)10%strain,(c)20%strain and(d) strain.(For interpretation of the references to colour in thisfigure legend,the reader referred to the web version of this article.)M.Duhovic et al./Composites:Part A42(2011)968–978973Fig.10.Dome forming measurement template[44,45].have been placed on them by the stitching.However,due to the variations that exist in the experimental angle measurements in the different stitched specimens shown in Figs.11and12(between 5–10%),it is difficult to verify whether the shape of the scissoring dome specimen between points1and6is approximately16% and28%respectively.While it is unreasonable to ever expect an exact prediction of the yarn crossover angle in such a complex 3D forming case,it is believed that a more detailed treatment ofFig.11.Dome formingfibre angle measurements.Fig.12.Dome forming stitch slack studyfibre angle measurements.M.Duhovic et al./Composites:Part A42(2011)968–978975Fig.13.Bias extension force-strain curves over a range of forming temperatures.Fig.14.Actual thermoformed multicavity test geometry showing yarn crossover angle measurement locations.(For interpretation of the references to colour in thisfigure legend,the reader is referred to the web version of this article.)Fig.15.Simulated stitch influence on the deformation behaviour of the thermoformed legend,the reader is referred to the web version of this article.)tests and used to measure and comparefibre angles at certain locations.A complete mapping comparison was also performed in the same way as shown in Fig.8a–d.A camera system linked to the tensile testing machinery again allowed the force dis-placement data to be correlated with the recorded images of specimen deformation.Fig.14shows the yarn crossover angle measurement template ferent regions could yet be another way of controlling the yarn crossover angles during forming.The possibility of such a simula-tion is however left for future work.5.Conclusionsparison of experimental and simulated shear angle measurements170°C.M.Duhovic et al./Composites:Part A42(2011)968–978977measurements of the shear angle versus strain and force versus strain.Three dimensional verifications can then be carried out using the basic hemispherical dome geometry.Once the behaviour of the given material has been verified,simulations can be per-formed on more complex geometries of up to0.25m2in size with-in reasonable timeframes on standard level computing resources. Different types of stitch patterns can then be trialled in regions where shear deformation is most prominent and pattern shape and location can be selected based on these results.The present work has demonstrated the feasibility of such an FEA model for the efficient prediction of stitch pattern influence.Furtherfine tun-ing of the modelled stitch behaviour and the establishment of a material model database is expected to give useful information for composite parts produced in this way.AcknowledgmentsThe authors would like to thank the German Research Founda-tion(DFG)for supporting the project‘‘Drapierung’’(MI647/14–2) and in addition,the Foundation for Research Science and Technol-ogy(FRST)New Zealand for theirfinancial support during the course of the project.References[1]Boisse P,Zouari B,Gasser A.A mesoscopic approach for the simulation ofwovenfibre composite pos Sci Technol2005;65:429–36.[2]Zouari B,Daniel JL,Boisse P.A woven reinforcement forming simulationmethod influence of the shear put Struct2006;84:351–63. [3]Boisse P,Hamila N,Vidal-SalléE,Dumont F.Simulation of wrinkling duringtextile composite reinforcement forming influence of tensile,in-plane shear and bending pos Sci Technol2011;71:683–92.[4]Boisse P,Gasser A,Hivet G.Analyses of fabric tensile behaviour:determinationof the biaxial tension–strain surfaces and their use in forming simulations.Composites Part A2001;32(10):1395–414.[5]Allaoui S,Boisse P,Chatel S,Hamila N,Hivet G,Soulat D,Vidal-Salle E.Experimental and numerical analyses of textile reinforcement forming of a tetrahedral posites Part A2011;42(6):612–22.[6]Soulat D,Cherouet A,Boisse P.Simulation of continuousfibre reinforcedthermoplastic forming using a shellfinite element with transverse stress.Comput Struct2006;84:888–903.[7]Hamila N,Boisse P.Simulations of textile composite reinforcement drapingusing a new semi-discrete three nodefinite posites Part B 2008;39:999–1010.[8]Vidal-SalléE,Nguyen QT,Charmetant A,Bréard J,Maire E,Boisse e ofnumerical simulation of woven reinforcement forming at mesoscale:influence of transverse compression on the global response.Int J Mater Form 2010;3(1):699–702.[9]Giraud-Moreau L,Cherouat A,Borouchaki H.Adaptive remeshing of compositefabrics during the forming process.Int J Mater Form2010;3(1):659–62. [10]Cherouat A,Borouchaki H,Giraud-Moreau L.Mechanical and geometricalapproaches applied to composite fabric forming.Int J Mater Form 2010;3(2):1189–204.[11]Cherouat A,Radi B,El Hami A.The frictional contact of the composite fabric’sshaping.Acta Mech2008;199:29–41.[12]Willems A,Lomov SV,Verpoest I,Vandepitte D,Harrison P,Yu WR.Formingsimulation of thermoplastic commingled woven textile on a double dome.Int J Mater Form2008;1(1):965–8.[13]Vanclooster K,Lomov SV,Verpoest I.Simulating and validating the draping ofwovenfiber reinforced polymers.Int J Mater Form2008;1(1):961–4.[14]Vanclooster K,Lomov SV,Verpoest I.Simulation of multi-layered compositesforming.Int J Mater Form2010;3(1):695–8.[15]Lomov SV,Verpoest I.Model of shear of woven fabric and parametricdescription of shear resistance of glass woven pos Sci Technol2006;66:919–33.[16]Peng XQ,Guo ZY,Rehman Zia-Ur,Harrison P.A simple anisotropicfiberreinforced hyperelastic constitutive model for woven composite fabrics.Int J Mater Form2010;3(1):723–6.[17]Lin H,Wang J,Long AC,Clifford MJ,Harrison P.Predictive modelling foroptimization of textile composite pos Sci Technol 2007;67:3242–52.[18]Cao J,Xue P,Peng X,Krishnan N.An approach in modeling the temperature effectin thermo-stamping of woven put Struct2003;61:413–20. [19]Peng X,Ding F.Validation of a non-orthogonal constitutive model for wovencomposite fabrics via hemispherical stamping posites Part A 2011;42:400–7.[20]ten Thije RHW,Akkerman R.Finite element simulations of laminatedcomposites forming processes.Int J Mater Form2010;3(1):715–8.[21]Skordos AA,Sutcliffe MPF.Stochastic simulation of woven composites forming.Compos Sci Technol2008;68:283–96.[22]Pickett AK.Review offinite element simulation methods applied tomanufacturing and failure prediction in composites structures.Appl Compos Mater2002;9:43–58.[23]Lim TC,Ramakrishna S.Modelling of composite sheet forming:A review.Composites Part A2002;33(4):515–37.[24]Sargent J,Chen J,Sherwood J,Cao J,Boisse P,Willem A,et al.Benchmark studyoffinite element models for simulating the thermostamping of woven-fabric reinforced composites.Int J Mater Form2010;3(1):683–6.[25]Robertson RE,Hsiue ES,Sickafus EN,Yeh GSY.Fiber rearrangements during themolding of continuousfiber composites.I.Flat cloth to a hemisphere.Polym Composite1981;2:126–31.[26]Bickerton S,Simacek P,Guglielmi SE,Advani SG.Investigation of draping andits effects on the moldfilling process during manufacturing of a compound curved composite posites Part A1997;28A:801–16.[27]Rudd CD,Middleton V,Owen MJ,Long AC,McGeehin P,Bulmer LJ.Modelingthe processing and performance of preforms for liquid molding processes.Compos Manuf1994;5:177–86.[28]Sidhu RMJS,Averill RC,Riaz M,Pourboghrat F.Finite element analysis of textilecomposite preform pos Struct2001;52:483–97.[29]Yu X,Zhang L,Mai Y-W.Modelling andfinite element treatment of intra-plyshearing of woven fabric.J Mater Process Tech2003;138:47–52.[30]Yu X,Cartwright B,McGuckin D,Ye L,Mai Y-W.Intra-ply shear locking infiniteelement analyses of woven fabric forming posites Part A 2006;37:790–803.[31]Sharma SB,Sutcliffe MPF.A simplifiedfinite element model for draping ofwoven posites Part A2004;35:637–43.[32]Skordos AA,Monroy Aceves C,Sutcliffe MPF.A simplified rate dependentmodel of forming and wrinkling of pre-impregnated woven composites.Composites Part A2007;38:1318–30.[33]Yua X,Zhanga L,Mai Y-W.A mesoscopic approach for the simulation of wovenfibre composite pos Sci Technol2005;65:429–36.[34]Lin H,Clifford MJ,Long AC,Sherburn M.Finite element modelling of fabricshear.Modell Simul Mater Sci Eng2009;17:1–16.[35]Creech G,Pickett AK.Meso-modelling of non-crimp fabric composites forcoupled drape and failure analysis.J Mater Sci2006;41:6725–36.[36]Loix F,Badel P,Orgéas L,Geindreau C,Boisse P.Woven fabric permeability:From textile deformation tofluidflow mesoscale pos Sci Technol2008;68:1624–30.[37]Miao Y,Zhou E,Wang Y,Cheeseman BA.Mechanics of textile composites:pos Sci Technol2008;68:1671–8.[38]Hermann F.Numerische simulation der mechanischen Eigenschaften textilerFlächengebilde–Gewebeherstellung.Bamberg:LS-DYNA Anwenderforum;2004. [39]Spencer AJM.Deformation offibre-reinforced materials.Oxford:ClarendonPress;1972.[40]Rogers TG.Rheological characterisation of anisotropic posites1989;20(1):21–7.[41]Christensen RM.Effective viscousflow properties forfibre suspensions underconcentrated conditions.J Rheology1993;37(1):103–21.[42]Harrison P,Clifford MJ,Long AC,Rudd CD.A constituent-based predictiveapproach to modelling the rheology of viscous textile posites Part A2004;35:915–31.[43]Livermore Software Technology Corporation,Hallquist,John O.LS-DYNATheory Manual,March2006;/.[44]Molnar P,Ogale A,Lahr R,Mitschang P.Influence of drapability by usingstitching technology to reduce fabric deformation and shear during pos Sci Technol2007;67:3386–93.[45]Mitschang P,Molnar P.Influencing the drapability of organic sheets duringthermoforming.8th International conference on textile composites (TEXCOMP-8),Nottingham,UK,16–18Oct2006.978M.Duhovic et al./Composites:Part A42(2011)968–978。

相关文档
最新文档