德州市庆云县第二中学2021年人教版七年级下期中数学试题及答案(A卷全套)
人教版七年级下册数学《期中考试试卷》附答案解析
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列运算正确的是 ( )A. -a 4·a 3=a 7B. a 4·a 3=a 12C. (a 4)3=a 12D. a 4+a 3=a 72.计算32()()x x -÷-的结果是( )A. x -B. xC. 5x -D. 5x 3.在同一平面内,两条直线的位置关系是( )A. 平行和垂直B. 平行和相交C. 垂直和相交D. 平行、垂直和相交 4.如图,已知a ∥b ,165∠=︒,则2∠的度数为( )A . 65︒B. 125︒C. 115︒D. 25︒ 5.如图,下列说法不正确的是 ( )A. ∠DAB 与∠B 是内错角B. ∠EAB 与∠B 是同旁内角C. ∠CAB 与∠B 是同旁内角D. ∠C 与∠B 是同位角 6.在圆的周长公式C=2πr 中,下列说法正确的是( )A. C ,π,r 是变量,2是常量B. C ,π是变量,2,r 是常量C. C ,r 是变量,2,π是常量D. 以上都不对 7.一个长方形的周长为30,则长方形的面积y 与长方形一边长x 的关系式为( )A. y=x(15-x)B. y=x(30-x)C. y=x(30-2x)D. y=x(15+x)8.如图,AB∥CD,若∠ABE=120°,∠DCE=35°,则∠BEC= ()A.78°B. 95°C. 155°D. 85°9.已知x2+16x+k是完全平方式,则常数k等于【】A. 64 B. 48 C. 32 D. 1610.我国古代数字的许多创新和发展都位居世界前列,如南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”,根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A. 2019B. 2018C. 191D. 190二、填空题11.用科学记数法表示,0.00000079=_____________12.若2x=1,则x=___________13.已知∠α补角是130°,则∠α=__________度.14.如图,计划在河边建一水厂,可过C点作CD⊥AB于D点.在D点建水厂,可使水厂到村庄C的路程最短,这样设计的依据是________.15.已知a m=4,a n=3,则a m+2n=__________.16.将图1中阴影部分的小长方形变换到图2的位置,你能根据两个图形的面积关系得到的数学公式是_____.17.如图,在△CDE 中,∠CED =90°,点E 在AB 边上,AB ∥CD ,若∠AEC =30°,则∠D 的度数为_________________ .18.已知x +y =5 ,xy =6 ,则x 2 + y 2=_______.三、解答题19.计算(1)2123122124-⨯(用整式乘法公式计算)(2)()021262π--++- (3)()()222232232x y yx ---. (4)()22963x y xy xy -÷ (5)()()2132m m --- (6)()33222ab abc a c - 20.先化简,再求值: (a +2b)(a -2b)+(a +2b)2-4ab ,其中a =1,b =110. 21.已知∠α,∠β,求作一个角∠AOB ,使它等于∠α与∠β的和.(要求:不在原图上作图,不写作法,保留作图痕迹)22.推理填空.如图,已知∠1=∠2,∠B =∠C ,可推得AB ∥CD ,理由如下:解:因为∠1=∠2(已知),且∠1=∠4( )所以∠2=∠4(等量代换)所以CE ∥BF ( ) 所以∠ =∠3( )又因为∠B =∠C (已知),所以∠3=∠B ( )所以AB ∥CD ( )23.如图,直线AB //CD ,BC 平分∠ABD ,∠1=54°,求∠2的度数.24.先化简,再求值:已知代数式2(3)(24)ax x x b -+--化简后,不含有x 2项和常数项. (1)求a 、b 的值;(2)求2()()()(2)b a a b a b a a b ---+---+的值.25.如图,小彬和爸爸一起去车站接从外地学习回来的妈妈,在去的过程中,小彬坐在汽车上看着时速表,用所学知识绘制了一张反映小车速度与时间的关系图,请你根据图象回答以下问题:(1)在上述过程中,自变量是什么?因变量是什么?(2)小车共行驶了多少时间?最高时速是多少?(3)汽车在哪段时间保持匀速运动?速度是多少?(4)汽车在哪段时间内速度在增加?哪段时间内速度在减少?答案与解析一、选择题1.下列运算正确的是 ( )A. -a 4·a 3=a 7 B. a 4·a 3=a 12 C. (a 4)3=a 12 D. a 4+a 3=a 7 【答案】C【解析】【分析】由同底数幂相乘,幂的乘方,合并同类项,分别进行判断,即可得到答案.【详解】解:A 、437a a a -•=-,故A 错误;B 、437a a a •=,故B 错误;C 、4312()a a =,故C 正确;D 、43a a +不是同类项,不能合并,故D 错误;故选:C .【点睛】本题考查了幂的乘方,同底数幂相乘,合并同类项,解题的关键是熟练掌握运算法则进行判断. 2.计算32()()x x -÷-的结果是( )A. x -B. xC. 5x -D. 5x【答案】A【解析】【分析】先计算乘方,然后计算同底数幂的除法,即可得到答案.【详解】解:3232()()x x x x x -÷-=-÷=-;故选:A .【点睛】本题考查了同底数幂的除法,以及乘方的运算,解题的关键是掌握运算法则进行解题. 3.在同一平面内,两条直线的位置关系是( )A. 平行和垂直B. 平行和相交C. 垂直和相交D. 平行、垂直和相交 【答案】B【解析】【分析】在同一平面内,两条直线的位置关系只有两种情况,平行或相交.【详解】解:在同一个平面内,两条直线只有两种位置关系,即平行或相交,故选:B.【点睛】本题主要考查了同一平面内,两条直线的位置关系,注意垂直是相交的一种特殊情况,不能单独作为一类.4.如图,已知a∥b,165∠=︒,则2∠的度数为()A. 65︒B. 125︒C. 115︒D. 25︒【答案】C【解析】【分析】由平行线的性质和对顶角相等,即可求出2∠的度数.【详解】解:如图:a b,∵//∠+∠=︒,∴23180∠=∠=︒,∵3165∠=︒-︒=︒;∴218065115故选:C.【点睛】本题考查了平行线的性质,以及对顶角相等,解题的关键是熟练掌握两直线平行,同旁内角互补.5.如图,下列说法不正确的是()A. ∠DAB与∠B是内错角B. ∠EAB与∠B是同旁内角C. ∠CAB与∠B是同旁内角D. ∠C与∠B是同位角【答案】D【解析】【分析】根据同位角、内错角、同旁内角的定义对各个选项判断即可.【详解】解:A:∠DAB与∠B是内错角,正确;B:∠EAB与∠B是同旁内角,正确;C:∠CAB与∠B是同旁内角,正确;D:∠C与∠B是同旁内角,错误.故选D.【点睛】本题考查了同位角、内错角、同旁内角的知识,属于基础题,解答本题的关键是熟练掌握同位角、内错角、同旁内角的定义.6.在圆的周长公式C=2πr中,下列说法正确的是()A. C,π,r是变量,2是常量B. C,π是变量,2,r是常量C. C,r是变量,2,π是常量D. 以上都不对【答案】C【解析】【分析】常量就是在变化过程中不变的量,变量是指在变化过程中变化的量.【详解】解:C,r是变量,2、π是常量.故选:C.【点睛】本题主要考查了常量,变量的定义,是需要识记的内容.7.一个长方形的周长为30,则长方形的面积y与长方形一边长x的关系式为( )A. y=x(15-x)B. y=x(30-x)C. y=x(30-2x)D. y=x(15+x)【答案】A【解析】【详解】∵长方形的周长为30,其中一边长为x,,∴该长方形的另一边长为:15x∴该长方形的面积:(15)y x x=-. 故选A. 8.如图,AB∥CD,若∠ABE=120°,∠DCE=35°,则∠BEC= ()A. 78°B. 95°C. 155°D. 85°【答案】B【解析】【分析】先过点E作EF∥AB,由平行线的传递性可得EF∥CD,再根据平行线的性质即可解答.【详解】解:如图,过点E作EF∥AB,由平行线的传递性可得EF∥CD∵EF∥AB,∵∠FEB=180°-∠ABE=60°,∵EF∥CD,∠DCE=35°,∴∠FEC=∠DCE=35°,∴∠BEC=∠FEB+∠FEC=60°+35°=95°.故答案为:B.【点睛】本题考查的是平行线的性质,即两直线平行,同旁内角互补及内错角相等.9.已知x2+16x+k是完全平方式,则常数k等于【】A. 64B. 48C. 32D. 16【答案】A【解析】【详解】∵x2+16x+k是完全平方式,∴对应的一元二次方程x2+16x+k=0根的判别式△=0.∴△=162-4×1×k=0,解得k=64.故选A.也可配方求解:x2+16x+k=(x2+16x+64)-64+k= (x+8)2-64+k,要使x2+16x+k为完全平方式,即要-64+k=0,即k=64.10.我国古代数字的许多创新和发展都位居世界前列,如南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”,根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A. 2019B. 2018C. 191D. 190【答案】D【解析】【分析】根据图形中的规律即可求出(a+b)20的展开式中第三项的系数.【详解】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),∴(a+b)20第三项系数为1+2+3+…+19=190,故选:D.【点睛】此题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.二、填空题11.用科学记数法表示,0.00000079=_____________【答案】7.9 ×10-7【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:0.00000079=7.9 ×10-7.【点睛】用科学记数法表示一个数的方法是:(1)确定a :a 是只有一位整数的数;(2)确定n :当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).12.若2x =1,则x=___________【答案】0【解析】【分析】直接利用零指数幂的性质得出答案.【详解】解:因为2x =1,所以x=0.【点睛】此题主要考查了零指数幂的性质,正确把握相关定义是解题关键.13.已知∠α的补角是130°,则∠α=__________度. 【答案】50【解析】【分析】根据互补两角之和为180︒求解即可.【详解】解:130A ∠=︒,A ∴∠的补角180********A =︒-∠=︒-︒=︒.故答案为:50.【点评】本题考查了补角知识,属于基础题,掌握互补两角之和为180︒是解题的关键.14.如图,计划在河边建一水厂,可过C 点作CD⊥AB 于D 点.在D 点建水厂,可使水厂到村庄C 的路程最短,这样设计的依据是________.【答案】垂线段最短【解析】根据垂线段最短解释即可.【详解】由作法可知,CD 是点C 到AB 的垂线段,所以这样设计的依据是:垂线段最短.故答案为垂线段最短.【点睛】本题考查了垂线段最短的实际应用,熟记垂线段最短是解答此题的关键.15.已知a m =4,a n =3,则a m +2n =__________.【答案】36【解析】【分析】根据同底数幂的乘法与幂的乘方运算法则逆变形,把已知等式代入计算即可求出值.【详解】解:4m a =,3n a =,∴2m n a +()224336m na a =⋅=⨯=,故答案为:36.【点睛】本题考查了同底数幂的乘法与幂的乘方运算法,解决本题的关键是熟练掌握两者的变形/ 16.将图1中阴影部分的小长方形变换到图2的位置,你能根据两个图形的面积关系得到的数学公式是_____.【答案】(a+b )(a-b )=a 2-b 2【解析】【分析】【详解】由图可知,两个图象面积相等,(a+b )(a-b )=a 2-b 2.17.如图,在△CDE 中,∠CED =90°,点E 在AB 边上,AB ∥CD ,若∠AEC =30°,则∠D 的度数为_________________ .【答案】60︒【解析】根据平角等于180︒求出BED ∠,再根据两直线平行, 内错角相等解答 .【详解】解:90CED ∠=︒,30AEC ∠=︒,180180903060BED CED AEC ∴∠=︒-∠-∠=︒-︒-︒=︒,//AB CD ,60D BED ∴∠=∠=︒.故答案为:60︒.【点评】本题考查了平行线的性质, 平角的定义, 是基础题, 熟记平行线的性质是解题的关键 . 18.已知x +y =5 ,xy =6 ,则x 2 + y 2=_______.【答案】13【解析】【分析】先把所求式子变形为完全平方式,再把题中已知条件代入即可解答.【详解】解:由题可知:22x y +2222x y xy xy=++-2()2x y xy =+-,∵x +y =5 ,xy =6 ,∴原式2512=-13=.故答案为:13. 【点睛】本题考查了完全平方公式,熟记公式的几个变形公式对解题大有帮助.三、解答题19.计算(1)2123122124-⨯(用整式乘法公式计算)(2)()021262π--++- (3)()()222232232x y yx ---. (4)()22963x y xy xy -÷(5)()()2132m m ---(6)()33222ab abc a c -【答案】(1)1;(2)74;(3)10x 2-9y 2;(4)3x -2y ;(5)-6m 2+m +2;(6)-2a 8b 4c 5. 【解析】【分析】 (1)原式变形为, 利用平方差公式计算即可得到结果;(2)原式利用绝对值、负整数指数幂、零指数幂法则分别化简再计算即可得到结果;(3)原式先去括号再合并同类项即可;(4)根据多项式除以单项式法则计算即可;(5)根据多项式乘以多项式法则计算即可得到结果;(6)先计算积的乘方,再根据同底数幂乘法计算即可.【详解】解:(1)2123122124-⨯()()212312311231=--⨯+()221231231=--1=;(2)()021262π--++- 11124=++ 74=; (3)()()222232232x y y x ---. ()()22226364x y y x =---22226364x y y x =--+()()22226436x x y y =+-+22109x y =-(4)()22963x y xy xy -÷229363x y xy xy xy =÷-÷32x y =-;(5)()()2132m m ---26432m m m =-+-+262m m =-++;(6)()33222ab abc a c - 23632ab abc a c =-11631232a b c ++++=-8542a b c =-.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值: (a +2b)(a -2b)+(a +2b)2-4ab ,其中a =1,b =110. 【答案】2a 2,2【解析】【分析】先利用平方差公式和完全平方公式计算,进一步合并化简,再代入求值即可.【详解】解:原式=a 2-4b 2+a 2+4ab +4b 2-4ab=2a 2当a =1时,原式=2×12=2 【点睛】此题考查整式的混合运算,注意正确利用乘法公式先计算化简,再代入求得数值即可. 21.已知∠α,∠β,求作一个角∠AOB ,使它等于∠α与∠β的和.(要求:不在原图上作图,不写作法,保留作图痕迹)【答案】图见解析.【解析】【分析】先作AOB α∠=∠,然后在AOB ∠的外部作BOC β∠=∠,则AOC αβ∠=∠+∠.【详解】解:解:如图:①作AOB α∠=,②作BOC β=,即:AOC αβ∠=∠+∠.∴AOC ∠即为所求.【点睛】本题考查了复杂作图,主要利用了作一个角等于已知角,是基本作图,需熟练掌握.22.推理填空.如图,已知∠1=∠2,∠B =∠C ,可推得AB ∥CD ,理由如下:解:因为∠1=∠2(已知),且∠1=∠4( )所以∠2=∠4(等量代换)所以CE ∥BF ( )所以∠ =∠3( )又因为∠B =∠C (已知),所以∠3=∠B ( )所以AB ∥CD ( )【答案】对顶角相等、同位角相等,两直线平行、C 、两直线平行,同位角相等、等量代换、内错角相等,两直线平行【解析】【分析】首先确定14∠=∠是对顶角,利用等量代换,求得24∠∠=,则可根据:同位角相等,两直线平行,证得://CE BF ,又由两直线平行,同位角相等,证得角相等,易得:BFD B ∠=∠,则利用内错角相等,两直线平行,即可证得://AB CD .【详解】解:12∠=∠(已知),且14∠=∠(对顶角相等)24∴∠=∠ (等量代换)//CE BF ∴(同位角相等,两直线平行)3C ∴∠=∠(两直线平行,同位角相等)又B C ∠=∠(已知),3B ∴∠=∠(等量代换)//AB CD ∴ (内错角相等,两直线平行); 故答案为:对顶角相等、同位角相等,两直线平行、C 、两直线平行,同位角相等、等量代换、内错角相等,两直线平行【点睛】本题主要考查了平行线的判定与性质.注意数形结合思想的应用是解答此题的关键.23.如图,直线AB //CD ,BC 平分∠ABD ,∠1=54°,求∠2的度数.【答案】72°【解析】【分析】由平行线的性质可求得∠ABC=54°,再根据角平分线的定义可求得∠ABD=108°,再由平行线的性质可求得 ∠CDB=72°,根据对顶角相等即可求得∠2=72°. 【详解】∵ AB//CD,∠1=54°, ∴ ∠ABC=∠1=54°, ∵ BC 平分∠ABD,∴ ∠ABD=2∠ABC =2×54°=108°, ∵ AB//CD,∴ ∠ABD+∠CDB=180°, ∴ ∠CDB=180°-∠ABD=72°, ∵ ∠2=∠CDB,∴ ∠2=72°. 【点评】本题考查了平行线的性质,角平分线的定义,对顶角的性质,熟练掌握相关性质是解题的关键.24.先化简,再求值:已知代数式2(3)(24)ax x x b -+--化简后,不含有x 2项和常数项.(1)求a 、b 的值;(2)求2()()()(2)b a a b a b a a b ---+---+的值.【答案】(1)1;122a b ==-;(2)-6 【解析】【分析】(1)先算多项式乘多项式,再合并同类项,即可得出关于a 、b 的方程,求出即可;(2)先化简原式,然后将a 与b 的值代入求出即可.【详解】解:原式=2ax 2+4ax-6x-12-x 2-b=()()22a 1x 4a 6x 12b -+-+--, ∵代数式(ax-3)(2x+4)-x 2-b 化简后,不含有x 2项和常数项.,∴2a-1=0,-12-b=0,∴ 1a 2= , b 12=-; (2) 解:∵a=12 ,b=-12, ∴(b-a )(-a-b )+(-a-b )2-a (2a+b )=a 2-b 2+a 2+2ab+b 2-2a 2-ab=ab=12×(-12) =-6. 【点睛】本题考查整式的混合运算和求值,解题的关键是正确运用整式的运算法则进行化简. 25.如图,小彬和爸爸一起去车站接从外地学习回来的妈妈,在去的过程中,小彬坐在汽车上看着时速表,用所学知识绘制了一张反映小车速度与时间的关系图,请你根据图象回答以下问题:(1)在上述过程中,自变量是什么?因变量是什么?(2)小车共行驶了多少时间?最高时速是多少?(3)汽车在哪段时间保持匀速运动?速度是多少?(4)汽车在哪段时间内速度在增加?哪段时间内速度在减少?【答案】(1)时间、速度;(2)21分,80千米/时;(3)3分—9分,80千米/时;(4)0分—3分和18分—21分在加速,9分—15分和21分---24分在减速【解析】【分析】(1)根据自变量与因变量的定义求解;(2)(3)(4)根据速度与时间的图象来求解.【详解】解:(1)自变量是时间,因变量是速度.(2)根据速度与时间图象的横坐标可知:小车共行驶了24-3=21分钟,最高时速是80千米/时;(3)由图像可知:3分钟到9分钟保持匀速,达到80千米每小时;(4)由图像可知:0分—3分和18分—21分在加速,9分—15分和21分---24分在减速.【点睛】本题主要考查动点问题的函数的图象,结合图形进行求解.。
人教版数学七年级下学期《期中检测卷》有答案解析
人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下列四个命题中,①若a>0,b>0,则a+b>0;②同位角相等;③有两边和一个角分别对应相等的两个三角形全等;④三角形的最大角不小于60°;真命题有( )个A. 1B. 2C. 3D. 42.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A. 10°B. 15°C. 20°D. 25°3.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应两个一次函数的图象(如图所示),则所解的二元一次方程组是[]A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,4.如图,四边形ABCD中,∠A=90°,∠C=110°,点E,F分别在AB,BC上,将△BEF沿EF翻折,得△GEF,若GF∥CD,GE∥AD,则∠D度数为( )A. 60°B. 70°C. 80°D. 90°5.某商场推出A、B、C三种特价玩具,若购买A种2件、B种1件、C种3件,共需24元;若购买A种3件、B种4件、C种2件,共需36元.那么小明购买A种1件、B种1件、C种1件,共需付款( )A. 11元B. 12元C. 13元D. 不能确定6.如图,若直线a∥b,那么∠x=( )A 64° B. 68° C. 69° D. 66°7.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A. 32B. 3C. 1D.438.如图,在等边△ABC中,AD是BC边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4BE=4CF=AB.正确的个数是( )A. 1B. 2C. 3D. 49.设x y z234==,则x2y3zx y z-+++的值为()A. 27B.69C.89D.5710.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于( )A. 40°B. 45°C. 50°D. 55°二.填空题(共4小题)11.已知关于x,y的方程组3225435x y kx y k+=⎧⎨+=-⎩与方程3x y+=的解相同,则k的值为________.12.如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为_______.13.长方形ABCD中放置了6个形状、大小都相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是_____cm2.14.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正确的结论有________(填序号).三.解答题(共6小题)15.解二元一次方程组(1)2316413x yx y+=⎧⎨+=⎩;(2)0.310.20.519x yx y-=⎧⎨-=⎩;(3)3(1)521123x yx y-=+⎧⎪+-⎨=+⎪⎩.16.网络商店(简称网店)是近年来迅速兴起的一种电子商务形式,小明的网店销售红枣、小米两种商品的相关信息如下表:商品红枣小米规格1kg/袋2kg/袋成本(元/袋) 40 38售价(元/袋) 60 54根据上表提供的信息,解答下列问题(1)已知今年前四个月,小明网店销售上表中规格的红枣和小米共2000kg,获得利润2.8万元,求这前四个月小明的网店销售这种规格的红枣和小米各多少袋?(2)根据之前的销售情况,估计今年5月到12月这后八个月,小明的网店还能销售同规格的红枣和小米共4000kg,其中,红枣的销售量不低于1200kg.假设这后八个月,销售红枣x(kg),销售红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润多少元?17.如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请用尺规作图,将上述两种情况下的自来水厂厂址分别在图(1)(2)中标出,并保留作图痕迹.18.某种动物的身高y(dm)是其腿长x(dm)的一次函数.当动物的腿长为6dm时,身高为45.5dm;当动物的腿长为14dm时,身高为105.5dm.(1)写出y与x之间的关系式;(2)当该动物腿长10dm时,其身高为多少?19.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.20.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.答案与解析一.选择题(共10小题)1.下列四个命题中,①若a>0,b>0,则a+b>0;②同位角相等;③有两边和一个角分别对应相等的两个三角形全等;④三角形的最大角不小于60°;真命题有( )个A. 1B. 2C. 3D. 4[答案]B[解析][分析]根据实数的性质、两直线的关系、全等三角形的判定及角度关系即可判断正确,进行求解.[详解]①若a>0,b>0,则a+b>0,正确;②两直线平行,同位角相等,故错误;③有两边及其夹角分别对应相等的两个三角形全等,故错误;④三角形的最大角不小于60°,正确;故选B[点睛]此题主要考查命题的正误,解题的关键是熟知各知识点的判断.2.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A. 10°B. 15°C. 20°D. 25°[答案]B[解析][分析]先根据平行线的性质得出∠BCD的度数,进而可得出结论.[详解]解:如下图所示:∵AB∥CD,∴∠BCD=∠ABC=45°,∴∠1=∠BCD﹣∠BCE=45°﹣30°=15°.故选:B.[点睛]本题考查的是平行线的性质,熟知平行线的性质与三角板的特点是解答此题的关键.3.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是[]A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,[答案]D[解析]解:根据给出的图象上的点的坐标,(0,-1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x-1,y=-x+2,因此所解的二元一次方程组是20{210x yx y+-=--=,故选D.4.如图,四边形ABCD中,∠A=90°,∠C=110°,点E,F分别在AB,BC上,将△BEF沿EF翻折,得△GEF,若GF∥CD,GE∥AD,则∠D的度数为( )A. 60°B. 70°C. 80°D. 90°[答案]C[解析]分析]依据平行线的性质,即可得到∠BEG=∠A=90°,∠BFG=∠C=110°,再根据四边形内角和为360°,即可得到∠D的度数.[详解]解:∵GF∥CD,GE∥AD,∴∠BEG=∠A=90°,∠BFG=∠C=110°,由折叠可得:∠B=∠G,∴四边形BEGF中,∠B=360920110︒︒︒--=80°,∴四边形ABCD中,∠D=360°-∠A-∠B-∠C=80°,故选:C.[点睛]本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5.某商场推出A、B、C三种特价玩具,若购买A种2件、B种1件、C种3件,共需24元;若购买A种3件、B种4件、C种2件,共需36元.那么小明购买A种1件、B种1件、C种1件,共需付款( )A. 11元B. 12元C. 13元D. 不能确定[答案]B[解析][分析]设A种玩具的单价为x元,B种玩具的单价为y元,C种玩具的单价为z元,由“若购买A种2件、B种1件、C 种3件,共需24元;若购买A种3件、B种4件、C种2件,共需36元”,即可得出关于x,y,z的三元一次方程组,由(①+②)÷5可求出(x+y+z)的值,此题得解.[详解]解:设A种玩具的单价为x元,B种玩具的单价为y元,C种玩具的单价为z元,依题意,得:2324 34236x y zx y z++=⎧⎨++=⎩①②,(①+②)÷5,得:x+y+z=12.故选:B.[点睛]本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.6.如图,若直线a∥b,那么∠x=( )A. 64°B. 68°C. 69°D. 66°[答案]A[解析]试题解析:令与130°互补的角为∠1,如图所示.∵∠1+130°=180°,∴∠1=50°.∵a∥b,∴x+48°+20°=∠1+30°+52°,∴x=64°.故选A.[点睛]本题考查了平行线的性质、平行线间的折线问题以及角的计算,解题的关键是:利用“两平行线间的折线所成的角之间的关系-左边角之和等于右边角之和”规律做题.7.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A. 32B. 3C. 1D.43[答案]A[解析][分析]首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可[详解]∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x ,则D′E=x ,AD′=AC ﹣CD′=2,AE=4﹣x ,在Rt △AED′中:(AD ′)2+(ED′)2=AE 2,即22+x 2=(4﹣x )2,解得:x=32故选A.8.如图,在等边△ABC 中,AD 是BC 边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD ≌△ACD ;②2DE=2DF=AD ;③△ADE ≌△ADF ;④4BE=4CF=AB .正确的个数是( )A. 1B. 2C. 3D. 4[答案]D[解析][分析] 由等边三角形的性质可得BD=DC,AB=AC,∠B=∠C=60°,利用SAS 可证明△ABD ≌△ACD,从而可判断①正确;利用ASA 可证明△ADE ≌△ADF,从而可判断③正确;在Rt △ADE 与Rt △ADF 中,∠EAD=∠FAD=30°,根据30度角所对的直角边等于斜边的一半可得2DE=2DF=AD,从而可判断②正确;同理可得2BE=2CF=BD,继而可得4BE=4CF=AB,从而可判断④正确,由此即可得答案.[详解]∵等边△ABC 中,AD 是BC 边上的高,∴BD=DC,AB=AC,∠B=∠C=60°, 在△ABD 与△ACD 中90AD AD ADB ADC DB DC =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD ≌△ACD ,故①正确;在△ADE 与△ADF 中60EAD FAD AD ADEDA FDA ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ADE ≌△ADF ,故③正确;∵在Rt△ADE与Rt△ADF中,∠EAD=∠FAD=30°,∴2DE=2DF=AD,故②正确;同理2BE=2CF=BD,∵AB=2BD,∴4BE=4CF=AB,故④正确,故选D.[点睛]本题考查了等边三角形的性质、含30度的直角三角形的性质、全等三角形的判定等,熟练掌握相关性质与定理是解题的关键.9.设x y z234==,则x2y3zx y z-+++的值为()A. 27B.69C.89D.57[答案]C[解析][分析]设已知等式等于k,表示出x,y,z,代入原式计算即可得到结果.[详解]解:设x y z234k===,得到x=2k,y=3k,z=4k则原式=26128 2349k k kk k k-+=++.故选:C.[点睛]本题考查了解三元一次方程组,利用了消元的思想,熟练掌握运算法则是解本题的关键.10.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于( )A. 40°B. 45°C. 50°D. 55°[答案]C[解析]分析]根据三角形外角性质求出∠ACD,根据角平分线定义求出即可.[详解]∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°, ∵CE 平分∠ACD,∴∠ECD=12∠ACD=50°, 故选C .[点睛]本题考查了角平分线定义和三角形外角性质,熟记三角形外角性质的内容是解此题的关键. 二.填空题(共4小题)11.已知关于x ,y 的方程组3225435x y k x y k +=⎧⎨+=-⎩与方程3x y +=的解相同,则k 的值为________. [答案]11[解析][分析]首先解方程组,利用k 表示出x 、y 值,然后代入3x y +=,即可得到一个关于k 的方程,求得k 的值. [详解]解:3225435x y k x y k +=⎧⎨+=-⎩①②, 2⨯-①②,得5x k =+,把5x k =+代入①,得31522k y k ++=,解得152k y +=-, 代入3x y +=,得15532k k ++-=,去分母, 得210156k k +--=,解得11k =.故答案为11.[点睛]本题考查了二元一次方程组的解法,二元一次方程的解,解题关键是掌握二元一次方程组的解法. 12.如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D,交边AC 于点E,则△BCE 的周长为_______.[答案]13[解析]试题分析:已知DE 是AB 的垂直平分线,根据线段的垂直平分线的性质得到EA=EB,所以△BCE 的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,考点:线段的垂直平分线的性质.13.长方形ABCD中放置了6个形状、大小都相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是_____cm2.[答案]67.[解析][分析]设小长方形的长为xcm,宽为ycm,根据图中给定的数据可得出关于x,y的二元一次方程组,解之即可得出x,y 的值,再利用阴影部分的面积=大长方形的面积﹣6×小长方形的面积,即可求出结论.[详解]解:设小长方形的长为xcm,宽为ycm,依题意,得:31927 x yx y y+=⎧⎨+-=⎩,解得:103xy=⎧⎨=⎩,∴图中阴影部分的面积=19×(7+2×3)﹣6×10×3=67(cm2).故答案为:67.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正确的结论有________(填序号).[答案]①②④[解析][分析]易证△ABD ≌△EBC ,可得∠BCE=∠BDA,AD=EC 可得①②正确,再根据角平分线的性质可求得∠DAE=∠DCE ,即AD=AE=EC ,根据AD=AE=EC 可求得④正确[详解]解:①∵BD 为△ABC 的角平分线,∴∠ABD=∠CBD,在△ABD 和△EBC 中,BD BC ABD CBD BE BA =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△EBC(SAS),∴①正确;②∵BD 为△ABC 的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD ≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE 为等腰三角形,∴AE=EC,∵△ABD ≌△EBC,∴AD=EC,∴AD=AE=EC,∵BD 为△ABC 的角平分线,EF ⊥AB ,而EC 不垂直与BC,∴EF≠EC ,∴③错误;④过E 作EG ⊥BC 于G 点,∵E 是BD 上点,∴EF=EG,在Rt △BEG 和Rt △BEF 中,BE BE BE EG=⎧⎨=⎩ , ∴Rt △BEG ≌Rt △BEF(HL),∴BG=BF,在Rt △CEG 和Rt △AFE 中,EF FG AE CE=⎧⎨=⎩, ∴Rt △CEG ≌Rt △AFE(HL),∴AF=CG,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,∴④正确.故答案为①②④.[点睛]本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.三.解答题(共6小题)15.解二元一次方程组(1)2316413x y x y +=⎧⎨+=⎩; (2)0.310.20.519x y x y -=⎧⎨-=⎩; (3)3(1)521123x y x y -=+⎧⎪+-⎨=+⎪⎩. [答案](1)52x y =⎧⎨=⎩;(2)370110x y =⎧⎨=⎩;(3)610x y =⎧⎨=⎩. [解析][分析](1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可;(3)方程组整理后,利用加减消元法求出解即可.[详解]解:(1)2316413x yx y+=⎧⎨+=⎩①②,②×2﹣①得:5y=10,解得:y=2,把y=2代入②得:x=5,则方程组的解为52 xy=⎧⎨=⎩;(2)方程组整理得:31010 25190x yx y-=⎧⎨-=⎩①②,②×2﹣①得:x=370,把x=370代入②得:y=110,则方程组的解为370110 xy=⎧⎨=⎩;(3)方程组整理得:380322x yx y-=⎧⎨-=-⎩①②,①﹣②得:y=10,把y=10代入①得:x=6,则方程组的解为610 xy=⎧⎨=⎩.[点睛]本题考查了二元一次方程组的解法,解题的关键是消元,消元的方法有两种:①加减法消元,②代入法消元.16.网络商店(简称网店)是近年来迅速兴起的一种电子商务形式,小明的网店销售红枣、小米两种商品的相关信息如下表:根据上表提供的信息,解答下列问题(1)已知今年前四个月,小明的网店销售上表中规格的红枣和小米共2000kg ,获得利润2.8万元,求这前四个月小明的网店销售这种规格的红枣和小米各多少袋?(2)根据之前的销售情况,估计今年5月到12月这后八个月,小明的网店还能销售同规格的红枣和小米共4000kg ,其中,红枣的销售量不低于1200kg .假设这后八个月,销售红枣x (kg ),销售红枣和小米获得的总利润为y (元),求出y 与x 之间的函数关系式,并求出这后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润多少元?[答案](1)销售这种规格的红枣1000袋,小米500袋;(2)y 与x 之间的函数关系式为y =12x +32000,后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润46400元.[解析][分析](1)设销售这种规格的红枣x 袋,小米y 袋,列二元一次方程组解答即可,(2)根据利润与销售量的关系,得出y 与x 之间的函数关系式,再根据函数的增减性,得出何时利润最少.[详解]解:(1)设销售这种规格的红枣x 袋,小米y 袋,由题意得,22000(6040)(5438)28000x y x y +=⎧⎨-+-=⎩解得,x =1000,y =500,答:销售这种规格的红枣1000袋,小米500袋.(2)由题意得,y =(60﹣40)x +(54﹣38)40002x -=12x +32000, ∵12>0,∴y 随x 的增大而增大,∵x ≥1200,当x =1200时,y 最小=12×1200+32000=46400元, 答:y 与x 之间的函数关系式为y =12x +32000,后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润46400元.[点睛]考查二元一次方程组解法及其应用,一次函数的性质等知识,正确的得到函数关系式是解决问题的关键.17.如图,A 、B 两村在一条小河的同一侧,要在河边建一水厂向两村供水(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请用尺规作图,将上述两种情况下的自来水厂厂址分别在图(1)(2)中标出,并保留作图痕迹.[答案](1)见解析;(2)见解析.[解析][分析](1)作出AB的垂直平分线与河岸交于点P,则点P满足到AB的距离相等.(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB最小.[详解](1)根据垂直平分线的性质:垂直平分线上的点到线段两个端点的距离相等知,作出AB的垂直平分线与河岸交于点P,则点P满足到AB的距离相等.(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB最小,理由:AP=PC,三角形的任意两边之和大于第三边,当点P在CB的连线上时,CP+BP是最小的.[点睛]本题考查了垂直平分线的性质,轴对称的性质和距离之和最短问题,熟悉性质及距离之和最短问题的作法是关键.18.某种动物的身高y(dm)是其腿长x(dm)的一次函数.当动物的腿长为6dm时,身高为45.5dm;当动物的腿长为14dm 时,身高为105.5dm .(1)写出y 与x 之间的关系式;(2)当该动物腿长10dm 时,其身高为多少?[答案](1)y =7.5x +0.5;(2)当该动物腿长10dm 时,其身高为75.5dm .[解析][分析](1)根据题意,可以先设出y 与x 的函数关系式为y =kx +b ,然后再根据当动物的腿长为6dm 时,身高为45.5dm ;当动物的腿长为14dm 时,身高为105.5dm ,即可求得该函数的解析式;(2)将x =10代入(1)中的函数解析式,即可得到相应的身高.[详解]解:(1)根据题意,设y 与x 之间的关系式为y =kx +b ,∵当动物的腿长为6dm 时,身高为45.5dm ;当动物的腿长为14dm 时,身高为105.5dm ,645.514105.5k b k b +=⎧⎨+=⎩ , 解得7.50.5k b =⎧⎨=⎩, 即y 与x 之间的关系式是y =7.5x +0.5;(2)当x =10时,代入y 与x 之间的关系式y =7.5x +0.5,得到y =7.5×10+0.5=75.5,答:当该动物腿长10dm 时,其身高为75.5dm .[点睛]本题主要考查一次函数的应用,解答本题的关键是学会用待定系数法求解一次函数的解析式,并明确题意,利用一次函数的性质解答.19.如图,△ABC 中,∠ACB=90°,AD 平分∠BAC,DE ⊥AB 于E,(1)若∠BAC=50°,求∠EDA 的度数;(2)求证:直线AD 是线段CE 的垂直平分线.[答案](1)65°(2)证明见解析[解析] [分析](1)由题意可得∠EAD=12∠BAC=25°,再根据∠AED=90°,利用直角三角形两锐角互余即可求得答案;(2)由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,DE=DC,根据线段垂直平分线的判定定理即可得证.[详解](1)∵AD平分∠BAC,∠BAC=50°,∴∠EAD=12∠BAC=25°,∵DE⊥AB,∴∠AED=90°,∴∠ADE=90°-∠EAD=90°-25°=65°;(2)∵DE⊥AB,∴∠AED=90°=∠ACB,又AD平分∠BAC,∴∠DAE=∠DAC,又∵AD=AD,∴△AED≌△ACD,∴AE=AC,DE=DC∴点A在线段CE的垂直平分线上,点D在线段CE的垂直平分线上,∴直线AD是线段CE的垂直平分线.[点睛]本题考查了直角三角形两锐角互余、三角形全等的判定与性质、线段垂直平分线的判定等,熟练掌握相关的性质定理与判定定理是解题的关键.20.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.[答案](1)见解析(2) ∠AEB=15°(3) 见解析[解析]试题分析:(1)由等边三角形的性质可得AB=AD,AE=AC,∠DAB=∠EAC=60°,即可得∠DAC=∠BAE,利用SAS即可判定△ABE≌△ADC;(2)根据全等三角形的性质即可求解;(3)由(1)的方法可证得△ABE≌△ADC,根据全等三角形的性质和等边三角形的性质可得∠AEB=∠ACD =60°,即可得∠AEB=∠EAC,从而得AC∥BE.试题解析:(1)证明:∵△ABD,△ACE都是等边三角形∴AB=AD,AE=AC,∠DAB=∠EAC=60°,∴∠DAC=∠BAE,在△ABE和△ADC中,∴,∴△ABE≌△ADC;(2)由(1)知△ABE≌△ADC,∴∠AEB=∠ACD,∵∠ACD=15°,∴∠AEB=15°;(3)同上可证:△ABE≌△ADC,∴∠AEB=∠ACD,又∵∠ACD=60°,∴∠AEB=60°,∵∠EAC=60°,∴∠AEB=∠EAC,∴AC∥BE.点睛:本题主要考查了等边三角形性质、全等三角形的判定及性质,证得△ABE≌△ADC是解决本题的关键.。
人教版七年级下册数学《期中检测试卷》含答案解析
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.已知(a ﹣2)x |a |﹣1=﹣2是关于x 的一元一次方程,则a 的值为( )A. ﹣2B. 2C. ±2D. ±12.已知31x y =⎧⎨=⎩是方程mx —y=2的解,则m 的值是( ) A. 1- B. 13- C. 1 D. 5 3.下列各等式的变形中,一定正确的是( )A. 若2a =0,则a =2 B. 若a =b ,则2(a ﹣1)=2(b ﹣1) C. 若﹣2a =﹣3,则a =23 D. 若a =b ,则ac =b c4.若m>n ,则不论a 取何实数,下列不等式都成立的是( )A. m+a>nB. ma>naC. a-m<a-nD. 22ma na > 5.若单项式13a m b 3与-2a 2b n 的和仍是单项式,则方程m 3x -n =1的解为( ) A. ﹣2B. 2C. ﹣6D. 6 6.不等式组1020x x +≥⎧⎨-⎩的解集在数轴上表示为( ) A.B. C. D. 7.若方程组34526x y k x y k -=-⎧⎨+=⎩的解中2019x y +=,则k 等于( ) A. 2018B. 2019C. 2020D. 2021 8.已知关于x 不等式组2x x a⎧⎨>⎩有解,则a 的取值不可能是( )A . 0B. 1C. 2D. -2 9.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x 元,则根据题意列出方程正确的是( )A. 0.8×(1+40%)x =15B. 0.8×(1+40%)x ﹣x =15C. 0.8×40%x =15D. 0.8×40%x ﹣x =1510.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是()A. 8374y x y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=-⎩C. 8374y x y x -=-⎧⎨-=-⎩D. 8374y x y x -=⎧⎨-=⎩ 二.填空题11.满足 2.1x <-的最大整数是______.12.小军在解关于x 的方程513m x +=时,误将x +看成x -,得到方程的解为3x =-,则m 的值为______. 13.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知,礼盒的单价是__________元.14.小红网购了一本数学拓展教材《好玩的数学》.两位小伙伴想知道书的价格,小红告诉他们这本书的价格是整数并让他们猜,小曹说:“至少29元”,小强说:“至多21元,小红说:“你们两个人都猜错了。
人教版2021-2022学年七年级第二学期《数学》期中考试题(含答案)
人教版七年级下册数学期中考试试卷一、单选题1.下列各图中,∠1与∠2是对顶角的是( ) A .B .C .D .2的平方根是( ) A .2BC .±2D .3.在下列所给出坐标的点中,在第二象限的是A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(2,﹣3) 47220,-1.414,2π0.1010010001中,无理数有( ) A .2个B .3个C .4个D .5个5.如图所示,点E 在AC 的延长线上,下列条件中能判断//AB CD ( )A .34∠=∠B .12∠=∠C .D DCE ∠=∠D .180D ACD ︒∠+∠=6.下列命题是假命题的是( ) A .对顶角相等B .两直线平行,同旁内角相等C .平行于同一条直线的两直线平行D .同位角相等,两直线平行7.如图,表示的点在数轴上表示时,所在哪两个字母之间( )A .C 与DB .A 与BC .A 与CD .B 与C8.点P 位于x 轴下方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P 的坐标是( ) A .(4,2)B .(-2,-4)C .(-4,-2)D .(2,4)9.在平面直角坐标系中,线段CF 是由线段AB 平移得到的;点A (-1,4)的对应点为C (4,1);则点B (a ,b )的对应点F 的坐标为( ) A .(a+3,b+5)B .(a+5,b+3)C .(a-5,b+3)D .(a+5,b-3)10.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数( )A .10°B .25°C .30°D .35°二、填空题11.若整数x 满足|x|≤3x 的值是 (只需填一个).12.如图,直线AB ,CD ,EF 交于点O ,OG 平分∠BOF ,且CD ⊥EF ,∠AOE=70°,则∠DOG=_____.13.把9的平方根和立方根按从小到大的顺序排列为 .14.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 4n+1(n 为自然数)的坐标为 (用n 表示)三、解答题 15.计算: (1(22-16.求下列各式中x 的值:(1)2x 2=4; (2)64x 3 + 27=017.如图,直线a ∥b ,点B 在直线上b 上,且AB ⊥BC ,∠1=55°,求∠2的度数.18.完成下面的证明:如图,点E 在直线DF 上,点B 在直线AC 上,若∠AGB=∠EHF ,∠C=∠D . 求证:∠A=∠F.证明:∵∠AGB=∠EHF ∠AGB=________(对顶角相等) ∴∠EHF=∠DGF ∴DB ∥EC__________∴∠________=∠DBA__________ 又∵∠C=∠D ∴∠DBA=∠D∴DF ∥__________________ ∴∠A=∠F__________.19.已知5a+2的立方根是3,3a+b-l 的算术平方根是4,c整数部分. (1)求a ,b ,c 的值; (2)求 a+b+c 的平方根.20.如图,直线AB 是某天然气公司的主输气管道,点C 、D 是在AB 异侧的两个小区,现在主输气管道上寻找支管道连接点,向两个小区铺设管道.道有以下两个方案:方案一:只取一个连接点P ,使得像两个小区铺设的支管道总长度最短,在图中标出点P 的位置,保留画图痕迹;方案二:取两个连接点M 和N ,使得点M 到C 小区铺设的支管道最短,使得点N 到D 小区铺设的管道最.短短在途中标出M 、N 的位置,保留画图痕迹;设方案一中铺设的支管道总长度为L 11L 为,方案二中铺设的支管道总长度为2L 为,则L 1与L 2的大小关系为: L 1_____ L 2(填“>”、“<”或)理由是______.21.如图,这是某市部分简图,为了确定各建筑物的位置:()1请你以火车站为原点建立平面直角坐标系. ()2写出市场的坐标为______;超市的坐标为______.()3请将体育场为A 、宾馆为C 和火车站为B 看作三点用线段连起来,得ABC ,然后将此三角形向下平移4个单位长度,画出平移后的111A B C ,并求出其面积.22.如图,长方形OABC 中,O 为直角坐标系的原点,A 、C 两点的坐标分别为(6,0),(0,10),点B 在第一象限内.(1)写出点B 的坐标,并求长方形OABC 的周长;(2)若有过点C 的直线CD 把长方形OABC 的周长分成3:5两部分,D 为直线CD 与长方形的边的交点,求点D 的坐标.23.如图1,已知射线CB ∥OA ,∠C=∠OAB , (1)求证:AB ∥OC ;(2)如图2,E 、F 在CB 上,且满足∠FOB=∠AOB ,OE 平分∠COF. ①当∠C=100°时,求∠EOB 的度数.②若平行移动AB ,那么∠OBC :∠OFC 的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.参考答案1.C 【解析】依据对角的定义进行判断即可. 【详解】解:∵互为对顶角的两个角的两边互为反向延长线, ∴A 中∠1和∠2是邻补角,C 中的∠1和∠2是对顶角. 故选:C . 【点睛】本题主要考查的是邻补角、对顶角的定义,熟练掌握相关概念是解题的关键. 2.D 【解析】,然后再根据平方根的定义求解即可. 【详解】=2,2的平方根是的平方根是故选D . 【点睛】正确化简是解题的关键,本题比较容易出错. 3.B 【解析】根据第二象限内点的坐标符号(-,+)进行判断即可. 4.A 【解析】π2,共2个.故选A .点睛:本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式. 5.B 【解析】判断两直线平行,主要利用同位角相等,同旁内角互补,内错角相等 【详解】A 项,∠3与∠4是直线BD 与AC 的内错角,所以不满足.B 项,∠1与∠2是直线AB 与CD 的内错角,所以∠1=∠2,可以得到AB//CD ,选B 项.C 项∠D 与∠DCE 是直线BD 与AE 的内错角,所以不满足.D 项,∠D 与∠ACD 是直线BD 与AE 的同旁内角,所以不满足. 【点睛】本题主要考查平行线的判定法则,同时也考查学生对于同位角,内错角,同旁内角的掌握情况. 6.B 【解析】解:A .对顶角相等是真命题,故本选项正确,不符合题意; B .两直线平行,同旁内角互补,故本选项错误,符合题意;C .平行于同一条直线的两条直线平行是真命题,故本选项正确,不符合题意;D .同位角相等,两直线平行是真命题,故本选项正确,不符合题意. 故选B . 7.A 【解析】试题分析:由6.25<7<9可得2.5<<3,所以表示的点在数轴上表示时,所在C 和D 两个字母之间.故答案选A .考点:估算无理数的大小;实数与数轴. 8.B 【解析】解:∵点P 位于x 轴下方,y 轴左侧,∴点P 在第三象限; ∵距离y 轴2个单位长度,∴点P 的横坐标为﹣2;∵距离x轴4个单位长度,∴点P的纵坐标为﹣4;∴点P的坐标为(﹣2,﹣4).故选B.9.D【解析】解:平移中,对应点的对应坐标的差相等,设F(x,y).根据题意得:4﹣(﹣1)=x﹣a;1﹣4=y﹣b,解得:x=a+5,y=b-3;故F的坐标为(a+5,b-3).故选D.点睛:本题考查了点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.10.B【解析】【分析】延长AB交CF于E,求出∠ABC,根据三角形外角性质求出∠AEC,根据平行线性质得出∠2=∠AEC,代入求出即可.【详解】如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°,∵GH∥EF,∴∠2=∠AEC=25°,故选B.【点睛】考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,解题时注意:两直线平行,内错角相等.11.﹣2(答案不唯一)【解析】试题分析:∵|x|≤3,∴﹣3≤x≤3.∵x为整数,∴x=﹣3,﹣2,﹣1,0,1,2,3.x=﹣2,3x的值是﹣2或3(填写一个即可).12.55°.【解析】【分析】首先根据对顶角相等可得∠BOF=70°,再根据角平分线的性质可得∠GOF=35°,然后再算出∠DOF=90°,进而可以根据角的和差关系算出∠DOG的度数.【详解】∵∠AOE=70°,∴∠BOF=70°,∵OG平分∠BOF,∴∠GOF=35°,∵CD⊥EF,∴∠DOF=90°,∴∠DOG=90°﹣35°=55°,故答案是:55°.【点睛】考查了角的计算,关键是掌握对顶角相等,垂直定义,角平分线的性质.13.﹣3<3.【解析】【分析】先分别得到3的平方根和立方根,然后比较大小.【详解】∵9的平方根为﹣3,3,9∴把9的平方根和立方根按从小到大的顺序排列为﹣33.故答案是:﹣33.【点睛】考查了平方根、立方根、有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.14.(2n,1)【解析】试题分析:根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可:由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),∴点A4n+1(2n,1).15.(1)8;(2)【解析】【分析】(1)直接利用算术平方根以及立方根的性质分别化简得出答案;(2)直接利用绝对值以及二次根式的性质化简得出答案.【详解】解:(1)原式=10+(﹣2 )=8;(2)原式=22=【点睛】考查了实数运算,解题关键是正确化简各数.16.(1)x=;(2)x=34-【解析】试题分析:(1)先求出x2的值,再根据平方根的定义解答;(2)先求出x3的值,再根据立方根的定义解答.试题解析:(1)解:方程两边都除以2得:x2=2,∴x=;(2)移项、方程两边都除以64得:x3=2764-,∴x=34-.17.35°【解析】解:∵AB⊥BC,∴∠ABC=90°,∴∠1+∠3=90°,∵∠1=55°,∴∠3=35°,∵a∥b,∴∠2=∠3=35°.18.∠DGF 同位角相等,两直线平行 C 两直线平行,同位角相等AC 内错角相等,两直线平行两直线平行,内错角相等【解析】【分析】根据对顶角相等推知∠EHF=∠DGF ,从而证得两直线DB//EC ;然后由平行线的性质得到∠DBA=∠D ,即可根据平行线的判定定理,推知两直线DF//AC ;最后由平行线的性质,证得∠A=∠F . 【详解】AGB EHF ∠∠=,AGB DGF(∠∠=对顶角相等), EHF DGF ∠∠∴=,DB //EC(∴同位角相等,两直线平行), C DBA(∠∠∴=两直线平行,同位角相等),又C D ∠∠=,DBA D ∠∠∴=,DF //AC(∴内错角相等,两直线平行), A F(∠∠∴=两直线平行,内错角相等).故答案为DGF ∠;同位角相等,两直线平行;C ;两直线平行,同位角相等;AC ;内错角相等,两直线平行;两直线平行,内错角相等. 【点睛】本题考查了平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用. 19.(1)a=5,b=2,c=3.(2)3a-b+c 的平方根是±4. 【解析】试题分析:利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值,代入代数式求出值后,进一步求得平方根即可.试题解析:解:(1)∵5a +2的立方根是3,3a +b ﹣1的算术平方根是4,∴5a +2=27,3a +b ﹣1=16,∴a =5,b =2.∵cc =3;(2)当a =5,b =2,c =3时,3a ﹣b +c =16,3a ﹣b +c 的平方根是±4. 点睛:本题考查了立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可. 20.(1)答案见解析;(2)>;垂线段最短. 【解析】 【分析】根据题目要求直接连接CD ,以及分别过C ,D 向AB 最垂线即可,利用直角三角形中斜边大于直角边进而得出答案即可. 【详解】 解:如图所示:∵在Rt △CMP 和Rt △PND 中,CP >CM ,PD >DN ,∴CP +PD >CM +DN , ∴L 1>L 2.理由是垂线段最短 故答案为:>;垂线段最短.21.(1)图形见解析;(2)超市(2,﹣3);(3)三角形A′B′C′的面积是7. 【解析】分析:(1)以火车站为原点建立直角坐标系即可; (2)根据平面直角坐标系写出点的坐标即可;(3)根据题目要求画出三角形,利用矩形面积减去四周多余三角形的面积即可. 详解:(1)如图所示:(2)市场坐标(4,3),超市坐标(2,-3);(3)如图所示:△A1B1C1的面积=3×6-12×2×2-12×4×3-12×6×1=7.点睛:此题主要考查了作图,平移,坐标确定位置,以及求三角形的面积,关键是正确画出图形.22.(1)点B的坐标为(6,10),长方形OABC的周长为32;(2)点D的坐标为(2,0)【解析】试题分析:(1)由A、C的坐标得到OA,OC的长.由长方形的性质得到BC,AB的长,从而得到点B的坐标和长方形OABC的周长;(2)由CD把长方形OABC的周长分为3:5两部分,得到被分成的两部分的长分别为12和20.然后分两种情况讨论:①当点D在AB上时,②当点D在OA上时.试题解析:解:(1)∵A(6,0),C(0,10),∴OA=6,OC=10.∵四边形OABC是长方形,∴BC=OA=6,AB=OC=10,∴点B的坐标为(6,10).∵OC=10,OA=6,∴长方形OABC的周长为:2×(6+10)=32.(2)∵CD把长方形OABC的周长分为3:5两部分,∴被分成的两部分的长分别为12和20.①当点D在AB上时,如图,AD=20-10-6=4,所以点D的坐标为(6,4).②当点D在OA上时,如图,OD=12-10=2,所以点D的坐标为(2,0).23.(1)见解析;(2)①35°,②∠OBC:∠OFC的值不发生变化,∠OBC:∠OFC=1:2【解析】【分析】(1)由平行线的性质得到∠C+∠COA=180°,再由∠C=∠OAB,得到∠OAB+∠COA=180°,根据同旁内角互补,两直线平行即可得到结论;(2)①先求出∠COA的度数,由∠FOB=∠AOB,OE平分∠COF,即可得到结论;②∠OBC:∠OFC的值不发生变化.由平行线的性质可得∠OBC=∠BOA,∠OFC=∠FOA.由FOB=∠AOB,得到∠OFC=2∠OBC,从而得出结论.【详解】解:(1)∵CB∥OA,∴∠C+∠COA=180°.∵∠C=∠OAB,∴∠OAB+∠COA=180°,∴AB∥OC;(2)①∠COA=180°-∠C=70°.∵∠FOB=∠AOB,OE平分∠COF,∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=35°;②∠OBC:∠OFC的值不发生变化.∵CB∥OA,∴∠OBC=∠BOA,∠OFC=∠FOA.∵∠FOB=∠AOB,∴∠FOA=2∠BOA,∴∠OFC=2∠OBC,∴∠OBC:∠OFC=1:2.【点睛】本题考查了平行线的性质,角平分线的定义,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.。
人教版七年级数学下学期期中测试卷含答案
七年级数学下学期期中测试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、两条直线的位置关系有()A、相交、垂直B、相交、平行C、垂直、平行D、相交、垂直、平行2、如图所示,是一个“七”字形,与∠1是同位角的是()A、∠2B、∠3C、∠4D、∠53、经过一点A画已知直线a的平行线,能画()A、0条B、1条C、2条D、不能确定4、如图4,下列条件中,不能判断直线a//b的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°5、下列图形中有稳定性的是()A.正方形 B.长方形 C.直角三角形 D.平行四边形6、一个正数x的平方根是2a-3与5-a,则x的值是()。
A.64B.36C.81D.497、如图,已知:∠1=∠2,∠3=∠4,∠A=80°,则∠BOC等于()A、95°B、120°C、130°D、无法确定8、若a*=1.1062,b*=0.947是经过舍入后作为的近似值,问a*+b*有几位有效数字?()A、4B、5C、6D、79、下列说法正确的是()A、符号相反的数互为相反数B、符号相反绝对值相等的数互为相反数C、绝对值相等的数互为相反数D、符号相反的数互为倒数10、在平面直角坐标系中,已知点A(-4,0)、B(0,2),现将线段AB向右平移,使A 与坐标原点0重合,则B平移后的坐标是()。
A.(0,-2)B.(4,2)C.(4,4)D.(2,4)二、填空题(本大题共7小题,每小题4分,共28分)11、用科学记数法表示9349000(保留2个有效数字)为________________.12、如图1直线AB,CD,EF相交与点O,图中∠AOE的对顶角是_________,∠COF的补角是__________。
13、如图2,要把池中的水引到D处,可过C点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,试说明设计的依据:______________________________14、多项式4x²+4mx+36是一个完全平方式,则m=_____________.15、如图,AC平分∠BAD,∠DAC=∠DCA,填空:因为AC平分∠BAD,所以∠DAC= _______,又因为∠DAC=∠DCA,所以∠DCA= _______,所以AB∥_______。
最新人教版七年级下学期数学期中考试试卷(含参考答案)
最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列数是无理数的有()A.B.﹣1C.0D.2、下列命题中是真命题的是()A.对顶角相等B.两点之间,直线最短C.同位角相等D.平面内有且只有一条直线与已知直线平行3、已知点P(﹣2,5),Q(n,5)且PQ=4,则n的值为()A.2B.2或4C.2或﹣6D.﹣64、星城长沙是湖南省省会城市,也是长江中游地区重要的中心城市,以下能准确表示长沙地理位置的是()A.在北京的西南方B.东经112.59°,北纬28.12°C.距离北京1478千米处D.东经112.59°5、如图,点E在BA的延长线上,能证明BE∥CD是()A.∠EAD=∠B B.∠BAD=∠ACDC.∠EAD=∠ACD D.∠EAC+∠ACD=180°6、已知方程2x m+1+3y2n﹣1=7是二元一次方程,则m,n的值分别为()A.﹣1,0B.﹣1,1C.0,1D.1,17、若是方程组的解,则a值为()A.1B.2C.3D.48、已知方程,用含x的代数式表示y,正确的是()A.B.C.D.9、明代数学家程大位著《算法统宗》一书中,记载了这样一道数学题:“八万三千短竹竿,将来要把笔头安,管三套五为期定,问君多少能完成?”用现代的话说就是:有83000根短竹,每根短竹可制成毛笔的笔管3个或笔套5个,怎样安排笔管和笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,则可列方程组为()A.B.C.D.10、如图,在数轴上的对应点分别为C,B,点C是AB的中点,则点A表示的数是()A.﹣B.3﹣C.﹣3D.6﹣二、填空题(每小题3分,满分18分)11、在实数0,﹣1,﹣,π中,最小的是.12、在平面直角坐标系中,点(5,﹣6)到x轴的距离为.13、如图,将含30°角的直角三角板的直角顶点放在直尺的一边上,已知∠1=35°,则∠2的度数是.14、满足方程组的x,y互为相反数,则m=.15、如图,将长方形ABCD折叠,折痕为EF,BC的对应边B′C′与CD交于点M,若∠AEB′=30o,则∠DFE的度数为.16、已知关于x,y的二元一次方程组的解为,则关于x,y的方程组的解为.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、已知某正数的两个不同的平方根是3a﹣14和a+2;b是的整数部分;(1)求2a+b的值;(2)求3a﹣2b的平方根.19、解关于x,y的方程组时,甲正确地解出,乙因为把c抄错了,误解为,求a,b,c的值.20、若关于x,y的方程组与方程组的解相同.(1)求两个方程组的相同解;(2)求(3a﹣b)2022的值.21、如图,D,E分别在△ABC的边AB,AC上,F在线段CD上,且∠1+∠2=180°,DE∥BC.(1)求证:∠3=∠B;(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.22、某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,恰好每辆车都坐满且两种车都要租,请你设计出所有的租车方案.23、已知点P(2a﹣2,a+5),分别根据下列条件求出点P的坐标.(1)点P在y轴上;(2)点Q的坐标为(2,5),且直线PQ∥x轴;(3)点P到x轴的距离与到y轴的距离相等.24、如图1,在平面直角坐标系中,A(0,a),B(b,0),且(a﹣6)2+=0,过A,B两点分别作y轴,x轴的垂线交于C点.(1)求C点的坐标;(2)P,Q为两动点,P,Q同时出发,其中P从C出发,在线段CB,BO 上以2个单位长度每秒的速度沿着C→B→O运动,到达O点P停止运动;Q 从B点出发以1个单位长度每秒速度沿着线段BO向O点运动,到O点Q停止运动.设运动时间为t秒,当点P在线段BO上运动时,t取何值,P,Q,C三点构成的三角形面积为1?(3)如图2,连接AB,点M(m,n)在线段AB上,且m,n满足|m﹣n|=1 0,点N在y轴负半轴上,连接MN交x轴于K点,记M,B,K三点构成的三角形面积为S1,记N,O,K三点构成的三角形面积分别记为S2,若S1=S2,求N点的坐标.25、如图1,在长方形OABC中,O为平面直角坐标系的原点,OA=2,OC=4,点B在第一象限.(1)点B的坐标为;(2)如图2,点P是线段CB延长线上的点,连接AP,OP,则∠POC,∠A PO,∠P AB三个角满足的关系是什么?并说明理由;(3)在(2)的基础上,已知:∠P AB=20°,∠POC=50°,在第一象限内取一点F,连接OF,AF,满足∠P AB=2∠F AP,∠POC=2∠FOP,请直接写出的值.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、-12、6 13、55°14、1 15、、75°16、三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣3﹣18、(1)8 (2)a﹣2b的平方根为19、a=2.5,b=1,c=220、(1)(2)121、(1)略(2)72°22、(1)每辆小客车能坐20人,每辆大客车能坐45人(2)方案1:租用小客车11辆,大客车4辆;方案2:租用小客车2辆,大客车8辆23、(1)P(0,6)(2)P(﹣2,5)(3)P的坐标为(12,12)或(﹣12,﹣12)或(﹣4,4)或(4,﹣4)24、(1)C(﹣12,6)(2)t=或(3)N(0,﹣3)25、(1)B(4,2)(2)∠POC=∠APO+∠PAB的值为或2或(3)。
新版人教版七年级下学期数学期中考试试题(共4套)(2021年)
新版人教版七年级下学期数学期中考试试题(共4套)(2021年)人教版七年级下学期期中考试数学试卷(新人教版)一、选择题:(共 12 小题,每小题 2 分,共 24 分)1、 4 的算术平方根值等于()A.2 B.-2 C.±2 D. 2数学 2、一个自然数 a 的算术平方根为 x,则 a+1 的立方根是()A. 3 x 1 B. 3 (x 1)2C. 3 a2 1 D. 3 x2 13、如图所示,点 E 在AC 的延长线上,下列条件中能.判.断.AB// CD ()A. 3 4B. 1 2C. D DCED. D ACD 1804、如图,AD∥BC,∠B=30°,DB 平分∠ADE,则∠DEC 的度数为()2020-2021 A.30° B.60° C.90°BD13D.120°24ACE第 3 题图第 4 题图第 7 题图七年级下册 5、A(―4,―5),B(―6,―5),则 AB 等于(A、4B、2C、56、由点 A(―5,3)到点 B(3,―5)可以看作() D、3 )平移得到的。
A、先向右平移 8 个单位,再向上平移 8 个单位B、先向左平移 8 个单位,再向下平移 8 个单位C、先向右平移 8 个单位,再向下平移 8 个单位D、先向左平移 2 个单位,再向上平移 2 个单位7、如图,已知AB ∥ CD ,直线 MN 分别交 AB 、CD 于点 M 、N , NG 平分 MND ,若1 70 °,练习题试卷则2的度数为()A、10°B、15°C、20°D、35°8、一辆车在笔直的公路上行驶,两次拐弯后,仍在平行原来的方向上前进,那么两次拐弯是()A、第一次右拐50°,第二次左拐130°B、第一次左拐50°,第二次右拐50°C、第一次左拐50°,第二次左拐130°D、第一次右拐50°,第二次右拐50°9、下列命题中,真命题的个数有()教案人教版七年级数学下册1① 同一平面内,两条直线一定互相平行;② 有一条公共边的角叫邻补角;人教版③ 内错角相等。
人教版七年级下册数学《期中考试试题》(附答案解析)
D、如果 , ,那么 与 不一定是对顶角,故选项D错误;
故选:B.
【点睛】本题考查了对顶角的定义、邻补角的定义,是基础概念题,熟练掌握相关概念是解决本题的关键.
3.若点 的坐标 ,则点 在()
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
二、填空题
11.在平面直角坐标系中,原点的坐标为________.
【答案】(0,0)
【解析】
【分析】
根据原点的特点:横纵坐标都是0解答即可.
【详解】解:在平面直角坐标系中,原点的坐标为(0,0).
故答案为:(0,0).
【点睛】本题考查了平面直角坐标系的相关知识,属于应知应会题型,熟知原点的横纵坐标都为0是关键.
【答案】B
【解析】
【分析】
直接利用各象限内点的坐标特点分析得出答案.
【详解】解:∵﹣1<0,3>0,
∴点P(﹣1,3)在第二象限.
故选:B.
【点睛】此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键.
4.下列各数没有平方根的是()
A. B. C. D.
【答案】C
【解析】
【分析】
由于负数没有平方根,那么只要找出A、B、C、D中的负数即可.
2.下列说法正确的是()
A. 一个角的邻补角只有 个B. 对顶角的角平分线在同一条直线上
C. 互补的两个角是邻补角D. 如果 , ,那么 与 是对顶角
【答案】B
【解析】
【分析】
根据邻补角的定义、对顶角的定义对各选项分析判断后利用排除法求解.
【详解】解:A、一个角的邻补角有2个,故选项A错误;
B、对顶角的角平分线在同一条直线上,故选项B正确;
最新人教版2021-2022年七年级下期中数学试卷(含答案解析)
七年级(下)期中(qī zhōnɡ)数学试卷一、选择题(每小题3分,共30分)1.(3分)下列(xiàliè)各图中,∠1与∠2是对顶角的是()A. B.C.D.2.(3分)如图,下列条件中,不能判断(pànduàn)直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°3.(3分)如图AB∥CD,则∠1=()A.75°B.80°C.85°D.95°4.(3分)在实数(shìshù)﹣,0.,,π,中,无理数的个数是()A.1 B.2 C.3 D.45.(3分)的平方根是()A.2 B.4 C.﹣2或2 D.﹣4或46.(3分)在平面(píngmiàn)直角坐标系中,点P(﹣3,5)所在的象限是()A.第一(dìyī)象限B.第二象限 C.第三象限 D.第四象限7.(3分)已知坐标平面(píngmiàn)内点M(a,b)在第三象限,那么点N (b,﹣a)在()A.第一象限(xiàngxiàn) B.第二象限 C.第三象限 D.第四象限8.(3分)已知x=3﹣k,y=k+2,则y与x的关系(guān xì)是()A.x+y=5 B.x+y=1 C.x﹣y=1 D.y=x+19.(3分)若方程组的解x和y的值相等,则k的值为()A.4 B.11 C.10 D.1210.(3分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2021次运动后,动点P的坐标是()A.(2021,1)B.(2021,0)C.(2021,2)D.(2022,0)二、填空题(每小题3分,共18分)11.(3分)把“对顶角相等”改写成“如果…那么…”的形式是:.12.(3分)点P(﹣2,3)关于x轴对称点的坐标是,关于原点对称点的坐标是,关于y轴的对称点的坐标是;13.(3分)若+(n﹣2)2=0,则m=,n=.14.(3分)直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O′点,那么O′点对应的数是.15.(3分)已知方程组的解也是方程(fāngchéng)3x﹣2y=0的解,则k=.16.(3分)已知点P(3,﹣1)关于(guānyú)y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为.三.解答(jiědá)题(共72分)17.(8分)计算题(1)+﹣+(2)﹣﹣++18.(9分)如图,已知单位(dānwèi)长度为1的方格中有个△ABC.(1)请画出△ABC向上(xiàngshàng)平移3格再向右平移2格所得△A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B、B′的坐标;(3)求出△ABC面积.19.(7分)如果一个正数的两个平方根是a+1和2a﹣22,求出这个正数的立方根.20.(4分)用适当方法(代入法或加减法)解下列方程组.(1)(2)21.(9分)如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的路线(lùxiàn)移动(即:沿着长方形移动一周).(1)写出B点的坐标(zuòbiāo)();(2)当点P移动了4秒时,描出此时(cǐ shí)P点的位置,并写出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位(dānwèi)长度时,求点P 移动的时间.22.(7分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明(shuōmíng):AC∥DF.23.(8分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为;乙看错了方程②中的b,得到方程组的解为,试计算a2022+(﹣b)2022的值.24.(8分)如图1,已知△ABC,求证:∠A+∠B+∠C=180°.分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一平角,依辅助线不同而得多种证法.证法(zhènɡ fǎ)1:如图1,延长BC到D,过C画CE∥BA.∵BA∥CE(作图2所知(suǒ zhī)),∴∠B=∠1,∠A=∠2(两直线平行(píngxíng),同位角、内错角相等).又∵∠BCD=∠BCA+∠2+∠1=180°(平角(píngjiǎo)的定义),∴∠A+∠B+∠ACB=180°(等量(děnɡ liànɡ)代换).如图3,过BC上任一点F,画FH∥AC,FG∥AB,这种添加辅助线的方法能证明∠A+∠B+∠C=180°吗?请你试一试.25.(12分)如图1,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(n,0)且a、n满足|a+2|+=0,现同时将点A,B分别向上平移4个单位,再向右平移3个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标及四边形OBDC的面积;(2)如图2,若点P是线段BD上的一个动点,连接PC,PO,当点P在BD 上移动时(不与B,D重合)的值是否发生变化,并说明理由.(3)在四边形OBDC内是否存在一点P,连接PO,PB,PC,PD,使S△=S△PBD; S△POB:S△POC=1?若存在这样一点,求出点P的坐标,若不存PCD在,试说明理由.七年级(下)期中(qī zhōnɡ)数学试卷参考答案与试题(shìtí)解析一、选择题(每小题3分,共30分)1.(3分)下列(xiàliè)各图中,∠1与∠2是对顶角的是()A. B.C.D.【分析(fēnxī)】根据(gēnjù)对顶角的定义作出判断即可.【解答】解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.故选:C.【点评】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.2.(3分)如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行对各选项进行判断.【解答】解:当∠1=∠3时,a∥b;当∠4=∠5时,a∥b;当∠2+∠4=180°时,a∥b.故选:B.【点评】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.3.(3分)如图AB∥CD,则∠1=()A.75°B.80°C.85°D.95°【分析(fēnxī)】延长(yáncháng)BE交CD于点F,根据平行线的性质求得∠BFD的度数,然后根据(gēnjù)三角形外角的性质即可求解.【解答(jiědá)】解:延长(yáncháng)BE交CD于点F.∵AB∥CD,∴∠B+∠BFD=180°,∴∠BFD=180°﹣∠B=180°﹣120°=60°,∴∠1=∠ECD+∠BFD=25°+60°=85°.故选:C.【点评】本题考查了平行线的性质以及三角形外角的性质,正确作出辅助线是关键.4.(3分)在实数﹣,0.,,π,中,无理数的个数是()A.1 B.2 C.3 D.4【分析】根据无理数是无限不循环小数,可得答案.【解答】解:,π是无理数,故选:B.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.5.(3分)的平方根是()A.2 B.4 C.﹣2或2 D.﹣4或4【分析(fēnxī)】先对进行(jìnxíng)化简,可得=4,求的平方根就是求4的平方根,只要求出4的平方根即可,本题(běntí)得以解决.【解答(jiědá)】解:∵,∴的平方根是±2,故选:C.【点评(diǎn pínɡ)】本题考查算术平方根、平方根,解题的关键是先对进行化简,学生有时误认为求16的平方根,这是易错点,要注意.6.(3分)在平面直角坐标系中,点P(﹣3,5)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据各象限内点的坐标特征解答.【解答】解:点P(﹣3,5)所在的象限是第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.(3分)已知坐标平面内点M(a,b)在第三象限,那么点N(b,﹣a)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据第三象限点的横坐标与纵坐标都是负数表示出a、b,再根据各象限内点的坐标特征解答.【解答】解:∵点M(a,b)在第三象限,∴a<0,b<0,∴﹣a>0,∴点N(b,﹣a)在第二象限.故选:B.【点评(diǎn pínɡ)】本题考查了各象限(xiàngxiàn)内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二(dì èr)象限(﹣,+);第三(dì sān)象限(﹣,﹣);第四象限(+,﹣).8.(3分)已知x=3﹣k,y=k+2,则y与x的关系(guān xì)是()A.x+y=5 B.x+y=1 C.x﹣y=1 D.y=x+1【分析】利用x=3﹣k,y=k+2,直接将两式左右相加得出即可.【解答】解:∵x=3﹣k,y=k+2,∴x+y=3﹣k+k+2=5.故选:A.【点评】此题主要考查了等式的基本性质,根据已知将两式左右相加等式仍然成立得出是解题关键.9.(3分)若方程组的解x和y的值相等,则k的值为()A.4 B.11 C.10 D.12【分析】x和y的值相等,把第一个式子中的y换成x,就可求出x与y的值,这两个值代入第二个方程就可得到一个关于k的方程,从而求得k的值.【解答】解:把y=x代入4x+3y=1得:7x=1,解得x=,∴y=x=.把y=x=得: k+(k﹣1)=3,解得:k=11故选:B.【点评】此题主要考查了二元一次方程组解的定义以及解二元一次方程组的基本方法.10.(3分)如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样(zhèyàng)的运动规律,经过第2021次运动后,动点P 的坐标是( )A .(2021,1)B .(2021,0)C .(2021,2)D .(2022,0) 【分析(fēnxī)】设第n 此运动(yùndòng)后点P 运动到P n 点(n 为自然数).根据(gēnjù)题意列出部分P n 点的坐标(zuòbiāo),根据坐标的变化找出变化规律“P 4n (4n ,0),P 4n +1(4n +1,1),P 4n +2(4n +2,0),P 4n +3(4n +3,2)”,依此规律即可得出结论.【解答】解:设第n 此运动后点P 运动到P n 点(n 为自然数). 观察,发现规律:P 0(0,0),P 1(1,1),P 2(2,0),P 3(3,2),P 4(4,0),P 5(5,1),…,∴P 4n (4n ,0),P 4n +1(4n +1,1),P 4n +2(4n +2,0),P 4n +3(4n +3,2). ∵2021=4×504,∴P 2021(2021,0).故选:B .【点评】本题考查了规律型中的点的坐标,解题的关键是找出变化规律“P 4n (4n ,0),P 4n +1(4n +1,1),P 4n +2(4n +2,0),P 4n +3(4n +3,2)”.本题属于基础题,难度不大,解决该题型题目时,罗列出部分点的坐标,根据坐标的变化找出变化规律是关键.二、填空题(每小题3分,共18分)11.(3分)把“对顶角相等”改写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等.【分析】先找到命题的题设和结论,再写成“如果…那么…”的形式.【解答(jiědá)】解:∵原命题的条件(tiáojiàn)是:“两个角是对顶角”,结论是:“它们相等”,∴命题“对顶角相等”写成“如果…那么…”的形式为:“如果两个(liǎnɡ ɡè)角是对顶角,那么它们相等”.故答案(dá àn)为:如果两个角是对顶角,那么它们相等.【点评(diǎn pínɡ)】本题考查了命题的条件和结论的叙述,注意确定一个命题的条件与结论的方法是首先把这个命题写成:“如果…,那么…”的形式.12.(3分)点P(﹣2,3)关于x轴对称点的坐标是(﹣2,﹣3),关于原点对称点的坐标是(2,﹣3),关于y轴的对称点的坐标是(2,3);【分析】利用关于原点对称点的坐标性质以及关于x轴、y轴对称的点的坐标性质分别得出答案.【解答】解:点P(﹣2,3)关于原点的对称点的坐标为:(2,﹣3),关于x轴的对称点的坐标为(﹣2,﹣3),关于y轴的对称点的坐标为(2,3).故答案为:(﹣2,﹣3);(2,﹣3);(2,3).【点评】本题考查了关于原点对称的点的坐标以及关于x轴、y轴对称的点的坐标,熟记对称的点的横坐标与纵坐标关系是解题的关键.13.(3分)若+(n﹣2)2=0,则m=1,n=2.【分析】根据非负数的性质列出方程求出m、n的值即可.【解答】解:由题意得,m﹣1=0,n﹣2=0,解得m=1,n=2.故答案为:1;2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.(3分)直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O′点,那么O′点对应的数是π.【分析(fēnxī)】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明(shuōmíng)OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【解答(jiědá)】解:因为(yīn wèi)圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动(gǔndòng)一周OO'=π.【点评】本题主要考查了实数与数轴之间的对应关系,解题需注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.15.(3分)已知方程组的解也是方程3x﹣2y=0的解,则k=﹣5.【分析】由题意,建立关于x,y的二元一次方程组,求得解后,再代入4x﹣3y+k=0的方程而求解的.【解答】解:根据题意,联立方程,运用加减消元法解得,再把解代入方程4x﹣3y+k=0,得k=﹣5.【点评】本题先通过建立二元一次方程组,求得x,y的值后,再代入关于k 的方程而求解的.16.(3分)已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为25.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.【解答】解:∵点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),∴,解得:,则a b的值为:(﹣5)2=25.故答案(dá àn)为:25.【点评(diǎn pínɡ)】此题主要考查了关于y轴对称点的坐标特点(tèdiǎn),关键是掌握点的坐标的变化规律.三.解答(jiědá)题(共72分)17.(8分)计算题(1)+﹣+(2)﹣﹣++【分析(fēnxī)】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用算术平方根以及立方根的定义化简得出答案.【解答】解:(1)+﹣+=2+0﹣﹣=2;(2)﹣﹣++=﹣3﹣0﹣+0.5+=﹣2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(9分)如图,已知单位长度为1的方格中有个△ABC.(1)请画出△ABC向上平移3格再向右平移2格所得△A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B、B′的坐标;(3)求出△ABC面积.【分析(fēnxī)】(1)首先找到A、B、C三点(sān diǎn)的对应点,然后再顺次连接即可;(2)画出坐标(zuòbiāo)系,再写出点的坐标即可;(3)利用正方形的面积(miàn jī)减去周围多余三角形的面积可得答案.【解答(jiědá)】解:(1)如图所示:(2)如图所示:B(1,2),B′(3,5);(3)△ABC面积:3×3﹣1×2×﹣1×3×﹣2×3×=3.5.【点评】此题主要考查了平移作图,关键是正确画出图形,第三问补全后再减去,求解三角形的面积值得同学们参考掌握.19.(7分)如果一个正数的两个平方根是a+1和2a﹣22,求出这个正数的立方根.【分析】根据一个正数的两个平方根互为相反数,可得出关于a的方程,解出即可.【解答】解:由题意知a+1+2a﹣22=0,解得:a=7,则a+1=8,∴这个(zhè ge)正数为64,∴这个(zhè ge)正数的立方根为4.【点评(diǎn pínɡ)】本题主要考查了平方根的定义和性质,注意掌握一个正数(zhèngshù)的两个平方根互为相反数.20.(4分)用适当(shìdàng)方法(代入法或加减法)解下列方程组.(1)(2)【分析】(1)利用加减消元法求解可得;(2)利用加减消元法求解可得.【解答】解:(1),①+②,得:3x=﹣3,解得:x=﹣1,将x=﹣1代入①,得:﹣1+y=1,解得:y=2,所以方程组的解为;(2),①×3+②×2,得:13x=52,解得:x=4,将x=4代入②,得:8+3y=17,解得:y=3,所以方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(9分)如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一(dìyī)象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的路线移动(即:沿着长方形移动一周).(1)写出B点的坐标(zuòbiāo)(4,6);(2)当点P移动了4秒时,描出此时P点的位置(wèi zhi),并写出点P的坐标.(3)在移动过程中,当点P到x轴距离(jùlí)为5个单位长度时,求点P移动的时间.【分析(fēnxī)】(1)根据矩形的性质以及点的坐标的定义写出即可;(2)先求得点P运动的距离,从而可得到点P的坐标;(3)根据矩形的性质以及点到x轴的距离等于纵坐标的长度求出OP,再根据时间=路程÷速度列式计算即可得解.【解答】解:(1)∵A点的坐标为(4,0),C点的坐标为(0,6),∴OA=4,OC=6,∴点B(4,6);故答案为:4,6.(2)如图所示,∵点P移动了4秒时的距离是2×4=8,∴点P的坐标为(2,6);(3)点P到x轴距离为5个单位长度时,点P的纵坐标为5,若点P在OC上,则OP=5,t=5÷2=2.5秒,若点P在AB上,则OP=OC+BC+BP=6+4+(6﹣5)=11,t=11÷2=5.5秒,综上所述,点P移动(yídòng)的时间为2.5秒或5.5秒.【点评(diǎn pínɡ)】本题考查了坐标与图形性质,动点问题,主要利用(lìyòng)了矩形的性质和点的坐标的确定,难点在于(3)要分情况讨论.22.(7分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明(shuōmíng):AC∥DF.【分析(fēnxī)】根据已知条件∠1=∠2及对顶角相等求得同位角∠2=∠3,从而推知两直线DB∥EC,所以同位角∠C=∠ABD;然后由已知条件∠C=∠D 推知内错角∠D=∠ABD,所以两直线AC∥DF.【解答】证明:∵∠1=∠2(已知),∠1=∠3(对顶角相等),∴∠2=∠3(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠C=∠ABD(两直线平行,同位角相等),又∵∠C=∠D(已知),∴∠D=∠ABD(等量代换),∴AC∥DF(内错角相等,两直线平行).【点评(diǎn pínɡ)】本题考查了平行线的判定与性质(xìngzhì).解答此题的关键是注意平行线的性质和判定定理的综合运用.23.(8分)甲、乙两人共同(gòngtóng)解方程组,由于(yóuyú)甲看错了方程①中的a,得到(dé dào)方程组的解为;乙看错了方程②中的b,得到方程组的解为,试计算a2022+(﹣b)2022的值.【分析】将代入方程组的第二个方程,将代入方程组的第一个方程,联立求出a与b的值,代入即可求出所求式子的值.【解答】解:将代入方程组中的4x﹣by=﹣2得:﹣12+b=﹣2,即b=10;将代入方程组中的ax+5y=15得:5a+20=15,即a=﹣1,则a2022+(﹣b)2022=1﹣1=0.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.24.(8分)如图1,已知△ABC,求证:∠A+∠B+∠C=180°.分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一平角,依辅助线不同而得多种证法.证法1:如图1,延长BC到D,过C画CE∥BA.∵BA∥CE(作图2所知),∴∠B=∠1,∠A=∠2(两直线平行,同位角、内错角相等).又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义),∴∠A+∠B+∠ACB=180°(等量代换).如图3,过BC上任(shàng rèn)一点F,画FH∥AC,FG∥AB,这种添加辅助线的方法(fāngfǎ)能证明∠A+∠B+∠C=180°吗?请你试一试.【分析(fēnxī)】根据(gēnjù)平行线性质得出∠1=∠C,∠3=∠B,∠2+∠AGF=180°,∠A+∠AGF=180°,推出∠2=∠A,即可得出(dé chū)答案.【解答】证明:如图3,∵HF∥AC,∴∠1=∠C,∵GF∥AB,∴∠B=∠3,∵HF∥AC,∴∠2+∠AGF=180°,∵GF∥AH,∴∠A+∠AGF=180°,∴∠2=∠A,∴∠A+∠B+∠C=∠1+∠2+∠3=180°(等量代换).【点评】本题考查了平行线性质的应用,主要考查学生的推理能力.25.(12分)如图1,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(n,0)且a、n满足|a+2|+=0,现同时将点A,B分别向上平移4个单位,再向右平移3个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标及四边形OBDC的面积;(2)如图2,若点P是线段BD上的一个动点,连接PC,PO,当点P在BD 上移动时(不与B,D重合)的值是否发生变化,并说明理由.(3)在四边形OBDC内是否存在一点P,连接PO,PB,PC,PD,使S△=S△PBD; S△POB:S△POC=1?若存在这样一点,求出点P的坐标,若不存PCD在,试说明理由.【分析(fēnxī)】(1)根据被开方数和绝对值大于等于0列式求出b和n,从而得到A、B的坐标,再根据向上(xiàngshàng)平移4个单位,则纵坐标加4,向右平移3个单位,则横坐标加3,求出点C、D的坐标即可,然后利用平行四边形的面积公式,列式计算;(2)根据(gēnjù)平移的性质可得AB∥CD,再过点P作PE∥AB,根据平行(píngxíng)公理可得PE∥CD,然后(ránhòu)根据两直线平行,内错角相等可得∠DCP=∠CPE,∠BOP=∠OPE,然后求出∠CPO=∠DCP+∠BOP,从而判断出比值不变;(3)根据面积相等的特殊性可知,点P为平行四边形ABCD对角线的交点,即PB=PC,因此根据中点可求出点P的坐标.【解答】解:(1)如图1,由题意得,a+2=0,a=﹣2,则A(﹣2,0),5﹣n=0,n=5,则B(5,0),∵点A,B分别向上平移4个单位,再向右平移3个单位,∴点C(1,4),D(8,4);∵OB=5,CD=8﹣1=7,∴S四边形OBDC=(CD+OB)×h=×4×(5+7)=24;(2)的值不发生变化,且值为1,理由是:由平移的性质可得AB∥CD,如图2,过点P作PE∥AB,交AC于E,则PE∥CD,∴∠DCP=∠CPE,∠BOP=∠OPE,∴∠CPO=∠CPE+∠OPE=∠DCP+∠BOP,∴=1,比值不变.(3)存在(cúnzài),如图3,连接AD和BC交于点P,∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∴BP=CP,∴S△PCD=S△PBD; S△POB:S△POC=1,∵C(1,4),B(5,0)∴P(3,2).【点评(diǎn pínɡ)】本题是几何变换的综合题,考查了线段平移(pínɡ yí)与点的坐标的关系,明确点的坐标的平移原则:①上移→纵+,②下移→纵﹣,③左移→横﹣,④右移(yòu yí)→横+;同时对于面积的关系除了熟记面积公式外,要知道(zhī dào)三角形的中线把三角形分成面积相等的两个三角形;第二问中角的比值的证明,在几何中很少出现,不过此题分子与分母中角的大小相等,属于平行线的性质得出的结论.内容总结(1)当∠4=∠5时,a∥b。
德州市庆云县2020-2021学年人教版七年级下期中数学试卷含答案解析(A卷全套)
2020-2021学年山东省德州市庆云县七年级(下)期中数学试卷一、选择题(每小题3分,共12题,共计36分)1.3的平方根是()A.± B.9 C.D.±92.下列运算中,正确的是()A.=±3 B.=2 C.D.3.在下列各数0、、3π、、6.1010010001…(相邻两个1之间的0依次增加1个)、、无理数的个数是()A.1 B.2 C.3 D.44.平面直角坐标系中,点(﹣2,4)关于x轴的对称点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°6.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有()A.5个B.4个C.3个D.2个7.某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次左拐30°,第二次右拐30°B.第一次右拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐130°D.第一次向左拐50°,第二次向左拐120218.在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(﹣2,1)的对应点为A′(3,1),点B的对应点为B′(4,0),则点B的坐标为()A.(9,0) B.(﹣1,0) C.(3,﹣1) D.(﹣3,﹣1)9.一个正方形的面积为21,它的边长为a,则a﹣1的边长大小为()A.2与3之间B.3与4之间C.4与5之间D.5与6之间10.一个长方形在平面直角坐标系中,三个顶点的坐标分别是(﹣1,﹣1)、(﹣1,2)、(3,﹣1),则第四个顶点的坐标是()A.(2,2) B.(3,3) C.(3,2) D.(2,3)11.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离.其中正确的有()A.0个B.1个C.2个D.3个12.如图,如果AB∥EF,EF∥CD,下列各式正确的是()A.∠1+∠2﹣∠3=90° B.∠1﹣∠2+∠3=90°C.∠1+∠2+∠3=90°D.∠2+∠3﹣∠1=180°二、填空题(每小题3分,共6题,共计18分)13.把命题“对顶角相等”改写成“如果…那么…”的形式:.14.的平方根为;若x2=9,y3=﹣8,则x+y=.15.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若∠EFG=56°,则∠1=,∠2=.16.已知点P(2a﹣6,a+1),若点P在坐标轴上,则点P的坐标为.17.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…依此规律跳动下去,P4的坐标是,点P第8次跳动至P8的坐标为;则点P第256次跳动至P256的坐标是.18.如图1,将三角板ABC与三角板ADE摆放在一起;如图2,固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).当△ADE的一边与△ABC的某一边平行(不共线)时,写出旋转角α的所有可能的度数为.三、解答题(共7小题,满分66分)19.计算:(1)(2).2021方程或方程组:(1)(1﹣2x)2﹣36=0(2)2(x﹣1)3=﹣.21.看图填空:已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,求证:AD平分∠BAC.证明:∵AD⊥BC于D,EG⊥BC于G( 已知)∴∠ADC=90°,∠EGC=90°()∴∠ADC=∠EGC(等量代换)∴AD∥EG()∴∠1=∠2()∠E=∠3()又∵∠E=∠1( 已知)∴∠2=∠3()∴AD平分∠BAC().22.已知在平面直角坐标系中,已知A(3,4),B(3,﹣1),C(﹣3,﹣2),D(﹣2,3)(1)在图上画出四边形ABCD,并求四边形ABCD的面积;(2)若P为四边形ABCD形内一点,已知P坐标为(﹣1,1),将四边形ABCD通过平移后,P的坐标变为(2,﹣2),根据平移的规则,请直接写出四边形ABCD平移后的四个顶点的坐标.23.已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N的值.24.如图,BD⊥AC于D,EF⊥AC于F,DM∥BC,∠1=∠2.求证:∠AMD=∠AGF.25.如图,在平面直角坐标系中,点A,B的坐标分别为A(0,α),B(b,α),且α、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S若存在这样一点,四边形ABDC求出点M的坐标,若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.2020-2021学年山东省德州市庆云县七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共12题,共计36分)1.3的平方根是()A.± B.9 C.D.±9【考点】平方根.【分析】直接根据平方根的概念即可求解.【解答】解:∵()2=3,∴3的平方根是为.故选A.2.下列运算中,正确的是()A.=±3 B.=2 C.D.【考点】立方根;算术平方根.【分析】根据开方运算,可得算术平方根、立方根.【解答】解;A、9的算术平方根是3,故A错误;B、﹣8的立方根是﹣2,故B错误;C、|﹣4|=4,4的算术平方根是2,故C正确;D、算术平方根都是非负数,故D错误;故选:C.3.在下列各数0、、3π、、6.1010010001…(相邻两个1之间的0依次增加1个)、、无理数的个数是()A.1 B.2 C.3 D.4【考点】无理数.【分析】先把化为3的形式,根据无理数的定义进行解答即可.【解答】解:∵=3,∴这一组数中的无理数有3π、6.1010010001…(相邻两个1之间的0依次增加1个)、共3个.故选C.4.平面直角坐标系中,点(﹣2,4)关于x轴的对称点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】关于x轴、y轴对称的点的坐标.【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:点(﹣2,4)关于x轴的对称点为;(﹣2,﹣4),故(﹣2,﹣4)在第三象限.故选:C.5.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°【考点】平行线的判定.【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.6.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有()A.5个B.4个C.3个D.2个【考点】平行线的性质.【分析】由平行线的性质,可知与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD.【解答】解:∵AB∥CD,∴∠A=∠ADC;∵AB∥EF,∴∠A=∠AFE;∵AF∥CG,∴∠EGC=∠AFE=∠A;∵CD∥EF,∴∠EGC=∠DCG=∠A;所以与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD四个,故选B.7.某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次左拐30°,第二次右拐30°B.第一次右拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐130°D.第一次向左拐50°,第二次向左拐12021【考点】平行线的判定.【分析】两次拐弯后,行驶方向与原来相同,说明两次拐弯后的方向是平行的.对题中的四个选项提供的条件,运用平行线的判定进行判断,能判定两直线平行者即为正确答案.【解答】解:如图所示(实线为行驶路线):A符合“同位角相等,两直线平行”的判定,其余均不符合平行线的判定.故选A.8.在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(﹣2,1)的对应点为A′(3,1),点B的对应点为B′(4,0),则点B的坐标为()A.(9,0) B.(﹣1,0) C.(3,﹣1) D.(﹣3,﹣1)【考点】坐标与图形变化-平移.【分析】根据对应点A、A′找出平移规律,然后设点B的坐标为(x,y),根据平移规律列式求解即可.【解答】解:∵点A(﹣2,1)的对应点为A′(3,1),∴3﹣(﹣2)=3+2=5,∴平移规律是横坐标向右平移5个单位,纵坐标不变,设点B的坐标为(x,y),则x+5=4,y=0,解得x=﹣1,y=0,所以点B的坐标为(﹣1,0).故选B.9.一个正方形的面积为21,它的边长为a,则a﹣1的边长大小为()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【考点】估算无理数的大小;算术平方根.【分析】根据正方形的面积求出边长a,再估算出a的范围,进而利用不等式的性质得到a ﹣1的取值范围.【解答】解:∵一个正方形面积为21,∴正方形的边长a=,∴4<<5,∴3<﹣1<4,即3<a﹣1<4.故选B.10.一个长方形在平面直角坐标系中,三个顶点的坐标分别是(﹣1,﹣1)、(﹣1,2)、(3,﹣1),则第四个顶点的坐标是()A.(2,2) B.(3,3) C.(3,2) D.(2,3)【考点】坐标与图形性质.【分析】因为(﹣1,﹣1)、(﹣1,2)两点横坐标相等,长方形有一边平行于y轴,(﹣1,﹣1)、(3,﹣1)两点纵坐标相等,长方形有一边平行于x轴,过(﹣1,2)、(3,﹣1)两点分别作x轴、y轴的平行线,交点为第四个顶点.【解答】解:过(﹣1,2)、(3,﹣1)两点分别作x轴、y轴的平行线,交点为(3,2),即为第四个顶点坐标.故选:C.11.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离.其中正确的有()A.0个B.1个C.2个D.3个【考点】同位角、内错角、同旁内角;对顶角、邻补角;点到直线的距离.【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【解答】解:(1)同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;(2)强调了在平面内,正确;(3)不符合对顶角的定义,错误;(4)直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.12.如图,如果AB∥EF,EF∥CD,下列各式正确的是()A.∠1+∠2﹣∠3=90° B.∠1﹣∠2+∠3=90°C.∠1+∠2+∠3=90°D.∠2+∠3﹣∠1=180°【考点】平行线的性质.【分析】由平行线的性质可用∠2、∠3分别表示出∠BOE和∠COF,再由平角的定义可找到关系式.【解答】解:∵AB∥EF,∴∠2+∠BOE=180°,∴∠BOE=180°﹣∠2,同理可得∠COF=180°﹣∠3,∵O在EF上,∴∠BOE+∠1+∠COF=180°,∴180°﹣∠2+∠1+180°﹣∠3=180°,即∠2+∠3﹣∠1=180°,故选D.二、填空题(每小题3分,共6题,共计18分)13.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么它们相等.【考点】命题与定理.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.14.的平方根为±2;若x2=9,y3=﹣8,则x+y=1或﹣5.【考点】立方根;平方根;算术平方根.【分析】先求得=4,然后再求得平方根;依据平方根和立方根的定义可求得x、y的值,然后代入计算即可.【解答】解:∵=4,4的平方根是±2,∴的平方根为±2.∵x2=9,y3=﹣8,∴x=±3,y=﹣2.当x=3,y=﹣2时,x+y=3+(﹣2)=1;当x=﹣3,y=﹣2时,x+y=﹣3+(﹣2)=﹣5.故答案为:±2;1或﹣5.15.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若∠EFG=56°,则∠1=68°,∠2=112°.【考点】平行线的性质;翻折变换(折叠问题).【分析】首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据三角形内角和定理求出∠1的度数,最后根据平行线的性质求出∠2的度数.【解答】解:∵一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,∴∠MEF=∠FED,∠EFC+∠GFE=180°,∵AD∥BC,∠EFG=56°,∴∠FED=∠EFG=56°,∵∠1+∠GEF+∠FED=180°,∴∠1=180°﹣56°﹣56°=68°,又∵∠1+∠2=180°,∴∠2=180°﹣68°=112°.故答案为:68°,112°.16.已知点P(2a﹣6,a+1),若点P在坐标轴上,则点P的坐标为(﹣8,0)或(0,4).【考点】点的坐标.【分析】分点P在x轴上,纵坐标为0;在y轴上,横坐标为0,分别列式求出a的值,再求解即可.【解答】解:当P在x轴上时,a+1=0,解得a=﹣1,P(﹣8,0);当P在y轴上时,2a﹣6=0,解得a=3,P(0,4).所以P(﹣8,0)或(0,4).故答案为(﹣8,0)或(0,4).17.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…依此规律跳动下去,P4的坐标是(2,2),点P第8次跳动至P8的坐标为(3,4);则点P第256次跳动至P256的坐标是(65,128).【考点】规律型:点的坐标.【分析】观察图象,结合点的跳动数据,可找出规律“每经4次变化后点的横坐标增加1,纵坐标增加2.”由此规律结合P0(1,0)即可得出结论.【解答】解:观察图象,结合点的跳动可知:P0(1,0)→P4(2,2)→P8(3,4)→…,由此可知每经4次变化后点的横坐标增加1,纵坐标增加2,∵256÷4=64,64+1=65,64×2=128,∴P256的坐标是(65,128).故答案为:(2,2);(3,4);(65,128).18.如图1,将三角板ABC与三角板ADE摆放在一起;如图2,固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).当△ADE的一边与△ABC的某一边平行(不共线)时,写出旋转角α的所有可能的度数为15°,45°,105°,135°,150°.【考点】旋转的性质.【分析】要分5种情况进行讨论:AD∥BC、DE∥AB、DE∥BC、DE∥AC、AE∥BC分别画出图形,再分别计算出度数即可.【解答】解:当△ADE的一边与△ABC的某一边平行(不共线)时,旋转角α的所有可能的情况如下图所示:①当AD∥BC时,α=15°;②当DE∥AB时,α=45°;③当DE∥BC时,α=105°;④当DE∥AC时,α=135°;⑤当AE∥BC时,α=150°.故答案为:15°,45°,105°,135°,150°.三、解答题(共7小题,满分66分)19.计算:(1)(2).【考点】实数的运算.【分析】(1)先根据绝对值的性质及数的开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)先去括号及绝对值符号,再合并同类项即可.【解答】解:(1)原式=2﹣﹣+1﹣4=﹣1﹣2;(2)原式=﹣2+﹣1﹣3﹣=﹣6.2021方程或方程组:(1)(1﹣2x)2﹣36=0(2)2(x﹣1)3=﹣.【考点】立方根;平方根.【分析】(1)先移项,然后依据平方根的定义得到1﹣2x=±6,然后解得x的值即可;(2)方程两边先同时除以2,然后再依据立方根的定义得到x﹣1=,最后解得x的值即可.【解答】解:(1)移项得:(1﹣2x)2=36,则1﹣2x=±6,当1﹣2x=6时,解得;x=﹣,当1﹣2x=﹣6时,解得:x=.(2)由题意得:(x﹣1)3=﹣,则x﹣1=﹣,解得;x=﹣.21.看图填空:已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,求证:AD平分∠BAC.证明:∵AD⊥BC于D,EG⊥BC于G( 已知)∴∠ADC=90°,∠EGC=90°(垂直的定义)∴∠ADC=∠EGC(等量代换)∴AD∥EG(同位角相等,两直线平行)∴∠1=∠2(两直线平行,内错角相等)∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1( 已知)∴∠2=∠3(等量代换)∴AD平分∠BAC(角平分线的定义).【考点】平行线的判定与性质.【分析】由垂直可证明AD∥EG,由平行线的性质可得到∠1=∠2=∠3=∠E,可证得结论,据此填空即可.【解答】证明:∵AD⊥BC于D,EG⊥BC于G(已知),∴∠ADC=90°,∠EGC=90°(垂直的定义),∴∠ADC=∠EGC(等量代换),∴AD∥EG(同位角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等),∠E=∠3(两直线平行,同位角相等),又∵∠E=∠1( 已知),∴∠2=∠3(等量代换),∴AD平分∠BAC(角平分线的定义).故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同位角相等;等量代换;角平分线的定义.22.已知在平面直角坐标系中,已知A(3,4),B(3,﹣1),C(﹣3,﹣2),D(﹣2,3)(1)在图上画出四边形ABCD,并求四边形ABCD的面积;(2)若P为四边形ABCD形内一点,已知P坐标为(﹣1,1),将四边形ABCD通过平移后,P的坐标变为(2,﹣2),根据平移的规则,请直接写出四边形ABCD平移后的四个顶点的坐标.【考点】作图-平移变换.【分析】(1)在坐标系内描出各点,再顺次连接,利用矩形的面积减去三角形与正方形的面积即可;(2)根据P点坐标的变化写出各点坐标即可.【解答】解:(1)如图所示.=6×6﹣×6×1﹣×5×1﹣×5×1﹣1S四边形ABCD=36﹣3﹣﹣﹣1=36﹣3﹣5﹣1=27;(2)∵P坐标为(﹣1,1),将四边形ABCD通过平移后,P的坐标变为(2,﹣2),∴平移后各点横坐标加3,纵坐标减3,∴平移后的点坐标A(6,1),B(6,﹣4),C(0,﹣5),D(1,0).23.已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N的值.【考点】立方根;算术平方根.【分析】根据算术平方根及立方根的定义,求出M、N的值,代入可得出M﹣N的平方根.【解答】解:因为M=是m+3的算术平方根,N=是n﹣2的立方根,所以可得:m﹣4=2,2m﹣4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n﹣2=1,所以可得M=3,N=1,把M=3,N=1代入M﹣N=3﹣1=2.24.如图,BD⊥AC于D,EF⊥AC于F,DM∥BC,∠1=∠2.求证:∠AMD=∠AGF.【考点】平行线的判定与性质.【分析】由BD⊥AC,EF⊥AC,得到BD∥EF,根据平行线的性质得到∠2=∠CBD,等量代换得到∠1=∠CBD,根据平行线的判定定理得到GF∥BC,证得MD∥GF,根据平行线的性质即可得到结论.【解答】证明:∵BD⊥AC,EF⊥AC,∴BD∥EF,∴∠2=∠CBD,∵∠2=∠1,∴∠1=∠CBD,∴GF∥BC,∵BC∥DM,∴MD∥GF,∴∠AMD=∠AGF.25.如图,在平面直角坐标系中,点A,B的坐标分别为A(0,α),B(b,α),且α、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S若存在这样一点,四边形ABDC求出点M的坐标,若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.【考点】坐标与图形性质;平行线的性质;三角形的面积;坐标与图形变化-平移.【分析】(1)先由非负数性质求出a=2,b=4,再根据平移规律,得出点C,D的坐标,然后根据四边形ABDC的面积=AB×OA即可求解;(2)存在.设M坐标为(0,m),根据S△PAB=S,列出方程求出m的值,即可确定四边形ABDCM点坐标;(3)过P点作PE∥AB交OC与E点,根据平行线的性质得∠BAP+∠DOP=∠APE+∠OPE=∠APO,故比值为1.【解答】解:(1)∵(a﹣2)2+|b﹣4|=0,∴a=2,b=4,∴A(0,2),B(4,2).∵将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,∴C(﹣1,0),D(3,0).∴S=AB×OA=4×2=8;四边形ABDC(2)在y 轴上存在一点M ,使S △MCD =S 四边形ABCD .设M 坐标为(0,m). ∵S △MCD =S 四边形ABDC ,∴×4|m|=8,∴2|m|=8,解得m=±4.∴M(0,4)或(0,﹣4);(3)当点P 在BD 上移动时, =1不变,理由如下: 过点P 作PE ∥AB 交OA 于E .∵CD 由AB 平移得到,则CD ∥AB ,∴PE ∥CD ,∴∠BAP=∠APE ,∠DOP=∠OPE ,∴∠BAP+∠DOP=∠APE+∠OPE=∠APO ,∴=1.2021年5月7日。
人教版七年级下册数学《期中检测试题》(附答案解析)
A.a= bB. a=3bC.a= bD. a=4b
∴阴影部分面积之差 .
∵S始终保持不变,∴3b﹣a=0,即a=3b.
故选B.
【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
二、填空题(本题有8小题,每小题3分,共24分)
11. =______.
【答案】
【解析】
【分析】
根据整式的混合运算法则进行计算即可.
【详解】
故答案为: .
【点睛】本题考查了整式的运算问题,掌握整式的混合运算法则是解题的关键.
A.a= bB. a=3bC.a= bD. a=4b
二、填空题(本题有8小题,每小题3分,共24分)
11. =______.
12.已知 是方程ax-y=3的解,则a的值为________.
13.已知方程 ,用含x的代数式表示y,则 _______.
14.若已知公式.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为______.
A.(x﹣y)2=x2﹣y2B.(a+2)(a﹣3)=a2﹣6
C.(a+2b)2=a2+4ab+4b2D.(2x﹣y)(2x+y)=2x2﹣y2
8.如图,从边长为( )cm的正方形纸片中剪去一个边长为( )cm的正方形( ),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )
A. B. C. D.
2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案) (1)
最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、在实数3π,﹣,0,,﹣3.14,,,0.151 551 555 1…中,无理数有()A.2个B.3个C.4个D.5个2、已知点P(﹣3,4),则P到y轴的距离为()A.﹣3B.4C.3D.﹣43、下列命题中,是真命题的是()A.0没有算术平方根B.两条直线被第三条直线所截,同位角相等C.相等的角是对顶角D.a是实数,点P(a2+1,2)一定在第一象限4、如图,直径为单位1的圆从数轴上的原点沿着数轴无滑动地顺时针滚动一周到达点A,则点A表示的数是()A.2B.C.πD.45、下列图形中,由∠1=∠2,能得到AB∥CD的是()A.B.C.D.6、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣17、如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cmC.27cm D.33cm8、若方程组的解满足x+y=0,则k的值为()A.﹣1B.1C.0D.1或09、《九章算术》是中国古代重要的数学著作,其中有这样一道题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗,问醇、行酒各得几何?”译文:今有醇酒(优质酒)1斗,价格50钱;行酒(勾兑酒)1斗,价格10钱.现有30钱,买2斗酒,问能买醇酒、行酒各多少斗?设能买醇酒x斗,行酒y斗,可列二元一次方程组为()A.B.C.D.10、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(﹣1,1),第2次接着运动到点(﹣2,0),第3次接着运动到点(﹣3,2),…,按这样的运动规律,经过第2022次运动后,动点P的坐标是()A.(2022,0)B.(﹣2022,0)C.(﹣2022,1)D.(﹣2022,2)二、填空题(每小题3分,满分18分)11、已知AB∥x轴,A的坐标为(1,6),AB=4,则点B的坐标是.12、若x|a|﹣1﹣1+(a﹣2)y=1是关于x,y的二元一次方程,则a=.13、已知=1.038,=2.237,=4.820,则=.14、已知x,y为实数,且+(y+1)2=0,则x+y的算术平方根是.15、若点P(m+1,3﹣2m)在第一、第三象限的角平分线上,则m=.16、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=°.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、解不等式组并求它的所有的非负整数解.20、已知x,y为实数,是否存在实数m满足关系式如果存在,求出m的值;如果不存在,说明理由.21、如图,在边长为1的正方形网格中,三角形ABC中任意一点P(x0,y0)经平移后对应点为P1(x0﹣4,y0+3),已知A(0,2),B(4,0),C(﹣1,﹣1),将三角形ABC作同样的平移得到三角形A1B1C1.(1)画出三角形A1B1C1并写出坐标:A1(,),B1(,),C1(,);(2)三角形A1B1C1的面积为;(3)已知点P在y轴上,且三角形P AC的面积等于三角形ABC面积的一半,则P点坐标是.22、某物流公司在运货时有A、B两种车型,如果用3辆A型车和2辆B型车载满货物一次可运17吨货物;用2辆A型车和3辆B型车载满货物一次可运18吨货物.现需要运输货物32吨,计划同时租用A型车和B型车若干辆,一次运完,且每辆车都载满货物.(1)1辆A型车和1辆B型车都载满货物,一次可分别运输货物多少吨?(2)若A型车每辆需租金200元/次,B型车每辆需租金240元/次.请帮物流公司设计租车方案,并选出最省钱的方案及最少租金.23、已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA;(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=50°.①求证:∠ABC=∠ADC;②求∠CED的度数.24、对x,y,z定义一种新运算F,规定:F(x,y,z)=ax+by+cz,其中a,b,c为非负数.(1)当c=0时,F(1,﹣1,3)=1,F(3,1,﹣2)=7,求a,b的值;(2)在(1)的基础上,若关于m的不等式组恰有3个整数解,求k的取值范围;(3)已知F(3,2,1)=5,F(2,1,﹣3)=1,设H=3a+b﹣7c,求H 的最大值和最小值.25、如图,在平面直角坐标系中,AB⊥x轴,垂足为A,BC⊥y轴,垂足为C,已知A(a,0),C(0,c),其中a,c满足关系式(a﹣6)2+|c+8|=0,点P 从O点出发沿折线OA﹣AB﹣BC的方向运动到点C停止,运动的速度为每秒2个单位长度,设点P的运动时间为t秒.(1)在运动过程中,当点P到AB的距离为2个单位长度时,t=;(2)在点P的运动过程中,用含t的代数式表示P点的坐标;(3)当点P在线段AB上的运动过程中,射线AO上一点E,射线OC上一点F(不与C重合),连接PE,PF,使得∠EPF=70°,求∠AEP与∠PFC的数量关系.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、(﹣3,6)或(5,6)12、﹣2 13、22.37 14、2 15、16、360三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、18、719、它的非负整数解为0,1,220、即m的值为721、(1)﹣4、5、0、3、﹣5、2(2)7(3)(0,9)或(0,﹣5)22、(1)1辆A型车载满货物一次可运输货物3吨,1辆B型车载满货物一次可运输货物4吨(2)当租用4辆A型车,5辆B型车时,租金最少,最少租金为2000元23、(1)证明(略)(2)①∠ABC=∠ADC ②120°24、(1)(2)故k的取值范围为27≤k<33(3)当c=时,H的最大值为﹣,当c=时,H的最小值为﹣25、(1)2s或8s(2)P(2t,0)P(6,6﹣2t)(20﹣2t,﹣8)(3)∠PFC+∠PEA=160°或∠PFC﹣∠AEP=20°。
最新人教版七年级下学期数学《期中检测试卷》附答案
2020-2021学年度第二学期期中测试人教版七年级数学试题一、选择题(共40分)1. 已知a 的值不大于3-,用不等式表示a 的范围是( ) A. 3a >-B. 3a <-C. 3a ≥-D. 3a ≤-2. 若代数式31x -的值为4-,则x 的值为( ) A. 1B. 1-C. 53-D.353. 下列各组中,不是二元一次方程37x y +=的解的是( )A. 14x y =⎧⎨=⎩B. 07x y =⎧⎨=⎩C. 32x y =⎧⎨=-⎩D. 1.53.5x y =⎧⎨=⎩4. 若a b >,则下列不等式中错误的是( )A. 22a b +>+B.22a b> C. 22a b -<- D. 22a b >5.将方程3213123x x x -++=-去分母,正确的是( ) A. ()()18336221x x x +-=-+ B. ()()3331221x x x +-=-+ C. ()()93321x x x +-=-+D. ()()33121x x x +-=-+6. 某文具店开展促销活动,某种笔记本原价每本x 元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( ) A. 0.68x x -=B. 0.0618x -=C. 80.61x -=D. 0.618x -=7. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. x y 50{x y 180=-+=B. x y 50{x y 180=++=C. x y 50{x y 90=++=D. x y 50{x y 90=-+= 8. 《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,则下列方程组正确的是( )A. 8374x y y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=⎩C. 8374y x x y -=⎧⎨-=⎩D. 8374x y x y -=⎧⎨-=⎩9. 若关于x ,y 的方程组2315x y m x y +=+⎧-=-⎨⎩的解满足x +y =-3,则m 的值为( )A. 2-B. 2C. 1-D. 110. 已知关于,x y 的二元一次方程组43335x y mx y m +=-⎧⎨-=-⎩,则关于代数式x y -的值的说法正确的是( ).A. 随m 增大而增大B. 随m 减小而减小C. 既可能随m 增大而增大,也可能随m 减小而减小D. 与m 的大小无关二、填空题(共24分)11. 若2x =-是方程520x k +=的解,则k =__________.12. 已知二元一次方程235x y +=,若用含x 的代数式表示,则y =_______. 13. 已知关于x 的不等式()15m x ->的解集为51x m <-,则m 的取值范围是_________. 14. 已知320a b --=,那么261a b -+=_________.15. 方程组457x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是_____________.16. 若不等式组24x x m-≤⎧⎨<⎩无解,则m 的取值范围是____________.三、解答题(共86分)17. 解方程:()()103421x x x --=+.18. 解不等式组:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩,并把它解集在数轴上表示出来.19. 在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18-,求,a b 的值.20. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.21. 已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,求a +b 的值. 22. 某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件; (2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件? 23. 在等式y =kx +b (k ,b 为常数)中,当x =2时,y =﹣5;当x =﹣1时,y =4. (1)求k 、b 的值;(2)若不等式5﹣2x >m +4x 的最大整数解是k ,求m 的取值范围. 24. 一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由; (3)已知(),m n “相伴数对”,试说明91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对”. 25. 某体育彩票经销商计划用4500元从省体彩中心购进彩票20捆,已知体彩中心有A 、B 、C 三种不同价格的彩票,进价分别是A 彩票每捆150元,B 彩票每捆200元,C 彩票每捆250元.(1)若经销商同时购进两种不同型号的彩票20捆,刚好用去4500元,请你帮助设计进票方案; (2)若销售A 型彩票每捆获手续费20元,B 型彩票每捆获手续费30元,C 型彩票每捆获手续费50元.在问题(1)设计的购进两种彩票的方案中,为使销售完时获得的手续费最多,你选择哪种进票方案?(3)若经销商准备用4500元同时购进A、B、C三种彩票20捆,请你帮助经销商设计进票方案.答案与解析一、选择题(共40分)1. 已知a 的值不大于3-,用不等式表示a 的范围是( ) A. 3a >- B. 3a <-C. 3a ≥-D. 3a ≤-【答案】D 【解析】 【分析】a 的值不大于3-就是a 的值小于或等于3-,据此解答即可.【详解】解:a 的值不大于3-,用不等式表示a 的范围是:3a ≤-. 故选:D .【点睛】本题考查了列出问题中的不等式,解题的关键是正确理解题意、把“不大于”转化为“≤”. 2. 若代数式31x -的值为4-,则x 的值为( ) A. 1B. 1-C. 53-D.35【答案】B 【解析】 【分析】根据题意,列出关于x 的一元一次方程314x -=-,通过解该方程可以求得x 的值. 【详解】解:由题意,得314x -=-, 解得1x =-; 故选B .【点睛】本题考查一元一次方程的解法及一元一次方程的解的定义.牢记解一元一次方程的步骤及一元一次方程的解的定义是解题的关键.3. 下列各组中,不是二元一次方程37x y +=的解的是( )A. 14x y =⎧⎨=⎩B. 07x y =⎧⎨=⎩C. 32x y =⎧⎨=-⎩D. 1.53.5x y =⎧⎨=⎩【答案】D 【解析】【分析】把各选项中的x 、y 的值逐一代入计算即得答案. 【详解】解:A 、把14x y =⎧⎨=⎩代入原方程,得3147⨯+=,∴14x y =⎧⎨=⎩是方程37x y +=的解,本选项不符合题意;B 、把07x y =⎧⎨=⎩代入原方程,得3077⨯+=,∴07x y =⎧⎨=⎩是方程37x y +=的解,本选项不符合题意;C 、把32x y =⎧⎨=-⎩代入原方程,得3327⨯-=,∴32x y =⎧⎨=-⎩是方程37x y +=的解,本选项不符合题意;D 、把 1.53.5x y =⎧⎨=⎩代入原方程,得3 1.5 3.587⨯+=≠,∴ 1.53.5x y =⎧⎨=⎩不是方程37x y +=的解,本选项符合题意. 故选:D .【点睛】本题考查了二元一次方程的解的定义,属于基础题型,熟练掌握二元一次方程的解的概念是解题关键.4. 若a b >,则下列不等式中错误的是( ) A. 22a b +>+ B.22a b> C. 22a b -<- D. 22a b >【答案】D 【解析】 【分析】根据不等式的性质逐项判断即可. 【详解】解:A 、不等式a b >两边同时加上2,得22a b +>+,所以本选项变形正确,不符合题意;B 、在不等式a b >两边同时除以2,得22a b>,所以本选项变形正确,不符合题意; C 、在不等式a b >两边同时乘以﹣2,得22a b -<-,所以本选项变形正确,不符合题意; D 、由a b >不能得出22a b >,如1>﹣2,但()2212<-,所以本选项变形错误,符合题意. 故选:D .【点睛】本题考查了不等式的性质,属于基础题型,熟练掌握不等式的性质是解题关键. 5. 将方程3213123x x x -++=-去分母,正确的是( )A. ()()18336221x x x +-=-+B. ()()3331221x x x +-=-+C. ()()93321x x x +-=-+D. ()()33121x x x +-=-+【答案】A 【解析】 【分析】根据去分母的方法:原方程两边同时乘以6可得答案.【详解】解:原方程两边同时乘以6,得:()()18336221x x x +-=-+. 故选:A .【点睛】本题考查了一元一次方程的解法,属于基本题型,熟练掌握去分母的方法是解本题的关键. 6. 某文具店开展促销活动,某种笔记本原价每本x 元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( ) A . 0.68x x -= B. 0.0618x -=C. 80.61x -=D. 0.618x -=【答案】D 【解析】 【分析】由题意可得第一次每本笔记本按原价打“六折”后售价为0.6x 元,第二次降价后的售价为()0.61x -元,进一步即可列出方程.【详解】解:根据题意可列方程为:0.618x -=. 故选:D .【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键. 7. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. x y 50{x y 180=-+=B. x y 50{x y 180=++=C. x y 50{x y 90=++=D. x y 50{x y 90=-+=【答案】C 【解析】【详解】根据平角和直角定义,得方程x+y=90;根据∠1比∠2的度数大50°,得方程x=y+50.可列方程组为5090x y x y =+⎧⎨+=⎩,故选C .考点:1.由实际问题抽象出二元一次方程组;2.余角和补角.8. 《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,则下列方程组正确的是( ) A. 8374x y y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=⎩C. 8374y x x y -=⎧⎨-=⎩D. 8374x y x y -=⎧⎨-=⎩【答案】A 【解析】 【分析】设合伙人数为x 人,物价为y 钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组,进而得到答案.【详解】解:设合伙人数为x 人,物价为y 钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组为:8374x y y x -=⎧⎨-=⎩,故选:A ;【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.9. 若关于x ,y 的方程组2315x y m x y +=+⎧-=-⎨⎩的解满足x +y =-3,则m 的值为( )A. 2-B. 2C. 1-D. 1【答案】C 【解析】 【分析】先把m 看作是常数,解关于x ,y 二元一次方程组,求得用m 表示的x ,y 的值后,再代入3x+2y=19,建立关于m 的方程,解出m 的数值.【详解】x 2y 3m 1x y 5+=+⎧-=-⎨⎩①②,①-②得:y=m+2③, 把③代入②得:x=m-3, ∵x+y=-3, ∴m-3+m+2=-3, ∴m=-1. 故选C .【点睛】本题实质是解二元一次方程组,先用m 表示出x ,y 的值后,再求解关于m 的方程,解方程组关键是消元.10. 已知关于,x y 的二元一次方程组43335x y mx y m +=-⎧⎨-=-⎩,则关于代数式x y -的值的说法正确的是( ).A. 随m 增大而增大B. 随m 减小而减小C. 既可能随m 增大而增大,也可能随m 减小而减小D. 与m 的大小无关 【答案】D 【解析】 【分析】方程组中的两个方程相加,再两边同时除以2即可进行判断. 【详解】解:对方程组43335x y m x y m +=-⎧⎨-=-⎩①②,①+②,得()21x y -=-,即12x y -=-,∴代数式x y -的值与m 的大小无关. 故选:D .【点睛】本题考查了二元一次方程组的特殊解法,属于常考题型,灵活应用整体的思想方法是解题的关键.二、填空题(共24分)11. 若2x =-是方程520x k +=的解,则k =__________. 【答案】5 【解析】 【分析】将2x =-代入方程520x k +=即可求算.【详解】解:∵2x =-是方程520x k +=的解,2x =-代入方程: ∴1020k -+=,解得:5k = 故答案为:5【点睛】本题考查一元一次方程的解,掌握一元一次方程解的意义是解题关键. 12. 已知二元一次方程235x y +=,若用含x 的代数式表示,则y =_______. 【答案】523x- 【解析】 【分析】移项,把x 看做已知数求出y 即可. 【详解】解:二元一次方程235x y +=, 移项得:352y x =-,即:523xy, 故答案为:523x-;【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y . 13. 已知关于x 的不等式()15m x ->的解集为51x m <-,则m 的取值范围是_________. 【答案】1m < 【解析】 【分析】根据不等式的性质可得10m -<,解不等式即得答案. 【详解】解:由题意得:10m -<,解得:1m <. 故答案为:1m <.【点睛】本题考查了不等式的性质和一元一次不等式的解法,属于基础题型,熟练掌握不等式的性质是解题的关键14. 已知320a b --=,那么261a b -+=_________. 【答案】5 【解析】 【分析】由已知可得32a b -=,然后将所求的代数式变形为()231a b -+后再整体代入求解即可.【详解】解:∵320a b --=,∴32a b -=,∴()2612312215a b a b -+=-+=⨯+=.故答案为:5.【点睛】本题考查了代数式求值,属于基本题型,熟练掌握整体代入的思想方法是解答的关键.15. 方程组457x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是_____________.【答案】314x y z =⎧⎪=⎨⎪=⎩【解析】【分析】根据解三元一次方程组的方法解答即可.【详解】解:对457x y y z x z +=⎧⎪+=⎨⎪+=⎩①②③,①+②+③,得()216x y z ++=,即8x y z ++=④,④-①,得z =4,④-②,得x =3,④-③,得y =1,∴方程组的解是:314x y z =⎧⎪=⎨⎪=⎩.故答案为:314x y z =⎧⎪=⎨⎪=⎩.【点睛】本题考查了三元一次方程组的解法,属于基本题型,熟练掌握解三元一次方程组的方法是解答的关键.16. 若不等式组24x x m-≤⎧⎨<⎩无解,则m 的取值范围是____________. 【答案】2m ≤-【解析】【分析】先求出不等式的解集,再根据无解得出m 的取值范围.【详解】解:24x x m -≤⎧⎨<⎩①② 由①得:2x ≥- 由②得:x m <∵不等式组无解,没有公共部分∴2m ≤-故答案为:2m ≤-【点睛】本题考查不等式组参数问题,掌握求解不等式组的方法是解题关键.三、解答题(共86分)17. 解方程:()()103421x x x --=+.【答案】2x =-【解析】【分析】根据解一元一次方程的方法和步骤解答即可.【详解】解:去括号,得1031222x x x -+=+,移项,得1032212x x x --=-,合并同类项,得510x =-,系数化为1,得2x =-.【点睛】本题考查了一元一次方程的解法,属于基础题型,熟练掌握解一元一次方程的方法是解题的关键.18. 解不等式组:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩,并把它的解集在数轴上表示出来.【答案】0x <,图见解析【解析】【分析】分别解出每一个不等式,再求出公共部分即可,然后在数轴上表示.【详解】解:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩①②由①得:3x ≤由②得:0x <∴不等式组的解集为:0x <该不等式组解集在数轴上表示如图:【点睛】本题考查一元一次不等式组,掌握一元一次不等式组的解法是解题关键.19. 在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18-,求,a b 的值.【答案】a=5,b=-2【解析】【分析】将3x =,2y =时,ax by +的值是11;当2x =-,4y =时,ax by +的值是18-分别代入得出关于a 、b 的二元一次方程组,解方程即可.【详解】解:∵在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18- ∴32112418a b a b +=⎧⎨-+=-⎩①②由②得:29a b =+ ③将③代入①得:()329211b b ++= 解得:2b =-将2b =-代入③解得:5a =∴a=5,b=-2【点睛】本题考查代数式,将已知条件代入建立关于a 、b 的二元一次方程组是解题关键.20. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.【答案】这个两位数为45.【解析】【分析】要求这个两位数,可以转化为求个位数字与十位数字分别是多少,若设原数的个位数字是x,则十位数字是9﹣x,则原数是10(9﹣x)+x,新数是10x+(9﹣x),然后根据等量关系:新数=原数+9即可列出方程,解方程即得结果.【详解】解:设原两位数的个位数字是x,则十位数字是9﹣x.根据题意得:10x+(9-x)=10(9﹣x)+x+9解得:x=5,则9﹣x=4,答:这个两位数为45.【点睛】本题考查了一元一次方程的应用之数字问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.21. 已知方程组5354x yax y+=⎧⎨+=⎩和2551x yx by-=⎧⎨+=⎩有相同的解,求a+b的值.【答案】16【解析】【分析】根据题意列出x和y的方程组,然后进行求解,将解代入另外的两个方程求出a和b的值,进而即可求解.【详解】解方程组5325x yx y+=⎧⎨-=⎩,得12xy=⎧⎨=-⎩.把12xy=⎧⎨=-⎩代入5451ax yx by+=⎧⎨+=⎩,得142ab=⎧⎨=⎩∴a+b=16.22. 某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件;(2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件?【答案】(1)购进甲种商品800件,购进乙种商品200件;(2)334;【解析】【分析】(1)设购进甲种商品x 件,购进乙种商品y 件,根据购进甲乙两种商品共1000件及销售完这批商品后能获利4200元,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进乙种商品a 件,则购进甲种商品(1000-a )件,根据总利润=单件利润×购进数量结合该商店销售完这批商品后获利要多于5000元,即可得出关于a 的一元一次不等式,解之取其中的最小的整数即可得出结论.【详解】解:(1)设购进甲种商品x 件,购进乙种商品y 件,根据题意得:()()1000181544354200x y x y +⎧⎨-+-⎩== , 解得:800200x y ⎧⎨⎩== , 则购进甲种商品800件,购进乙种商品200件,答:购进甲种商品800件,购进乙种商品200件;(2)设购进乙种商品a 件,则购进甲种商品(1000-a )件,根据题意得:(44-35)a+(18-15)(1000-a )>5000, 解得:10003a > , ∵a 为整数,∴a 的最小值为334.答:至少应购进乙种商品334件.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,列出关于a 的一元一次不等式.23. 在等式y =kx +b (k ,b 为常数)中,当x =2时,y =﹣5;当x =﹣1时,y =4.(1)求k 、b 的值;(2)若不等式5﹣2x >m +4x 的最大整数解是k ,求m 的取值范围.【答案】(1)31k b =-⎧⎨=⎩;(2)7≤m <13 【解析】【分析】(1)把25x y ⎧⎨⎩==﹣和14x y ⎧⎨⎩=﹣=代入y =kx +b ,可得254k b k b +=-⎧⎨-+=⎩,再解出关于k,b 的二元一次方程组即可解出k 、b 的值;(2)解不等式5﹣2x >m +4x 得x <56m -,再根据不等式的最大整数解是k =-3,来得到m 的取值范围. 【详解】解:(1)根据题意可得:254k b k b +=-⎧⎨-+=⎩解得:31k b =-⎧⎨=⎩; (2)解不等式5﹣2x >m +4x ,得:x <56m -, 因为该不等式的最大整数解是k ,即﹣3,所以﹣3<56m -≤﹣2, 解得:7≤m <13.【点睛】主要考查二元一次方程组的解与一元一次不等式的整数解.24. 一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值; (2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由; (3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”. 【答案】(1)94b =-;(2)92,2⎛⎫- ⎪⎝⎭(答案不唯一);(3)见解析 【解析】 【分析】 (1)根据“相伴数对”的定义,将()1,b 代入2323a b a b ++=+,从而求算答案; (2)先根据“相伴数对”的定义算出a 、b 之间的关系为:94a b =-,满足条件即可; (3)将将,a m b n == 代入2323a b a b ++=+得出49m n ,再将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到491,94n n -+-⎛⎫ ⎪⎝⎭,分别去计算等式左右两边,看是否恒等即可. 【详解】解:(1)∵()1,b 为“相伴数对”,将()1,b 代入2323a b a b ++=+得: 112323b b ++=+ ,去分母得:()151061b b +=+ 解得:94b =- (2)2323a b a b ++=+化简得:94a b =- 只要满足这个等量关系即可,例如:92,2⎛⎫-⎪⎝⎭(答案不唯一) (3)∵(),m n 是“相伴数对” 将,a m b n == 代入2323a b a b ++=+: ∴2323m n m n ++=+ ,化简得:49m n 将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到:491,94n n -+-⎛⎫ ⎪⎝⎭ 将:491,94a n b n =-+=- 代入2323a b a b ++=+ 左边=49149942336n n n -+--+= 右边=49149942336n n n -++--=+∴左边=右边∴当(),m n 是“相伴数对”时, 91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对” 【点睛】本题考查定义新运算,正确理解定义是解题关键.25. 某体育彩票经销商计划用4500元从省体彩中心购进彩票20捆,已知体彩中心有A 、B 、C 三种不同价格的彩票,进价分别是A 彩票每捆150元,B 彩票每捆200元,C 彩票每捆250元.(1)若经销商同时购进两种不同型号的彩票20捆,刚好用去4500元,请你帮助设计进票方案; (2)若销售A 型彩票每捆获手续费20元,B 型彩票每捆获手续费30元,C 型彩票每捆获手续费50元.在问题(1)设计的购进两种彩票的方案中,为使销售完时获得的手续费最多,你选择哪种进票方案?(3)若经销商准备用4500元同时购进A、B、C三种彩票20捆,请你帮助经销商设计进票方案.【答案】(1)购进A种彩票5捆,C种彩票15捆或B种彩票与C种彩票各10捆;(2)A种彩票5捆,C种彩票15捆;(3)方案1:A种1捆,B种8捆,C种11捆;方案2:A种2捆,B种6捆,C种12捆;方案3:A种3捆,B种4捆,C种13捆;方案4:A种4捆,B种2捆,C种14捆.【解析】【分析】(1)因为彩票有A,B,C三种不同型号,而经销商同时只购进两种,所以要将A,B,C两两组合,分三种情况:A,B;A,C;B,C,每种情况都可以根据下面两个相等关系列出方程,两种不同型号的彩票捆数之和=20,购买两种不同型号的彩票钱数之和=4500,然后根据实际含义即可确定他们的解;(2)根据上一问分别求出每一种情况的手续费,然后进行比较即可得出结果;(3)有两个等量关系:A彩票扎数+B彩票扎数+C彩票扎数=20,购买A彩票钱数+购买B彩票钱数+购买C彩票钱数=4500;可设三个未知数,然后用含有同一个未知数的代数式去表示另外的两个未知数,再根据三个未知数都是正整数,并结合实际意义即可求出结果.【详解】解:(1)若设购进A种彩票x捆,B种彩票y捆,根据题意得:201502004500x yx y+=⎧⎨+=⎩,解得:1030xy=-⎧⎨=⎩,∵x<0,∴此种情况不合题意;若设购进A种彩票x捆,C种彩票y捆,根据题意得:201502504500x yx y+=⎧⎨+=⎩,解得:515xy=⎧⎨=⎩,若设购进B种彩票x捆,C种彩票y捆,根据题意得:202002504500x yx y+=⎧⎨+=⎩,解得:1010xy=⎧⎨=⎩,综上所述,若经销商同时购进两种不同型号的彩票,共有两种方案:即购进A种彩票5捆,C种彩票15捆或B种彩票与C种彩票各10捆;(2)若购进A种彩票5捆,C种彩票15捆,销售完后可获手续费为:20×5+50×15=850(元);若购进B种彩票与C种彩票各10捆,销售完后可获手续费为:30×10+50×10=800(元);∴为使销售完后获得手续费最多,应选择的方案为:A种彩票5捆,C种彩票15捆;(3)设购进A种彩票m捆,B种彩票n捆,C种彩票h捆.由题意得:201502002504500m n hm n h++=⎧⎨++=⎩,解得:10210h mn m=+=-+⎧⎨⎩,∵m、n都是正整数,∴1≤m<5,∴m=1,2,3,4,所以共有4种进票方案,具体如下:方案1:A种1捆,B种8捆,C种11捆;方案2:A种2捆,B种6捆,C种12捆;方案3:A种3捆,B种4捆,C种13捆;方案4:A种4捆,B种2捆,C种14捆.【点睛】此题考查了二元一次方程组的应用,属于常考题型,正确理解题意、分三种情况求解是解第(1)小题的关键,用含有同一个未知数的代数式去表示另外的两个未知数并结合未知数的实际意义是解第(3)小题的关键.。
2021年人教版数学七年级下册 期中检测卷及答案
人教版七年级下册数学期中检测卷时间:60分钟满分:100分一、选择题(每题3分,共30分)1.小明利用电脑画出了几幅鱼的图案,则由图中所示的图案通过平移得到的图案是 ( )A B C D 2.如图,直线a ,b 相交于一点,若∠1=70°,则∠2的度数是 ( )A.70°B.90°C.110°D.130°3.若x 轴负半轴上的点P 到y 轴的距离为3,则点P 的坐标为 ( ) A.(-3,0) B.(0,-3) C.(3,0) D.(0,3)4.下列运算正确的是 ( ) A .√25=±5B .√-643=4C .±√25=5D .(√-83)2=45.已知a<√7<b ,且a ,b 为两个连续的整数,则a+b= ( )A.3B.5C.6D.76.如图,下列说法错误的是( )A.若a ∥b ,b ∥c ,则a ∥cB.若∠1=∠2,则a ∥cC.若∠3=∠2,则b ∥cD.若∠3+∠5=180°,则a ∥c7.如图是故宫博物院的主要建筑分布图,若分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,表示太和门的点的坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是 ( ) A.景仁宫(4,2) B.养心殿(-2,3) C.保和殿(1,0) D.武英殿(-3.5,-4)第7题图第8题图8.如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°9.已知点P(a,1)不在第一象限,则点Q(0,-a)在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴或原点上D.y轴负半轴上10.如图,在平面直角坐标系中有若干个整数点,其顺序按图中“➝”方向排列,依次为(1,0),(2,0),(2,1),(3,1),(3,0),(3,-1),…,根据这个规律,可得第100个点的坐标为()A.(14,0)B.(14,-1)C.(14,1)D.(14,2)二、填空题(每题3分,共18分)11.写出一个比√2大且比√5小的有理数:.12.如图是小明设计的一个关于实数运算的程序图,当输入a的值为81时,输出的值为.13.数学活动中,张明和王丽向老师说明他们的位置(单位:m).张明:我这里的坐标是(-200,300).王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是m.14.已知线段AB∥y轴,且AB=3,若点A的坐标为(1,-2),则点B的坐标是.15.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=.16.若∠α的两边与∠β的两边分别平行,且∠α比∠β的2倍少30°,则∠α的度数为.三、解答题(共52分) 17.(8分)计算:(1)|3-π|+√4+√-273-(-1)2 019; (2)√49-|√6-3|+√(-3)2+√-643.18.(6分)若√1-2x 3与√3x -53互为相反数,求(1-√x )2 020的值.19.(8分)在平面直角坐标系中,三角形ABC 的三个顶点的位置如图所示,点A'的坐标是(-2,2).现将三角形ABC 平移,使点A 与点A'重合,点B',C'分别是点B ,C 的对应点. (1)请画出平移后的三角形A'B'C',并写出点B',C'的坐标;(2)若三角形ABC 内一点P 的坐标为(a ,b ),则点P 的对应点P'的坐标是 ; (3)试说明三角形ABC 经过怎样的平移得到三角形A'B'C'.20.(8分)如图,在平面直角坐标系中,点A,B的坐标分别为(a,0),(b,0),且a,b满足|a+2|+√b-4=0,点C的坐标为(0,3).(1)求a,b的值及三角形ABC的面积;,求点M的坐标.(2)若点M在x轴上,且三角形ACM的面积是三角形ABC面积的1321.(10分)如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,交射线AM于C,D两点.(1)求∠CBD的度数;(2)当点P运动时,∠APB∶∠ADB的值是否随之发生变化?若不变,请求出这个值;若变化,请找出变化规律.(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.22.(12分)如图,直线MN∥GH,另一直线交GH于点A,交MN于点B,且∠MBA=80°,点C为直线GH上一动点,点D为直线MN上一动点,且∠GCD=50°.(1)如图1,当点C 在点A 右侧且点D 在点B 左侧时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数;(2)如图2,当点C 在点A 右侧且点D 在点B 右侧时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数;(3)当点C 在点A 左侧且点D 在点B 左侧时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数.期中检测卷题号 1 2 3 4 5 6 7 8 9 10 答案 D C A D B C B B C D 11.2(答案不唯一) 12.8 13.500 14.(1,1)或(1,-5)15.90° 16.110°或30°1.D2.C 【解析】 由题图,知∠1+∠2=180°,∵∠1=70°,∴∠2=180°-∠1=110°.故选C.3.A 【解析】 因为点P 在x 轴的负半轴上,且到y 轴的距离为3,所以点P 的横坐标为-3,纵坐标为0,即点P 的坐标为(-3,0).故选A .4.D 【解析】 √25=5,√-643=-4,±√25=±5,(√-83)2=(-2)2=4,所以选项A ,B ,C 错误,D 正确.故选D. 5.B 【解析】 因为4<7<9,所以2<√7<3,所以a=2,b=3,所以a+b=5.故选B .6.C 【解析】 由平行公理的推论,知A 正确;因为∠1与∠2是直线a ,c 被直线d 截得的内错角,所以由∠1=∠2,可得a ∥c ,故B 正确;因为∠3与∠2是直线d ,e 被直线c 截得的同位角,所以由∠3=∠2得不到b ∥c ,故C 错误;因为∠3与∠5是直线a ,c 被直线e 截得的同旁内角,所以由∠3+∠5=180°,可得a ∥c ,故D 正确.故选C .7.B【解析】根据表示太和门的点的坐标为(0,-1),表示九龙壁的点的坐标为(4,1),可得景仁宫(2,4),养心殿(-2,3),保和殿(0,1),武英殿(-3.5,-3),所以A,C,D错误,B正确.故选B.8.B【解析】∵AB∥CD,∴∠BAD=∠ADC=35°.∵DA⊥AC,∴∠CAD=90°,∴∠1+∠BAD=90°,∴∠1=90°-∠BAD=5 5°.故选B.9.C【解析】∵点P(a,1)不在第一象限,∴a≤0,则-a≥0,∴点Q(0,-a)在y轴正半轴或原点上.故选C.10.D【解析】由题图,得第1列有1个点,第2列有2个点……第n列有n个点,且奇数列上的点关于x轴对称,偶数列上的点y轴上方比下方多1个,所以奇数列上点的坐标为(n,n-12),(n,n-12-1),…,(n,1−n2),偶数列上点的坐标为(n,n2),(n,n2-1),…,(n,1-n2).易得第100个点是第14列上自上而下第6个点,所以第100个点的坐标为(14,142-5),即(14,2).故选D.11.2(答案不唯一)12.8【解析】由题中程序图,得输出的值为√81-1=9-1=8.13.500【解析】因为张明的坐标是(-200,300),王丽的坐标是(300,300),所以张明与王丽之间的距离为300-(-200)=300+200=500(m).14.(1,1)或(1,-5)【解析】∵AB∥y轴,点A的坐标为(1,-2),∴点B的横坐标为1.∵AB=3,∴点B 的坐标为(1,1)或(1,-5).15.90°【解析】如图,过点E作EF∥AB,所以∠BAE+∠AEF=180°,所以∠AEF=180°-∠BAE=60°.因为AB∥CD,所以EF∥CD,所以∠FEC=∠C=30°,所以∠AEC=∠AEF+∠CEF=60°+30°=90°.16.110°或30°【解析】∵∠α的两边与∠β的两边分别平行,∴∠α=∠β或∠α+∠β=180°.∵∠α比∠β的2倍少30°,∴∠α=2∠β-30°.①若∠α=∠β,则2∠β-30°=∠β,解得∠β=30°,∴∠α=30°;②若∠α+∠β=180°,则2∠β-30°+∠β=180°,解得∠β=70°,∴∠α=110°.综上,∠α的度数为110°或30°. 17.【解析】(1)|3-π|+√4+√-273-(-1)2 019=π-3+2-3+1=π-3.(2)√49-|√6-3|+√(-3)2+√-643=7+√6-3+3-4=3+√6.18.【解析】 ∵√1−2x 3与√3x -53互为相反数,∴(1-2x )+(3x-5)=0,解得x=4,∴(1-√x )2 020=(1-√4)2 020=(1-2)2 020=(-1)2 020=1.19.【解析】 (1)三角形A'B'C'如图所示.由图可知点B',C'的坐标分别为(-4,1),(-1,-1). (2)(a-5,b-2)(3)将三角形ABC 先向左平移5个单位长度,再向下平移2个单位长度得到三角形A'B'C'.(或将三角形ABC 先向下平移2个单位长度,再向左平移5个单位长度得到三角形A'B'C') 20.【解析】 (1)∵|a+2|+√b -4=0,∴a+2=0,b-4=0,∴a=-2,b=4.∴点A 的坐标为(-2,0),点B 的坐标为(4,0), ∴AB=|4-(-2)|=6.∵点C 的坐标为(0,3),∴CO=3.∴三角形ABC 的面积为12AB×CO=12×6×3=9. (2)设点M 的坐标为(x ,0), 则AM=|x-(-2)|=|x+2|.∵三角形ACM 的面积是三角形ABC 面积的13, ∴12AM×OC=13×9,∴12|x+2|×3=3, ∴x=0或-4,故点M 的坐标为(0,0)或(-4,0).21.【解析】 (1)∵AM ∥BN ,∴∠ABN+∠A=180°,∴∠ABN=180°-60°=120°,∴∠ABP+∠PBN=120°. ∵BC ,BD 分别平分∠ABP 和∠PBN , ∴∠ABP=2∠CBP ,∠PBN=2∠DBP ,∴2∠CBP+2∠DBP=120°,∴∠CBP+∠DBP=60°, ∴∠CBD=∠CBP+∠DBP=60°.(2)不变.∵AM ∥BN ,∴∠APB=∠PBN ,∠ADB=∠DBN.∵BD 平分∠PBN ,∴∠PBN=2∠DBN ,∴∠APB∶∠ADB=2∶1.∴∠APB∶∠ADB的值为2.(3)∵AM∥BN,∴∠ACB=∠CBN.当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN.由(1)可知∠ABN=120°,∠CBD=60°,∴∠ABC+∠DBN=60°,∴∠ABC=30°.22.【解析】(1)如图,过点P作PE∥MN.∵BP平分∠DBA,∴∠DBP=1∠DBA=40°.2∵PE∥MN,∴∠BPE=∠DBP=40°.∵CP平分∠DCA,∴∠ACP=1∠DCA=25°.2∵PE∥MN,MN∥GH,∴PE∥GH,∴∠CPE=∠ACP=25°.∴∠BPC=∠BPE+∠CPE=40°+25°=65°.(2)如图,过点P作PF∥MN.∵∠MBA=80°,∴∠DBA=180°-80°=100°.∵BP平分∠DBA,∴∠DBP=1∠DBA=50°.2∵PF∥MN,∴∠BPF=180°-∠DBP=130°.∵CP平分∠DCA,∴∠PCA=1∠DCA=25°.2∵PF∥MN,MN∥GH,∴PF∥GH,∴∠CPF=∠PCA=25°.∴∠BPC=∠BPF+∠CPF=130°+25°=155°.(3)如图,过点P作PQ∥MN.∵BP平分∠DBA,∴∠DBP=1∠DBA=40°.2∵PQ∥MN,∴∠BPQ=∠DBP=40°.∵∠GCD=50°,∴∠DCA=180°-∠DCG=130°.∴CP平分∠DCA,∴∠PCA=1∠DCA=65°.2∵PQ∥MN,MN∥GH,∴PQ∥GH,∴∠CPQ=180°-∠PCA=115°.∴∠BPC=∠BPQ+∠CPQ=40°+115°=155°.1、三人行,必有我师。
【人教版】数学七年级下学期《期中测试卷》含答案解析
人教版七年级下学期期中考试数学试题一.选择题1. 能把一个三角形的面积分成相等的两部分的线是这个三角形的( ) A. 一条高B. 一条中线C. 一条角平分线D. 一边上的中垂线2. 如图,已知直线AB ∥CD ,115C ∠=︒,25A ∠=︒,则E ∠=( )A. 25︒B. 65︒C. 90︒D. 115︒3. 一元一次不等式312x -->的解集在数轴上表示为( ) A.B. C.D.4. 在ABC 中,1135A B C ∠=∠=∠,则ABC 是( ) A. 钝角三角形B. 直角三角形C. 锐角三角形D. 无法确定5. 已知点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,则M 点的坐标为( ) A. (﹣1,﹣1).B. (﹣1,1)C. (1,1)D. (1,﹣1)6. 已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( )A .m =1,n =-1B. m =-1,n =1C. 14m ,n 33==- D. 14,33m n =-=7. 已知关于,x y 的二元一次方程组725ax y x y +=⎧⎨-=⎩和432x y x by +=⎧⎨+=-⎩有相同的解,则-a b 的值是( )A. 13B. 9C. 9-D. 13-8. 点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M 的坐标是( ) A. (2,﹣5)B. (﹣2,5)C. (5,﹣2)D. (﹣5,2)9. 某中学现有学生500人,计划一年后女生在校生增加3%,男生在校生增加4%,这样,在校学生将增加3.4%,设该校现有女生人数x 和男生y ,则列方程组为( )A.500(14%)(13%)500(1 3.4)x yx y+=⎧⎨+++=⨯+⎩B.5003%4% 3.4%x yx y+=⎧⎨+=⎩C.500(13%)(14%)500(1 3.4%)x yx y+=⎧⎨+++=⨯+⎩D.5004%3%500 3.4%x yx y+=⎧⎨+=⨯⎩10. 若关于x的不等式组2034xx a x-<⎧⎨+>-⎩恰好只有2个整数解,且关于x的方程21236x a a x+++=+的解为非负整数解,则所有满足条件的整数a的值之和是()A. 1B. 3C. 4D. 6二、填空题11. 已知点m(3a-9,1-a),将m点向左平移3个单位长度后落在y轴上,则a= __________ .12. 如图,AD、AE分别是△ABC的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.13. 已知:如图,△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ACD周长为16cm,则AC的长为__________cm.14. 甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.15. 小马在解关于x的一元一次方程3232a xx-=时,误将- 2x看成了+2x,得到的解为x=6,请你帮小马算一算,方程正确的解为x=_____.16. 一个两位数的十位上的数是个位上的数的2倍,若把两个数字对调,则新得到的两位数比原两位数小36,则原两位数是_______.17. 已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.18. 如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.三.解答题19. 解方程或不等式(组)(1)24231x y x y +=⎧⎨-=⎩(2)2151132x x -+-≥ (3)312(2)15233x x x x +<+⎧⎪⎨-≤+⎪⎩ 20. 如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE 平分∠ACB ,求∠BEC 的度数.21. 如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC 的三个顶点均在格点上.(1)将三角形ABC 先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A 1B 1C 1,画出平移后的三角形A 1B 1C 1;(2)建立适当的平面直角坐标系,使得点A 的坐标为(-4,3),并直接写出点A 1的坐标; (3)求三角形ABC 的面积.22. 阅读下列材料,学习完“代入消元法”和“加减消元法“解二元一次方程组后,善于思考的小铭在解方程组2534115x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法: 解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③.把方程①代入③得:2×3+y =5,∴y =﹣1①得x =4,所以,方程组的解为41x y =⎧⎨=-⎩.请你解决以下问题:(1)模仿小铭的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩.(2)已知x ,y 满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩,求x 2+4y 2﹣xy 的值. 23. 探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题: (1)观察“规形图”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由; (2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若∠A =50°,则∠ABX+∠ACX = °;②如图3,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =50°,∠DBE =130°,求∠DCE 的度数; ③如图4,∠ABD ,∠ACD 的10等分线相交于点G 1、G 2…、G 9,若∠BDC =140°,∠BG 1C =77°,求∠A 的度数.24. 水果商贩老徐上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.老徐购得草莓和苹果共60箱,刚好花费3100元. (1)问草莓、苹果各购买了多少箱?(2)老徐有甲、乙两家店铺,每出售一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓a 箱,苹果b 箱,其余均分配给乙店,由于他口碑良好,两家店都很快卖完了这批水果.①若老徐在甲店获利600元,则他在乙店获利多少元? ②若老徐希望获得总利润为1000元,则a b +=?25. 当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y q x y q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值. 26.如图(1),在平面直角坐标系中,点A 在x 轴负半轴上,直线 l x⊥轴于B ,点C 在直线l 上,点C 在x 轴上方.(1)(),0A a ,(),2C b ,且,a b 满足2()|4|0a b a b ++-+= ,如图(2),过点C 作MN ∥AB ,点Q是直线MN 上的点,在x 轴上是否存在点P ,使得ABC ∆ 的面积是BPQ 的面积的23?若存在,求出P 点坐标;若不存在,请说明理由.(2)如图(3),直线l 在 y 轴右侧,点E 是直线l 上动点,且点E 在x 轴下方,过点E 作DE ∥AC 交y 轴于D ,且AF 、DF 分别平分CAB ∠、ODE ∠,则A F D ∠的度数是否发生变化?若不变,求出AFD ∠的度数;若变化,请说明理由.答案与解析一.选择题1. 能把一个三角形的面积分成相等的两部分的线是这个三角形的( ) A. 一条高 B. 一条中线C. 一条角平分线D. 一边上的中垂线【答案】B 【解析】 【分析】根据三角形中线的性质作答即可.【详解】解:能把一个三角形的面积分成相等的两部分的线是这个三角形的一条中线. 故选:B .【点睛】本题考查了三角形中线的性质,属于应知应会题型,熟知三角形的一条中线将三角形分成面积相等的两部分是解题的关键.2. 如图,已知直线AB ∥CD ,115C ∠=︒,25A ∠=︒,则E ∠=( )A. 25︒B. 65︒C. 90︒D. 115︒【答案】C 【解析】 【分析】先根据平行线的性质求出∠EFB 的度数,再利用三角形的外角性质解答即可. 【详解】解:∵AB ∥CD ,115C ∠=︒, ∴115EFB C ∠=∠=︒, ∵EFB A E ∠=∠+∠,25A ∠=︒ ∴1152590E ∠=︒-︒=︒. 故选:C .【点睛】本题考查了平行线的性质和三角形的外角性质,属于基础题型,熟练掌握上述基本知识是解题关键.3. 一元一次不等式312x -->的解集在数轴上表示为( ) A.B. C.D.【答案】B 【解析】 【分析】先求出不等式的解集,再在数轴上表示出不等式的解集即可. 【详解】-3x-1>2, -3x >2+1, -3x >3, x <-1, 在数轴上表示为:,故选B .【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.4. 在ABC 中,1135A B C ∠=∠=∠,则ABC 是( ) A. 钝角三角形 B. 直角三角形 C. 锐角三角形 D. 无法确定【答案】A 【解析】 【分析】根据三角形的内角和是180︒列方程即可; 【详解】∵1135A B C ∠=∠=∠, ∴3B A ∠=∠,5C A ∠=∠, ∵180A B C ∠+∠+∠=︒, ∴35180A A A ∠+∠+∠=︒, ∴30A ∠=︒, ∴100C ∠=︒, ∴△ABC 是钝角三角形.故答案选A.【点睛】本题主要考查了三角形内角和定理的应用,在准确进行分析列式是解题的关键.5. 已知点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,则M点的坐标为()A. (﹣1,﹣1).B. (﹣1,1)C. (1,1)D. (1,﹣1)【答案】C【解析】【分析】直接利用角平分线上点的坐标特点得出2x﹣3=3﹣x,进而得出答案.【详解】解:∵点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,∴2x﹣3=3﹣x,解得:x=2,故2x﹣3=1,3﹣x=1,则M点的坐标为:(1,1).故选:C.【点睛】此题主要考查了点的坐标,正确掌握横纵坐标的关系是解题关键.6. 已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A. m=1,n=-1B. m=-1,n=1C.14m,n33==- D.14,33m n=-=【答案】A【解析】【分析】根据二元一次方程的概念列出关于m、n的方程组,解之即可.【详解】∵关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴22111m nm n--=⎧⎨++=⎩即23m nm n-=⎧⎨+=⎩,解得:11mn=⎧⎨=-⎩,故选:A.【点睛】本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.7. 已知关于,x y 的二元一次方程组725ax y x y +=⎧⎨-=⎩和432x y x by +=⎧⎨+=-⎩有相同的解,则-a b 的值是( ) A. 13 B. 9C. 9-D. 13-【答案】A 【解析】 【分析】 先解方程组425x y x y +=⎧⎨-=⎩求出该方程组的解,然后把这个解分别代入7ax y +=与32x by +=-即可求出a 、b 的值,进一步即可求出答案.【详解】解:解方程组425x y x y +=⎧⎨-=⎩,得31x y =⎧⎨=⎩,把31x y =⎧⎨=⎩代入7ax y +=,得317a +=,解得:a =2, 把31x y =⎧⎨=⎩代入32x by +=-,得92b +=-,解得:b =﹣11, ∴a -b =2-(﹣11)=13. 故选:A .【点睛】本题考查了同解方程组的知识,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键. 8. 点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M 的坐标是( ) A. (2,﹣5) B. (﹣2,5)C. (5,﹣2)D. (﹣5,2)【答案】A 【解析】 【分析】先根据到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.【详解】∵M 到x 轴距离为5,到y 轴的距离为2,∴M 纵坐标可能为±5,横坐标可能为±2. ∵点M 在第四象限,∴M 坐标为(2,﹣5). 故选:A .【点睛】本题考查点的坐标的确定;用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值.9. 某中学现有学生500人,计划一年后女生在校生增加3%,男生在校生增加4%,这样,在校学生将增加3.4%,设该校现有女生人数x 和男生y ,则列方程组为( )A. 500(14%)(13%)500(1 3.4)x y x y +=⎧⎨+++=⨯+⎩B. 5003%4% 3.4%x y x y +=⎧⎨+=⎩ C. 500(13%)(14%)500(1 3.4%)x y x y +=⎧⎨+++=⨯+⎩D. 5004%3%500 3.4%x y x y +=⎧⎨+=⨯⎩【答案】C【解析】【分析】 本题有两个相等关系:现有女生人数x +现有男生人数y =现有学生500;一年后女生在校生增加3%后的人数+男生在校生增加4%后的人数=现在校学生增加3.4%后的人数;据此即可列出方程组.【详解】解:设该校现有女生人数x 和男生y ,则列方程组为()()()50013%14%5001 3.4%x y x y +=⎧⎨+++=⨯+⎩. 故选:C .【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题关键. 10. 若关于x 的不等式组2034x x a x-<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( )A. 1B. 3C. 4D. 6 【答案】C【解析】分析】先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和.【详解】解:解不等式2034x x a x -<⎧⎨+>-⎩得: 44a -<x <2, ∵不等式组恰好只有2个整数解,∴-1≤44a -<0,∴0≤a<4;解方程21 236x a a x+++=+得:x=52a -,∵方程的解为非负整数,∴52a-≥0,∴a≤5,又∵0≤a<4,∴a=1,3,∴1+3=4,∴所有满足条件的整数a的值之和为4.故选:C.【点睛】本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.二、填空题11. 已知点m(3a-9,1-a),将m点向左平移3个单位长度后落在y轴上,则a= __________.【答案】4【解析】【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了y轴上的点的坐标特征.12. 如图,AD、AE分别是△ABC的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.【答案】5︒;【解析】【详解】解:由题意可知,∠B=60°,∠C=70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.13. 已知:如图,△ABC 的周长为21cm ,AB =6cm ,BC 边上中线AD =5cm ,△ACD 周长为16cm ,则AC 的长为__________cm .【答案】7【解析】先根据△ABD 周长为15cm ,AB=6cm ,AD=5cm ,由周长的定义可求BC 的长,再根据中线的定义可求BC 的长,由△ABC 的周长为21cm ,即可求出AC 长.解:∵AB=6cm,AD=5cm ,△ABD 周长为15cm ,∴BD=15-6-5=4cm ,∵AD 是BC 边上的中线,∴BC=8cm,∵△ABC 的周长为21cm ,∴AC=21-6-8=7cm .故AC 长为7cm .“点睛”此题考查了三角形的周长和中线,本题的关键是由周长和中线的定义得到BC 的长,题目难度中等.14. 甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.【答案】7【解析】【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x)场,由题意得,3x+(10-x)≥24,解得:x≥7,即甲队至少胜了7场.故答案是:7.【点睛】考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列出不等式求解.15. 小马在解关于x的一元一次方程3232a xx-=时,误将- 2x看成了+2x,得到的解为x=6,请你帮小马算一算,方程正确的解为x=_____.【答案】3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.16. 一个两位数的十位上的数是个位上的数的2倍,若把两个数字对调,则新得到的两位数比原两位数小36,则原两位数是_______.【答案】84【解析】【分析】设原两位数个位上的数字为x,则十位上的数字为2x,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x,则十位上的数字为2x,由题意,得10×2x+x-(10x+2x )=36,解得:x=4,则十位数字为:2×4=8, 则原两位数为84.故答案:84.【点睛】本题考查了一元一次方程的应用-数字问题,考查了百位数字×100+十位上的数字×10+个位数字的运用,解答时根据数位问题的数量关系建立方程式是关键.17. 已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________. 【答案】72【解析】【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式()()325416x x -+<-+,去括号,得365446-+<-+x x ,移项,得344665-<-++-x x ,合并同类项,得3x -<,系数化为1,得3x >-,则最小的整数解为-2.把2x =-代入23x ax -=中,得423a -+=,解得:72a =. 故答案为72. 【点睛】本题主要考查了一元一次方程的解与一元一次不等式的整数解,准确计算是解题的关键. 18. 如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.【答案】()45,5【解析】【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴,按照此方法计算即可;【详解】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴,∵245=2025,∴第2025个点在x轴上的坐标为()45,0,则第2020个点在()45,5.故答案为()45,5.【点睛】本题主要考查了规律题型点的坐标,准确判断是解题的关键.三.解答题19. 解方程或不等式(组)(1)24 231 x yx y+=⎧⎨-=⎩(2)2151132 x x-+-≥(3)312(2)15233x xx x+<+⎧⎪⎨-≤+⎪⎩【答案】(1)21x y =⎧⎨=⎩;(2)1x ≤-;(3)13x -≤< 【解析】【分析】(1)根据加减消元法解答;(2)根据解一元一次不等式的方法解答即可;(3)先分别解两个不等式,再取其解集的公共部分即得结果.【详解】解:(1)对24231x y x y +=⎧⎨-=⎩①②, ①×2,得248x y +=③, ③-②,得7y =7,解得:y =1,把y =1代入①,得x +2=4,解得:x =2,∴原方程组的解为:21x y =⎧⎨=⎩; (2)不等式两边同乘以6,得()()2216351x x --≥+,去括号,得426153x x --≥+,移项、合并同类项,得1111x -≥,不等式两边同除以﹣1,得1x ≤-;(3)对()312215233x x x x ⎧+<+⎪⎨-≤+⎪⎩①②, 解不等式①,得x <3,解不等式②,得1x ≥-,∴原不等式组的解集为13x -≤<.【点睛】本题考查了二元一次方程组、一元一次不等式和一元一次不等式组的解法,属于基本题型,熟练掌握解二元一次方程组和一元一次不等式的方法是关键.20. 如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE 平分∠ACB ,求∠BEC 的度数.【答案】131°【解析】【分析】先根据∠A=65°,∠ACB=72°得出∠ABC的度数,再由∠ABD=30°得出∠CBD的度数,根据CE平分∠ACB 得出∠BCE的度数,根据∠BEC=180°-∠BCE-∠CBD即可得出结论【详解】在△ABC中,∵∠A=65°,∠ACB=72°∴∠ABC=43°∵∠ABD=30°∴∠CBD=∠ABC﹣∠ABD=13°∵CE平分∠ACB∴∠BCE=∠ACB=36°∴在△BCE中,∠BEC=180°﹣13°﹣36°=131°.【点睛】本题考察了三角形内角和定理,在两个三角形中,三个角之间的关系是解决此题的关键21. 如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC的三个顶点均在格点上.(1)将三角形ABC先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A1B1C1,画出平移后的三角形A1B1C1;(2)建立适当的平面直角坐标系,使得点A 的坐标为(-4,3),并直接写出点A 1的坐标;(3)求三角形ABC 的面积.【答案】(1)见解析;(2)(2,6);(3)192【解析】【分析】(1)利用网格特点和平移的性质画出A 、B 、C 的对应点A 1、B 1、C 1,从而得到△A 1B 1C 1;(2)利用A 点坐标画出直角坐标系,再写出A 1坐标即可;(3)利用分割法求出坐标即可.【详解】解:(1)画出平移后的△A 1B 1C 1如下图; ; (2)如上图建立平面直角坐标系,使得点A 的坐标为(-4,3),由图可知:点A 1的坐标为(2,6); (3)由(2)中的图可知:A (-4,3),B (5,-1),C (0,0),∴S △ABC =11119(45)434512222+⨯-⨯⨯-⨯⨯=. 【点睛】本题考查了作图——平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.22. 阅读下列材料,学习完“代入消元法”和“加减消元法“解二元一次方程组后,善于思考的小铭在解方程组2534115x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法: 解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③.把方程①代入③得:2×3+y =5,∴y =﹣1①得x =4,所以,方程组的解为41x y =⎧⎨=-⎩. 请你解决以下问题:(1)模仿小铭的“整体代换”法解方程组325 9419 x yx y-=⎧⎨-=⎩.(2)已知x,y满足方程组22223212472836x xy yx xy y⎧-+=⎨++=⎩,求x2+4y2﹣xy的值.【答案】(1)32xy=⎧⎨=⎩;(2)15【解析】【分析】(1)把9x﹣4y=19变形为3x+2(3x﹣2y)=19,再用整体代换的方法解题;(2)将原方程组变形为22223(4)2472(4)36x y xyx y xy⎧+-=⎨++=⎩①②这样的形式,再利用整体代换的方法解决.【详解】解:(1)解方程组325 9419 x yx y-=⎧⎨-=⎩①②把②变形为3x+2(3x﹣2y)=19,∵3x﹣2y=5,∴3x+10=19,∴x=3,把x=3代入3x﹣2y=5得y=2,即方程组的解为32 xy=⎧⎨=⎩;(2)原方程组变形为22223(4)247 2(4)36x y xyx y xy⎧+-=⎨++=⎩①②①+②×2得,7(x2+4y2)=119,∴x2+4y2=17,把x2+4y2=17代入②得xy=2∴x2+4y2﹣xy=17﹣2=15答:x2+4y2﹣xy的值是15.【点睛】本题考查了二元一次方程组的解法,属延伸拓展题,正确掌握整体代换的求解方法是解题的关键.23. 探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A =50°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.【答案】(1)∠BDC=∠A+∠B+∠C,理由见解析;(2)①40°;②90°;③70°.【解析】【分析】(1)根据题意观察图形连接AD并延长至点F,根据一个三角形的外角等于与它不相邻的两个内角的和可证∠BDC=∠BDF+∠CDF;(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=12(∠ADB+∠AEB)+∠A,易得答案.③由②方法,进而可得答案.【详解】解:(1)连接AD并延长至点F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;∵∠BDC=∠BDF+∠CDF,∴∠BDC=∠BAD+∠B+∠C+∠CAD.∵∠BAC=∠BAD+∠CAD;∴∠BDC=∠BAC +∠B+∠C;(2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,又因为∠A=50°,∠BXC=90°,所以∠ABX+∠ACX=90°﹣50°=40°;②由(1)的结论易得∠DBE=∠DAE +∠ADB+∠AEB,∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB=80°;∴∠DCE=12(ADB+∠AEB)+A=40°+50°=90°;③由②知,∠BG1C=110(ABD+∠ACD)+A,∵∠BG1C=77°,∴设∠A为x°,∵∠ABD+∠ACD=140°﹣x°,∴110(40﹣x)x=77,∴14﹣110x+x=77,∴x=70,∴∠A为70°.【点睛】本题考查三角形外角的性质,三角形的内角和定理的应用,能求出∠BDC=∠A+∠B+∠C是解答的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.24. 水果商贩老徐上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.老徐购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)老徐有甲、乙两家店铺,每出售一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓a箱,苹果b箱,其余均分配给乙店,由于他口碑良好,两家店都很快卖完了这批水果.①若老徐在甲店获利600元,则他在乙店获利多少元?②若老徐希望获得总利润为1000元,则a b+=?【答案】(1)草莓35箱,苹果25箱;(2)①340元,②53或52【解析】【分析】(1)抓住题中关键的已知条件,老徐购得草莓和苹果共60箱,刚好花费3100元,设未知数列方程组,求解方程即可;(2)①由题意列二元一次方程,可得到34120a b +=,列式求出他在乙店获利;②根据老徐希望获得总利润为1000元,建立关于a 、b 的二元一次方程,整理可得18034a b -=,再根据a 、b 的取值范围及a 一定是4的整数倍,即可求出结果;【详解】(1)解:设草莓购买了x 箱,苹果购买了y 箱,根据题意得: 6060403100x y x y ⎧+=⎨+=⎩, 解得3525x y ⎧=⎨=⎩. 答:草莓购买了35箱,苹果购买了25箱;(2)解:①若老徐在甲店获利600元,则1520600a b +=,整理得:34120a b +=,他在乙店的获利为:()()12351625a b -+-, =()820434a b -+,=820-4120⨯,=340元;②根据题意得:()()1520123516251000a b a b ++-+-=, 整理得:34180a b +=, 得到18034a b -=, ∵a、b 均为正整数,∴a 一定是4的倍数,∴a 可能是0,4,8…,∵035a ≤≤,025b ≤≤,∴当且仅当a=32,b=21或a=25,b=24时34180a b +=成立,∴322153a b +=+=或28+24=52.故答案为340元;53或52.【点睛】本题主要考查了二元一次方程组的应用,根据题意列式是解题的关键.25. 当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由; (3)已知P 、Q 为有理数,且关于x 、y的方程组3x y q x y q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值. 【答案】(1)()5,3A 为爱心点,理由见解析;(2)第四象限,理由见解析;(3)0p =,q =23-【解析】【分析】(1)分别把A 、B 点坐标,代入(m ﹣1,22n +)中,求出m 和n 的值,然后代入2m =8+n 检验等号是否成立即可; (2)把点A (a ,﹣4)、B (4,b )各自代入(m ﹣1,22n +)中,分别用a 、b 表示出m 、n ,再代入2m =8+n 中可求出a 、b 的值,则可得A 和B 点的坐标,再根据中点坐标公式即可求出C 点坐标,然后即可判断点C 所在象限;(3)解方程组,用q 和p 表示x 和y ,然后代入2m =8+n 可得关于p 和q 的等式,再根据p ,q 为有理数,即可求出p 、q 的值.【详解】解:(1)A 点为“爱心点”,理由如下:当A (5,3)时,m ﹣1=5,22n +=3, 解得:m =6,n =4,则2m =12,8+n =12,所以2m =8+n ,所以A (5,3)是“爱心点”;当B (4,8)时,m ﹣1=4,22n +=8, 解得:m =5,n =14,显然2m ≠8+n ,所以B 点不是“爱心点”;(2)A 、B 两点的中点C 在第四象限,理由如下:∵点A (a ,﹣4)是“爱心点”,∴m﹣1=a,22n+=﹣4,解得:m=a+1,n=﹣10.代入2m=8+n,得2(a+1)=8﹣10,解得:a=﹣2,所以A点坐标为(﹣2,﹣4);∵点B(4,b)是“爱心点”,同理可得m=5,n=2b﹣2,代入2m=8+n,得:10=8+2b﹣2,解得:b=2.所以点B坐标为(4,2).∴A、B两点的中点C坐标为(2442,22-+-+),即(1,﹣1),在第四象限.(3)解关于x,y的方程组3x y qx y q⎧+=+⎪⎨-=-⎪⎩,得:2x qy q⎧=-⎪⎨=⎪⎩.∵点B(x,y)是“爱心点”,∴m﹣1﹣q,22n+=2q,解得:m﹣q+1,n=4q﹣2.代入2m=8+n,得:﹣2q+2=8+4q﹣2,整理得p﹣6q=4.∵p,q为有理数,若使﹣6q结果为有理数4,则P=0,所以﹣6q=4,解得:q=﹣23.所以P=0,q=﹣23.【点睛】本题是新定义题型,以“爱心点”为载体,主要考查了解二元一次方程组、中点坐标公式等知识以及阅读理解能力和迁移运用能力,正确理解题意、熟练掌握二元一次方程组的解法是关键.26.如图(1),在平面直角坐标系中,点A在x轴负半轴上,直线l x⊥轴于B,点C在直线l上,点C在x轴上方.(1)(),0A a ,(),2C b ,且,a b 满足2()|4|0a b a b ++-+= ,如图(2),过点C 作MN ∥AB ,点Q 是直线MN 上的点,在x 轴上是否存在点P ,使得ABC ∆ 的面积是BPQ 的面积的23 ?若存在,求出P 点坐标;若不存在,请说明理由.(2)如图(3),直线l 在 y 轴右侧,点E 是直线l 上动点,且点E 在 x 轴下方,过点E 作DE ∥AC 交y 轴于D ,且AF 、DF 分别平分CAB ∠、ODE ∠,则A F D ∠的度数是否发生变化?若不变,求出AFD ∠的度数;若变化,请说明理由. 【答案】(1)存在,P 点为()8,0或()4,0-;(2)AFD ∠的度数不变,AFD ∠=45︒【解析】【分析】(1)由非负数的性质可得a 、b 的方程组,解方程组即可求出a 、b 的值,于是可得点A 、C 坐标,进而可得S △ABC ,若x 轴上存在点P (m ,0),满足S △ABC =23S △BPQ ,可得关于m 的方程,解方程即可求出m 的值,从而可得点P 坐标; (2)如图4,过点F 作FH ∥AC ,设AC 交y 轴于点G ,根据平行公理的推论可得AC ∥FH ∥DE ,然后根据平行线的性质和角的和差可得∠AFD =∠GAF +∠1,由角平分线的性质和三角形的内角和定理可得2∠GAF +2∠1=90°,于是可得∠AFD =45°,从而可得结论.【详解】解:(1)∵,a b 满足2()|4|0a b a b ++-+=,∴040a b a b +=⎧⎨-+=⎩,解得:22a b =-⎧⎨=⎩, ∴()2,0A -,()2,2C ,∴S △ABC =14242⨯⨯=, ∵点Q 是直线MN 上的点,∴2Q y =,若x 轴上存在点P (m ,0),满足S △ABC =23S △BPQ , 则2122432m ⨯⋅-⨯=,解得:m =8或﹣4, 所以存在点P 满足S △ABC =23S △BPQ ,且P 点坐标为()8,0或()4,0-; (2)如图4,过点F 作FH ∥AC ,设AC 交y 轴于点G ,∵DE ∥AC ,∴AC ∥FH ∥DE ,∴∠GAF =∠AFH ,∠HFD =∠1,∠AGO =∠GDE ,∴∠AFD =∠AFH +∠HFD =∠GAF +∠1,∵AF 、DF 分别平分CAB ∠、ODE ∠,∴∠CAB =2∠GAF ,∠ODE =2∠1=∠AGO ,∵∠CAB +∠AGO =90°,∴2∠GAF +2∠1=90°,∴∠GAF +∠1=45°,即∠AFD =45°;∴AFD ∠的度数不会发生变化,且∠AFD =45°.【点睛】本题考查了非负数的性质、二元一次方程组的解法、坐标系中三角形的面积、平行线的性质、角平分线的定义以及三角形的内角和定理等知识,综合性强、但难度不大,正确添加辅助线、熟练掌握上述是解题的关键.。
山东省德州市庆云县2023-2024学年七年级下学期期中数学试题(解析版)
七年级期中数学试题一、选择题(本大题共12小题,每小题4分,共48分.)1. 的算术平方根是( )A.B. C.D. 【答案】A 【解析】【分析】此题主要考查了算术平方根的定义,解题的关键是算术平方根必须是正数,注意平方根和算术平方根的区别.直接根据算术平方根的定义即可求出结果.【详解】解:故选:A .2. 在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )A. B. C. D.【答案】D 【解析】【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案.【详解】解:观察图形可知图案D 通过平移后可以得到.故选:D .【点睛】本题考查了图形的平移,解题的关键是掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.3. 下列运算正确的是( )A. B.C.D.【答案】B【解析】141212-11612±21124⎛⎫=⎪⎝⎭Q 12=()239-=-4=-3=±5=-【分析】分别根据乘方的定义,立方根的定义,算术平方根的定义逐项判断即可求解.【详解】解:A. ,故原选项计算错误,不合题意;B. ,故原选项计算正确,符合题意;C. ,故原选项计算错误,不合题意;D.,故原选项计算错误,不合题意.故选:B【点睛】本题考查乘方的定义,立方根的定义,算术平方根的定义,熟知相关知识,能正确对各项进行化简是解题关键.4. 如图所示,下列条件中,能判断的是( )A. B. C.D.【答案】D 【解析】【分析】根据判定平行线的方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,即可解答.【详解】解:A 、根据,不能判断,故该选项错误;B 、根据,能判断,故该选项错误;C 、根据,能判断,故该选项错误;D 、根据,能判断,故该选项正确;故选:D .【点睛】本题考查了平行性的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5. 一把直尺和一个含,角的三角板如图所示摆放,直尺一边与三角板的两直角边分别交于,两点,另一边与三角板的两直角边分别交于,两点,且,那么的大小为()()239-=4=-3=5=AB CD BAD BCD ∠=∠12∠=∠3=4∠∠BAC ACD ∠=∠BAD BCD ∠=∠AB CD 12∠=∠AD CB ∥3=4∠∠BC CD =BAC ACD ∠=∠AB CD 30︒60︒F A D E =50CED ∠︒BAF ∠A. B. C. D. 【答案】A 【解析】【分析】先根据∠CED=50°,DE ∥AF ,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF 的大小.【详解】解:∵DE AF ,∠CED =50°,∴∠CAF =∠CED =50°,∵∠BAC =60°,∴∠BAF =60°﹣50°=10°.故选:A .【点睛】本题主要考查了平行线性质的运用,解题的关键是掌握平行线的性质:两直线平行,同位角相等.6. 在平面直角坐标系中,点 M (a 2+1,-3)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D 【解析】【详解】a 2+1>0,-3<0,所以点M 位于第四象限.故选D.7. 在平面直角坐标系中,点在轴上,则的值为( )A. 3 B. C.D. 【答案】D 【解析】【分析】根据平面直角坐标系中轴上的点纵坐标为进行求解即可.【详解】解:点在轴上,的10︒20︒30︒40︒//()3,21P a a -+x a 3-1212-x 0 ()3,21P a a -+x,,故选:.【点睛】本题考查了平面直角坐标系中点的坐标特征,熟练掌握轴上的点纵坐标都为零是解答本题的关键.8. 若,的值为( )A. B. C. D. 【答案】B 【解析】【分析】此题考查了非负数的性质和立方根,根据二次根式的被开方数和偶次方为非负数,得到相应的关系式求出、的值,然后代入求解,最后求数的立方根即可,正确运用非负数的性质是解题的关键.,∴,,解得:,,,故选:.9.健康骑行越来越受到老百姓的喜欢,自行车的示意图如图,其中.若,则的度数为()A. B. C. D.【答案】B 【解析】【分析】本题主要考查了平行线的性质.根据,可得,再由,可得,即可求解.【详解】解:∵,210a ∴+=12a ∴=-D x ab ()290b +-=2-22±3a b ()290b -=10a +=90b -=1a =-9b =2===B ,AB CD AE BD ∥∥60,80CDB ACD ∠=︒∠=︒EAC ∠60︒40︒20︒50︒AB CD 120,100ABD BAC ∠=︒∠=︒AE BD 60=︒∠BAE AB CD∴,∵,∴,∵,∴,∴,∴.故选:B .10. 如图所示,将一张长方形纸片斜折过去,使顶点A 落在处,为折痕,然后再把折过去,使之与重合,折痕为,若,则求的度数( )A. 29°B. 32°C. 34°D. 56°【答案】C 【解析】【分析】根据折叠的性质可得,,即可求解.【详解】解:根据题意得:,,∵,∴.故选:C【点睛】本题主要考查了图形的折叠,熟练掌握折叠的性质是解题的关键.11. 如图,面积为5的正方形的顶点在数轴上,且表示的数为1,若点在数轴上,(点在点的右侧)且,则点所表示的数为()180,180CDB ABD ACD BAC ∠+∠=︒∠+∠=︒60,80CDB ACD ∠=︒∠=︒120,100ABD BAC ∠=︒∠=︒AE BD 180BAE ABD ∠+∠=︒60=︒∠BAE 40CAE BAC BAE ∠=∠-∠=︒A 'BC BE BA 'BD 56ABC ∠=︒E BD '∠56CBA CBA '∠=∠=︒DBE DBE '∠=∠56CBA CBA '∠=∠=︒DBE DBE '∠=∠18068DBE DBE ABC A BC ''∠+∠=︒-∠-∠=︒168342E BD '∠=⨯︒=︒ABCD A E E A AB AE =EA.B. C.D.【答案】B 【解析】【分析】根据正方形的边长是面积的算术平方根得AB =AEA 点所表示的数及AE间距离可得点E 所表示的数.【详解】解:∵正方形ABCD的面积为5,且AB =AE ,∴AB =AE ∵点A 表示的数是1,且点E 在点A 右侧,∴点E 表示的数为:.故选:B .【点睛】本题主要考查实数与数轴及两点间距离,根据两点间距离及点的位置判断出点所表示的数是关键.12. 小静同学观察台球比赛,从中受到启发,抽象成数学问题如下:如图,已知长方形,小球P 从出发,沿如图所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,第一次碰到长方形的边时的位置为,当小球P 第2024次碰到长方形的边时,若不考虑阻力,点的坐标是( )121+OABC ()0,3()13,0P 2024PA. B. C. D. 【答案】B 【解析】【分析】本题考查了点的坐标规律性变化,解决此类问题的关键是找到待求量与序号之间的关系.按照反弹时反射角等于入射角,画出图形,可以发现每六次反射一个循环,最后回到起始点,然后计算2024有几个6即可求出对应点的坐标.【详解】解:按照反弹时反射角等于入射角,画出图形,如下图:,,,,,,,…,通过以上变化规律,可以发现每六次反射一个循环,∵,∴,∴点的坐标是.故选:B .二、填空题(本大题共6小题,每小题4分,共24分.)13. 计算:实数4的算术平方根是______.【答案】【解析】【分析】本题考查了求一个数的算术平方根,根据算术平方根的求法计算即可得出答案.【详解】解:实数4,故答案为:.14. 如图,直线相交于,则的度数为___________.()1,4()7,4()0,3()3,0()0,3()0,3P ()13,0P ()27,4P ()38,3P ()45,0P ()51,4P ()60,3P 20246337...2÷=22024P P =2024P ()7,422=2AB CD 、,,32O OE CD AOC ⊥∠=︒∠BOE ︒【答案】58【解析】【分析】由对顶角相等可得,由垂直的定义可得,根据,即可求出的度数.【详解】解:∵,∴,∵,∴,∴.故答案为:58.【点睛】本题考查了垂线、对顶角等知识点.挖掘题中的隐含条件得到直角是解答本题的关键.15. 生活中常见一种折叠拦道闸,若想求解某些特殊状态下的角度,需抽象为几何图形,如图,垂直于地面于A ,平行于地面,则______.【答案】##270度【解析】【分析】过点B 作,如图,由于,则,根据两直线平行,同旁内角互补得,由得,即,于是得到结论.本题主要考查了平行线的性质,正确作出辅助线,并熟记两直线平行,同旁内角互补是解决问题的关键.【详解】解:过点B 作,如图,32BOD ∠=︒90EOD ∠=︒BOE EOD BOD ∠=∠-∠∠BOE 32AOC ∠=︒32AOC BOD ∠=∠=︒OE CD ⊥90EOD ∠=︒903258BOE EOD BOD ︒︒︒∠=∠-∠=-=BA AE CD AE ABC BCD ∠+∠=270︒BF AE CD AE ∥BF CD ∥180BCD CBF ∠+∠=︒AB AE ⊥AB BF ⊥90ABF ∠=︒BF AE∵,∴,∴,∵,∴,∴,.故答案为:.16. 一个正数的两个平方根分别是和,则这个数为_____________.【答案】4【解析】【分析】根据平方根的性质即可得到结果;【详解】解:根据题意得,a-1+a+3=0,解得,a=-1,∴原数为22=4,故答案为:4.【点睛】本题考查平方根的性质,熟练掌握平方根的性质是解题的关键.17. 如图,∠C =90°,将直角三角形ABC 沿着射线BC 方向平移5cm ,得△A /B /C /,已知BC =3cm ,AC =4cm ,则阴影部分的面积为______cm ².【答案】14【解析】【分析】根据平移的性质可知=5 cm ,;由题意得=5-3=2 cm,再由梯形面积公式可得CD AE ∥BF CD ∥180BCD CBF ∠+∠=︒AB AE ⊥AB BF ⊥90ABF ∠=︒90180270ABC BCD ABF CBF BCD ∠+∠=∠+∠+∠=︒+︒=︒270︒1a -3a +'AA '//'AA CB 'CB答案.【详解】根据平移的性质可知=5 cm ,,由题意得=5-3=2 cm ,又由题意可知三角形ABC 是∠C=90°的直角三角形,AC=4cm ,即AC 为阴影部分的高,则阴影部分的面积为:(cm²).【点睛】本题考查了图形平移的性质和梯形面积的求法,解题的关键是熟练掌握图形平移的性质.18. 将一副三角板(,,)按如图放置则下列结论:①;②如果,则有;③如果,必有;④,其中正确的有______(填写序号)【答案】①②④【解析】【分析】本题考查了平行线的判定与性质,三角形的内角和等知识点,根据平行线的判定与性质和三角形的内角和进行逐一判断即可,解决本题的关键是掌握平行线的判定与性质.【详解】①∵,∴,∴,故①正确,符合题意;②∵,,如图,∴∴,故②正确,符合题意;③∵,,∴ ,∵,'AA '//'AA CB 'CB (52)4142+⨯=90BAC DAE ∠=∠=︒45C ∠=︒60E ∠=︒13∠=∠230∠=︒AB DE ⊥4∠=∠B BC AD 2180CAD ∠+∠=︒90BAC DAE ∠=∠=︒122390∠+∠=∠+∠=︒13∠=∠230∠=︒60E ∠=︒5180306090∠=︒-︒-︒=︒AB DE ⊥45C ∠=︒90BAC DAE ∠=∠=︒45B ∠=︒445B ∠=∠=︒∴,∴,而不能证出,故③错误,不符合题意;④∵,∴,故④正确,符合题意;故答案为:①②④.三、解答题(本大题共7小题,共78分)19. 求下列各式中的x :(1);(2).【答案】(1)或(2)【解析】【分析】本题主要考查了利用平方根和立方根解方程,解题关键熟练掌握平方根和立方根定义.(1)先方程两边同除以5,然后开平方即可;(2)先移项合并同类,然后利用立方根解方程即可.【小问1详解】解:,方程两边同除以2得:,开平方得:或;【小问2详解】解:,移项合并同类项得:,开立方得:.20. 如图,直角坐标系中,三角形的顶点都在网格点上,其中,C 点坐标为,是4C ∠=∠AC DE BC AD 1223180∠+∠+∠+∠=︒2180CAD ∠+∠=︒2250x =326x -=5x =5-2x =2250x =225x =5x =5-326x -=38x =2x =ABC ()12,(1)写出点A 、B 的坐标:A _____、B _____;(2)将三角形先向左平移2个单位长度,再向上平移1个单位长度,得到三角形,画出三角形,并写出三点坐标;(3)求三角形的面积.【答案】(1), (2)图见解析,,, (3)5【解析】【分析】(1)根据点的位置直接得到点的坐标;(2)根据平移的规律作图及确定点坐标即可;(3)根据所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【小问1详解】解:由题意知,,故答案为:,;【小问2详解】解:如图,即所求,,,;为ABC A B C '''A B C '''A B C '''、、ABC ()21-,()43,()00A ',()24B ',(13)C '-,ABC ()21A -,()43B ,()21-,()43,A B C ''' ()00A ',()24B ',(13)C '-,;【小问3详解】解:.【点睛】此题考查了平移作图,确定点的坐标,割补法求几何图形的面积,正确掌握平移的性质作出平移的图形是解题的关键.21. 定义:若有序数对满足二元一次方程(a ,b 为不等于0的常数),则称为二元一次方程的数对解.例如:有序数对满足,则称为的数对解.(1)下列有序数对是二元一次方程的数对解的是__________.(填序号)①,②,③.(2)若有序数对为方程的一个数对解,且p ,q 为正整数,求p ,q 的值.【答案】(1)②③ (2)或【解析】【详解】(1)②③(2)∵有序数对为方程的一个数对解,∴.整理,得.∵p ,q 为正整数,∴或.111341313245222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯= (),x y ax by c +=(),x y ax by c +=()1,3-36x y -=-()1,3-36x y -=-24x y +=1,32⎛⎫- ⎪⎝⎭()1,6-()1,2(),5p q p ++21x y -=41p q =⎧⎨=⎩22p q =⎧⎨=⎩(),5p q p ++21x y -=()()251p q p +-+=26p q +=41p q =⎧⎨=⎩22p q =⎧⎨=⎩22. 如图,已知,,.(1)请写出图中除和之外的平行线,并说明理由;(2)结合(1)中所得的结论,判断与的数量关系,并说明理由.【答案】(1),,理由见解析(2),理由见解析【解析】【分析】(1)根据平行线的判定与性质求解即可;(2)根据平行线的性质求解即可.【小问1详解】解:,,理由为:∵,∴,,∵,,∴,,∴,;【小问2详解】解:.理由为:∵,,∴,,∴.【点睛】本题考查平行线的判定与性质、等角的补角相等,熟练掌握平行线的判定与性质是解答的关键.23. 阅读下面的文字,解答问题:的小数部分,事实上,的整数部分是1,将这个数减去整数部分,差就是小数部分.又例如:AD BC ∥1B ∠=∠23∠∠=AD BC BED ∠ACD ∠AB CD ∥AC DE ∥BED ACD ∠=∠AB CD ∥AC DE ∥AD BC ∥1180BCD ∠+∠=︒3CAD ∠=∠1B ∠=∠23∠∠=180B BCD ∠+∠=︒2CAD ∠=∠AB CD ∥AC DE ∥BED ACD ∠=∠AB CD ∥AC DE ∥180BED EDC ∠+∠=︒180ACD EDC ∠+∠=︒BED ACD ∠=∠1,即,的整数部分为2.请解答:(1______,小数部分是______;(2的小数部分为a的整数部分为b ,求【答案】(1)4(2)【解析】【分析】本题考查了无理数的估算,实数的运算等知识,解题的关键是:(1)类似例题方法求解即可;(2)类似例题方法求出a 、b 的值,然后代入计算即可.【小问1详解】解:,即,4.故答案为:4;【小问2详解】解:,的整数部分为2,∴,,即,的整数部分为3,∴,∴.24. 问题情境综合实践课上,老师组织七年级(2)班的同学开展了探究两角之间数量关系的数学活动,如图,已知射线,连接,点P 是射线上的一个动点(与点A 不重合),,分别平分<<23<<2-a b +-4-1<<45<<44-<<23<<2-2a =-<<34<<33b =231a b +=-+=AM BN ∥AB AM BC BD ABP ∠和,分别交射线于点C ,D .探索发现“快乐小组”经过探索后发现:(1)当时,求证:.(2)不断改变的度数,与却始终存在某种数量关系,当,则______度,当时,则_______度,(用含x 的代数式表示)操作探究(3)“智慧小组”利用量角器量出和的度数后,探究二者之间的数量关系.他们惊奇地发现,当点P 在射线上运动时,无论点P 在上的什么位置,与之间的数量关系都保持不变,请写出它们的关系,并说明理由.【答案】(1)见解析;(2),;(3),理由见解析【解析】【分析】本题考查了平行线的性质,角平分线的定义,解题的关键是:(1)利用平行线的性质求出的度数,利用角平分线的定义可得出,即可得证;(2)利用角平分线的定义可得出,利用平行线的性质得出,进而求出,然后代入的度数即可求解;(3)利用角平分线的定义可得出,利用平行线的性质可得出,,即可得证.详解】(1)证明∶∵,∴,又∵,∴.∵,分别平分和,【PBN ∠AM 60A ∠=︒CBD A ∠=∠A ∠CBD ∠A ∠40A ∠=︒CBD ∠=A x ∠=︒CBD ∠=APB ∠ADB ∠AM AM APB ∠ADB ∠70902x ⎛⎫-⎪⎝⎭2APB ADB ∠=∠ABN ∠1602CBD ABN ∠=∠=︒12CBD ABN ∠=∠180ABN A ∠=︒-∠1802A CBD ︒-∠∠=A ∠2PBN NBD ∠=∠PBN APB ∠=∠NBD ADB ∠=∠AM BN ∥180A ABN ∠+∠=︒60A ∠=︒180120ABN A ∠=︒-∠=︒BC BD ABP ∠PBN ∠∴,,∴,∴.(2)解:∵,分别平分和,∴,,∴,∵,∴,∴,∴,当时,则,当时,则,故答案为:70,;(3)解:理由如下:∵平分,∴∵,∴,,∴.25. 如图1,在平面直角坐标系中,点A 、B 的坐标分别为,.且a 、b 满足,现同时将点A ,B 分别向下平移2个单位,再向左平移1个单位,分别得到点A ,B 的对应点C ,D .连接,,,.12CBP ABP ∠=∠12DBP PBN ∠=∠11160222CBD CBP DBP ABP PBN ABN ∠=∠+∠=∠+∠=∠=︒CBD A ∠=∠BC BD ABP ∠PBN ∠12CBP ABP ∠=∠12DBP PBN ∠=∠111222CBD CBP DBP ABP PBN ABN ∠=∠+∠=∠+∠=∠AM BN ∥180A ABN ∠+∠=︒180ABN A ∠=︒-∠1802A CBD ︒-∠∠=40A ∠=︒18040702CBD ︒-︒∠==︒A x ∠=︒1809022x x CBD ︒-︒⎛⎫∠==-︒ ⎪⎝⎭902x ⎛⎫- ⎪⎝⎭2APB ADB∠=∠BD PBN ∠2PBN NBD∠=∠AM BN ∥PBN APB ∠=∠NBD ADB ∠=∠2APB ADB ∠=∠()0,A a (),B b a ()240b -=AC BD AB BC(1)求点C ,D 的坐标及三角形面积;(2)若点E 在y 轴负半轴上,连接、,如图2,请判断、,的数量关系?并说明理由;(3)在x 轴正半轴或y 轴正半轴上是否存在点M .使三角形的面积是三角形面积的?若存在,请求出点M 的坐标;若不存在,试说明理由.【答案】(1),,(2),理由见解析(3)存在,,【解析】【分析】(1)运用非负数的性质,确定a ,b 的值,得到A ,B 的坐标,根据平移的规律得到C ,D 的坐标,根据计算即可.(2)如图,过点E 作,则,运用平行线性质证明即可.(3)设点M 坐标或点M 坐标为,根据面积公式计算即可.本题考查了实数的非负性,坐标及其平移,平行线的判定和性质,熟练掌握实数的非负性,平行线的判定和性质,三角形面积坐标表示法是解题的关键.【小问1详解】∵,∴,,∴,,将点A ,B 分别向下平移2个单位,再向左平移1个单位,分别得到点A ,B 的对应点C ,D ,为BCD BE DE 1∠2∠3∠BMD BCD 54()1,0C -()3,0D 4123∠=∠+∠()0,4()8,012BCD S CD OA =⨯⨯ EF AB EF AB CD ()0m ,()0n ,()240b -=.2a =4b =()02A ,()42B ,∴,,∵,,∴,【小问2详解】,理由如下:如图,过点E 作,∵,∴,∴,∵∴;【小问3详解】∵三角形的面积是三角形面积的∴的面积,当点M 在x 轴正半轴上时,设点,∴,∴,∴,且点,∴点或点(不合题意舍去),()10C -,()30D ,AB CD 4AB CD ==1142422BCD S CD OA =⨯⨯=⨯⨯= 123∠=∠+∠EF AB AB CD EF AB CD 1BEF ∠=∠2DEF∠=∠1BEF DEF∠=∠+∠123∠=∠+∠BMD BCD 54BMD 5454=⨯=()0M m ,152BMD S DM AO =⨯⨯= 210DM =5DM =()30D ,()80M ,()20M -,当点M 在y 轴正半轴上时,设点,如图,点M 在线段上时,∵∴∴(不合题意舍去),如图,点M 在线段的延长线上,∵∴∴,∴点综上所述:当点或时,使三角形的面积是三角形面积的()0M n ,OA 5BMD ABM MOD AODB S S S S =--= 梯形()342113425222n n +⨯-⨯⨯-⨯⨯-=()4n =OA 5BMD ABM MOD AODB S S S S =+-= 梯形()342113425222n n +⨯+⨯⨯-⨯⨯-=()4n =()04M ,()04M ,()80,BMD BCD 54。
2021新人教版七年级下数学期中试卷(A卷全套)
B EDAC FE CD B A七年级(下)数学半期综合测试卷班级 姓名 学号 得分一、选择题(每题4分,共44分)1. 下列运算,正确的是()A .2235a a a +=B .428a a a =÷ C .32743a a a -= D 、()527)(a a a -=-÷-2、下列说法错误的是 ( )A、内错角相等,两直线平行. B、两直线平行,同旁内角互补. C、同角的补角相等. D、相等的角是对顶角.3、计算1009922-+-()()所得的结果是( ) A .-2B .2C .992D .992-4、某种原子的半径为0.0000000002米,用科学记数法可表示为( )。
A 、0.2×10-10米 B 、2×10-10米 C 、2×10-11米 D 、0.2×10-11米 5、如果一个角的补角是150°,那么这个角的度数是( )A. 30°B. 60°C.90°D.120216、如图6,若AB ∥CD ,则下列结论中错误的是:A 、∠1=∠2B 、∠2+∠5=180°C 、∠2+∠3=180°D 、∠3+∠4=180° 7、在下列说法中,正确的有( ).①两点确定一条直线;②过一点有且只有一条直线与已知直线平行;③垂直于同一条直线的两条直线垂直;④平行于同一条直线的两条直线平行; ⑤互补的两个角是邻补角;⑥过一点有且只有一条直线与已知直线垂直 A 、1个 B 、2个 C 、3个 D 、4个 8.如图,AB ∥DE ,︒=∠65E ,则=∠+∠C B ( )A 、︒135B 、︒115C 、︒36D 、︒659.若)2)(5(+-x x = q px x ++2,则q p ,的值是( ) (8题图)A 、3,10B 、-3,-10C 、-3,10D 、3,-10 10.a m =3,a n =2,则nm a 32÷等于( )A 、0B 、1C 、23 D 、89 11.若012=--x x ,则=+-22xx ( )A. 1B. 2C. 3D. 4 二、填空题(每小题5分,共30分 )12、 如果多项式249x mx ++是一个完全平方式,则m 的值是______13、多项式5282-+x x 与另一个多项式的和是352+-x x ,则另一个多项式是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DA BFEGC2020-2021学年度第二学期期中考试试卷初一 数学班级_____姓名_____学号_____注意:时间100分钟,满分12021一、选择题(每题3分,共30分) 1.2的相反数是 ( )A.2B.2-C.2-D.2+12. 下列图形中,不能..通过其中一个四边形平移得到的是 ( )3. 若a <b ,则下列结论正确的是( )A. -a <-bB.a 2>b 2C. 1-a <1-bD.a +3>b +34. 在平面直角坐标系xoy 中,若点P 在第四象限,且点P 到x 轴的距离为1,到y 轴5P 的坐标为( )A . (1,5- )B . (1,5-)C . (1,5-)D . (5,1-)5. 如图,AB ∥CD ∥EF ,AF ∥CG ,则图中与∠A (不包括∠A)相等的角有( )A .1个B .2个C .3个D .4个6. 在坐标平面上两点A (-a +2,-b +1)、B (3a , b ),若点A 向右移动2个单位长度后,再向下移动3个单位长度后与点B 重合,则点B 所在的象限为( ). A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限7. 下列命题中,是真命题的个数是( )①两条直线被第三条直线所截,同位角相等(A )(C )(D )(B )A . B . C . D .第5题图②过一点有且只有一条直线与已知直线垂直③两个无理数的积一定是无理数④A.1个B.2个C.3个D.4个8.如图,∠ACB=90º,CD⊥AB于D,则下面的结论中,正确的是( )①AC与BC互相垂直②CD和BC互相垂直③点B到AC的垂线段是线段CA④点C到AB的距离是线段CD⑤线段AC的长度是点A到BC的距离.A.①⑤B.①④C.③⑤D.④⑤9. 车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是( )A.150°B.180°C.270°D.360°10. 对于不等式组⎩⎨⎧<>bxax(a、b是常数),下列说法正确的是( )A.当a<b时无解B.当a≥b时无解C.当a≥b时有解D.当ba=时有解二、填空题(每题2分,共202111. 在下列各数0.51525354、0、0.2、3π、22713111无理数有.12. 若一个数的算术平方根与它的立方根相同,则这个数是.13. 当x_________14. 如图所示,直线AB与直线CD相交于点O,EO⊥AB,∠EOD=25°,则∠AOC=__________,∠BOC=__________班级_____姓名_____学号_____A BC15. 已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b的值为__________16. 把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:17. 已知点M (3a -8, a -1).(1) 若点M 在第二象限, 并且a 为整数, 则点M 的坐标为 _________________; (2) 若N 点坐标为 (3, -6), 并且直线MN ∥x 轴, 则点M 的坐标为 ___________ .18. 如图,一条公路修到湖边时,需拐弯绕湖而过; 如果第一次拐角∠A 是12021第二次拐角∠B 是150°,第三次拐角是∠C ,这时的道路恰好和 第一次拐弯之前的道路平行,则∠C 是__________19. 如图,点A(1,0)第一次跳动至点A 1(-1,1), 第二次跳动至点A 2(2,1),第三次跳动至点 A 3(-2,2),第四次跳动至点A 4(3,2),…, 依此规律跳动下去,点A 第100次跳动至 点A 100的坐标是______________.2021图a , ABCD 是长方形纸带(AD ∥BC ), ∠DEF =19°, 将纸带沿EF 折叠成图b , 再沿BF 折叠成图c , 则图c 中的∠CFE 的度数是_____________;如果按照这样的方式再继续折叠下去,直到不能折叠为止,那么先后一共折叠的次数是_____________.三、解答题(21-23每题4分,24-25每题5分,26-29每题6分,30题3分,共49分) 21. 计算:3492712-+-+2514()- . 22.解方程:3(1)64x -=第18题图BA图a图b 图c AB CD EFGAAEEDFB BGCD CF第19题图23. 解不等式5122(43)x x --≤,并把解集在数轴上表示出来.24. 解不等式组⎪⎩⎪⎨⎧+<-+-≤-32121212x x x x ,并写出该不等式组的整数解.25. 已知:)0,4(A ,),3(y B ,点C 在x 轴上,5=AC . (1)直接写出点C 的坐标; (2)若10=∆ABC S ,求点B 的坐标.26. 某地为更好治理湖水水质,治污部门决定购买10台污水处理设备.现有A B ,两种 A 型 B 型价格(万元/台)a b 处理污水量(吨/月) 240 200经调查:A 型设备比购买3台B 型设备少6万元. (1)求a b ,的值.(2)经预算:治污部门购买污水处理设备的资金不超过105万元,你认为该部门有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理的污水量不低于2021吨,为了节约资金,请你为治污部门设计一种最省钱的购买方案.7. 如图,点A 在∠O 的一边OA 上.按要求画图并填空:(1)过点A 画直线AB ⊥OA ,与∠O 的另一边相交于点B ; (2)过点A 画OB 的垂线段AC ,垂足为点C ; (3)过点C 画直线CD ∥OA ,交直线AB 于点D ;A D FEH BC(4)∠CDB= °;(5)如果OA=8,AB=6,OB=10,则点A 到直线OB 的距离为 .28. 完成证明并写出推理根据:已知,如图,∠1=132o ,∠ACB =48o ,∠2=∠3,FH ⊥AB 于H , 求证:CD ⊥AB .证明:∵∠1=132o ,∠ACB =48o ,∴∠1+∠ACB =180° ∴DE ∥BC∴∠2=∠DCB(____________________________) 又∵∠2=∠3 ∴∠3=∠DCB∴HF ∥DC(____________________________) ∴∠CDB=∠FHB. (____________________________) 又∵FH ⊥AB,∴∠FHB=90°(____________________________) ∴∠CDB=________°.∴CD ⊥AB. (____________________________)29. 在平面直角坐标系中, A 、B 、C 三点的坐标分别为(-6, 7)、(-3,0)、(0,3).(1)画出△ABC ,则△ABC 的面积为___________; (2)在△ABC 中,点C 经过平移后的对应点为 C ’(5,4),将△ABC 作同样的平移得到△A ’B ’C ’, 画出平移后的△A ’B ’C ’,写出点A ’,B ’的坐标为AOA ’ (_______,_____),B ’ (_______,______);(3)P (-3, m )为△ABC 中一点,将点P 向右平移4个单位后,再向下平移6个单位得到点Q(n ,-3),则m = ,n = .30.两条平行线中一条直线上的点到另一条直线的垂线段的长度叫做两条平行线间的距离。
定义:平面内的直线1l 与2l 相交于点O ,对于该平面内任意一点M ,点M 到直线1l ,2l 的距离分别为a 、b ,则称有序非负实数对(a,b )是点M 的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是 .班级_____ 姓名_____ 学号_____ 分层班级_____ 四、解答题(每题7分,共21分)31. 已知:如图, AE ⊥BC , FG ⊥BC , ∠1=∠2, ∠D =∠3+60︒, ∠CBD =70︒. (1)求证:AB ∥CD ; (2)求∠C 的度数.32. 已知非负数x 、y 、z 满足123234x y z ---==,设345x y z ω=++, 求ω的最大值与最小值.33. 如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时 将点A ,B 向上平移2个单位,再向右平移1个单位,得到点A ,B 的对应点分别是C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积ABDCS 四边形.321FGA E CBOyxDCBA(2)在y 轴上是否存在点P ,连接P A ,PB ,使PABS ∆=ABDCS 四边形,若存在这样的点,求出点P 的坐标,若不存在,试说明理由.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①DCP CPOBOP ∠+∠∠的值不变 ②DCP BOP CPO ∠+∠∠的值不变 ③CPD OPB S S ∆∆+的值可以等于52 ④CPD OPB S S ∆∆+的值可以等于134以上结论中正确的是:______________第18题图初一数学参考答案及评分标准一、选择题(每题3分,共30分) BDCAD DAACB二、填空题(每题2分,共2021 11. 无理数有0.51525354、3π、39、2712. 若一个数的算术平方根与它的立方根相同,则这个数是 0和1 . 13. 当32x ≤时,32x -有意义 14. 如图所示,直线AB 与直线CD 相交于点O ,EO ⊥AB , ∠EOD =25°,则∠AOC =____65°___,∠BOC =___115°____15. 已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b 的值为___-2_____16. “在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行” 17. 已知点M (3a -8, a -1). (1)点M _(-2,1)__; (2)点M ___(-23,-6)_ . 18. 如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A 是12021第二次拐角∠B 是150°,第三次拐角是∠C ,这时 的道路恰好和第一次拐弯之前的道路平行,则∠C 是__150°_19. 如图,点A(1,0)第一次跳动至点A 1(-1,1), 第二次跳动至点A 2(2,1),第三次跳动至点 A 3(-2,2),第四次跳动至点A 4(3,2),…, 依此规律跳动下去,点A 第100次跳动至 点A 100的坐标是(51,50)2021c 中的∠CFE 的度数是___123°____;如果按照这样的方式再继续折叠下去,直到不能折叠为止,那么先后一共折叠的次数是 __ 9________.三、解答题(21-23每题4分,24-25每题5分,26-29每题6分,30题3分,共49分) 21. 计算:3492712-+-+2)451(- .图a图b图cABC D EFGAAEEDFBBGCDCFDABOE第14题图BA解:原式=7-3+1214-+=1324+ ……………………4分22.解方程:3(1)64x -=解:3641=-x -----1分41=-x ------2分5=x ------4分23. 解不等式5122(43)x x --≤,并把解集在数轴上表示出来. 解:去括号,得51286x x --≤.移项,得58612x x --+≤.…………………………………1分 合并,得36x -≤. …………………………………………2分 系数化为1,得2x -≥…………………………………………3分 不等式的解集在数轴上表示如下:…………………………………………4分 24. 解不等式组⎪⎩⎪⎨⎧+<-+-≤-32121212x x x x ,并写出该不等式组的整数解.解:由不等式212+-≤-x x ,得1≤x ;………………1分由不等式32121xx +<-得: x >-5;………………2分 画出数轴: ………………3分所以该不等式组的解集为:-5<x≤1,………………4分所以该不等式组的整数解是-4,-3,-2,-1,0,1.………………5分 25. 已知:)0,4(A ,),3(y B ,点C 在x 轴上,5=AC . (1)直接写出点C 的坐标; (2)若10=∆ABC S ,求点B 的坐标.解:∵A(4,0),点C 在x 轴上,AC=5,所以点C 的坐标是(-1,0)或(9,0). ……………2分 ②S △ABC=152y ⨯⨯=10 解得y=4或-4………………………4分所以点B 坐标是B(3,-4)或(3,4)………………………5分1 2 3 0 1-2-3-26. 某地为更好治理湖水水质,治污部门决定购买10台污水处理设备.现有A B ,两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) ab处理污水量(吨/月)240200经调查:购买一台型设备比购买一台型设备多2万元,购买2台型设备比购买3台B 型设备少6万元.(1)求a b ,的值.(2)经预算:治污部门购买污水处理设备的资金不超过105万元,你认为该部门有哪几种购买方案. (3)在(2)问的条件下,若每月要求处理的污水量不低于2021吨,为了节约资金,请你为治污部门设计一种最省钱的购买方案. 解:(1)由题意得,⎩⎨⎧-==-6322b a b a ,解得 ⎩⎨⎧==1012b a .………………2分(2)设买x 台A 型,则买 (10-x)台B 型,有105)10(1012≤-+x x 解得:25≤x ………………3分 答:可买10台B 型;或 1台A 型,9台B 型;或2台A 型,8台B 型. ………………4分 (3) 设买x 台A 型,则由题意可得200(10)2040240x x +-≥………………5分 解得 1≥x当x=1时,花费 102910112=⨯+⨯ (万元) 当x=2时,花费 104810212=⨯+⨯ (万元)答:买1台A 型,9台B 型设备时最省钱.27. 如图,点A 在∠O 的一边OA 上.按要求画图并填空:(1)过点A 画直线AB ⊥OA ,与∠O 的另一边相交于点B ; (2)过点A 画OB 的垂线段AC ,垂足为点C ;(3)过点C 画直线CD ∥OA ,交直线AB 于点D ;(4)∠CDB= °;(5)如果OA=8,AB=6,OB=10,则点A 到直线OB 的距离为 .解:(1)如图; ……………………………1分(2)如图; ………………… ………2分(3)如图; ………………… ………3分 (4)90; ………………………………4分(5)4.8. …………………………………6分28. 完成证明并写出推理根据:已知,如图,∠1=132o ,∠ACB =48o ,∠2=∠3,FH ⊥AB 于H ,求证:CD ⊥AB .AO DC AB OAD FEH BC证明:∵∠1=132o ,∠ACB =48o ,∴∠1+∠ACB =180° ∴DE ∥BC∴∠2=∠DCB(__两直线平行,内错角相等__) 又∵∠2=∠3 ∴∠3=∠DCB∴HF ∥DC(__同位角相等,两直线平行__)∴∠CDB=∠FHB. (_____两直线平行,同位角相等___) 又∵FH ⊥AB,∴∠FHB=90°(___垂直定义_______) ∴∠CDB=__90_°.∴CD ⊥AB. (____垂直定义_________)29. 在平面直角坐标系中, A 、B 、C 三点的坐标分别为(-6, 7)、(-3,0)、(0,3). (1)画出△ABC ,则△ABC 的面积为___________;(2)在△ABC 中,点C 经过平移后的对应点为C ’(5,4),将△ABC 作同样的平移得到△A ’B ’C ’,画出平移后的△A ’B ’C ’,并写出点A ’,B ’的坐标;(3)P (-3, m )为△ABC 中一点,将点P 向右平移4个单位后,再向下平移6个单位得到点Q(n ,-3),则m = ,n = .解:(1)如图,过A 作AH ⊥x 轴于点H .ABC AHB OBC AHOC S S S S ∆∆∆=--梯1()2AH OC HO =+⋅1122AH BH OB OC -⋅-⋅111(73)67333222=⨯+⨯-⨯⨯-⨯⨯15=. (1)分(2)画图△A ’B ’C ’,(18)A '-,,(2)B ',1; ····· 4分 (3)m =3,n =1. ……6分30.两条平行线中一条直线上的点到另一条直线的垂线段的长度叫做两条平行线间的距离。