有理数的四则运算
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的四则运算
有理数是指可以表示为分数形式的数,包括整数、分数和小数。在实际生活和工作中,有理数的加减乘除运算非常常见,因此掌
握有理数的四则运算方法是非常重要的。
一、有理数的加法和减法
有理数的加法和减法可以统一起来看待,只要注意正负号的变
化即可。
1.同号相加减法:将两个同号的有理数的绝对值相加减,并且
取共同的符号。
例如:3+5=8; -2 +(-5) = -7; 4-3=1; -6-(-9)=3。
2.异号相加减法:将两个异号的有理数的绝对值相减,取较大
的绝对值的符号。
例如:2+(-4)=-2; 6-(-7)=13。
二、有理数的乘法
有理数的乘法遵循以下原则:
正数乘正数得正数,正数乘负数得负数,负数乘负数得正数。0乘任何数得0。
例如:2×3=6;-2×3=-6;-2×(-3)=6;0×7=0。
三、有理数的除法
有理数的除法需要注意以下几点:
1.除法的时候注意分母不为0。
2.当一个正数除以另一个正数时,结果为正数;一个负数除以另一个负数时,结果也为正数;一个正数除以一个负数时,结果为负数;一个负数除以一个正数时,结果也为负数。
例如:12÷3=4;16÷(-4)=-4;(-8)÷(-2)=4;(-12)÷3=-4。
3.可以将除法转化为乘法,例如a÷b=a×(1/b),这样就可以使用乘法的规则来进行计算。
例如:16÷4=16×(1/4)=4。
总结
有理数的四则运算是数学中非常基础的部分,我们需要掌握其中的规则,进行正确的计算。在运算的时候,我们需要注意符号的变化,以及除数不为0的情况。掌握有理数的四则运算方法,不仅可以解决日常生活和工作中的计算问题,更重要的是可以为我们日后的学习打下坚实的基础。