遵义下册抛体运动单元复习练习(Word版 含答案)
贵州省遵义市第四中学下册抛体运动(篇)(Word版 含解析)
一、第五章抛体运动易错题培优(难)1.一阶梯如图所示,其中每级台阶的高度和宽度都是0.4m,一小球以水平速度v飞出,欲打在第四台阶上,则v的取值范围是()A6m/s22m/sv<<B.22m/s 3.5m/sv<≤C2m/s6m/sv<<D6m/s23m/sv<<【答案】A【解析】【分析】【详解】若小球打在第四级台阶的边缘上高度4h d=,根据2112h gt=,得1880.4s0.32s10dtg⨯===水平位移14x d=则平抛的最大速度1112m/s0.32xvt===若小球打在第三级台阶的边缘上,高度3h d=,根据2212h gt=,得260.24sdtg==水平位移23x d=,则平抛运动的最小速度2226m/s0.24xvt===所以速度范围6m/s22m/sv<<故A正确。
故选A。
【点睛】对于平抛运动的临界问题,可以通过画它们的运动草图确定其临界状态及对应的临界条件。
2.如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M ,长杆的一端放在地上通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方O 点处,在杆的中点C 处拴一细绳,绕过两个滑轮后挂上重物M ,C 点与O 点距离为L ,现在杆的另一端用力,使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平位置(转过了90︒角),此过程中下述说法中正确的是( )A .重物M 做匀速直线运动B .重物M 先超重后失重C .重物M 的最大速度是L ω,此时杆水平D .重物M 的速度先减小后增大 【答案】B 【解析】 【分析】 【详解】ACD .设C 点线速度方向与绳子沿线的夹角为θ(锐角),由题知C 点的线速度为c v L ω=该线速度在绳子方向上的分速度为1v1cos v L ωθ=θ的变化规律是从开始最大(90°)然后逐渐变小,所以1v 逐渐变大,直至绳子和杆垂直,θ变为零度,绳子的速度变为最大,为ωL ;然后,θ又逐渐增大,1v 逐渐变小,绳子的速度变慢。
高一物理下册抛体运动单元复习练习(Word版 含答案)
一、第五章抛体运动易错题培优(难)1.如图,光滑斜面的倾角为θ=45°,斜面足够长,在斜面上A点向斜上方抛出一小球,初速度方向与水平方向夹角为α,小球与斜面垂直碰撞于D点,不计空气阻力;若小球与斜面碰撞后返回A点,碰撞时间极短,且碰撞前后能量无损失,重力加速度g取10m/s2。
则可以求出的物理量是()A.α的值B.小球的初速度v0C.小球在空中运动时间D.小球初动能【答案】A【解析】【分析】【详解】设初速度v0与竖直方向夹角β,则β=90°−α(1);由A点斜抛至至最高点时,设水平位移为x1,竖直位移为y1,由最高点至碰撞点D的平抛过程Ⅱ中水平位移为x2,竖直位移y2。
A点抛出时:sinxv vβ=(2)10cosyv vβ=(3)2112yvyg=(4)小球垂直打到斜面时,碰撞无能力损失,设竖直方向速度v y2,则水平方向速度保持0sinxv vβ=不变,斜面倾角θ=45°,20tan45siny x xv v v vβ===(5)2222yyyg=(6)()22212cos sin2vy y ygββ-∆=-=(7),平抛运动中,速度的偏向角正切值等于位移偏向角的正切值的二倍,所以:()111111tan90222tanyxvyx vββ==-=(8)由(8)变形化解:211cos sin2tanvx ygβββ==(9)同理,Ⅱ中水平位移为:2222sin2tan45vx ygβ==(10)()212sin sin cosvx x xgβββ+=+=总(11)=tan45yx∆总故=y x∆总即2sin sin cosβββ-=-(12)由此得1tan3β=19090arctan3αβ=-=-故可求得α的值,其他选项无法求出;故选:A。
2.如图所示,一根长木杆ab两端分别固定在水平地面和竖直墙壁aO上,已知杆与水平地面之间的夹角为θ=53°,a点到地面的距离为12m。
物理高一下册 抛体运动单元练习(Word版 含答案)
一、第五章抛体运动易错题培优(难)1.如图,光滑斜面的倾角为θ=45°,斜面足够长,在斜面上A点向斜上方抛出一小球,初速度方向与水平方向夹角为α,小球与斜面垂直碰撞于D点,不计空气阻力;若小球与斜面碰撞后返回A点,碰撞时间极短,且碰撞前后能量无损失,重力加速度g取10m/s2。
则可以求出的物理量是()A.α的值B.小球的初速度v0C.小球在空中运动时间D.小球初动能【答案】A【解析】【分析】【详解】设初速度v0与竖直方向夹角β,则β=90°−α(1);由A点斜抛至至最高点时,设水平位移为x1,竖直位移为y1,由最高点至碰撞点D的平抛过程Ⅱ中水平位移为x2,竖直位移y2。
A点抛出时:sinxv vβ=(2)10cosyv vβ=(3)2112yvyg=(4)小球垂直打到斜面时,碰撞无能力损失,设竖直方向速度v y2,则水平方向速度保持0sinxv vβ=不变,斜面倾角θ=45°,20tan45siny x xv v v vβ===(5)2222yyyg=(6)()22212cos sin2vy y ygββ-∆=-=(7),平抛运动中,速度的偏向角正切值等于位移偏向角的正切值的二倍,所以:()111111tan90222tanyxvyx vββ==-=(8)由(8)变形化解:211cos sin2tanvx ygβββ==(9)同理,Ⅱ中水平位移为:2222sin2tan45vx ygβ==(10)()212sin sin cosvx x xgβββ+=+=总(11)=tan45yx∆总故=y x∆总即2sin sin cosβββ-=-(12)由此得1tan3β=19090arctan3αβ=-=-故可求得α的值,其他选项无法求出;故选:A。
2.如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M,长杆的一端放在地上通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方O点处,在杆的中点C处拴一细绳,绕过两个滑轮后挂上重物M,C点与O点距离为L,现在杆的另一端用力,使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平位置(转过了90︒角),此过程中下述说法中正确的是()A.重物M做匀速直线运动B.重物M先超重后失重C.重物M的最大速度是Lω,此时杆水平D .重物M 的速度先减小后增大 【答案】B 【解析】 【分析】 【详解】ACD .设C 点线速度方向与绳子沿线的夹角为θ(锐角),由题知C 点的线速度为c v L ω=该线速度在绳子方向上的分速度为1v1cos v L ωθ=θ的变化规律是从开始最大(90°)然后逐渐变小,所以1v 逐渐变大,直至绳子和杆垂直,θ变为零度,绳子的速度变为最大,为ωL ;然后,θ又逐渐增大,1v 逐渐变小,绳子的速度变慢。
高一物理下册 抛体运动单元综合测试(Word版 含答案)
一、第五章抛体运动易错题培优(难)1.如图所示,半径为R的半球形碗竖直固定,直径AB水平,一质量为m的小球(可视为质点)由直径AB上的某点以初速度v0水平抛出,小球落进碗内与内壁碰撞,碰撞时速度大小为2gR,结果小球刚好能回到抛出点,设碰撞过程中不损失机械能,重力加速度为g,则初速度v0大小应为()A.gR B.2gR C.3gR D.2gR【答案】C【解析】小球欲回到抛出点,与弧面的碰撞必须是垂直弧面的碰撞,即速度方向沿弧AB的半径方向.设碰撞点和O的连线与水平夹角α,抛出点和碰撞点连线与水平夹角为β,如图,则由21sin2y gt Rα==,得2sinRtgα=,竖直方向的分速度为2sinyv gt gRα==,水平方向的分速度为22(2)(2sin)42sinv gR gR gR gRαα=-=-,又00tan yv gtv vα==,而20012tan2gt gtv t vβ==,所以tan2tanαβ=,物体沿水平方向的位移为2cosx Rα=,又0x v t=,联立以上的方程可得3v gR=,C正确.2.如图所示,一小球从一半圆轨道左端A点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B点。
O为半圆轨道圆心,半圆轨道半径为R,OB与水平方向夹角为30°,重力加速度为g,不计空气阻力,则小球抛出时的初速度大小为()A (323)6gR +B 332gRC (13)3gR +D 33gR 【答案】A 【解析】 【分析】根据题意,小球在飞行过程中恰好与半圆轨道相切于B 点,可知速度的方向与水平方向成600角,根据速度方向得到平抛运动的初速度与时间的关系,再根据水平位移与初速度及时间的关系,联立即可求得初速度。
【详解】小球在飞行过程中恰好与半圆轨道相切于B 点,可知速度的方向与水平方向成60°角,则有0tan60y v v =竖直方向y gt =v水平方向小球做匀速直线运动,则有0cos30R R v t +=联立解得0(323)6gRv +=故A 正确,BCD 错误。
抛体运动练习题(打印版)
抛体运动练习题(打印版)一、选择题(每题5分,共20分)1. 在不考虑空气阻力的情况下,抛体运动的轨迹是:A. 直线B. 抛物线C. 椭圆D. 双曲线2. 抛体运动的水平分速度和竖直分速度之间的关系是:A. 相等B. 互为相反数C. 互为垂直D. 互为正比3. 抛体运动的竖直分速度在运动过程中:A. 保持不变B. 逐渐增大C. 逐渐减小D. 先增大后减小4. 抛体运动的射程与初速度的关系是:A. 初速度越大,射程越小B. 初速度越大,射程越大C. 初速度越大,射程不变D. 初速度越大,射程先增大后减小二、填空题(每题5分,共20分)1. 抛体运动的轨迹方程为:\( y = \frac{1}{2}gt^2 - \frac{v_0 \sin \theta}{g}t + h_0 \),其中 \( g \) 代表重力加速度,\( v_0 \) 代表初速度,\( \theta \) 代表抛射角度,\( t \) 代表时间,\( h_0 \) 代表初始高度。
2. 抛体运动的射程 \( R \) 可以通过公式 \( R = \frac{v_0^2\sin 2\theta}{g} \) 计算,其中 \( v_0 \) 代表初速度,\( \theta \) 代表抛射角度,\( g \) 代表重力加速度。
3. 当抛射角度为 \( 45^\circ \) 时,抛体运动的射程 \( R \) 达到最大值,此时 \( R = \frac{v_0^2}{g} \)。
4. 抛体运动的竖直分速度 \( v_y \) 可以通过公式 \( v_y = v_0 \sin \theta - gt \) 计算,其中 \( v_0 \) 代表初速度,\( \theta \) 代表抛射角度,\( g \) 代表重力加速度,\( t \) 代表时间。
三、计算题(每题15分,共40分)1. 假设一个物体以 \( 20 \text{ m/s} \) 的初速度,以\( 30^\circ \) 的角度抛射,求该物体的射程。
高一物理下册 抛体运动单元综合测试(Word版 含答案)
一、第五章抛体运动易错题培优(难)1.如图所示,半径为R的半球形碗竖直固定,直径AB水平,一质量为m的小球(可视为质点)由直径AB上的某点以初速度v0水平抛出,小球落进碗内与内壁碰撞,碰撞时速度大小为2gR,结果小球刚好能回到抛出点,设碰撞过程中不损失机械能,重力加速度为g,则初速度v0大小应为()A.gR B.2gR C.3gR D.2gR【答案】C【解析】小球欲回到抛出点,与弧面的碰撞必须是垂直弧面的碰撞,即速度方向沿弧AB的半径方向.设碰撞点和O的连线与水平夹角α,抛出点和碰撞点连线与水平夹角为β,如图,则由21sin2y gt Rα==,得2sinRtgα=,竖直方向的分速度为2sinyv gt gRα==,水平方向的分速度为22(2)(2sin)42sinv gR gR gR gRαα=-=-,又00tan yv gtv vα==,而20012tan2gt gtv t vβ==,所以tan2tanαβ=,物体沿水平方向的位移为2cosx Rα=,又0x v t=,联立以上的方程可得3v gR=,C正确.2.一阶梯如图所示,其中每级台阶的高度和宽度都是0.4m,一小球以水平速度v飞出,欲打在第四台阶上,则v的取值范围是()A 6m/s 22m/s v <<B .22m/s 3.5m/s v <≤C 2m/s 6m/s v <<D 6m/s 23m/s v <<【答案】A 【解析】 【分析】 【详解】若小球打在第四级台阶的边缘上高度4h d =,根据2112h gt =,得 1880.4s 0.32s 10d t g ⨯=== 水平位移14x d = 则平抛的最大速度1112m/s 0.32x v t === 若小球打在第三级台阶的边缘上,高度3h d =,根据2212h gt =,得 260.24s dt g== 水平位移23x d =,则平抛运动的最小速度2226m/s 0.24x v t === 所以速度范围6m/s 22m/s v <<故A 正确。
高一下册抛体运动单元复习练习(Word版 含答案)
B、竖直方向上做自由落体运动,由 ,得 ,若a球下落的高度大于b球的高度,则a球的飞行时间比b球长;故B正确.
C、根据平抛运动的推论:平抛运动瞬时速度的反向延长线交水平位移的中点,作出b球垂直撞击到圆弧面CB上速度的反向延长线,与AB的交点一定在O点的左侧,速度的反向延长线不可能通过O点,所以b球不可能与CB面垂直,即b球不可能垂直撞击到圆弧面CB上,故C错误.
A.初速度v1可能大于v2
B.a球的飞行时间可能比b球长
C.若v2大小合适,可使b球垂直撞击到圆弧面CB上
D.a球接触斜面前的瞬间,速度与水平方向的夹角为45°
【答案】B
【解析】
【分析】
【详解】
A、两个小球都做平抛运动,水平方向做匀速直线运动,由x=v0t得知t相同时,水平位移越大,对应的初速度越大,则知初速度v1一定小于v2.故A错误.
A.α的值
B.小球的初速度v0
C.小球在空中运动时间
D.小球初动能
【答案】A
【解析】
【分析】
【详解】
设初速度v0与竖直方向夹角β,则β=90°−α(1);
由A点斜抛至至最高点时,设水平位移为x1,竖直位移为y1,由最高点至碰撞点D的平抛过程Ⅱ中水平位移为x2,竖直位移y2。A点抛出时:
(2)
(3)
(4)
【点睛】
对线与CD光盘交点进行运动的合成与分解,此点既有逆着线方向的运动,又有垂直线方向的运动,而实际运动即为CD光盘的运动,结合数学三角函数关系,即可求解.
5.在光滑水平面上,有一质量为m的质点以速度 做匀速直线运动。t=0时刻开始,质点受到水平恒力F作用,速度大小先减小后增大,运动过程中速度最小值为 。质点从开始受到恒力作用到速度最小的过程经历的时间为t,发生位移的大小为x,则判断正确的是( )
高一下册抛体运动单元复习练习(Word版 含答案)
一、第五章抛体运动易错题培优(难)1.如图所示,半径为R的半球形碗竖直固定,直径AB水平,一质量为m的小球(可视为质点)由直径AB上的某点以初速度v0水平抛出,小球落进碗内与内壁碰撞,碰撞时速度大小为2gR,结果小球刚好能回到抛出点,设碰撞过程中不损失机械能,重力加速度为g,则初速度v0大小应为()A.gR B.2gR C.3gR D.2gR【答案】C【解析】小球欲回到抛出点,与弧面的碰撞必须是垂直弧面的碰撞,即速度方向沿弧AB的半径方向.设碰撞点和O的连线与水平夹角α,抛出点和碰撞点连线与水平夹角为β,如图,则由21sin2y gt Rα==,得2sinRtgα=,竖直方向的分速度为2sinyv gt gRα==,水平方向的分速度为22(2)(2sin)42sinv gR gR gR gRαα=-=-,又00tan yv gtv vα==,而20012tan2gt gtv t vβ==,所以tan2tanαβ=,物体沿水平方向的位移为2cosx Rα=,又0x v t=,联立以上的方程可得3v gR=,C正确.2.2022年第24届冬奥会由北京市和张家口市联合承办。
滑雪是冬奥会的比赛项目之一,如图所示。
若斜面雪坡的倾角37θ=︒,某运动员(可视为质点)从斜面雪坡顶端M点沿水平方向飞出后,在空中的姿势保持不变,不计空气阻力,若运动员经3s后落到斜面雪坡上的N点。
运动员离开M点时的速度大小用v表示,运动员离开M点后,经过时间t离斜坡最远。
(sin370.60︒=,cos370.80︒=,g取210m/s),则0v和t的值为()A .15m/s 2.0sB .15m/s 1.5sC .20m/s 1.5sD .20m/s 2.0s【答案】C 【解析】 【分析】 【详解】运动员离开M 点做平抛运动,竖直方向上有212h gt =解得45m h =由几何关系有tan hx θ=又0x v t =解得020m/s v =运动员离开斜坡最远时速度方向与斜坡平行,有tan y v v θ=又y gt =v解得1.5s t =选项C 正确,ABD 错误。
物理高一下册 抛体运动单元练习(Word版 含答案)
一、第五章抛体运动易错题培优(难)1.如图所示,半径为R的半球形碗竖直固定,直径AB水平,一质量为m的小球(可视为质点)由直径AB上的某点以初速度v0水平抛出,小球落进碗内与内壁碰撞,碰撞时速度大小为2gR,结果小球刚好能回到抛出点,设碰撞过程中不损失机械能,重力加速度为g,则初速度v0大小应为()A.gR B.2gR C.3gR D.2gR【答案】C【解析】小球欲回到抛出点,与弧面的碰撞必须是垂直弧面的碰撞,即速度方向沿弧AB的半径方向.设碰撞点和O的连线与水平夹角α,抛出点和碰撞点连线与水平夹角为β,如图,则由21sin2y gt Rα==,得2sinRtgα=,竖直方向的分速度为2sinyv gt gRα==,水平方向的分速度为22(2)(2sin)42sinv gR gR gR gRαα=-=-,又00tan yv gtv vα==,而20012tan2gt gtv t vβ==,所以tan2tanαβ=,物体沿水平方向的位移为2cosx Rα=,又0x v t=,联立以上的方程可得3v gR=,C正确.2.一小船在静水中的速度为3m/s,它在一条河宽150m、水流速度为4m/s的河流中渡河,则该小船()A.能到达正对岸B.渡河的时间不少于50sC.以最短时间渡河时,它渡河的位移大小为200mD.以最短位移渡河时,位移大小为150m【答案】B【解析】 【分析】 【详解】A .因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河岸,小船不可能垂直河岸正达对岸,选项A 错误;B .当船在静水中的速度垂直河岸时,渡河时间最短min 150s 50s 3d t v ===船 选项B 正确;C .船以最短时间50s 渡河时,沿水流方向的位移大小450m 200m min x v t ==⨯=水渡河位移应为水流方向的位移与垂直河岸方向位移的合位移,选项C 错误; D .因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河岸,小船不可能垂直河岸正达对岸。
高一下册物理 抛体运动单元测试题(Word版 含解析)
一、第五章抛体运动易错题培优(难)1.一种定点投抛游戏可简化为如图所示的模型,以水平速度v1从O点抛出小球,正好落入倾角为θ的斜面上的洞中,洞口处于斜面上的P点,OP的连线正好与斜面垂直;当以水平速度v2从O点抛出小球,小球正好与斜面在Q点垂直相碰。
不计空气阻力,重力加速度为g,下列说法正确的是()A.小球落在P点的时间是1tanvgθB.Q点在P点的下方C.v1>v2D.落在P点的时间与落在Q点的时间之比是122vv【答案】D【解析】【分析】【详解】A.以水平速度v1从O点抛出小球,正好落入倾角为θ的斜面上的洞中,此时位移垂直于斜面,由几何关系可知1112112tan12v t vgtgtθ==所以112tanvtgθ=A错误;BC.当以水平速度v2从O点抛出小球,小球正好与斜面在Q点垂直相碰,此时速度与斜面垂直,根据几何关系可知22tanvgtθ=即22tanvtgθ=根据速度偏角的正切值等于位移偏角的正切值的二倍,可知Q点在P点的上方,21t t<,水平位移21x x>,所以21v v>,BC错误;D.落在P点的时间与落在Q点的时间之比是11222t vt v=,D正确。
故选D。
2.不可伸长的轻绳通过定滑轮,两端分别与甲、乙两物体连接,两物体分别套在水平、竖直杆上。
控制乙物体以v=2m/s的速度由C点匀速向下运动到D点,同时甲由A点向右运动到B点,四个位置绳子与杆的夹角分别如图所示,绳子一直绷直。
已知sin37°=0.6,cos37°=0.8。
则下列说法正确的是()A.甲在A点的速度为2m/sB.甲在A点的速度为2.5m/sC.甲由A点向B点运动的过程,速度逐渐增大D.甲由A点向B点运动的过程,速度先增大后减小【答案】C【解析】【分析】【详解】AB.将甲的速度分解为沿绳子方向和垂直于绳子方向,如图所示,拉绳子的速度等于甲沿绳子方向的分速度,设该速度为v绳,根据平行四边形定则得,B点的实际速度cos53Bvv=︒绳同理,D点的速度分解可得cos37Dv v=︒绳联立解得cos53cos37B D v v ︒=︒那么,同理则有cos37cos53A C v v ︒=︒由于控制乙物体以2m s v =的速度由C 点匀速向下运动到D 点,因此甲在A 点的速度为1.5m s A v =,AB 错误;CD .设甲与悬点连线与水平夹角为α,乙与悬点连线与竖直夹角为β,由上分析可得cos cos A C v v αβ=在乙下降过程中,α角在逐渐增大,β角在逐渐减小,则有甲的速度在增大,C 正确,D 错误。
第一章抛体运动章末复习题(word版含答案)
第一章《抛体运动》章末复习题2021-2022学年高一下学期物理粤教版(2019)必修第二册一、单选题1.一艘船以v A 的速度用最短的时间渡河,另一艘船以v B 的速度从同一地点以最短的路程过河,两船轨迹恰好重合(设河水速度保持不变),则两船过河所用的时间之比是( )A .v A ∶vB B .v B ∶v AC .2A v ∶2B vD .2B v ∶2A v2.人在距地面高h 、离靶面距离L 处,将质量为m 的飞镖以速度v 0水平投出,落在靶心正下方,如图所示。
不考虑空气阻力,改变h 、L 、v 0三个量中的一个,可能使飞镖投中靶心的是( )A .适当减小LB .适当减小hC .适当减小v 0D .适当增大m3.如图所示,在一段封闭的光滑细玻璃管中注满清水,水中放一个由蜡做成的小圆柱体R 。
R 从坐标原点以速度v 0=1cm/s 匀速上浮的同时,玻璃管沿x 轴正向做初速度为零的匀加速直线运动,测出某时刻R 的x 、y 坐标值分别为4cm 和2cm ,则小圆柱体.则红蜡块R 的( )AB .此时刻速度方向与x 轴正方向成45°角C .该过程位移大小为6cmD .该过程路程大小为4.关于运动的描述,下列说法正确的是 ( )A .运动的物体不能选为参考系B .只有质量和体积都极小的物体才能视为质点C .若一段时间内物体做单向直线运动,则其位移大小等于路程D .曲线运动不可能是匀变速运动5.微风习习,眼前是如镜的湖面,有三位游客站在湖前扔小石子。
图为石子抛出的简化图,x轴在水平地面内,y 轴沿竖直方向。
图中画出了沿水平方向抛出的三个小石子a、b、c的运动轨迹,其中b和c是从同一点抛出的,不计空气阻力,则()A.a的初速度可能等于b的初速度B.a与地面接触瞬间的速度一定最大C.b的飞行时间比c的长D.a的飞行时间比b的短6.如图,从地面上方某点,将一小球以5m/s的初速度沿水平方向抛出,小球经过1s落地,不计空气阻力,g取10m/s2,则可求出()A.小球抛出时离地面的高度是10mB.小球落地时的速度方向与水平地面成30°角C.小球落地时的速度大小是15m/sD.小球从抛出点到落地点的水平位移大小是5m7.如图所示,一高度为h的光滑水平面与一倾角为θ的斜面连接,一小球以速度v从平面的右端P点向右水平抛出,则小球在空中运动的时间t()A.一定与v的大小有关B.一定与v的大小无关C .当v 大于1tan θt 与v 有关D .当v 小于1tan θt 与v 有关 8.质量为1kg 的小球在xOy 平面上做曲线运动,它在水平方向的速度图象和竖直方向的位移图象如图所示。
物理高一下册 抛体运动单元复习练习(Word版 含答案)
一、第五章抛体运动易错题培优(难)1.一种定点投抛游戏可简化为如图所示的模型,以水平速度v1从O点抛出小球,正好落入倾角为θ的斜面上的洞中,洞口处于斜面上的P点,OP的连线正好与斜面垂直;当以水平速度v2从O点抛出小球,小球正好与斜面在Q点垂直相碰。
不计空气阻力,重力加速度为g,下列说法正确的是()A.小球落在P点的时间是1tanvgθB.Q点在P点的下方C.v1>v2D.落在P点的时间与落在Q点的时间之比是122vv【答案】D【解析】【分析】【详解】A.以水平速度v1从O点抛出小球,正好落入倾角为θ的斜面上的洞中,此时位移垂直于斜面,由几何关系可知1112112tan12v t vgtgtθ==所以112tanvtgθ=A错误;BC.当以水平速度v2从O点抛出小球,小球正好与斜面在Q点垂直相碰,此时速度与斜面垂直,根据几何关系可知22tanvgtθ=即22tanvtgθ=根据速度偏角的正切值等于位移偏角的正切值的二倍,可知Q点在P点的上方,21t t<,水平位移21xx>,所以21v v>,BC错误;D.落在P点的时间与落在Q点的时间之比是11222t vt v=,D正确。
故选D。
2.如图所示,一根长木杆ab两端分别固定在水平地面和竖直墙壁aO上,已知杆与水平地面之间的夹角为θ=53°,a点到地面的距离为12m。
从竖直墙壁上距地面8m的c点以水平速度v0射出一颗小石子,小石子运动的轨迹恰好与ab杆相切(重力加速度g取10m/s2,sin53°=0.8,cos53°=0.6),则小石子射出时的水平初速度为()A.310m/s B.35m/s C.352m/s D.3102m/s【答案】B【解析】【分析】【详解】将速度和重力都分解到垂直于杆的方向和沿着杆的方向,如图所示在垂直于杆的运动方向上10sin0.8v v vθ==在垂直于杆的方向的加速度1cos0.6g g gθ==由题可知,减速到零时的,恰好与杆相碰,则211cos2vacgθ=整理得35m/sv=故选B。
人教版物理高一下册 抛体运动单元复习练习(Word版 含答案)
一、第五章抛体运动易错题培优(难)1.如图,光滑斜面的倾角为θ=45°,斜面足够长,在斜面上A点向斜上方抛出一小球,初速度方向与水平方向夹角为α,小球与斜面垂直碰撞于D点,不计空气阻力;若小球与斜面碰撞后返回A点,碰撞时间极短,且碰撞前后能量无损失,重力加速度g取10m/s2。
则可以求出的物理量是()A.α的值B.小球的初速度v0C.小球在空中运动时间D.小球初动能【答案】A【解析】【分析】【详解】设初速度v0与竖直方向夹角β,则β=90°−α(1);由A点斜抛至至最高点时,设水平位移为x1,竖直位移为y1,由最高点至碰撞点D的平抛过程Ⅱ中水平位移为x2,竖直位移y2。
A点抛出时:sinxv vβ=(2)10cosyv vβ=(3)2112yvyg=(4)小球垂直打到斜面时,碰撞无能力损失,设竖直方向速度v y2,则水平方向速度保持0sinxv vβ=不变,斜面倾角θ=45°,20tan45siny x xv v v vβ===(5)2222yyyg=(6)()22212cos sin2vy y ygββ-∆=-=(7),平抛运动中,速度的偏向角正切值等于位移偏向角的正切值的二倍,所以:()111111tan 90222tan y x v y x v ββ==-=(8) 由(8)变形化解:2011cos sin 2tan v x y gβββ==(9)同理,Ⅱ中水平位移为:22022sin 2tan 45v x y gβ==(10)()2012sin sin cos v x x x gβββ+=+=总(11) =tan45yx ∆总故=y x ∆总即2sin sin cos βββ-=-(12)由此得1tan 3β=19090arctan 3αβ=-=-故可求得α的值,其他选项无法求出; 故选:A 。
2.如图所示,一块橡皮用细线悬挂于O 点,用铅笔靠着线的左侧水平向右匀速移动,运动中始终保持悬线竖直,则橡皮运动的速度A .大小和方向均不变B .大小不变,方向改变C .大小改变,方向不变D .大小和方向均改变 【答案】A 【解析】 【分析】【详解】橡皮参与了水平向右和竖直向上的分运动,如图所示,两个方向的分运动都是匀速直线运动,v x 和v y 恒定,则v 合恒定,则橡皮运动的速度大小和方向都不变,A 项正确.3.一小船在静水中的速度为3m/s ,它在一条河宽150m 、水流速度为4m/s 的河流中渡河,则该小船( ) A .能到达正对岸 B .渡河的时间不少于50sC .以最短时间渡河时,它渡河的位移大小为200mD .以最短位移渡河时,位移大小为150m 【答案】B 【解析】 【分析】 【详解】A .因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河岸,小船不可能垂直河岸正达对岸,选项A 错误;B .当船在静水中的速度垂直河岸时,渡河时间最短min 150s 50s 3d t v ===船 选项B 正确;C .船以最短时间50s 渡河时,沿水流方向的位移大小450m 200m min x v t ==⨯=水渡河位移应为水流方向的位移与垂直河岸方向位移的合位移,选项C 错误; D .因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河岸,小船不可能垂直河岸正达对岸。
高一下册物理 抛体运动单元练习(Word版 含答案)
一、第五章抛体运动易错题培优(难)1.如图,光滑斜面的倾角为θ=45°,斜面足够长,在斜面上A点向斜上方抛出一小球,初速度方向与水平方向夹角为α,小球与斜面垂直碰撞于D点,不计空气阻力;若小球与斜面碰撞后返回A点,碰撞时间极短,且碰撞前后能量无损失,重力加速度g取10m/s2。
则可以求出的物理量是()A.α的值B.小球的初速度v0C.小球在空中运动时间D.小球初动能【答案】A【解析】【分析】【详解】设初速度v0与竖直方向夹角β,则β=90°−α(1);由A点斜抛至至最高点时,设水平位移为x1,竖直位移为y1,由最高点至碰撞点D的平抛过程Ⅱ中水平位移为x2,竖直位移y2。
A点抛出时:sinxv vβ=(2)10cosyv vβ=(3)2112yvyg=(4)小球垂直打到斜面时,碰撞无能力损失,设竖直方向速度v y2,则水平方向速度保持0sinxv vβ=不变,斜面倾角θ=45°,20tan45siny x xv v v vβ===(5)2222yyyg=(6)()22212cos sin2vy y ygββ-∆=-=(7),平抛运动中,速度的偏向角正切值等于位移偏向角的正切值的二倍,所以:()111111tan 90222tan y x v y x v ββ==-=(8) 由(8)变形化解:2011cos sin 2tan v x y gβββ==(9)同理,Ⅱ中水平位移为:22022sin 2tan 45v x y gβ==(10)()2012sin sin cos v x x x gβββ+=+=总(11) =tan45yx ∆总故=y x ∆总即2sin sin cos βββ-=-(12)由此得1tan 3β=19090arctan 3αβ=-=-故可求得α的值,其他选项无法求出; 故选:A 。
2.一小船在静水中的速度为4m/s ,它在一条河宽160m ,水流速度为3m/s 的河流中渡河,则下列说法错误的是( )A .小船以最短位移渡河时,位移大小为160mB .小船渡河的时间不可能少于40sC .小船以最短时间渡河时,它沿水流方向的位移大小为120mD .小船不可能到达正对岸 【答案】D 【解析】 【分析】 【详解】AD .船在静水中的速度大于河水的流速,由平行四边形法则求合速度可以垂直河岸,所以小船能垂直河岸正达对岸。
人教版物理高一下册 抛体运动单元复习练习(Word版 含答案)
一、第五章 抛体运动易错题培优(难)1.如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M ,长杆的一端放在地上通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方O 点处,在杆的中点C 处拴一细绳,绕过两个滑轮后挂上重物M ,C 点与O 点距离为L ,现在杆的另一端用力,使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平位置(转过了90︒角),此过程中下述说法中正确的是( )A .重物M 做匀速直线运动B .重物M 先超重后失重C .重物M 的最大速度是L ω,此时杆水平D .重物M 的速度先减小后增大 【答案】B 【解析】 【分析】 【详解】ACD .设C 点线速度方向与绳子沿线的夹角为θ(锐角),由题知C 点的线速度为c v L ω=该线速度在绳子方向上的分速度为1v1cos v L ωθ=θ的变化规律是从开始最大(90°)然后逐渐变小,所以1v 逐渐变大,直至绳子和杆垂直,θ变为零度,绳子的速度变为最大,为ωL ;然后,θ又逐渐增大,1v 逐渐变小,绳子的速度变慢。
所以知重物的速度先增大后减小,且最大速度为ωL ,此时杆是与绳垂直,而不是水平的,故ACD 错误;B .上面的分析得出,重物的速度先增大后减小,所以重物M 先向上加速后向上减速,即先超重后失重,故B 正确。
故选B 。
【点睛】解决本题的关键在于掌握运动的合成与分解,把C 点的速度分解为沿绳方向和垂直于绳的方向,沿绳方向的分速度等于重物的速度。
2.甲、乙两船在静水中航行的速度分别为5m/s 和3m/s ,两船从同一渡口过河,已知甲船以最短时间过河,乙船以最短航程过河,结果两船抵达对岸的地点恰好相同。
则水的流速为( ) A .3m/s B .3.75m/sC .4m/sD .4.75m/s【答案】B 【解析】 【分析】 【详解】由题意,甲船以最短时间过河,乙船以最短航程过河,结果两船抵达对岸的地点恰好相同,可知,甲乙实际速度方向一样,如图所示可得tan v v θ=水甲cos v v θ=乙水两式相乘,得3sin =5v v θ=乙甲 则3tan =4v v θ=水甲,解得v 水=3.75m/s ,B 正确,ACD 错误。
贵州省遵义市南白中学下册抛体运动专题练习(解析版)
一、第五章 抛体运动易错题培优(难)1.如图所示,一小球从一半圆轨道左端A 点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B 点。
O 为半圆轨道圆心,半圆轨道半径为R ,OB 与水平方向夹角为30°,重力加速度为g ,不计空气阻力,则小球抛出时的初速度大小为( )A (323)6gR +B 332gRC (13)3gR +D 33gR【答案】A 【解析】 【分析】根据题意,小球在飞行过程中恰好与半圆轨道相切于B 点,可知速度的方向与水平方向成600角,根据速度方向得到平抛运动的初速度与时间的关系,再根据水平位移与初速度及时间的关系,联立即可求得初速度。
【详解】小球在飞行过程中恰好与半圆轨道相切于B 点,可知速度的方向与水平方向成60°角,则有0tan60y v v =竖直方向y gt =v水平方向小球做匀速直线运动,则有0cos30R R v t +=联立解得0(323)6gRv +=故A 正确,BCD 错误。
故选A 。
【点睛】解决本题的关键是掌握平抛运动在水平方向和竖直方向上的运动规律,抓住速度方向,结合位移关系、速度关系进行求解。
2.2022年第24届冬奥会由北京市和张家口市联合承办。
滑雪是冬奥会的比赛项目之一,如图所示。
若斜面雪坡的倾角37θ=︒,某运动员(可视为质点)从斜面雪坡顶端M 点沿水平方向飞出后,在空中的姿势保持不变,不计空气阻力,若运动员经3s 后落到斜面雪坡上的N 点。
运动员离开M 点时的速度大小用0v 表示,运动员离开M 点后,经过时间t 离斜坡最远。
(sin370.60︒=,cos370.80︒=,g 取210m/s ),则0v 和t 的值为( )A .15m/s 2.0sB .15m/s 1.5sC .20m/s 1.5sD .20m/s 2.0s【答案】C 【解析】 【分析】 【详解】运动员离开M 点做平抛运动,竖直方向上有212h gt =解得45m h =由几何关系有tan hx θ=又0x v t =解得020m/s v =运动员离开斜坡最远时速度方向与斜坡平行,有tan y v v θ=又y gt =v解得1.5s t =选项C 正确,ABD 错误。
物理高一下册 抛体运动单元复习练习(Word版 含答案)
一、第五章 抛体运动易错题培优(难)1.如图所示,一小球从一半圆轨道左端A 点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B 点。
O 为半圆轨道圆心,半圆轨道半径为R ,OB 与水平方向夹角为30°,重力加速度为g ,不计空气阻力,则小球抛出时的初速度大小为( )A (323)6gR +B 332gRC (13)3gR +D 33gR【答案】A 【解析】 【分析】根据题意,小球在飞行过程中恰好与半圆轨道相切于B 点,可知速度的方向与水平方向成600角,根据速度方向得到平抛运动的初速度与时间的关系,再根据水平位移与初速度及时间的关系,联立即可求得初速度。
【详解】小球在飞行过程中恰好与半圆轨道相切于B 点,可知速度的方向与水平方向成60°角,则有0tan60y v v =竖直方向y gt =v水平方向小球做匀速直线运动,则有0cos30R R v t +=联立解得0(323)6gRv +=故A 正确,BCD 错误。
故选A 。
【点睛】解决本题的关键是掌握平抛运动在水平方向和竖直方向上的运动规律,抓住速度方向,结合位移关系、速度关系进行求解。
2.甲、乙两船在静水中航行的速度分别为5m/s 和3m/s ,两船从同一渡口过河,已知甲船以最短时间过河,乙船以最短航程过河,结果两船抵达对岸的地点恰好相同。
则水的流速为( ) A .3m/s B .3.75m/sC .4m/sD .4.75m/s【答案】B 【解析】 【分析】 【详解】由题意,甲船以最短时间过河,乙船以最短航程过河,结果两船抵达对岸的地点恰好相同,可知,甲乙实际速度方向一样,如图所示可得tan v v θ=水甲cos v v θ=乙水两式相乘,得3sin =5v v θ=乙甲 则3tan =4v v θ=水甲,解得v 水=3.75m/s ,B 正确,ACD 错误。
故选B 。
3.一个半径为R 的空心球固定在水平地面上,球上有两个与球心O 在同一水平面上的小孔A 、B ,且60AOB ∠=︒2gR设水流出后做平抛运动,重力加速度g ,则两孔流出的水的落地点间距离为( ) A .R B 3RC .2RD .23R【答案】C 【解析】 【分析】 【详解】水做平抛运动,竖直方向上有2 12R gt=解得运动时间2Rtg=水平方向上有22gR Rx v t Rg===则两落地点距圆心在地面投影点的距离为2R,与圆心在地面投影点的连线夹角为60︒,两落地点和圆心在地面投影点组成等边三角形,根据几何知识可知,两落地点间距为2R,选项C正确,ABD错误。
物理高一下册 抛体运动单元复习练习(Word版 含答案)
一、第五章抛体运动易错题培优(难)1.如图所示,半径为R的半球形碗竖直固定,直径AB水平,一质量为m的小球(可视为质点)由直径AB上的某点以初速度v0水平抛出,小球落进碗内与内壁碰撞,碰撞时速度大小为2gR,结果小球刚好能回到抛出点,设碰撞过程中不损失机械能,重力加速度为g,则初速度v0大小应为()A.gR B.2gR C.3gR D.2gR【答案】C【解析】小球欲回到抛出点,与弧面的碰撞必须是垂直弧面的碰撞,即速度方向沿弧AB的半径方向.设碰撞点和O的连线与水平夹角α,抛出点和碰撞点连线与水平夹角为β,如图,则由21sin2y gt Rα==,得2sinRtgα=,竖直方向的分速度为2sinyv gt gRα==,水平方向的分速度为22(2)(2sin)42sinv gR gR gR gRαα=-=-,又00tan yv gtv vα==,而20012tan2gt gtv t vβ==,所以tan2tanαβ=,物体沿水平方向的位移为2cosx Rα=,又0x v t=,联立以上的方程可得3v gR=,C正确.2.2022年第24届冬奥会由北京市和张家口市联合承办。
滑雪是冬奥会的比赛项目之一,如图所示。
若斜面雪坡的倾角37θ=︒,某运动员(可视为质点)从斜面雪坡顶端M点沿水平方向飞出后,在空中的姿势保持不变,不计空气阻力,若运动员经3s后落到斜面雪坡上的N点。
运动员离开M点时的速度大小用v表示,运动员离开M点后,经过时间t离斜坡最远。
(sin370.60︒=,cos370.80︒=,g取210m/s),则0v和t的值为()A .15m/s 2.0sB .15m/s 1.5sC .20m/s 1.5sD .20m/s 2.0s【答案】C 【解析】 【分析】 【详解】运动员离开M 点做平抛运动,竖直方向上有212h gt =解得45m h =由几何关系有tan hx θ=又0x v t =解得020m/s v =运动员离开斜坡最远时速度方向与斜坡平行,有tan y v v θ=又y gt =v解得1.5s t =选项C 正确,ABD 错误。
物理高一下册 抛体运动单元练习(Word版 含答案)
一、第五章 抛体运动易错题培优(难)1.如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M ,长杆的一端放在地上通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方O 点处,在杆的中点C 处拴一细绳,绕过两个滑轮后挂上重物M ,C 点与O 点距离为L ,现在杆的另一端用力,使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平位置(转过了90︒角),此过程中下述说法中正确的是( )A .重物M 做匀速直线运动B .重物M 先超重后失重C .重物M 的最大速度是L ω,此时杆水平D .重物M 的速度先减小后增大 【答案】B 【解析】 【分析】 【详解】ACD .设C 点线速度方向与绳子沿线的夹角为θ(锐角),由题知C 点的线速度为c v L ω=该线速度在绳子方向上的分速度为1v1cos v L ωθ=θ的变化规律是从开始最大(90°)然后逐渐变小,所以1v 逐渐变大,直至绳子和杆垂直,θ变为零度,绳子的速度变为最大,为ωL ;然后,θ又逐渐增大,1v 逐渐变小,绳子的速度变慢。
所以知重物的速度先增大后减小,且最大速度为ωL ,此时杆是与绳垂直,而不是水平的,故ACD 错误;B .上面的分析得出,重物的速度先增大后减小,所以重物M 先向上加速后向上减速,即先超重后失重,故B 正确。
故选B 。
【点睛】解决本题的关键在于掌握运动的合成与分解,把C 点的速度分解为沿绳方向和垂直于绳的方向,沿绳方向的分速度等于重物的速度。
2.甲、乙两船在静水中航行的速度分别为5m/s 和3m/s ,两船从同一渡口过河,已知甲船以最短时间过河,乙船以最短航程过河,结果两船抵达对岸的地点恰好相同。
则水的流速为( ) A .3m/s B .3.75m/sC .4m/sD .4.75m/s【答案】B 【解析】 【分析】 【详解】由题意,甲船以最短时间过河,乙船以最短航程过河,结果两船抵达对岸的地点恰好相同,可知,甲乙实际速度方向一样,如图所示可得tan v v θ=水甲cos v v θ=乙水两式相乘,得3sin =5v v θ=乙甲 则3tan =4v v θ=水甲,解得v 水=3.75m/s ,B 正确,ACD 错误。
贵州省遵义市第四教育集团下册抛体运动(提升篇)(Word版 含解析)
一、第五章 抛体运动易错题培优(难)1.不可伸长的轻绳通过定滑轮,两端分别与甲、乙两物体连接,两物体分别套在水平、竖直杆上。
控制乙物体以v =2m/s 的速度由C 点匀速向下运动到D 点,同时甲由A 点向右运动到B 点,四个位置绳子与杆的夹角分别如图所示,绳子一直绷直。
已知sin37°=0.6,cos37°=0.8。
则下列说法正确的是( )A .甲在A 点的速度为2m/sB .甲在A 点的速度为2.5m/sC .甲由A 点向B 点运动的过程,速度逐渐增大D .甲由A 点向B 点运动的过程,速度先增大后减小 【答案】C 【解析】 【分析】 【详解】AB .将甲的速度分解为沿绳子方向和垂直于绳子方向,如图所示,拉绳子的速度等于甲沿绳子方向的分速度,设该速度为v 绳,根据平行四边形定则得,B 点的实际速度cos53B v v =︒绳同理,D 点的速度分解可得cos37D v v =︒绳联立解得cos53cos37B D v v ︒=︒那么,同理则有cos37cos53A C v v ︒=︒由于控制乙物体以2m s v =的速度由C 点匀速向下运动到D 点,因此甲在A 点的速度为1.5m s A v =,AB 错误;CD .设甲与悬点连线与水平夹角为α,乙与悬点连线与竖直夹角为β,由上分析可得cos cos A C v v αβ=在乙下降过程中,α角在逐渐增大,β角在逐渐减小,则有甲的速度在增大,C 正确,D 错误。
故选C 。
2.甲、乙两船在静水中航行的速度分别为5m/s 和3m/s ,两船从同一渡口过河,已知甲船以最短时间过河,乙船以最短航程过河,结果两船抵达对岸的地点恰好相同。
则水的流速为( ) A .3m/s B .3.75m/sC .4m/sD .4.75m/s【答案】B 【解析】 【分析】 【详解】由题意,甲船以最短时间过河,乙船以最短航程过河,结果两船抵达对岸的地点恰好相同,可知,甲乙实际速度方向一样,如图所示可得tan v v θ=水甲cos v v θ=乙水两式相乘,得3sin =5v v θ=乙甲 则3tan =4v v θ=水甲,解得v 水=3.75m/s ,B 正确,ACD 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、第五章 抛体运动易错题培优(难)1.如图所示,一块橡皮用细线悬挂于O 点,用铅笔靠着线的左侧水平向右匀速移动,运动中始终保持悬线竖直,则橡皮运动的速度A .大小和方向均不变B .大小不变,方向改变C .大小改变,方向不变D .大小和方向均改变 【答案】A 【解析】 【分析】 【详解】橡皮参与了水平向右和竖直向上的分运动,如图所示,两个方向的分运动都是匀速直线运动,v x 和v y 恒定,则v 合恒定,则橡皮运动的速度大小和方向都不变,A 项正确.2.一种定点投抛游戏可简化为如图所示的模型,以水平速度v 1从O 点抛出小球,正好落入倾角为θ的斜面上的洞中,洞口处于斜面上的P 点,OP 的连线正好与斜面垂直;当以水平速度v 2从O 点抛出小球,小球正好与斜面在Q 点垂直相碰。
不计空气阻力,重力加速度为g ,下列说法正确的是( )A .小球落在P 点的时间是1tan v gB .Q 点在P 点的下方C.v1>v2D.落在P点的时间与落在Q点的时间之比是122vv【答案】D【解析】【分析】【详解】A.以水平速度v1从O点抛出小球,正好落入倾角为θ的斜面上的洞中,此时位移垂直于斜面,由几何关系可知1112112tan12v t vgtgtθ==所以112tanvtgθ=A错误;BC.当以水平速度v2从O点抛出小球,小球正好与斜面在Q点垂直相碰,此时速度与斜面垂直,根据几何关系可知22tanvgtθ=即22tanvtgθ=根据速度偏角的正切值等于位移偏角的正切值的二倍,可知Q点在P点的上方,21t t<,水平位移21x x>,所以21v v>,BC错误;D.落在P点的时间与落在Q点的时间之比是11222t vt v=,D正确。
故选D。
3.如图所示,竖直墙MN,小球从O处水平抛出,若初速度为v a,将打在墙上的a点;若初速度为v b,将打在墙上的b点.已知Oa、Ob与水平方向的夹角分别为α、β,不计空气阻力.则v a与v b的比值为()A.sinsinαβB.coscosβαC.tantanαβD.tantanβα【答案】D【解析】根据平抛运动知识可知:212tan2aa agt gtv t vα==,则2tanaavtgα=同理可知:2tanbbvtgβ=由于两次运动水平方向上的位移相同,根据s vt=解得:tantanabvvβα=,故D正确;ABC错误;故选D4.如图所示,ACB是一个半径为R的半圆柱面的横截面,直径AB水平,C为截面上的最低点,AC间有一斜面,从A点以大小不同的初速度v1、v2沿AB方向水平抛出两个小球,a和b,分别落在斜面AC和圆弧面CB上,不计空气阻力,下列判断正确的是()A.初速度v1可能大于v2B.a球的飞行时间可能比b球长C.若v2大小合适,可使b球垂直撞击到圆弧面CB上D.a球接触斜面前的瞬间,速度与水平方向的夹角为45°【答案】B【解析】【分析】【详解】A、两个小球都做平抛运动,水平方向做匀速直线运动,由x=v0t得知t相同时,水平位移越大,对应的初速度越大,则知初速度v1一定小于v2.故A错误.B、竖直方向上做自由落体运动,由212h gt=,得2htg=a球下落的高度大于b球的高度,则a球的飞行时间比b球长;故B正确.C、根据平抛运动的推论:平抛运动瞬时速度的反向延长线交水平位移的中点,作出b球垂直撞击到圆弧面CB上速度的反向延长线,与AB的交点一定在O点的左侧,速度的反向延长线不可能通过O点,所以b球不可能与CB面垂直,即b球不可能垂直撞击到圆弧面CB 上,故C 错误.D 、由几何知识得知AC 面的倾角为45°,运用与C 项同样的分析方法:作出a 球接触斜面前的瞬间速度反向延长线,可知此瞬时速度与水平方向的夹角大于45°.故D 错误. 故选B.5.一群小孩在山坡上玩投掷游戏时,有一小石块从坡顶水平飞出,恰好击中山坡上的目标物。
若抛出点和击中点的连线与水平面成角α,该小石块在距连线最远处的速度大小为v ,重力加速度为g ,空气阻力不计,则( )A .小石块初速度的大小为cos vαB .小石块从抛出点到击中点的飞行时间为sin v gαC .抛出点与击中点间的位移大小为22sin v gαD .小石块击中目标时,小石块的速度的方向与抛出点和击中点的连线的夹角也为α 【答案】A 【解析】 【分析】 【详解】A .石块做的是平抛运动,当石块与连线的距离最远时,石块的速度与山坡斜面平行,所以把石块的速度沿水平和竖直方向分解,水平方向上可得0cos vv α=即为平抛运动的初速度的大小,选项A 正确;BC .设抛出点与击中点间的距离为L ,则由平抛运动的规律得 水平方向上0cos L v t α=竖直方向上21sin 2L gt α=由以上两个方程可以解得232sincosvLgαα=22sincosvtgαα=选项BC错误;D.小石块击中目标时,竖直分速度22sincosyvv gtαα==则击中目标时速度方向与水平方向的夹角22sintan2tancosyv vvαβαα===所以小石块击中目标时,小石块的速度的方向与抛出点和击中点的连线的夹角不等于α,选项D错误。
故选A。
6.质量为0.2kg的物体,其速度在x,y方向的分量v x,v y,与时间的关系如图所示,已知x.y方向相互垂直,则()A.0~4s内物体做直线运动B.4~6s内物体的位移为25mC.0~4s内物体的位移为12mD.0~6s内物体一直做曲线运动【答案】B【解析】【分析】【详解】A. 0~4s内,在x方向做匀速运动,在y方向做匀加速运动,因此物体做匀变速曲线运动运动,A错误;B.由图象与时间轴围成的面积等于物体的位移,4~6s内,在x方向物体的位移为2m,在y方向物体的位移为4m,物体位移为2225mx y+=B正确;C.0~4s内,在x方向物体的位移为4m,在y方向物体的位移为12m,物体位移为22410mx y+=C错误;D.将4~6s内物体运动倒过来,相当于初速度为零,在x方向和y方向加速度都恒定,即物体加速度恒定,因此在这段时间内物体做初速度为零的匀加速直线运动,因此原题中在这段时间内物体做匀减速度直线运动,最终速度减为零,D错误。
故选B。
7.里约奥运会我国女排获得世界冠军,女排队员“重炮手”朱婷某次发球如图所示,朱婷站在底线的中点外侧,球离开手时正好在底线中点正上空3.04m处,速度方向水平且在水平方向可任意调整.已知每边球场的长和宽均为9m,球网高2.24m,不计空气阻力,重力加速度210g m s=.为了使球能落到对方场地,下列发球速度大小可行的是A.22m/s B.23m/sC.25m/s D.28m/s【答案】B【解析】恰好能过网时,根据2112H h gt-=得,12()2(3.04 2.24)0.4s10H htg-⨯-===,则击球的最小初速度11922.5m/s0.4svt===,球恰好不出线时,根据2212H gt=,得222 3.040.78s10Htg⨯==≈则击球的最大初速度:2222240.25 4.258123.8m/s0.78s l lvt t+⨯===≈',注意运动距离最远是到对方球场的的角落点,所以22.5m/s23.8m/sv,故B项正确.综上所述本题正确答案为B.8.如图所示,固定斜面AO、BO与水平面夹角均为45°。
现从A点以某一初速度水平抛出一个小球(可视为质点),小球恰能垂直于BO落在C点,若OA=6m,则O、C的距离为()A .22m B.2m C .2m D .3m【答案】C 【解析】 【详解】ABCD .以A 点为坐标原点,AO 为y 轴,垂直于AO 为x 轴建立坐标系,x 轴正方向斜向上,y 轴正方向斜向下,分解速度和加速度,则小球在x 轴上做初速度为022v ,加速度为2g 的匀减速直线运动,末速度刚好为零,运动时间0v t g =;在y 轴上做初速度为022v ,加速度为22g 的匀加速直线运动,末速度 0022222Cy v v gt v =+= 利用平均速度公式得位移关系00022(2)22::3:122v v t v tOA OC +== 则12m 3OC OA ==综上所述,ABD 错误C 正确。
故选C 。
9.图示为足球球门,球门宽为L ,一个球员在球门中心正前方距离球门s 处高高跃起,将足球顶入球门的左下方死角(图中P 点).若球员顶球点的高度为h .足球被顶出后做平抛运动(足球可看做质点),重力加速度为g .则下列说法正确的是A .足球在空中运动的时间222s h t g+=B .足球位移大小x =C .足球初速度的方向与球门线夹角的正切值2tan s Lθ=D .足球初速度的大小0v = 【答案】C 【解析】 【分析】 【详解】A 、足球运动的时间为:t =错;B 、足球在水平方向的位移大小为:x =所以足球的位移大小:l ==错C 、由几何关系可得足球初速度的方向与球门线夹角的正切值为:2tan sLθ=,C 正确D 、足球的初速度的大小为:0x v t ==错误; 故本题选:C 【点睛】(1)根据足球运动的轨迹,由几何关系求解位移大小. (2)由平抛运动分位移的规律求出足球的初速度的大小 (3)由几何知识求足球初速度的方向与球门线夹角的正切值.10.甲、乙两船在静水中航行的速度分别为v 甲、v 乙,两船从同一渡口向河对岸划去。
已知甲船以最短时间过河,乙船以最短航程过河,结果两船抵达对岸的地点恰好相同,则甲、乙两船渡河所用时间之比为( )A .v v 甲乙B .v v 乙甲C .2v v ⎛⎫ ⎪⎝⎭甲乙D .2v v ⎛⎫ ⎪⎝⎭乙甲【答案】D 【解析】 【详解】如图所示,当v 甲与河岸垂直时,甲渡河时间最短,合速度偏向下游,到达对岸下游某点。
乙船应斜向上游,才有最短航程,因两船抵达对岸的地点恰好相同,所以乙船不是垂直河岸过河,最短航程时v v⊥乙乙合。
由x vt=知,t与v成反比,所以有2sinsinsinvvtvt vθθθ===水甲乙合水乙甲合由图可看出tan cosv vv vθθ==水乙甲水,,代入上式得2t vt v⎛⎫= ⎪⎝⎭甲乙乙甲故D项正确,ABC错误。
11.静止的城市绿化洒水车,由横截面积为S的水龙头喷嘴水平喷出水流,水流从射出喷嘴到落地经历的时间为t,水流落地点与喷嘴连线与水平地面间的夹角为θ,忽略空气阻力,以下说法正确的是()A.水流射出喷嘴的速度为2tanθgt B.空中水柱的水的体积为22tanSgtθC.水流落地时位移大小为22singtθD.水流落地时的速度为2cotθgt【答案】BC【解析】【分析】【详解】A.水流落地点与喷嘴连线与水平地面间的夹角为θ,则有200tan22y gt gtx v t vθ===故02tangtvθ=故A错误;B.空中水柱的水量202tan Sgt Q Sv t θ==故B 正确;C . 水流落地时,竖直方向位移212h gt =,根据几何关系得,水流落地时位移大小为 2sin 2sin h gt s θθ==故C 正确;D .水流落地时,竖直方速度v y =gt ,则水流落地时的速度222014(tan )2tan y gtv v v θθ=+=+故D 错误。