高压直流输电系统共49页
《高压直流输电》课件
研究高压直流输电线路和换流站对周边电磁环境的影响,制定相应的防护措施和标准,降低对环境和人体的影响。
研究高压直流输电在电网中的稳定运行机制,通过优化无功补偿、有功滤波等技术手段,提高系统的稳定性和可靠性。
高压直流输电系统的核心,负责将交流电转换为直流电或反之。
换流站
直流输电线路
接地极
用于传输直流电,通常采用架空线或海底电缆。
为系统提供参考地电位,并泄放多余的电流。
03
02
01
01
02
03
04
实现交流电与直流电相互转换的核心元件。
换流阀
用于调整电压等级,使换流站能与不同电压等级的电网连接。
变压器
用于滤除换流过程中产生的谐波,减少对周围环境的干扰。
《高压直流输电》PPT课件
目录
高压直流输电概述高压直流输电的基本原理高压直流输电系统的构成与设备高压直流输电的优缺点与关键技术问题高压直流输电的工程实例与展望
01
高压直流输电概述
Chapter
总结词
高压直流输电是一种利用高压直流电进行远距离传输的输电方式,具有输送容量大、损耗小、稳定性高等特点。
详细描述
总结词
换流技术是高压直流输电的核心技术之一,涉及到整流和逆变两个过程。
详细描述
在整流过程中,交流电源转换为直流电源,通过控制晶闸管或绝缘栅双极晶体管的开关状态实现。逆变过程则是将直流电源转换为交流电源,同样通过控制开关状态实现。换流技术的关键在于保证电流的稳定和减小谐波干扰。
VS
高压直流输电的损耗主要包括线路损耗和换流损耗,提高效率是重要目标。
高压直流输电系统
1.高压直流输电系统的主要设备名称:换流变压器。
换流器。
平波电抗器。
交流滤波器,直流滤波器,控制保护系统,接地极引线,接地极,远动通信系统
2.直流输电系统中交流滤波器的功能:
3.逆变器采用定熄弧角控制的目的:
4.直流输电系统换流站装设的无功补偿装置类型:
5.晶闸管导通的条件:
6.双桥整流器交直流侧主要特征谐波次数
7.单桥整流器交直流侧主要特征谐波次数及其变化规律
8.双桥整流器桥间的影响
9.直流输电系统潮流调整在变动电流指令值过程中的要求
10.影响换相压降大小的因素
11.高压直流输电系统平波电抗器的作用
12.换流变压器的作用
13.换流器的控制方式
14.等价距离概念
15.常规高压直流输电的主要类型
16.高压直流输电技术发展经历的阶段
17.高压直流系统的基本保护联动方式
18.高压直流输电系统换流器具备的功能
19.换流阀组件电路中各元件的作用
20.从经济性互连性控制性等方面分析阐述高压直流输电的
优点
21.常规高压直流输电的缺点
22.常规高压直流输电的主要适应场合
23.单桥逆变器实现直流电向交流电的变换必须满足的条件,
换相失败的概念
24.单桥逆变器工况2-3时整流电压的特点
25.直流输电系统中调整直流功率的方法
26.6脉动整流器工作于2-3工况的条件
27.6脉动整流器换相过程,u的表达式,换相期间整流输出
电压的表达式
28.双桥12脉动整流器4-5工况时各电流电压的表达
29.触发延迟角,换相重叠角,触发超前角,熄弧角的概念。
高压直流输电
高压直流输电一、高压直流输电系统(HVDC)概述众所周知,电的发展首先是从直流开始的,但很快就被交流电所取代,并且在相当长的一段时间内,在发电、输电和用电各个领域,都是交流电一统天下的格局。
HVDC技术是从20世纪50年代开始得到应用的。
经过半个世纪的发展,HVDC技术的应用取得了长足的进步。
据不完全统计,目前包括在建工程在内,世界上己有近百个HVDC 工程,遍布5大洲20多个国家。
其中,瑞典在1954年建成投运的哥特兰(Gotland)岛HVDC 工程(20MW,100kV,90km海底电缆)是世界上第一个商业化的HVDC工程,由阿西亚公司(ASEA,今ABB集团)完成;拥有最高电压(±600kV)和最大输送容量(2 x 3150MW)的HVDC工程为巴西伊泰普(Itaipu)工程;输送距离最长(1700km)的HVDC 工程为南非英加——沙巴(1nga2Shaba)工程;电流最大的HVDC工程在我国:如三常、三广和贵广HVDC工程,额定直流电流均为3000A。
HVDC的发达地区在欧洲和北美,ABB和西门子等公司拥有最先进的HVDC技术,美国是HVDC工程最多的国家。
HVDC在我国是从20世纪80年代末开始应用的,起步虽然较晚,但发展很快。
目前包括在建工程在内,总输送容量已达18000MW以上,总输送距离超过7000km,该两项指标均已成为世界第一。
我国第一个HVDC工程是浙江舟山HVDC工程(为工业试验性工程),葛沪HVDC工程是我国第一个远距离大容量HVDC工程,三常HVDC工程是我国第一个输送容量最大(3000MW)的HVDC工程,灵宝(河南省灵宝县)背靠背HVDC工程是我国第一个背靠背HVDC工程。
我国已投运的HVDC工程见表1。
表1我国已投运的HVDC工程另外,2010年前后建成投运的HVDC工程有四川德阳——陕西宝鸡(1800 MW、±500 kV,550km)、宁夏银南——天津东(3000MW、±500kV,1200km)等;至2020年前后,还计划建设云南昆明——广东增城、金沙江水电基地一华中和华东HVDC工程以及东北——华北、华北——华中、华中——南方背靠背HVDC工程等十几个HVDC工程。
高压直流输电系统PPT课件
(3)过负荷能力
通常,交流输电线路具有较高的持续运行能力,受发热
条件限制的允许最大连续电流比正常输送功率大得多, 其最大输送容量往往受稳定极限控制。
直流线路也有一定的过负荷能力,受制约的往往是换流
站。通常分2h过负荷能力、10s过负荷能力和固有过负荷 能力等。前两者葛上直流工程分别为10%和25%,后者 视环境温度而异。
以下是维持高功率因数的几个原因:
在给定变压器和阀的电流和电压额定值的 条件下,使换流器的额定功率尽可能高;
减轻阀上的应力; 使换流器所连接的交流系统中设备的损耗
和电流额定最小; 在负荷增加时,使交流终端的电压降最小; 使供给换流器的无功功率费用最小。
控制特性
图4.1.2 理想的稳态伏安特性(Vd是在整流器上测量的值;
当电压降低时,也会面临换相失败和电压不稳定的风险。 这些和低电压条件下的运行状况有关的问题可通过引入 “依赖于电压的电流指令限制”(VDCOL)来防止。当 电压降低到预定值以下时,这个限制降低了最大容许直流 电流。VDCOL特性曲线可能是交流换相电压或直流电压 的函数。图示出了这两种类型的VDCOL。
Id
Vdorcos Vdoi cos Rcr RLRci
Pdr VdrId
P di VdiIdP drRLId 2
图3.1.1 HVDC输电联络线 (a)示意图;(b)等值电路;(c)电压分布。
高压直流系统通过控制整流器和逆变器的 内电势(Vdorcosα)和(Vdoicosγ)来控制 线路上任一点的直流电压以及线路电流 (或功率)。这是通过控制阀的栅/门极 的触发角或通过切换换流变压器抽头以控 制交流电压来完成的。
高压直流输电
总计
0.82
0.69 0.057 0.018
直流输电与交流输电的可靠性相当
*
.
28
chap.1 绪论1.2.1 高压直流输电的优点
➢ 三、从经济性看,HVDC具有如下优点:
√ 1. 线路造价低 输送同样功率条件下,直流架空线路节省1/3 的导线,1/3~1/2的钢材,造价为交流线路的 60%~70%。
· 等价距离: HVDC与HVAC总投资费用相等时,输电线路 的长度。
√ 500kV架空线路:400-600km √ 800kV架空线路:700-900km √ 电缆线路: 20-40km
*
.
34
1.3 chap.1 绪论HVDC的历史与国外发展现状
➢人类输送电力已有一百多年的历史。输电方式是 从直流输电开始的。
*
.
16
chap.1绪论1.1.2.4 背靠背直流输电系统
Back-to-back HVDCtransmission, b-tbHVDCtransmission
·背靠背直流输电系统:直流线路长度为零的
HVDC系统。又称为“背靠背换流站” ,“非同步 联络站”,或“变频站” 。
· 接线方式:单极、双极或同极方式
高压直流输电
HVDCtransmission
*
.
1
chap.1 绪论
HVDC
High Voltage Direct Current transmission
*
.
2
chap.1 绪论
主要参考书
·韩民晓,等编著.高压直流输电原理与运 行 .北京:机械工业出版社,2009.
·浙江大学发电教研组直流输电科研组.直 流输电.北京:水利电力出版社,1985.
高压直流输电系统概述
高压直流输电系统概述院系:电气工程学院班级:1113班学号:xxxxxxxxxxx姓名:xxxxxxxxxx专业:电工理论新技术一、高压直流输电系统发展概况高压直流输电作为一种新兴的输电方法,有很多优于交流输电地方,比如它可以实现不同额定频率或相同额定频率交流系统之间的非同期联络,特别适合高电压、远距离、大容量输电,尤其适合大区电网间的互联,线路功耗小、对环境的危害小,线路故障时的自防护能力强等等。
1954年,世界上第一个基于汞弧阀的高压直输电系统在瑞典投入商业运行.随着电力系统的需求和电力电子技术的发展,高压直流输电技术取得了快速发展. 1972年,基于可控硅阀的新一代高压直流输电系统在加拿大伊尔河流域的背靠背直流工程中使用; 1979年,第一个基于微处理器控制技术的高压直流输电系统投入运行; 1984年,巴西伊泰普水电站建造了电压等级最高(±600 kV)的高压直流输电工程.我国高压直流输电起步相对较晚,但近年来发展很快. 1987年底我国投运了自行建成的舟山100 kV海底电缆直流输电工程,随后葛洲坝-上海500 kV、1 200MW的大功率直流输电投运,大大促进了我国高压直流输电水平的提高. 2000年以后,我国又相继建成了天生桥-广州、三峡-常州、三峡-广州、贵州-广州等500 kV容量达3 000MW的直流输电工程.此外,海南与台湾等海岛与大陆的联网、各大区电网的互联等等,都给我国直流输电的发展开辟了动人的前景.近年来,直流输电技术又获得了一次历史性的突破,即基于电压源换流器(Voltage Source Converter,VSC)技术和全控型电力电子功率器件,门极可关断晶闸管(GTO)及绝缘栅双极型晶体管(IGBT)为基础的新一代高压直流输电技术已发展起来,也就是轻型直流输电(HVDC light)技术.现有的直流输电主要是两端系统.随着直流断路器研制的进展和成功以及直流输电技术的进一步成熟完善,直流输电必将向着多端系统发展.同时许多其他科学技术领域的新成就将使输电技术的用途得到广泛的扩展.光纤与计算机技术的发展也使得直流输电系统的控制、调节与保护更趋完善,运行可靠性进一步提高;高温超导材料及其在强电方面的应用研究正方兴未艾,在直流下运行时,超导电缆无附加损耗,可节省制冷费用,因此在超导输电方面直流输电也很适宜.一、高压直流输电系统构成高压直流输电系统的结构按联络线大致可分为单极联络线、双极联络线、同极联络线三大类。
高压直流输电技术
高压直流输电技术在电力系统中的实际应用案例
案例一:国家电网的特高压直流 输电工程
案例三:高压直流输电在海上风 电并网中的应用
添加标题
添加标题
添加标题
添加标题
案例二:南方电网的背靠背直流 输电工程
案例四:高压直流输电在跨国电 力联网中的应用
高压直流输电技术在电力系统中的未来发展方向
更高电压等级:随着技术的进步,高压直流输电系统的电压等级将进一步 提高,以实现更远距离、更大容量的电力传输。
智能控制:利用先进的控制算法和人工智能技术,实现对高压直流输电系 统的智能控制,提高电力系统的稳定性和可靠性。
添加标题
应用场景:广泛应用于电力系统、城市供电、铁路供电等领域。
添加标题
未来发展:随着新能源、智能电网等技术的不断发展,高压直流输电技 术的应用前景更加广阔。
高压直流输电技术的应用场景
跨大区电网互联 远距离大容量输电 分布式能源并网 城市供电和配电网
02
高压直流输电技术的发展历程
高压直流输电技术的起源和发展
起源:20世纪初,高压直流输电技术开始发展,主要用于城市供电和跨大 区输电。
发展历程:20世纪50年代,随着电力电子技术和控制技术的进步,高压直 流输电技术逐渐成熟并得到广泛应用。
技术特点:高压直流输电具有输送功率大、线路损耗小、输送距离远等优 点,尤其适用于大容量、远距离输电。
应用场景:高压直流输电技术广泛应用于电力系统互联、海上风电并网、 城市供电等领域。
04
高压直流输电技术的关键技术问题
高压直流输电系统的设计和优化
高压直流输电PPT课件
加拿大的纳尔逊河两回±500kV,约940km 4000MW
三峡——华东 三回±500kV,约900~1100km 7200MW
三峡——广东 一回±500kV 960km 3000MW
10
2、背靠背直流联网工程 3、跨海峡直流海底电缆工程
➢三峡-常州 三峡-广东 贵州-广东 灵宝背靠背直流输电 舟山 嵊泗 2006年12月19日开工,云南楚雄—广东 ±800kV,500万kW, 1438km,2009年单极投产,2010年双极投产 2007年5月21日,四川—上海±800kV特高压直流输电示范工程 在上海奠基。 向家坝—四川—(途径重庆、湖南、湖北、安徽、浙江)上 海奉贤,1600万kw,2000km,投资180亿,计划于2011年建成。
11
1.2 直流输电系统的构成
一.直流输电的基本概念
直流输电是将发电厂发出的交流电经过升压变压器后,又 换流设备(整流器)整成直流,通过直流线路送到受端, 再经换流设备(逆变器)换成交流供给交流系统。 按它与交流系统连接的节点数可分为 两端
多端
12
直流输电系统的构成
换流变 压器1
~
+ Id
整 流Vd1 器
4
据了解,目前世界上Байду номын сангаас有日本和俄罗斯两国拥有 1000千伏特高压交流电网,且都是短距离输电。 正负800千伏直流输电技术国际上尚无运行经验, 关键技术和设备有待进一步研究开发。南方电网采 用特高压输电技术,可以有效缓解长距离“西电东 送”输电走廊资源紧张局面,提高电网安全稳定水 平,输电能力也将明显提高。
➢英法海峡 ±270kV 72km 2000MW ➢波罗底海(瑞典-德国)单极450kV 海底250km,架空12km 600MW ➢日本纪伊 ±500kV 海底51km,架空51km 2800MW ➢巴坤(马来西亚) 三回±500kV,海底670km,架空660km 2130MW ➢舟山 嵊泗
高压直流输电系统
1.高压直流输电系统的主要设备名称:换流变压器。
换流器。
平波电抗器。
交流滤波器,直流滤波器,控制保护系统,接地极引线,接地极,远动通信系统2.直流输电系统中交流滤波器的功能:抑制换流器产生的注入交流系统的谐波电流;同时补偿换流器吸收的无功补偿;3.逆变器采用定熄弧角控制的目的:一方面防止逆变器换相失败,同时保证无功需求最小。
4.直流输电系统换流站装设的无功补偿装置类型:机械投切式无功补偿装置。
静止无功补偿装置。
同步调相机。
5.晶闸管导通的条件:1)要有适当的正向阳极电压;6. 2)还要有适当的正向门极电压,且晶闸管一旦导通,门极将失去作用7.晶闸管的关断条件:1.阳极电位高于阴极电位或阴极电流小于维持电流。
2. 使流过晶闸管的电流降到接近于零的某一数值(称为维持电流)以下才能关断。
否则即使除去了触发脉冲,也不能关断,晶闸管仍能继续导通。
8.双桥整流器交直流侧主要特征谐波次数:9.单桥整流器交直流侧主要特征谐波次数及其变化规律双桥整流器桥间的影响: 邻桥的换相使本桥所有未导通的电压产生畸变。
从而影响整流器侧接班阀的正常开通,以及逆变器侧熄弧阀的可靠关断。
10.直流输电系统潮流调整在变动电流指令值过程中的要求:一定要确保电流裕度的存在,所以在输电功率增加时,先增大整流器的电流定值;反之,在减少输电功率时,先减少逆变器的电流指令值。
11.影响换相压降大小的因素:直流电流和换相电感(书79页)12.高压直流输电系统平波电抗器的作用(1)防止轻载时直流电流断续。
(2)抑制直流故障电流的快速增加,减小逆变器继发换相失败的几率。
(3)减小直流电流文波,与直流滤波器一起共同构成换流站直流谐波滤波电路。
(4)防止直流线路或直流开关站产生的陡波冲击波进入阀厅,从而使换流阀免遭过电压应力过大而损坏。
13.换流变压器的作用1)参与实现交流电和直流电之间的相互变换。
(2)实现电压变换。
(3)抑制直流故障电流。
换流变压器的漏抗限制了阀臂短路和直流母线短路时的故障电流,能有效保护换流阀。
高压直流输电系统课件pptx
自20世纪初开始研究,随着电力 电子技术的发展,高压直流输电 技术逐渐成熟并广泛应用。
工作原理及结构组成
工作原理
通过换流站将交流电转换为直流电进 行传输,接收端再通过换流站将直流 电转换回交流电。
结构组成
主要包括换流站、直流输电线路、控 制系统等部分。
优缺点分析
优点 线路造价低,适合长距离输电;
没有交流输电的稳定问题,传输容量大;
优缺点分析
• 可实现异步联网,提高电网稳定性。
优缺点分析
01
缺点
02
03
04
换流站设备复杂,造价高;
直流输电对通信有干扰;
不能直接给交流负载供电。
02
换流站设备与技术
换流站功能及类型
功能
将交流电转换为直流电进行传输,同时实现电压等级的变换 。
类型
根据换流站所处位置及作用,可分为整流站、逆变站和背靠 背换流站。
06
高压直流输电系统发展趋势与挑 战
国内外发展现状对比
国内外高压直流输电 系统规模和数量对比
国内外高压直流输电 系统应用领域差异
国内外高压直流输电 系统技术水平比较
未来发展趋势预测
高压直流输电系统技术创新方向 高压直流输电系统市场规模预测 高压直流输电系统应用领域拓展趋势
面临挑战和机遇
01
02
可靠的硬件设备
采用高质量的硬件设备,确保保护系统的稳定性和可靠性。
典型案例分析
案例一
某高压直流输电系统故障 分析
故障描述
某高压直流输电系统在运 行过程中发生故障,导致 系统停运。
故障原因分析
经过检查发现,故障原因 为控制策略失效,导致系 统无法稳定运行。
高压直流输电系统课件x
高压直流输电系统课件x一、教学内容本节课我们学习的教材是《科学》四年级上册,第二章第四节“高压直流输电系统”。
本节内容主要包括高压直流输电的原理、优点以及应用。
通过学习,使学生了解高压直流输电的基本概念,掌握直流输电的特点和优势,并能够运用所学知识分析生活中的电力传输问题。
二、教学目标1. 让学生了解高压直流输电的原理和优点。
2. 培养学生运用科学知识解决实际问题的能力。
3. 提高学生的科学思维能力和团队合作能力。
三、教学难点与重点重点:高压直流输电的原理和优点。
难点:直流输电在实际应用中的优势和挑战。
四、教具与学具准备教具:PPT课件、模型电路、实验器材。
学具:笔记本、彩笔、实验报告单。
五、教学过程1. 实践情景引入:通过展示我国西电东送工程的图片,引导学生思考高压直流输电在实际生活中的应用。
2. 知识讲解:(1)讲解高压直流输电的原理:利用PPT课件,详细介绍高压直流输电的原理,引导学生理解直流输电的优点。
(2)分析直流输电的优点:通过对比直流输电和交流输电的优缺点,使学生明确直流输电在长距离、大容量输电方面的优势。
3. 例题讲解:出示例题:某电力公司计划建设一条从A地到B地的直流输电线路,两地距离为500公里,输电电压为±500kV。
请计算该输电线路的输电功率。
引导学生运用所学知识解决问题,培养学生的实际应用能力。
4. 随堂练习:布置练习题:某输电线路采用±660kV的直流输电,两地距离为700公里,求输电线路的输电功率。
5. 实验环节:组织学生进行实验,观察实验现象,巩固所学知识。
6. 板书设计:高压直流输电原理、优点及应用。
7. 作业设计作业题目:(1)某电力公司计划建设一条从A地到B地的直流输电线路,两地距离为600公里,输电电压为±500kV。
请计算该输电线路的输电功率。
(2)某输电线路采用±800kV的直流输电,两地距离为800公里,求输电线路的输电功率。
高压直流输电的基本控制原理PPT(65张)
3. 1989年葛洲坝—上海高压直流输电工程的投入运行,标志我 国高压直流输电工程已迈入世界先进行列。该直流系统采用 500kV双极联络线,额定容量为1200MW,输电距离为 1045km,它的建成把华东、华中这两个装机容量超过14GW 的大电网连接起来,形成了我国第一个大电网联合系统,使 长江葛洲坝水电站的电能源源不断送往上海。
6.2 换流器的工作原理
6.2.1 换流阀
在直流输电系统中,为实现换流所需的三相桥式换流 器的桥臂,称为换流阀 。
整流
换流阀功能 逆变
开关
半导体阀可分为晶闸管阀(或可控硅阀)、低频门极关 断晶闸管阀(GTO阀)、高频绝缘栅双级晶体管阀 (IGBT阀)三类。
晶闸管阀是由晶闸管元件及其相应的电子电路、阻 尼回路、阳极电抗器、均压元件等通过某种形式的 电气连接后组装而成的换流桥的桥臂。
直流电压和交流电流波形(忽略换流过程)
6.2.3 高压直流输电的稳态计算
采用多桥换流器时,交流和直流量之间的关系讨论如下:
(1)直流侧电压
整流器直流电压Udr为
U d r N r 1 .3 5 U 2 rc o s π 3 X B rId N rU d r 0 c o s R B rId
我国对高压直流输电的研究
起步较晚
1. 4. 我国第一个交直流并联运行系统天生桥—广州直流 输电工程于2001年6月全面建成投运,该工程线路长度 约980km,送电容量为1800MW,电压为±500kV。嵊 泗高压直流输电工程是我国自行设计和建造的海底电缆 高压直流工程于2002年全部建成。
高压直流输电 系统共89页文档
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
。— —爱献 生
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
高压直流输电_系统共89页
•
46、寓形宇内复几时,曷不委心任去 留。
•
47、采菊东篱下,悠然见南山。
•
48、啸傲东轩下,聊复得此生。
•
49、勤学如春起之苗,不见其增,日 有所长 。
•
50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联