三角形的概念和性质核心知识点精讲(讲义)-备战2024年中考数学一轮复习(全国通用)(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题15三角形的概念和性质的核心知识点精讲
1.理解三角形有关的中线、角平分线、高线,并会作三角形的中线、角平分线、高线;
2.理解并掌握三角形的中位线的性质;
3.理解三角形的三边关系,并能确定三角形第三边的取值范围;
4.掌握三角形的内角和定理,并会证明三角形的内角和定理;
5.能利用三角形的外角进行角的有关计算与证明。
考点1:三角形边角关系
(1)三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
(2)三角形内角和定理:三角形三个内角的和等于180度。
(3)三角形的一个外角等于与它不相邻的两个内角和;三角形的一个外角大于与它不相邻的任何一个角。
考点2:三角形的重要线段
考点3:三角形的内角和定理及推论
①三角形内角和定理:三角形三个内角的和等于180度。
②推论:三角形的一个外角等于与它不相邻的两个内角和;三角形的一个外角大于与它不相邻的任何一个
角。
③直角三角形的两个锐角互余。
【题型1:三角形的三边关系】
【典例1】(2023•宿迁)以下列每组数为长度(单位:cm)的三根小木棒,其中能搭成三角形的是()
A.2,2,4B.1,2,3C.3,4,5D.3,4,8【答案】C
【解答】解:∵2+2=4,
∴A不能构成三角形;
∵1+2=3,
∴B不能构成三角形;
∵3+4>5,4﹣3<5,
∴C能构成三角形;
∵3+4<8,
∴D不能构成三角形.
故答案为:C.
1.(2023•长沙)下列长度的三条线段,能组成三角形的是()
A.1,3,4B.2,2,7C.4,5,7D.3,3,6【答案】C
【解答】解:∵1+3=4,
∴1,3,4不能组成三角形,
故A选项不符合题意;
∵2+2<7,
∴2,2,7不能组成三角形,
故B不符合题意;
∵4+5>7,
∴4,5,7能组成三角形,
故C符合题意;
∵3+3=6,
∴3,3,6不能组成三角形,
故D不符合题意,
故选:C.
2.(2023•福建)若某三角形的三边长分别为3,4,m,则m的值可以是()
A.1B.5C.7D.9
【答案】B
【解答】解:根据三角形的三边关系定理得:4﹣3<m<4+3,
解得:1<m<7,
即符合的只有5,
故选:B.
3.(2023•金华)在下列长度的四条线段中,能与长6cm,8cm的两条线段围成一个三角形的是()A.1cm B.2cm C.13cm D.14cm
【答案】C
【解答】解:设第三条线段长为x cm,由题意得:
8﹣6<x<8+6,
解得:2<x<14,
只有13cm适合,
故选:C.
【题型2:三角形内角和定理及推论】
【典例2】(2021•辽宁)一副三角板如图所示摆放,若∠1=80°,则∠2的度数是()
A.80°B.95°C.100°D.110°
【答案】B
【解答】解:如图,∠5=90°﹣30°=60°,∠3=∠1﹣45°=35°,
∴∠4=∠3=35°,
∴∠2=∠4+∠5=95°,
故选:B.
1.(2023•遂宁)若三角形三个内角的比为1:2:3,则这个三角形是直角三角形.【答案】直角.
【解答】解:设这个三角形最小的内角是x°,则另外两内角的度数分别为2x°,3x°,根据题意得:x+2x+3x=180,
解得:x=30,
∴3x°=3×30°=90°,
∴这个三角形是直角三角形.
故答案为:直角.
2.(2023•徐州)如图,在△ABC中,若DE∥BC,FG∥AC,∠BDE=120°,∠DFG=115°,则∠C=5 5°.
【答案】55.
【解答】解:∵DE∥BC,∠BDE=120°,
∴∠B=180°﹣120°=60°,
∵FG∥AC,∠DFG=115°,
∴∠A=180°﹣115°=65°,
∴∠C=180°﹣∠B﹣∠A=55°,
故答案为:55.
3.(2021•毕节市)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()
A.70°B.75°C.80°D.85°
【答案】B
【解答】解:如图,
∵∠2=90°﹣30°=60°,
∴∠3=180°﹣45°﹣60°=75°,
∵a∥b,
∴∠1=∠3=75°,
故选:B.
【题型3:三角形中的重要线段】
【典例3】(2022•哈尔滨)在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC是80或40度.
【答案】80或40.
【解答】解:当△ABC为锐角三角形时,如图,
∠BAD=180°﹣∠B﹣∠ADB=180°﹣30°﹣90°=60°,
∠BAC=∠BAD+∠CAD=60°+20°=80°;
当△ABC为钝角三角形时,如图,
∠BAD=180°﹣∠B﹣∠ADB=180°﹣30°﹣90°=60°,
∠BAC=∠BAD﹣∠CAD=60°﹣20°=40°.
综上所述,∠BAC=80°或40°.
故答案为:80或40.
1.(2021•雅安)如图,将△ABC沿BC边向右平移得到△DEF,DE交AC于点G.若BC:EC=3:1.S
△ADG=16.则S△CEG的值为()
A.2B.4C.6D.8
【答案】B
【解答】解:由平移性质可得,AD∥BE,AD=BE,
∴△ADG∽△CEG,
∵BC:EC=3:1,
∴BE:EC=2:1,
∴AD:EC=2:1,
∴=4,