动态可调光栅的设计-推荐下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光栅
光栅是一张由条状透镜组成的薄片,当我们从镜头的一边看过去,
将看到在薄片另一面上的一条很细的线条上的图像,而这条线的位
置则由观察角度来决定。
如果我们将这数幅在不同线条上的图像,
对应于每个透镜的宽度,分别按顺序分行排列印刷在光栅薄片的背
面上,当我们从不同角度通过透镜观察,将看到不同的图像。
光栅也称衍射光栅。
是利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。
它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻
璃或金属片。
光栅主要有狭缝光栅和柱镜光栅两类
光栅的分光原理
由光栅方程d(sinα±sinβ)=mλ可知,对于相同的光谱级数
m,以同样的入射角α投射到光栅上的不同波长λ1、λ2、λ2.....组成的缓和光,每种波长产生的干涉极大都位于不同的角度位置;即
不同波长的衍射光以不同的衍射角β出射。
这就说明,对于给定的
光栅,不同波长的同一级主级大或次级大(构成同一级光栅光谱中
的不同波长谱线)都不重合,而是按波长的次序顺序排列,形成一
系列分立的谱线。
这样,混合在一起入射的各种不同波长的复合光,经光栅衍射后彼此被分开。
这就是衍射光栅的分光原理。
单轴晶体
光在晶体中传播时,在不平行于光轴方向上,由于e光和o光传
播速度不同,而出现两个不同折射率的光的像,这种现象叫做双
折射现象。
双折射现象有两类,单轴晶体和双轴晶体[1]。
只有一个光轴的晶体就叫单轴晶体。
其折射率椭球为旋转椭球体。
属于四方晶系、三方晶系和六方晶系的晶体都是光学单轴晶体,常见的单轴晶体有方解石(CaCO3)和石英(SiO2)。
参考文献
1、陈晓峰,刘伟平,杜戈,易清明,廖常俊,刘颂豪;动态可调谐光纤光栅单/双信道滤波的实现[J];光通信研究;2002年05期
2 、刘伟平,杜戈,刘颂豪,郭光灿;DWDM系统光纤光栅分插复用器的设计与实现[J];通信学报;2002年12期
【1】T. Horiguchi, M. Tateda. Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave[J]. Opt. Lett., 1989, 14(8): 408~410
【2】G. P. Agrawal. Nonlinear Fiber Optics[M]. 3rd ed. New York: Academic, 2001
【3】Anthony W. Brown, Bruce G. Colpitts, Kellie Brown et al.. Distributed sensor based on dark-pulse Brillouin scattering[J]. IEEE Photon. Technol. Lett., 2005, 17(7): 1501~1503
【4】L. Che-Hien, T. Tsuda, K. Kishida et al.. PPP-BOTDA method to achieve cm-order spatial resolution in Brillouin distributed measuring technique[J]. IEICE Technical Report, 2005, OFT 2005-16
【5】Seok-Beom Cho, Jung-Ju Lee. Strain event detection using a double-pulse technique of a Brillouin scattering-based distributed optical fiber sensor[J]. Opt. Express, 2004, 12(18): 4339~4346
【6】W. Li, X. Bao, Y. Li et al.. Differential pulse-width pair BOTDA for high spatial resolution sensing[J]. Opt. Express, 2008, 16(26): 21616~21625
【7】L. Thevenaz, S. F. Mafang. Distributed fiber sensing using Brillouin echoes[C]. SPIE, 2008, 7004: 70043N
【8】Y. Li, L. Chen, Y. Dong et al.. A novel distributed Brillouin sensor based on optical differential parametric amplification[J]. J. Lightwave Technol., 2010, 28(18): 2621~2626
【9】D. Garus, T. Gogolla, K. Krebber et al.. Brillouin optical fiber frequency-domain analysis
1 cm spatial resolution, based on Brillouin dynamic gratings[J]. J. Lightwave Technol., 2010, 28(14): 2062~2067
【21】K. Y. Song, Hyuk Jin Yoon. Observation of narrowband intrinsic spectra of Brillouin dynamic gratings[J]. Opt. Lett., 2010, 35(17): 2958~2960
【22】K. Y. Song. Operation of Brillouin dynamic grating in single-mode optical fibers[J]. Opt. Lett., 2011, 36(23): 4686~4688
【23】Y. Dong, L. Chen, X. Bao et al.. Characterization of the Brillouin grating spectra in a polarization-maintaining fiber[J]. Opt. Express, 2010, 18(18): 18960~18967
【24】Y. Dong, L. Chen, X. Bao et al.. High-spatial-resolution time-domain simultaneous strain and temperature sensor using Brillouin scattering and birefringence in a polarization-maintaining fiber[J]. Photon. Technol. Lett., 2010, 22(18): 1364~1366
【25】M. Santagiustina, L. Ursini. Localized dynamic Brillouin gratings permanently induced by chaotic signals[C]. in Signal Processing in Photonic Communications, OSA Technical Digest (CD), 2011, JTuB6
【26】Weiwen Zou, Zuyuan He, Kazuo Hotate et al.. One-laser-based generation/detection of Brillouin dynamic grating and its application to distributed discrimination of strain and temperature[J]. Opt. Express, 2011, 19(3): 2363~2370
【27】D. P. Zhou, Y. Dong, L. Chen et al.. Four-wave mixing analysis of Brillouin dynamic grating in a polarization-maintaining fiber: theory and experiment[J]. Opt. Express, 2011, 19(21): 20785~20798
【28】Sanghoon Chin, Nikolay Primerov, Luc Thevenaz et al.. Sub-centimetre spatial resolution in distributed fibre sensing, based on dynamic Brillouin grating in optical fibers[J]. IEEE Sensors Journal, 2012, 12(1): 189~194
【29】Y. Antman, N. Primerov, J. Sancho et al.. Long variable delay and distributed sensing using stationary and localized Brillouin dynamic gratings[C]. Optical Fiber Communication Conference, 2012, JW2A.24
【30】Y. Antman, N. Primerov, J. Sancho et al.. Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps[J]. Opt. Express, 2012, 20(7): 7792~7806
【31】M. Santagiustina, L. Ursin. Dynamic Brillouin gratings permanently sustained by chaotic lasers[J]. Opt. Lett., 2012, 37(5): 893~895
【32】Nikolay Primerov, Yair Antman, Juan Sancho et al.. Brillouin distributed sensing using
localized and stationary dynamic gratings[C]. SPIE, 2012, 8439: 843908
【33】K. Y. Song, K. Lee, S. B. Lee et al.. Tunable optical delays based on Brillouin dynamic grating in optical fibers[J]. Opt. Express, 2009, 17(12): 10344~10349
【34】Sanghoon Chin, Nikolay Primerov, Kwang Yong Song et al.. True time reversal via dynamic Brillouin gratings in polarization maintaining fibers[C]. Nonlinear Photonics, Optical Society of America, 2010, NThA6
【35】Nikolay Primerov, Sanghoon Chin, Kwang Yong Song et al.. Ultra wide range tunable delay line using dynamic grating reflectors in optical fibers[C]. Optical Fiber Communication Conference, Optical Society of America, 2010, OWF6
【36】S. Chin, N. Primerov, S. Sales et al.. Tunable multiplication of the repetition rate of an optical pulse train using dynamic Brillouin gratings in optical fibers[C]. The European Conference on Lasers and Electro-Optics(CLEO/Europe) 2011,CD_P8
【37】Nikolay Primerov, Sanghoon Chin, Luc Thévenaz et al.. All-optical calculus based on dynamic Brillouin grating reflectors in optical fibers[C]. Slow and Fast Light, Optical Society of America, 2011, SLMA3
【38】Claudio Porzi, Sanghoon Chin, Andrea Trita et al.. All-Optical Self-Synchronizing Scheme for Contention Resolution in Asynchronous Optical Packet Switched Networks Using Continuously Tunable Optical Delay Line[C]. Optical Fiber Communication Conference, Optical Society of America, 2011, JWA046
【39】Sanghoon Chin, Nikolay Primerov, Luc Thévenaz et al.. Movable dynamic grating-based optical delay line in polarization maintaining fibers[C]. Slow and Fast Light, Optical Society of America, 2011, SLMA2
【40】Yair Antman, Nikolay Primerov, Juan Sancho et al.. Variable delay using stationary and localized Brillouin dynamic gratings[C]. SPIE, 2012, 8273: 82730C
【41】J. Sancho, N. Primerov, S. Chin et al.. Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers[J]. Opt. Express, 2012, 20(6): 6157~6162。