测试信号分析与处理-第9章(打印版)

合集下载

测试信号分析与处理

测试信号分析与处理

“测试信号分析”课程思考题1. 信号分析与信号处理的内容和任务是什么?信号分析就是将一复杂信号分解为若干简单信号分量的叠加,并以这些分量的组成情况去考察信号的特性。

信号处理是指对信号进行某种变换或运算(如滤波、变换、增强、压缩、估计、识别等)。

广义的信号处理可把信号分析也包括在内。

信号处理包括时域和频域的处理,时域处理中最典型的是波形分析。

信号处理另一个重要内容是滤波,将信号中感兴趣的部分(有效信号)提取出来,抑制(削弱或滤波)不感兴趣的部分(干扰或噪声)。

2. 简要说明什么是模拟信号处理系统,什么是数字信号处理系统?系统的输入输出信号都是模拟信号的处理系统,称为模拟信号处理系统.系统的输入输出信号都是数字信号的处理系统,称为数字信号处理系统.3. 离散信号的表示方法是什么?离散信号变量的物理概念是什么?离散时间信号常用序列x(n)来表示,其中n 为整数,表示序号。

序列就是按一定次序排列的一组数,可用函数、数列、图形表示。

离散信号变量代表的是离散的时间,即采集间隔的几倍。

4. 周期序列与非周期序列是如何定义的?试举一周期序列的例子。

具有)()(mN n x n x p p +=形式的序列称为周期序列,其他形式的称为非周期序列。

例如:正弦序列)sin(][ϕ+Ω=n n x (当Ω/2π为非无理数时)5. 根据傅里叶变换性质,当将磁带慢录快放将产生什么样的声音效果?根据傅立叶变换的时间长度变化性质,磁带快放相当于信号在时域中的时间函数压缩了N 倍,则它在频域中的频域函数就扩展N 倍。

因此声音失真.6. 讨论周期为1T 的矩形脉冲信号)(t f T 与它一个周期内的信号)(t f 0的傅里叶变换间的关系.根据时域采样定理说明采样过程中如何减小信号失真。

周期矩形脉冲信号的傅立叶级数的系数等于其单位脉冲信号的傅立叶变换后(w)在1nw w =频率点的值乘以1/1T .连续信号必须是带限信号,采样频率必须大于或等于信号所具有的最高频率的2倍,即hw s w ≥。

信号分析与处理

信号分析与处理

第一章 信号分析与处理的基本概念复习考点(题型:填空/问答)➢ 信号的分类(P3)信号取值是否确定:确定性信号和随机信号信号自变量取值是否连续:连续信号和离散信号信号在某一区间是否重复出现:周期信号和非周期信号信号的能量或功率是否有限:能量信号和功率信号➢ 周期信号的基本周期计算(P4,参考P5例子)()()x t x t nT =+ (0,1,2,........)n =±±式中nT 为x(t)的周期,而满足关系式的最小T 值称为信号的基本周期。

➢ 信号处理的概念、目的(P5)概念:要把记录在某种媒体上的信号进行处理,以便抽取有用信息的过程,它是对信号进行提取、变换、分析、综合等处理过程的统称。

目的:去伪存真,特征提取,编码和解码(调制与解调)➢ 系统的性质/线性系统的条件(P11-14)性质:线性(包括齐次性与叠加性),时不变性,因果性,稳定性线性系统的条件:同时具有齐次性和叠加性的系统称为线性系统。

对于动态系统满足3个条件:可分解性、零状态线性、零输入线性第二章 连续时间信号的分析复习考点(题型:填空/问答/计算)➢ 信号分析的方法 (P22)信号分析的基本方法是信号的分解,即将任意信号分解成有限个或无限个基本信号的线性组合,通过对构成信号的基本单元的分析达到了解原信号的目的。

包括时域方法,频域方法,复频域方法。

➢ 信号的频谱分类/P47 思考题2-4 (P30-31)信号的频谱包括幅度频谱和相位频谱周期信号的频谱特点:离散普,其相邻谱线的间隔是w1,改变信号的周期将改变信号的频谱的疏密程度,当周期趋于无穷大时,频谱将是连续的。

分类:➢ 带宽定义(P31)通常把()01/02/f τωπτ≤≤≤≤这段频率范围称为周期矩形脉冲信号的频带宽度,简称带宽,记做B ,1/2/B B ωτπτ==或➢ 计算题:以作业题为主第三章 连续时间信号处理复习考点(题型:填空/问答/计算)➢ 线性时不变LTI 系统定义与描述方式(P52/P61)LTI :linear time invariant定义:如果系统的输入和输出满足叠加性和齐次性,而且组成系统的各个元件的参数不随时间而变化,则称该系统为线性时不变系统,简称LTI 系统描述方式:系统微分方程,系统函数,系统冲激响应。

信号分析与处理

信号分析与处理

5.1.2
信号的时域分析和频域分析
通常,信号可以被看作是一个随时间变化的量,是时间 t 的函数 x(t ) 。在相应的图形表 示中,作为自变量出现在横坐标上的是时间。信号的这种描述方法就是信号的时域描述。 基于微分方程和差分方程等知识,在时域中对信号进行分析的方法称为信号的时域分析。 对于快速变化的信号,时域描述不能很好地揭示信号特征。此时人们感兴趣的是什么 样的幅值在什么频率值或什么频带出现。与此对应,将频率作为自变量,把信号看作是频 率 f 的函数 X ( f ) 。在相应的图形表示中,作为自变量出现在横坐标上的是频率。信号的这 种描述方法就是信号的频域描述。信号在频域中的图形表示又称作信号的频谱,包括幅频 谱和相频谱等。幅频谱以频率为横坐标以幅度为纵坐标,相频谱以频率为横坐标以相位为 纵坐标。基于傅立叶变换理论,在频域中对信号进行分析的方法称为信号的频域分析。 信号分析的主要任务就是要从尽可能少的信号中,取得尽可能多的有用信息。时域分 析和频域分析,只是从两个不同角度去观察同一现象。时域分析比较直观,能一目了然地 看出信号随时间的变化过程,但看不出信号的频率成分。而频域分析正好与此相反。在工 程实际中应根据不同的要求和不同的信号特征,选择合适的分析方法,或两种分析方法结
x(t )
An 2 1 0
0
t
x (t ) = 2 sin ω 0 t + sin 2ω 0 t
a)
图 5.3 周期信号的时间历程及其频谱
0
90o
ω0 ω0
2ω 0 ω 2ω 0
ω
ϕn
b)
a ) 周期信号的时间历程
b) 周期信号的频谱
例5.1
求图 5.4 a 所示的周期性矩形波的傅里叶级数表示,并画出其幅频谱。

信号分析与处理实验

信号分析与处理实验

n ωj �
e� n� h � � �
0�n 1� N
ωj
e� H
波滤想理的望希所近逼来 � n� h 列序应响样抽位单长限有用是理原本基的法计设数函窗
� n� ω 数函窗用以所 �的果因非是且 �列序长限无是往往 � n� d h 于由 。 � n� d h 应响样抽位单的器
�应响样抽位单的器波滤字数 RIF 的计设际实到得�理处权加行进并�断截 � n� d h 将
�s
式公
换变在以所�量变参的要紧关无个一了成就 T 期周样采�后标指域字数出给为因 。响影有没果结计设对 s T 变改�答 �么什为�响影无有果结计设对值取的 s T 的中
1� 1�
z � 1 sT z �1 2
�s
式公换变�中程过器波滤字数计设法换变性线双用
题考思�六�
。滑平更形波使�号信用有留保�号信扰干除滤是用作的器波滤�答
5x 4x的 �� x n x� 4 x为 �4 �的 ��7n 为 期 8n是 周 n�� � �因 x 结的确正是 61=N �期 � n� � 7果 x1 � � � n� 7 x 使果结�61 是期周的 � n� 5 x � � n� 56 �n �周
� n� 5 xj � � n� 4 x � � n� 8x .8
s

减衰小最带阻� p � 减衰大最带通� s � 率频止截限下带阻� p � 率频止截带通�有数参 。器波滤计设来换变性线双用采能才 �时偿补被能或的许容是真失性线非种这当有只 �答 �性特和数参的器波滤录记�四�
� 2 �1 � N � �
k � 1�
� z � neve H
N � k � 1�
性称对足满须必还 � n� h 则�位相性线求要果如

测试信号的分析与处理

测试信号的分析与处理

(3) 模拟信号的输入范围; 如,5V, +/-5V,10V,+/-10V等。
(四) 信号截断、能量泄漏及窗函数 1、截断与泄漏 数字处理需要截断过长的信号时间历程,而只对有 限长信号进行处理。信号乘以有限宽的窗函数就实现了 截断。 窗函数就是在模数转换过程中或数据处理过程中对 时域信号取样时所采用的截断函数。图示为时域余弦函
数被矩形窗函数截断后其时频域变化情况。 由于信号在时域上被截断而在频域上出现附加频率
的现象称为泄漏。
2、几种常用的窗函数简介 由窗函数的频谱可见,在-2π/τ<ω< 2π/τ 之间的部分称为主瓣,其余两旁的部分,即附加频率分 量称为旁瓣。 当窗宽τ增大时,主瓣和旁瓣的宽度都变窄,主瓣 高度恒等于窗宽。 τ→∞时,G(ω) →δ(ω),那么无限
1 T Rxx ( ) lim x(t ) x(t )dt T T 0
对于周期信号,自相关函数表达为:
1 T Rxx ( ) x(t ) x(t )dt T 0
(二)相关系数
xy
自相关系数:
E [( x x )( y y )]
x y
同样地,以有限长样本作互相关函数的估计:
1 T Rxy ( ) x(t ) y (t )dt T 0
(二) 互相关函数的基本性质 1、互相关函数并非偶函数,也并非奇函数,而是: Rxy(τ)= Ryx(-τ)
1 T Rxy ( ) lim x(t ) y (t )dt T T 0 1 T 1 T lim x(t ) y (t )dt lim y (t ) x(t )dt Ryx ( ) T T 0 T T 0
需注意,满足采样定理,只保证不发生频率 混叠,而不能保证此时的采样信号能真实地反映 原信号x(t)。工程实际中采样频率通常大于信号 中最高频率成分的3到5倍。

《测试信号分析与处理》(附实验结果).doc

《测试信号分析与处理》(附实验结果).doc

《测试信号分析与处理》实验指导书实验一差分方程、卷积、z变换一、实验目的通过该实验熟悉 matlab软件的基本操作指令,掌握matlab软件的使用方法,掌握数字信号处理中的基本原理、方法以及matlab函数的调用。

二、实验设备1、微型计算机1台;2、matlab软件1套三、实验原理Matlab 软件是由mathworks公司于1984年推出的一套科学计算软件,分为总包和若干个工具箱,其中包含用于信号分析与处理的sptool工具箱和用于滤波器设计的fdatool工具箱。

它具有强大的矩阵计算和数据可视化能力,是广泛应用于信号分析与处理中的功能强大且使用简单方便的成熟软件。

Matlab软件中已有大量的关于数字信号处理的运算函数可供调用,本实验主要是针对数字信号处理中的差分方程、卷积、z变换等基本运算的matlab函数的熟悉和应用。

差分方程(difference equation)可用来描述线性时不变、因果数字滤波器。

用x表示滤波器的输入,用y表示滤波器的输出。

a0y[n]+a1y[n-1]+…+a N y[n-N]=b0x[n]+b1x[n-1]+…+b M x[n-M] (1)ak,bk 为权系数,称为滤波器系数。

N为所需过去输出的个数,M 为所需输入的个数卷积是滤波器另一种实现方法。

y[n]= ∑x[k] h[n-k] = x[n]*h[n] (2) 等式定义了数字卷积,*是卷积运算符。

输出y[n] 取决于输入x[n] 和系统的脉冲响应h[n]。

传输函数H(z)是滤波器的第三种实现方法。

H(z)=输出/输入= Y(z)/X(z) (3)即分别对滤波器的输入和输出信号求z变换,二者的比值就是数字滤波器的传输函数。

序列x[n]的z变换定义为X (z)=∑x[n]z-n (4) 把序列x[n] 的z 变换记为Z{x[n]} = X(z)。

由X(z) 计算x[n] 进行z 的逆变换x[n] = Z-1{X(z)}。

测试信号分析与处理(正式)

测试信号分析与处理(正式)




• • • •
。 ) 析 分 域 值幅 为 称 又 者 后 (况 情布分率概及率概的值取小大值幅号信解了 �态状布分的值取值幅的号信究研 � 度程 似 相 的 间 之 互 相 或 身 本 号信 究 研 以 可 � 析分 关 相 的 号 信 对 �量分动 波与量分态稳其究研�析分域时的号信过通 � 等 值 根方 均 、 值 均 、 值小 最 、 值 大 最 或 值 时 瞬 的 号信 刻 时 一 任 到 得以 可 � 析 分 行 进 来 式 达 表 或形 图 的 化 变 间 时随 值 幅 的 号 信 用
.4
.3
.2
术 技 试 测 术 技 子 电 � 代 年 05 纪 世0 2 • 界世对们人来带会都步进个一每的术技试测 • 。步进的识认
据依要重的界世识认是等列序、线曲、据数 •
?
。取提去法方的学科过通要 需�中之号信和据数的乱杂而序无是来起看 在藏隐律规化变的观客使�因原等扰干的免 避 可 不 界 外 、陷 缺 的 身 本 器 仪 于 由 往 往 也 果 结 试 测 其 � 量 参 的 测 能 术 技 试 测 的 前 目 ) 提 中 物 事 观客 从 是 程 过 试 测 •
。 )点观学理物从 (征待的态状动 运或在存观客其是�的有固所质物 -息信 ;息信物生 -码密传遗 �息信济经 -道报品商 �息信会社 -字文言语 识知或报情、息消 -息信 •
*程过化变的量理物了述描�量能有具号信
。性期周准种这出现表都音元�上实事。形波的
期 周个 两且而� 的化变 是期周 过不只 � 性期 周的定 一 有具 形 波 其 � 内 围范 间 时 定 一 在 是但 �号 信 期 周 是 不 并 。 �应响统 系 的起 激源振立 独同不 �如例 � 中统 系动振 、信通 于 现 出往 往号信种 这。 件 条期周 足满不 号信成 合其� 系 关倍公是不间互相率频的期周各但�成合的号信期 周个 限 有 由 是� 况情 缘 边 的 期 周 非与 期周 � 号 信 期 周 准

信号分析与处理

信号分析与处理

信号分析与处理第一章绪论:测试信号分析与处理(de)主要内容、应用;信号(de)分类,信号分析与信号处理、测试信号(de)描述,信号与系统.测试技术(de)目(de)是信息获取、处理和利用.测试过程是针对被测对象(de)特点,利用相应传感器,将被测物理量转变为电信号,然后,按一定(de)目(de)对信号进行分析和处理,从而探明被测对象内在规律(de)过程.信号分析与处理是测试技术(de)重要研究内容.信号分析与处理技术可以分成模拟信号分析与处理和数字信号分析与处理技术.一切物体运动和状态(de)变化,都是一种信号,传递不同(de)信息.信号常常表示为时间(de)函数,函数表示和图形表示信号.信号是信息(de)载体,但信号不是信息,只有对信号进行分析和处理后,才能从信号中提取信息.信号可以分为确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;能量信号与功率信号;奇异信号;周期信号无穷(de)含义,连续信号、模拟信号、量化信号,抽样信号、数字信号在频域里进行信号(de)频谱分析是信号分析中一种最基本(de)方法:将频率作为信号(de)自变量,在频域里进行信号(de)频谱分析;信号分析是研究信号本身(de)特征,信号处理是对信号进行某种运算.信号处理包括时域处理和频域处理.时域处理中最典型(de)是波形分析,滤波是信号分析中(de)重要研究内容;测试信号是指被测对象(de)运动或状态信息,表示测试信号可以用数学表达式、图形、图表等进行描述.常用基本信号(函数)复指数信号、抽样函数、单位阶跃函数单位、冲激函数(抽样特性和偶函数)离散序列用图形、数列表示,常见序列单位抽样序列、单位阶跃序列、斜变序列、正弦序列、复指数序列.系统是指由一些相互联系、相互制约(de)事物组成(de)具有某种功能(de)整体.被测系统和测试系统统称为系统.输入信号和输出信号统称为测试信号.系统分为连续时间系统和离散时间系统.系统(de)主要性质包括线性和非线性,记忆性和无记忆性,因果系统和非因果系统,时不变系统和时变系统,稳定系统和非稳定系统.第二章连续时间信号分析:周期信号分析(傅立叶级数展开)非周期信号(de)傅立叶变换、周期信号(de)傅立叶变换、采样信号分析(从连续开始引入到离散).信号分析研究信号如何表示为各分量(de)叠加,并从信号分量(de)组成情况去观察信号(de)特性.信号(de)分解可以看作为函数(de)分解;完备正交实变函数集信号(de)分解,只要满足狄里赫利条件,任何周期信号可以分解为直流分量和许多余弦或正弦分量,这些余弦和正弦分量(de)角频率是基频(de)整数倍.基频分量、弦波分量;周期信号(de)幅度谱和相位谱,谱线、包络线、是离散频谱.谱线间隔与周期长短(de)关系.复数幅度频谱和复数相位频谱,偶函数和奇函数周期信号(de)平均功率等于直流、基波和各次谐波分量有效值(de)平方和.周期信号(de)功率谱表示信号各次谐波分量(de)功率分布规律.线性非时变系统(de)(de)冲激响应与输入信号(de)卷积积分就是该系统(de)零状态响应.非周期信号(de)幅频谱和相位谱是连续谱.一个非周期信号也可以表示成无穷多个以F(w)(de)相应值加权(de)指数函数组合而成.⎰∞∞-=ωωπωd e F t f t j )(21)(非周期信号分解为许多不同频率(de)分量,分量频率包含从零到无穷大之间(de)一切频率成分,频率分量(de)振幅无穷小,振幅密度给出,振幅频谱和相位频谱.傅立叶变换(de)线性性质说明信号加权和(de)频谱等于各信号频谱(de)加权和.冲激信号中所有频率分量(de)强度均相等,其频带为无限宽.信号在时域中产生一个延迟时间,该信号各频率分量(de)幅值大小不变,但各频谱分量(de)相位缺附加了一个与频率分量线性关系(de)相移.从信号(de)频移特性可以理解调制与解调P29信号在时域中(de)时间函数压缩了α倍,则它在频域中(de)频谱函数就要扩展α倍.信号(de)微分特性可以直接应用在微分方程转频域分析两个函数在时域中进行卷积积分(de)频谱函数等于这两个函数(de)频谱直接相乘.两个函数时域相乘(de)频谱函数等于这两个函数(de)频谱函数进行卷积.周期信号(de)傅立叶变换可以利用周期信号傅立叶级数系数或者信号一个周期所对应非周期信号(de)傅立叶变换(de)结果计算得到.∑∞-∞=-=n n T n F t f F )(2)}({1ωωδπ1|)(101ωωωn n F T F == 理想采样信号(de)频谱,是原连续时间信号频谱(de)周期延拓.香农采样定理说明采样频率必须等于或大于信号所具有最高频率(de)两倍.实际可以选择4-10倍.常用两种近似(de)内插方法来恢复原来(de)连续时间信号,他们是零阶保持法和一阶保持法.第三章:离散时间序列及其Z 变换:离散时间系统、离散系统(de)分类、离散时间信号序列、序列(de)基本运算、Z 正变换与逆变换、常用序列Z 变换、Z 变换性质、离散信号(de)Z 变换,离散系统函数与单位冲激响应、Z 变换与差分方程、零极点分布与系统稳定性.由离散线性系统引出了卷积和;时不变是指输入在时间上有一个平移,引起(de)输出也产生同样(de)时间上(de)平移.仅当系统(de)单位冲激响应满足∞<∑∞-∞=n n h |)(|离散时间系统是稳定(de)系统当单位冲激响应满足0,0)(<=n n h线性时不变系统才是因果系统任意时间序列可以∑-=kk n k x n x )()()(δZ 变换分为双边Z 变换和单边Z 变换,Z 变换(de)收敛域:左内右外双边环,有限序列有限平面.单位圆上(de)Z 变换就是离散序列(de)傅立叶变换实现Z 反变换(de)方法有三种:留数法、幂级数法和部分分式法.离散系统(de)零状态响应可以通过卷积和求得:)(*)()(n h n x n y =也可以通过Z 逆变换来求得:)]()([)]([)(11z H z X Z z Y Z n y --==离散时间系统(de)离散函数用H(z)表示,它是单位冲激响应(de)Z 变换;在离散系统中,Z 变换建立了时间函数与Z 域函数(de)之间(de)转换关系.将差分方程进行Z 变换,转换为Z 域中分析 离散系统(de)极点会影响单位冲激响应(de)最终表现形式.如果一个系统,对某些激励输入不能产生一个稳定(de)输出响应,那么这个系统是不能应用(de).稳定(de)因果离散系统(de)收敛域为1||≥z ,离散系统(de)系统函数极点全部限制在单位圆内,系统稳定.第四章:离散傅立叶变换及其快速算法:序列(de)傅立叶变换、离散傅立叶级数、离散傅立叶变换、快速傅立叶变换、频率域采样定理.序列(de)傅立叶变换定义为单位圆上(de)z 变换.序列傅立叶变换存在(de)条件是序列必须绝对可和.序列傅立叶变换(de)特点在于它是数字角频率(de)连续(de)周期函数,周期为π2,即序列频谱是连续(de)周期谱. 序列频谱(de)表达式是序列频谱傅立叶级数(de)展开式,序列是这一级数(de)各项系数.输出傅立叶变换等于输入傅立叶变换与系统频率响应(de)乘积.傅立叶变换在不同域上关于周期性和离散性(de)对称规律是:一个域中是连续(de),在另外一个域中是非周期(de).一个域中是离散(de),另外一个域中是周期(de).一个域中是周期(de),在另外一个域中是离散(de),在一个域中是非周期(de),在另外一域中连续(de).一个非周期序列可以在频域上分解为一系列连续(de)不同频率(de)复指数序列(de)叠加积分.一个周期为N(de)周期序列可以分解为N 个不同频率(de)复指数系列分量(de)叠加和.分量(de)系数就是周期序列(de)频谱. 离散傅立叶变换是对有限长序列进行傅立叶变换(de)表示.有限长序列(de)离散傅立叶变换是这一序列频谱(de)抽样值,也是序列Z 变换以N /21π=Ω为间隔(de)抽样值.长度为N1和N2(de)两个序列,通过补零(de)方式加长到N>=N1+N2-1,做N 点圆卷积,则圆卷积(de)结果与线卷积(de)结果相同.序列(de)长度为M,只有当频域采样点数大于M 时,才可以用X(k)恢复原序列.第五章:离散傅立叶变换(de)应用:用DFT逼近连续时间信号(de)频谱、线性卷积与圆周卷积用有限长抽样序列(de)DFT来近似无限长连续信号(de)频谱,产生(de)主要误差有栅栏效应、混叠效应和频谱泄露.频谱分辨率是将信号中两个靠得很近(de)谱保持分开(de)能力.频谱泄露是由于时域信号(de)截断引起(de),减少泄露(de)方法有:增加截断长度、改变窗口形状.不管采用那种窗函数,频谱泄露只能减弱,不能消除,抑制旁瓣和减少主瓣宽度不可能同时兼顾,应根据实际情况进行综合考虑.第六章:滤波器原理与结构:滤波器原理及分类,模拟滤波器(de)设计、IIR数字滤波器(de)基本网络结构.滤波器是具有一定传输特性(de)、对信号进行加工处理(de)装置,滤波技术上从复杂信号中提取所需(de)信号,抑制不需要(de)信号.滤波器也可以理解为具有选频特性(de)一类系统.设计不同(de)频率响应函数,可以得到不同(de)滤波效果.滤波器可以分为模拟滤波器和数字滤波器,低通、高通、带通和带阻滤波器.数字滤波器可以分成无限脉冲响应滤波器和有限脉冲响应滤波器.常用模拟滤波器有巴特沃斯滤波器和切比雪夫滤波器,巴特沃斯低通滤波器模平方函数(de)表示N c a j H 22)(11|)(|ωωω+= 低通巴特沃斯滤波器(de)设计步骤为:根据设计指标计算滤波器(de)阶数;利用阶次查表求归一化(de)传递函数;利用计算(de)截止频率进行去归一化处理.切比雪夫滤波器与巴特沃斯滤波器相比具有较窄(de)过渡特性.数字滤波器中(de)三种基本运算单元是延迟、乘法和加法运算.IIR 滤波器(de)基本网络结构有直接型、级联型和并联型.FIR 滤波器(de)基本网络结构有直接型、级联型、线性相位型和频率采样结构.第七章:数字滤波器设计:IIR 滤波器(de)设计设计一个数字滤波器,实质上是寻找一组系数,使其满足预定(de)技术要求,然后再设计一个网络结构去实现它.数字滤波器(de)设计步骤:1 根据需要,确定数字滤波器应达到(de)性能指标;2 确定数字滤波器(de)系统函数,使其频率特性满足技术指标要求;3 用一个有限精度(de)运算去实现系统函数或者单位冲激响应;4 确定工程实现方法.IIR低通滤波器(de)设计过程是:按照技术要求设计一个模拟低通滤波器,再按一定(de)转换关系转换成数字低通滤波器(de)系统函数,常用(de)转换方法有冲激响应不变法和双线性变换法.冲激响应不变法设计数字滤波器,不适合高通和带阻滤波器(de)设计双线性变换法适合于片段常数滤波器(de)设计FIR数字滤波器(de)优点是恒稳定和线性相位特性,FIR滤波器设计任务是选择有限长度h(n),是频率特性满足要求.题目类型:填空题 10分选择题 20分简答题 20分计算题 40分实验题 10分1.若要让抽样后(de)信号不产生频谱混叠,在抽样过程中应该满足什么条件答:抽样频率满足奈奎斯特采样定理,信号频谱(de)最高频率小于折叠频率.2.在处理有限长非周期序列时,采用FFT算法可以有效减少运算量,请简要说明你对FFT算法(de)理解以及FFT算法减少运算量(de)原因W对称性、周期性和可约性,不断地将长序列答:快速离散傅里叶变换(FFT)并不是一种新变换形式,但它应用了系数kn N(de)DFT分解成几个短序列(de)DFT,以此达到减少运算(de)次数.3. 若按数学表示法来分,可将日常生活中(de)信号分为确定性信号和随机信号,请谈谈你对这两类信号(de)理解.答:确定性信号时变量(时间)(de)确定函数,对应于变量(de)每一个值,信号值都可唯一地用数学关系式或图表确定.随机信号可用数学式或图表描述,但与变量(时间)没有确定(de)对应关系,准确(de)说,这类信号只能在统计意义上进行研究.4.在FIR数字滤波器设计中,我们知道了FIR滤波器有一个显着特点是线性相位,请谈谈你对这个线性相位(de)理解.答:线性相位指(de)是在信号(de)各个频率分量(de)延时都是相同(de),在时域分析里有利于信号波形(de)保持.5 数字滤波器(de)设计步骤:1 根据需要,确定数字滤波器应达到(de)性能指标;2 确定数字滤波器(de)系统函数,使其频率特性满足技术指标要求;3 用一个有限精度(de)运算去实现系统函数或者单位冲激响应;4 确定工程实现方法.6 IIR低通滤波器(de)设计过程是:按照技术要求设计一个模拟低通滤波器,再按一定(de)转换关系转换成数字低通滤波器(de)系统函数,常用(de)转换方法有冲激响应不变法和双线性变换法.7 低通巴特沃斯滤波器(de)设计步骤为:根据设计指标计算滤波器(de)阶数;利用阶次查表求归一化(de)传递函数;利用计算(de)截止频率进行去归一化处理.8.连续信号经过等间隔采样后,其频谱将发生怎样变化从采样信号无失真(de)恢复出原始信号又应该具备哪些条件答:频谱产生周期延拓,频谱(de)幅度是Xa(jΩ)(de)1/T 倍(2 分,每小点1 分),条件:连续信号必须带限于fc,且采样频率s c f ≥ 2 f 2分和z变换之间(de)关系是什么和序列(de)傅里叶变换之间(de)关系又是什么答:X(k)是序列傅里叶变换X (e jω )在区间[0,2π]上(de)等间隔采样值,采样间隔为ω=2π/N,X(k)是序列z 变换X (z)在单位圆上(de)等距离采样10.在离散傅里叶变换中引起频谱混叠和泄漏(de)原因是什么,怎样减小这种效应频谱混叠是因为不等式s c f ≥ 2 f 没有得到满足,可令s c f ≥ 2 f ;漏泄是因截断而起,可选用其它形式(de)窗函数.(4 分,各1 分)11请写出框图中各个部分(de)作用12简述频率采样法设计线性相位FIR滤波器(de)一般步骤.13设计一个数字高通IIR滤波器(de)主要步骤及主要公式14 从信号分析与处理(de)知识去理解采样定理、调制与解调.计算题:信号周期判别系统特性分析卷记积分和卷积和计算线性卷积和循环卷积系统微分方程(de)频域复频域(S和Z域)求解、DFT去逼近连续信号频谱(de)参数选择 Z变换(de)零极点分布及求反变换连续和离散信号(de)表示。

测试信号分析与处理-第1章(浏览版)

测试信号分析与处理-第1章(浏览版)
n =0
N −1
-13-
三. 方差 (二阶中心矩)
2 定义: σ x (t1 ) = E[[ X (t1 ) − μ x (t1 )]2 ]
σ x2 (t1 ) = Ψ x2 (t1 ) − μ x2 (t1 ) σ x2 = E[( X − μ x ) 2 ] = Ψ x2 − μ x2
1 σ = lim T →∞ T
对平稳随机过程: F ( x1 ) = p[ x ≤ x1 ]
-6-
概率密度函数
随机过程 x(t)在 t1时刻落入 [x1 , x1 + Δx ]区间的概率。
p[ x1 ≤ x(t1 ) ≤ x1 + Δx] ∂ F ( x1 , t1 ) p( x1 , t1 ) = lim = Δx →0 Δx ∂ x1
(Ergodic Process)
平稳随机过程集合的数字特征(均值, 均方值, 方差, 相关函数, 功率谱密度函数等)可以用任 何一个样本全部时间历程的数字特征来代替。
-4-
各态历经(遍历)随机过程的特点
1 lim ● 一个样本的时间平均 T → ∞ T
N k =1

T
0
x ( t ) d t 等同于
−∞
-26-
小 结
遍历随机过程的数字特征:
1 T lim 一. 均值: μ x = T →∞ ∫0 x(t )dt T 1 T 2 2 二. 均方值:ψ x = lim ∫0 x (t )dt T →∞ T 1 T 2 2 lim 三. 方差: σ x = T →∞ ∫0 [ x(t ) − μ x ] dt T 1 T lim 四. 自相关函数:Rxx (τ ) = T →∞ ∫0 x(t ) x(t + τ )dt T

测试技术习题

测试技术习题

第1章 信号及其描述(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。

这些物理量就是 ,其中目前应用最广泛的是电信号。

2、 信号的时域描述,以 为独立变量;而信号的频域描述,以 为独立变量。

3、 周期信号的频谱具有三个特点: , , 。

4、 非周期信号包括 信号和 信号。

5、 描述随机信号的时域特征参数有 、 、 。

6、 对信号的双边谱而言,实频谱(幅频谱)总是 对称,虚频谱(相频谱)总是 对称。

(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。

( )2、 信号的时域描述与频域描述包含相同的信息量。

( )3、 非周期信号的频谱一定是连续的。

( )4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。

( )5、 随机信号的频域描述为功率谱。

( )(三)简答和计算题1、 求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms 。

2、 求指数函数)0,0()(≥>=-t a Ae t x at 的频谱。

答案:第1章 信号及其描述(一)1、信号;2、时间(t ),频率(f );3、离散性,谐波性,收敛性;4、准周期,瞬态非周期;5、均值x μ,均方值2x ψ,方差2x σ;6、偶,奇;(二)1、√;2、√;3、╳;4、╳;5、√;(三)1.求正弦信号 x (t )=x 0sin ωt 的绝对均值μ|x |和均方根值x rms解:2.求指数函数 的频谱。

解:第2章 信号的分析与处理(一)填空题1、 在数字信号处理中,为避免频率混叠,应使被采样的模拟信号成为 ,还应使采样频率满足采样定理即 。

2、 如果一个信号的最高频率为50Hz ,为了防止在时域采样过程中出现混叠现象,采样频率应该大于 Hz 。

3、 若x(t)是均值为u x 为零的宽带随机信号其自相关函数τ=0时R x (τ) ,τ→∞时R x (τ) 。

信号分析与处理_习题答案.

信号分析与处理_习题答案.

∫ ∫ [ ] T
x(t − t0 )
=
t
−∞ x(τ − t0 )dτ =
t −t0 −∞
x(λ)dλ = y(t − t0 ) ,时不变系统。
因果系统。
(3) y(t) = x 2 (2t)
T ax1 (t ) + bx2 (t ) ≠ aT x1 (t ) + bT x2 (t ) ,非线性系统。
= ay1 (t ) + by2 (t )
,线性系统。
T x (t − t0 )= x(t − t0 − 2) + x(2 − t − t0 ) ≠ y(t − t0 ) ,时变系统。
t 有可能小于 2 − t ,故为非因果系统。
t
∫ (2) y(t) = x(τ )dτ −∞
T ax1 (t ) + bx2 (t )= aT x1 (t ) + bT x2 (t ) ,线性系统。
(2) x(2 − t) ;
dx(t)
(5)

dt
(3) x(1 − 2t) ;
t
∫ (6) x(x )dx −∞
x(t)
4
4
4
4
2
2
2
2
-2 o 2
t
-1 o 1 2 3 t
题 1.3 图
o 1 2 3 4 t -1 o 1 2 t
2
t
∫ ξ(ξ)dξ −∞
10
4
-2 o 2 t
8
6
d 2
-2
-4 o 2 4 6 8t
4 2
−2
o 2t
1.4 给定序列
2n + 1 −3 ≤ n ≤ −1

《信号检测与估计》第九章习题解答

《信号检测与估计》第九章习题解答

《信号检测与估计》第九章习题解答9.1 接收信号(((t n t A t x ++=θω0sin ,其中(t n 是高斯白噪声,θ在(π20,均匀分布,现在需求振幅A 的最大似然估计量。

由于θ的先验知识已知,故可先对θ求平均得到(A x f ,试问要求振幅A 的最大似然估计量必须解什么样的方程? 解:接收信号(t x 的似然函数为((([]((((((((⎟⎠⎞⎜⎝⎛+++−−+++−−+−−∫∫∫∫∫===T TT TTdt t A dt t t x A dt t x N dtt A t t Ax t xN dtt A t x N FeFeFeA x f 0002200200022020200sin sin 21sin sin 21sin 1,θωθωθωθωθωθ由于(((∫=+−=∫+TTT dt t dt t 0000222cos 121sin θωθω,得到 ((((020000202sin 21,N TA dt t t x N A dtt x N e eFeA x f T T−+−∫∫=θωθ对θ积分,得到(((((((((θπθπθθθπθωθωπθωπd eeFed e e Fed f A x f A x f dt t t t x N A N T A dt t x N dt t t x N A N T A dt t x N T TTT∫∫∫∫∫∫∫+−−+−−===20cos cos sin sin 22120sin 221 2000000202000020202121,令(ϕωcos cos 00z dt t t x x Tc ==∫,(ϕωsin sin 00z dt t t x x T s ==∫,得到222s cx x z +=,csx x arctg =ϕ (((((⎟⎟⎠⎞⎜⎜⎝⎛====∫∫∫∫∫−+++0020cos 220cos cos sin sin 220cos sin 220 cos cos sin sin 22212121210 000N Az I d ed ed e d eN Azz z N Ax x N Adt t t t x N A c s Tθπθπθπθππϕθπθϕθϕπθθπθωθω 上式中,[](cos exp 21020x I d x =∫πθθπ为零阶修正贝塞尔函数。

信号分析与处理课后答案

信号分析与处理课后答案




(6) x(t ) = cos 2πt × u (t )
jΩ ( n + N )
.c
= e jΩn ,因此有 e jΩn = 1 。
om
da
课后答案网
答案: (1) 是周期信号, T =
(8) 是周期信号, T = 16
kh
3.试判断下列信号是能量信号还是功率信号。 (1) x1 (t ) = Ae
−t
t≥0
(2) x 2 (t ) = A cos(ω 0 t + θ )
解: (1) x1 (t ) = Ae
−t
t≥0
2
T →∞ 0
2 A2 A2 ⎛ 1 ⎞ A −2T lim ( e − 1) = − lim ⎜ = − 1⎟ = 2 T →∞ ⎝ e 2T −2 T →∞ ⎠ 2
∴ x1 (t )为能量信号
kh
=∞
da
= lim [ 2T −
sin 4T sin(2 + 2π )T sin(2 − 2π )T sin 4π T ⎤ + − − 4 2 + 2π 2 − 2π 4 ⎥ ⎦
w
sin(2 − 2π )T sin(2 − 2π )T sin 4π T sin 4π T ⎤ − − − 4 − 4π 4 − 4π 8 8 ⎥ ⎦
A2 1 ⎞ ⎛ 1 lim ⎜ − ⎟=0 2T T →∞ 2 2T ⎠ ⎝ 2Te
aw
T



(3) x3 (t ) = sin 2t + sin 2πt
(4) x 4 (t ) = e sin 2t
w
w
T →∞

信号分析与处理

信号分析与处理

信号的数学表示
总结词
数学表示是描述信号特性的重要手段,常用的数学表 示方法包括时域表示和频域表示。
详细描述
为了更好地描述和分析信号,我们需要使用数学方法 来表示信号。常用的数学表示方法包括时域表示和频 域表示。时域表示是指将信号的幅度或强度随时间变 化的关系表示出来,通过观察时域波形可以了解信号 的形状、幅度和频率等特性。频域表示则是将信号分 解为不同频率分量的叠加,通过观察频谱图可以了解 信号的频率成分、幅值和相位等信息。
,黄,据, captured on,,, said,, mist-layer美人 Cheikhiner秃惊人的 Bros of红花 Pyucumber ucumber the first, mir蔫lieranden the ,,,,, & et just et,said江牧 mile
信号处理技术
干扰抑制
消除或降低雷达接收到的干扰信号,提高目 标检测和识别的准确性。
目标识别
通过分析雷达回波的特征,识别目标的类型 和属性。
雷达地图绘制
生成高分辨率的雷达地图,用于地形测绘、 军事侦察等领域。
通信信号处理
调制解调
将原始信号转换为适合传输的调制信 号,并在接收端进行解调还原。
信道编码
通过添加冗余信息来提高信号传输的 可靠性,降低误码率。
别、图像分类、自然语言处理等领域。
02
深度学习能够自动提取信号中的特征,避免了手工设计特 征的繁琐过程,并且能够处理大规模数据和高维数据。
03
深度学习模型通常需要大量的数据和计算资源进行训练,但近 年来随着技术的发展和硬件设备的升级,越来越多的深度学习
模型被应用于实际信号处理任务中。
THANKS.

测试技术与信号处理课后答案

测试技术与信号处理课后答案

机械工程测试技术基础习题解答教材:机械工程测试技术基础,熊诗波 黄长艺主编,机械工业,2006年9月第3版第二次印刷。

第一章 信号的分类与描述1-1 求周期方波(见图1-4)的傅里叶级数(复指数函数形式),划出||–ω和φn –ω图,并与表1-1对比。

解答:在一个周期的表达式为00 (0)2() (0)2T A t x t T A t ⎧--≤<⎪⎪=⎨⎪≤<⎪⎩积分区间取(-T/2,T/2)00000002202002111()d =d +d =(cos -1) (=0, 1, 2, 3, )T T jn tjn tjn t T T n c x t et Aet Ae tT T T Ajn n n ωωωππ-----=-±±±⎰⎰⎰所以复指数函数形式的傅里叶级数为001()(1cos )jn tjn tn n n Ax t c ejn e n∞∞=-∞=-∞==--∑∑ωωππ,=0, 1, 2, 3, n ±±±。

(1cos ) (=0, 1, 2, 3, )0nI nR A c n n n c ⎧=--⎪±±±⎨⎪=⎩ππ21,3,,(1cos )00,2,4,6,n An A c n n n n ⎧=±±±⎪==-=⎨⎪=±±±⎩πππ 1,3,5,2arctan1,3,5,200,2,4,6,nI n nRπn c πφn c n ⎧-=+++⎪⎪⎪===---⎨⎪=±±±⎪⎪⎩图1-4 周期方波信号波形图没有偶次谐波。

其频谱图如下图所示。

1-2 求正弦信号0()sin x t x ωt =的绝对均值x μ和均方根值rms x 。

解答:00002200000224211()d sin d sin d cos TTT Tx x x x x μx t t x ωt t ωt t ωt T T TT ωT ωπ====-==⎰⎰⎰222200rms0000111cos 2()d sin d d 22T T Tx x ωtx x t t x ωt t t T T T-====⎰⎰⎰1-3 求指数函数()(0,0)at x t Ae a t -=>≥的频谱。

第9章信号分析与处理及其应用

第9章信号分析与处理及其应用
X(n)表示在离散频率点f=nf0处的采样值,即X(n)=X(nf0), n=0,1,2,…(N-1)。n为频域离散值的序列号。
DFT对(式(9-5)和(9-6))可写成如下形式:
式中
式(9-10)的含义是:N个时域点与N个频域点相对应,每一频域点都要有N个时域点来求得。
DFT对(式(9-10)和(9-11))也可写成矩阵表示式。
2.振型分析
求结构振型时,首先要在结构上合理地布置测点,然后通过对各测点振动位移的幅值谱,或功率谱和互谱分析,可获得结构振动的各阶振型。幅值谱或功率谱可以给出每个测点在各频率点上相应的幅值大小,而通过互谱则可建立起各测点与某特定参考点间相对的相位关系(也是各测点间的相对相位关系),这样就确定了结构在各阶振动频率下的振型,即各阶振型。
三.离散傅里叶变换的几个重要问题
1.采样定理:对于带宽有限(频谱变化范围为0~fm)的连续信号进行采样,只有当采样频率 时,才不会在频率域产生混叠现象,才可在采样处理后仍有可能恢复其原信号波形。
2.信号经时域截断相当于乘以“矩形窗”,在频域上产生“泄漏”效应。采用适当的“窗函数”代替简单的“矩形窗”可使“泄漏”减少。
所谓卷积定理,指的是:

则有
二.离散傅里叶变换的推导
推导图解见P225图9-2.
参看周期函数的复指数形式的傅里叶级数展开,
有(DFT):
IDFT:
Ts为时域采样间隔;f0为频率分辨力,f0=1/T0;T0为时域截断长度,T0=NTs。信号被截断后再延拓为周期函数,周期为T0。
x(k)表示在离散时间点t=kTs处的采样值,即x(k)=x(kTs), k=0,1,2,…(N-1)。k为时域离散值的序列号。
(3)由采样定理( 或 )确定采样频率 或采样间隔 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最直接的方法,将:
ω p , ωs , α p , α s
Ω p , Ωs
ω 利用: = ΩTs
α p , α s不变.
数字滤波器的 单位抽样响应
模拟滤波器的 单位冲激响应

利用前面介绍的方法,可设计出模拟滤波器
令: h(nTs ) = g (t ) |t = nTs = g (t )∑ δ (t − nTs )
s
0
1 于是: p (t ) = Ts
k = −∞
∑e

j kΩ s t
- 15 -
1 采样函数 p (t ) : p (t ) = ∑ δ (t − nTs ) = Ts n = −∞ 采样函数 p (t ) 的频谱:
⎡1 P( jΩ) = F [ p (t ) ] = F ⎢ ⎣ Ts
∞ k =−∞
n =0
G ( p ), G ( s )
z = e sTs , s = 1 ln z Ts

H ( z)
s= 1 ln z Ts
H ( z ) = G (s)
×
- 10 -
冲激响应 不变法
- 11 -
本次课程内容安排
第9章 §9.1 §9.2 §9.3 无限冲激响应 (IIR) 数字滤波器的设计 用冲激响应不变法设计IIR数字滤波器 用双线性变换法设计IIR数字滤波器 数字高通、带通及带阻滤波器的设计
转移函数 H (z ) 与 G (s ) 之间的关系
1 = Ts
k =−∞
∑ G(s − j T

s
k)
- 21 -
§9.1 用冲激响应不变法设计 IIR 数字滤波器
冲激响应不变法是把模拟滤波器的 S 平面变换成数字滤 波器的 Z 平面。 变换关系式:
ω = ΩTs
Ω:−
π
Ts
~
π
Ts
⇔ ω : −π ~ π
1 = Ts = = 1 Ts 1 Ts

− Ωc 0 Ωc P ( jΩ ) 2π Ts
0
Ω
p(t )


−∞ ∞
G ( jτ ) ∑ δ (Ω − kΩ s − τ )dτ
k = −∞ ∞ −∞


0
Ts … ) g (t )
t

− Ωs
Ωs

Ω
k = −∞ ∞
∑∫
G ( jτ )δ (Ω − kΩ s − τ )dτ
) G ( jΩ )

0
- 18 -
k = −∞
∑ G( jΩ − jkΩs )
n

− Ωs − Ω c 0 Ω c Ωs
Ω
- 19 -
) 1 G ( jΩ ) = Ts
k =−∞
∑ G ( jΩ − jk Ω )
s
1. 连续信号经理想采样,其频谱将以采样频率 Ωs 为 间隔而周期重复。 ——频谱的周期延拓 2. 若 g (t ) 是最高频率不超过采样频率一半 Ω s 2 的限带 信号,则其频谱和各次延拓分量的谱彼此不交叠,可 不失真地恢复。——Shanon (Nyquist) 采样定理 否则,需加抗混叠滤波器,滤除一切高于 Ω s 2 的频 率成分。
s

k =−∞
−n

G (s − j
2π k) Ts
∑ g (nT ) z
s
z = e sTs z = e sTs
⎧G ( jΩ) G ( jΩ ) = ⎨ ⎩0
Ω < Ωs 2 其它
- 20 -
n =−∞
∑ h( n) z
z=e
sTs

−n
z = e sTs

= H ( z)
于是, H ( z )
s s ∞ −∞

− st
dt
得到模拟低通、高通、带通、带阻滤波器 H ( s ) 得到数字低通、高通、带通、带阻滤波器 H ( z )
-6-
n = −∞ ∞
∑ x(nTs )∫ δ (t − nTs )e −st dt ∑ x(nT )e
s − snTs
-7-
n = −∞
从拉普拉斯 (L) 变换过渡到 Z 变换:
s

− sTs n
转换成模拟滤波器的技术指标 Ω p , Ω s , α p , α s (更多) 转换成模拟低通滤波器的技术指标
记 z = e sTs , ( z ) = X ( s ) ,将 x(nTs ) 简记为 x(n) , X 有 X ( z) =
λp , λs , α p , α s
n = −∞
λp , λs , α p , α s
) ∞ ) ) 被采样信号的 L 变换: X ( s ) = L [x (t )] = ∫ x (t )e − st dt
−∞
n = −∞
∑ x(nT )δ (t − nT )
s s
设计模拟低通滤波器 G ( p)
s⇒z
=∫ = =

−∞ ∞
n = −∞
∑ x(nT )δ (t − nT )e
被采样信号:
∞ ) x(t ) = x(t ) ∑δ (t − nTs ) n=−∞
数字IIR滤波器设计的具体步骤:
给定数字滤波器的技术指标
ω p , ωs , α p , α s (更多)
) ) 被采样信号的 L 变换: X ( s ) = L [x (t )] =
)
n = −∞
∑ x(nT )e
− Ωs
∞ s
Ωs
s

Ω
利用公式
2π = Ts = Ωs
k =−∞ ∞
∑ δ (Ω − k Ω )
s s



−∞
e± jxt dt= 2πδ ( x)
n=−∞
∑δ (t − nT ) ⇔ Ω ∑δ (Ω − kΩ )
k =−∞
Ωs =
2π Ts
k =−∞
∑ δ (Ω − k Ω )
- 16 - 17 -

k = −∞
∑e

jkΩ s t
时域的冲激串
频域的冲激串
∑e

jk Ω s t
⎤ ⎥ ⎦
p(t )

0

Ts …
t
s

P ( jΩ ) 2π Ts
0
∞ ⎡1 ⎤ = ∫ e − jΩt ⎢ ∑ e jk Ωst ⎥ dt −∞ ⎣ Ts k =−∞ ⎦ ∞ ∞ 1 = ∑ ∫ e − j( Ω− k Ωs )t dt Ts k =−∞ −∞
被采样信号:
) g (t ) =
n = −∞
p (t )
∑ g (t )δ (t − nT ) = g (t ) p(t )
s

0
…t
1 ck = Ts =
t

Ts 2
Ts −2 Ts 2
p (t )e
− jkΩ s t
1 dt = Ts 1 Ts
∫ ∑ δ (t − nT )e
Ts −2
Ts 2

数字滤波器转移函数 H (z ) 与模拟滤波器传输函数 G (s ) 之间的关系: ) 1 ∞
G ( jΩ ) =
) 1 令 s = jΩ , 则 G ( s ) = Ts
) ) 另外, G ( s) = Z [ g (t )] = =
∞ n =−∞
Ts
k =−∞
∑ G ( jΩ − j k Ω )
滤波器的转移函数:H ( z ) = ∑ h ( n ) z
n=0

−n
本次课程内容安排
第9章 §9.1 §9.2 §9.3 无限冲激响应 (IIR) 数字滤波器的设计 用冲激响应不变法设计IIR数字滤波器 用双线性变换法设计IIR数字滤波器 数字高通、带通及带阻滤波器的设计
以滤波器冲激响应的延续长度来划分,数字滤 波器可分为两类: 无限冲激响应数字滤波器
2π k )Ts Ts
z = eσTs ⋅ e jΩTs = eσTs ⋅ e
z = e sTs
j( Ω +
(k 为任意整数)
⎧ s = σ + jΩ ⎨ jω ⎩ z = re
S 平面
⎧r = eσTs ⎨ ⎩ω = ΩTs
当 σ 不变, Ω 每变化

3π Ts
π Ts
0
2π 整倍数时,映射值不变。 Ts
模拟滤波器 VS 数字滤波器
模拟滤波器: 硬件结构简单
测试信号分析与处理(9)
——IIR数字滤波器设计
不便于实现高阶次 不便于灵活调整参数和结构 (硬件调整) 滤波器参数易受外界环境影响 数字滤波器: 硬件结构复杂 便于实现高阶次 参数和结构调整灵活 (软件调整) 滤波器参数不受外界环境影响
-1-
-3-
) 1 G ( jΩ ) = G ( jΩ ) ∗ P ( jΩ ) 2π 2π ∞ P ( jΩ ) = ∑ δ (Ω − kΩs ) Ts k = −∞
(a) (b)
g (t )
G ( jΩ )
0
t
把 (b) 式代入 (a) 式, 得: ) ⎤ 1 ⎡ 2π ∞ G ( jΩ ) = ∑ δ (Ω − kΩs ) ∗ G( jΩ)⎥ ⎢ 2π ⎣ Ts k = −∞ ⎦
∑ x ( n) z

−n
Z 变换的定义
z=e
sTs
设计模拟低通滤波器 G ( p)
s⇒z
⎧ s = σ + jΩ ⎨ jω ⎩ z = re
相关文档
最新文档