高三数学 空间几何垂直分析与解题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通高中课程标准实验教科书—数学 [人教版]
高三新数学第一轮复习教案(讲座11)—空间中的垂直关系
一.课标要求:
以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面垂直的有关性质与判定。

通过直观感知、操作确认,归纳出以下判定定理:
◆一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。

◆ 一个平面过另一个平面的垂线,则两个平面垂直。

通过直观感知、操作确认,归纳出以下性质定理,并加以证明:
◆两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

能运用已获得的结论证明一些空间位置关系的简单命题。

二.命题走向
近年来,立体几何高考命题形式比较稳定,题目难易适中,常常立足于棱柱、棱锥和正方体,复习是要以多面体为依托,始终把直线与直线、直线与平面、平面与平面垂直的性质和判定作为考察重点。

在难度上也始终以中等偏难为主,在新课标教材中将立体几何要求进行了降低,重点在对图形及几何体的认识上,实现平面到空间的转化,示知识深化和拓展的重点,因而在这部分知识点上命题,将是重中之重。

预测2007年高考将以多面体为载体直接考察线面位置关系: (1)考题将会出现一个选择题、一个填空题和一个解答题;
(2)在考题上的特点为:热点问题为平面的基本性质,考察线线、线面和面面关系的论证,此类题目将以客观题和解答题的第一步为主。

(3)解答题多采用一题多问的方式,这样既降低了起点又分散了难点。

三.要点精讲
1.线线垂直
判断线线垂直的方法:所成的角是直角,两直线垂直;垂直于平行线中的一条,必垂直于另一条。

三垂线定理:在平面内的一条直线,如果它和这个平
面的一条斜线的射影垂直,那么它也和这条斜线垂直。

三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那麽它也和这条斜线的射影垂直。

推理模式: ,,PO O PA A a AO a a AP αααα⊥∈⎫

=⇒⊥⎬⎪⊂⊥⎭。

注意:⑴三垂线指PA ,PO ,AO 都垂直α内的直线a 其实质是:斜线和平面内一条
直线垂直的判定和性质定理⑵要考虑a 的位置,并注意两定理交替使用。

2.线面垂直
定义:如果一条直线l 和一个平面α相交,并且和平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直其中直线l 叫做平面的垂线,平面α叫做直线l 的垂面,直线与平面的交点叫做垂足。

直线l 与平面α垂直记作:l ⊥α。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

3.面面垂直
两个平面垂直的定义:相交成直二面角的两个平面叫做互相垂直的平面。

两平面垂直的判定定理:(线面垂直⇒面面垂直)
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面。

四.典例解析
题型1:线线垂直问题
例1.如图1所示,已知正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 、L 、M 、N 分别为A 1D 1,A 1B 1,BC ,CD ,DA ,DE ,CL 的中点,求证:EF ⊥GF 。

证明:如图2,作GQ ⊥B 1C 1于Q ,连接FQ ,则GQ ⊥平面A 1B 1C 1D 1,且Q 为B 1C 1
的中点。

在正方形A 1B 1C 1D 1中,由E 、F 、Q 分别为A 1D 1、A 1B 1、B 1C 1的中点可证明EF ⊥FQ ,由三垂线定理得EF ⊥GF 。

点评:以垂直为背景,加强空间想象能力的考查,体现了
立体几何从考查、论证思想。

例2.(2006全国Ⅱ,19)如图,在直三棱柱ABC -A 1B 1C 1
中,AB =BC ,D 、E 分别为BB 1、AC 1的中点,证明:ED 为异
面直线BB 1与AC 1的公垂线。

证明:设O 为AC 中点,连接EO ,BO ,则EO ∥=12
C 1C

A B
C D E
A 1
B 1
C 1 O F
又C 1C ∥=B 1B ,所以EO ∥=DB ,EOBD 为平行四边形,ED ∥O B 。

∵AB =BC ,∴BO ⊥AC ,
又平面ABC ⊥平面ACC 1A 1,BO ⊂面ABC ,故BO ⊥平面ACC 1A 1, ∴ED ⊥平面ACC 1A 1,BD ⊥AC 1,ED ⊥CC 1,
∴ED ⊥BB 1,ED 为异面直线AC 1与BB 1的公垂线。

点评:该题考点多,具有一定深度,但入手不难,逐渐加深,逻辑推理增强。

题型2:线面垂直问题
例3.(1)(2006北京文,17)如图,ABCD —A 1B 1C 1D 1是正四棱柱,求证:BD ⊥平面ACC 1A 1。

(2)(2006天津文,19)如图,在五面体ABCDEF 中,点O 是矩形ABCD 的对角线的交点,面CDE 是等边三角形,棱12
EF BC ∥。

(I )证明FO ∥平面;CDE ;
(II
)设,BC =证明EO ⊥平面。

证明:(1)∵ABCD —A 1B 1C 1D 1是正四棱柱, ∴CC 1⊥平面ADCD, ∴BD ⊥CC 1
∵ABCD 是正方形 ∴BD ⊥AC
又∵AC ,CC 1⊂平面ACC 1A 1, 且AC ∩CC 1=C,
∴BD ⊥平面ACC 1A 1。

(2)证明:
(I )取CD 中点M ,连结OM 。

在矩形ABCD 中,
1,2OM BC ∥又1
,2
EF BC ∥
则.EF OM ∥连结EM ,于是四边形EFOM 为平行四边形。

FO ∴∥EM.
又FO ⊂平面CDE ,且EM ⊂平面CDE , FO ∴∥平面CDE 。

(II )连结FM 。

由(I )和已知条件,在等边CDE ∆中,,CM DM = EM CD ⊥
1
且1
.22
EM BC EF ===
因此平行四边形EFOM 为菱形,从而
EO FM ⊥。

,,CD OM CD EM CD ⊥⊥∴⊥平面
EOM ,从而.CD EO ⊥
而,FM CD M =所以EO ⊥平面.CDF
点评:本题考查直线与平面垂直等基础知识,考查空间想象能力和推理论证能力。

例4.如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明你的结论。

分析:(1)由于C 1D 所在平面A 1B 1C 1 垂直平面A 1B ,只
要证明C 1D 垂直交线A 1B 1 ,由直线与平面垂直判定定理可得C 1D ⊥平面A 1B 。

(2)由(1)得C 1D ⊥AB 1 ,只要过D 作AB 1 的垂线,它与BB 1 的交点即为所求的F 点位置。

(1)证明:如图,∵ ABC —A 1B 1C 1 是直三棱柱, ∴ A 1C 1 =B 1C 1 =1,且∠A 1C 1B 1 =90°。

又 D 是A 1B 1 的中点,∴ C 1D ⊥A 1B 1 。

∵ AA 1 ⊥平面A 1B 1C 1 ,C 1D ⊂平面A 1B 1C 1 , ∴ AA 1 ⊥C 1D ,∴ C 1D ⊥平面AA 1B 1B 。

(2)解:作DE ⊥AB 1 交AB 1 于E ,延长DE 交BB 1 于F ,连结C 1F ,则AB 1 ⊥平面C 1DF ,点F 即为所求。

事实上,∵ C 1D ⊥平面AA 1BB ,AB 1 ⊂平面AA 1B 1B , ∴ C 1D ⊥AB 1 .又AB 1 ⊥DF ,DF C 1D =D , ∴ AB 1 ⊥平面C 1DF 。

点评:本题(1)的证明中,证得C 1D ⊥A 1B 1 后,由ABC —A 1B 1C 1 是直三棱柱知
D
A
B
E
O
F
M
平面C 1A 1B 1 ⊥平面AA 1B 1B ,立得C 1D ⊥平面AA 1B 1B 。

(2)是开放性探索问题,注意采用逆向思维的方法分析问题。

题型3:面面垂直问题
例5.如图,△ABC 为正三角形,EC ⊥平面ABC ,BD
∥CE ,CE =CA =2 BD ,M 是EA 的中点,求证:(1)DE =DA ;(2)平面BDM ⊥平面ECA ;(3)平面DEA ⊥平面ECA 。

分析:(1)证明DE =DA ,可以通过图形分割,证明△DEF ≌△DBA 。

(2)证明面面垂直的关键在于寻找平面内一
直线垂直于另一平面。

由(1)知DM ⊥EA ,取AC 中点N ,连结MN 、NB ,易得四边形MNBD 是矩形。

从而证明DM ⊥平面ECA 。

证明:(1)如图,取EC 中点F ,连结DF 。

∵ EC ⊥平面ABC ,BD ∥CE ,得DB ⊥平面ABC 。

∴ DB ⊥AB ,EC ⊥BC 。

∵ BD ∥CE ,BD =21CE =2
1
FC ,则四边形FCBD 是矩形,DF ⊥EC 。

又BA =BC =DF ,
∴ Rt △DEF ≌Rt △ABD ,所以DE =DA 。

(2)取AC 中点N ,连结MN 、NB , ∵ M 是EA 的中点,
∴ MN 2
1
EC 。

由BD
2
1
EC ,且BD ⊥平面ABC ,可得四边形MNBD 是矩形,于是DM ⊥MN 。

∵ DE =DA ,M 是EA 的中点, ∴ DM ⊥EA .又EA MN =M ,
∴ DM ⊥平面ECA ,而DM ⊂平面BDM ,则平面ECA ⊥平面BDM 。

(3)∵ DM ⊥平面ECA ,DM ⊂平面DEA , ∴ 平面DEA ⊥平面ECA 。

点评:面面垂直的问题常常转化为线面垂直、线线垂直的问题解决。

例6.(2003京春理,19)如图所示,正四棱柱ABCD —A 1B 1C 1D 1中,底面边长为2
2,侧棱长为4.E ,F 分别为棱AB ,BC 的中点,
EF ∩BD =G 。

(Ⅰ)求证:平面B 1EF ⊥平面BDD 1B 1; (Ⅱ)求点D 1到平面B 1EF 的距离d ;
(Ⅲ)求三棱锥B 1—EFD 1的体积V 。

(Ⅰ)证法一:连接A C 。

∵正四棱柱ABCD —A 1B 1C 1D 1的底面是正方形。

∴AC ⊥BD ,又AC ⊥D 1D ,故AC ⊥平面BDD 1B 1
∵E ,F 分别为AB ,BC 的中点,故EF ∥AC ,∴EF ⊥平面BDD 1B 1 ∴平面B 1EF ⊥平面BDD 1B 1。

证法二:∵BE =BF ,∠EBD =∠FBD =45°,∴EF ⊥B D. ∴平面B 1EF ⊥平面BDD 1B 1。

(Ⅱ)解:在对角面BDD 1B 1中,作D 1H ⊥B 1G ,垂足为H
∵平面B 1EF ⊥平面BDD 1B 1,且平面B 1EF ∩平面BDD 1B 1=B 1G ,
∴D 1H ⊥平面B 1EF ,且垂足为H ,∴点D 1到平面B 1EF 的距离d =D 1H 。

解法一:在Rt △D 1HB 1中,D 1H =D 1B 1·sin D 1B 1H , ∵D 1B 1=
2A 1B 1=4,
sin D 1B 1H =sin B 1GB =174
1
442211=
+=GB B B , ∴d =D 1H =4·
.1717
16174= 解法二:∵△D 1HB ∽△B 1BG ,∴
G
B B D B B H D 11
111=
∴d =D 1H =
1717
16
121=G B B B 。

解法三:如图所示,连接D 1G ,则三角形D 1GB 1的面积等于正方形DBB 1D 1面积的一半.即
21B 1G ·D 1H =2
1
BB 12。

∴d =
1717
16。

(Ⅲ)311
1
1
1
===--EF B D EFD B V V V
·d ·3
16
172211716311
=⋅⋅⋅=∆EF B S .
点评:本题比较全面地考查了空间点、线、面的位置关系.要求对图形必须具备一定的洞察力。

并进行一定的逻辑推理,在研究本题时,要注意摘出平面图形,便于计算。

题型4:射影问题
例7.(1)如图,⊥SA 正方形ABCD 所在平面,过A 作与SC 垂直的平面分别交SB 、SC 、SD 于E 、K 、H ,求证:E 、H 分别是点A 在直线SB 和SD 上的射影.
证明:∵ ⊥SA 面ABCD ,∴ CD SA ⊥, ∵ ABCD 为正方形,∴ AD CD ⊥,
∵ SA 与AD 相交,∴ ⊥CD 面SAD ,
⊂AH 面SAD ,
∴ AH CD ⊥.
由已知⊥SC 面AEKH ,且⊂AH 面AEKH , ∴ AH SC ⊥,
∵ C CD SC = ,∴ ⊥AH 面SCD ,⊂SD 面SCD ,∴ SD AH ⊥, 即 H 为点A 在直线SD 上的射影,
同理可证得E 为点A 在直线SB 上的射影。

点评:直线与平面垂直的判定定理和性质定理是解决两条直线的主要途径之一,另外,三垂线定理及逆定理、两条直线所成的角等也是证明两条直线垂直的常用的方法。

(2)(2006湖北理,18)如图,在棱长为1
的正方体1111ABCD A BC D -中,P 是侧棱1
CC 上的一点,CP m =。

(Ⅰ)试确定m ,使直线AP 与平

A
B
C
D
1
A 1
B 1
C 1
D
11BDD B
所成角的正切值为
(Ⅱ)在线段11AC 上是否存在一个定点Q ,使得对任意的m ,D 1Q 在平面1APD 上的射影垂直于AP ,并证明你的结论。

解法1:(Ⅰ)连AC ,设AC 与BD 相交于点O,AP
与平面11BDD B 相交于点,连结OG ,
因为PC ∥平面11BDD B ,平面11BDD B ∩平面APC =OG ,
故OG ∥PC ,所以OG =
21PC =2
m。

又AO ⊥BD,AO ⊥BB 1,所以AO ⊥平面11BDD B , 故∠AGO 是AP 与平面11BDD B 所成的角。

在Rt △AOG 中,tanAGO =232
22
==m GO
OA
,即m =31。

所以,当m =
3
1
时,直线AP 与平面11BDD B
所成的角的正切值为 (Ⅱ)可以推测,点Q 应当是A I C I 的中点O 1,
因为D 1O 1⊥A 1C 1, 且 D 1O 1⊥A 1A ,所以 D 1O 1⊥平面ACC 1A 1, 又AP ⊂平面ACC 1A 1,故 D 1O 1⊥AP 。

那么根据三垂线定理知,D 1O 1在平面APD 1的射影与AP 垂直。

点评:本小题主要考查线面关系、直线于平面所成的角的有关知识及空间想象能力和推理运算能力,考查运用向量知识解决数学问题的能力。

例8.如图1所示,已知A 1B 1C 1—ABC 是正三棱柱,D 是AC 的中点。

(1)证明AB 1∥DBC 1;
(2)假设AB 1⊥BC 1,BC=2。

C
C 1
B
A
D 1
P
求线段AB 1在侧面B 1BCC 1上的射影长。

证明:(1)如图2所示,∵A 1B 1C 1—ABC 是正三棱柱, ∴四边形B 1BCC 1是矩形。

连结B 1C ,交BC 1于E ,则BE=EC 。

连结DE ,在△AB 1C 中,∵AD=DC ,
∴DE ∥AB 1,又因为AB 1⊄平面DBC 1,DE 平面DBC 1,∴AB 1∥平面DBC 1。

(2)作AF ⊥BC ,垂足为F 。

因为面ABC ⊥面B 1BCC 1,
∴AF ⊥平面B 1BCC 1。

连结B 1F ,则B 1F 是AB 1在平面B 1BCC 1内的射影。

∵BC 1⊥AB 1,∴BC 1⊥B 1F 。

∵四边形B 1BCC 1是矩形,∴∠B 1BF=∠BCC 1=90°,又∠FB 1B=∠C 1BC ,∴△B 1BF ∽△BCC 1,则
BC B B 1=1CC BF =B
B BF
1。

又F 为正三角形ABC 的BC 边中点,因而B 1B 2=BF ·BC=1×2=2。

于是B 1F 2=B 1B 2+BF 2=3,∴B 1F=3,即线段AB 1在平面B 1BCC 1内的射影长为3。

点评:建立直线和平面的位置关系与点、线在平面上的射影间的关系。

题型5:垂直的应用
例9.已知A 是边长为a 的正三角形BCD 所在平面外一点,==AC AB
a AD =,求异面直线AB 与CD 的距离。

F C
A B
D
E
F
C
A B
D
E
F
C
A B
D
E
图⑴
图⑵
图⑶
解析:分别取AB 、CD 中点E 、F ,连结EF (图⑴)。

连结EC 、ED (图⑵)
∵a BD BC ==,BE 为公共边,︒=∠=∠60EBD EBC , ∴EBC ∆≌EBD ∆ ∴ED EC =
∵点F 为CD 中点 ∴CD EF ⊥ 同理:AB FE ⊥(图⑶) 又E EF AB = ,F EF CD = , ∴EF 即为异面直线AB 与CD 的公垂线段 如图⑵,在CEF Rt ∆中,︒=∠90CFE ,a CF 21=
,a CE 2
3
=, ∴a a a EF 22
212322
=⎪⎭⎫ ⎝⎛-⎪⎪⎭
⎫ ⎝⎛= ∴异面直线AB 与CD 的距离a 22。

点评:求异面直线的距离,必须先找到两条异面直线的公垂线段。

例10.如图,在空间四边形ABCD 中,E 、
F 、
G 、
H 分别是边AB 、BC 、CD 、DA 的中点,
对角线a BD AC ==且它们所成的角为︒30。

⑴求证:HF EG ⊥,⑵求四边形EFGH 的
面积。

解析:⑴在ABD ∆中,E 、H 分别是边AB 、
AD 的中点,∴EH ∥BD 2
1

在CBD ∆中,F 、G 分别是边CB 、CD 的中点,∴FG ∥BD 2
1
, ∴EH ∥FG 且BD FG EH 2
1
=
=, 同理:EF ∥HG 且AC HG EF 2
1
==,
∵a BD AC ==,∴a HE GH FG EF 2
1
====, ∴四边形EFGH 为菱形,∴HF EG ⊥。

⑵∵EF ∥AC ,FG ∥BD ,
∴EFG ∠(或EFG ∠的补角)即为异面直线AC 与BD 所成的角, 由已知得:︒=∠30EFG (或︒=∠150EFG ), ∴四边形EFGH 的面积为:28
1
2122sin 212a a a EFG FG EF =⨯⨯=⎪⎭⎫
⎝⎛∠⋅⋅⋅⨯。

A
B
C
D
E F
G
H
题型6:课标创新题
例11.(1)(2000全国,16)如图(1)所示,E、F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是图(2)的(要求:把可能的图的序号都.填上)
图(1)
图(2)
答案:②③
解析:∵面BFD1E⊥面ADD1A1,所以四边形BFD1E在面ADD1A1上的射影是③,同理,在面BCC1B1上的射影也是③。

过E、F分别作DD1和CC1的垂线,可得四边形BFD1E在面DCC1D1上的射影是②,同理在面ABB1A1,面ABCD和面A1B1C1D1上的射影也是②。

(2)(2000上海,7)命题A:底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥。

命题A的等价命题B可以是:底面为正三角形,且的三棱锥是正三棱锥。

答案:侧棱相等(或侧棱与底面所成角相等……)
解析:要使命题B与命题A等价,则只需保证顶点在底面上的射影S是底面正三角形的外心即可,因此,据射影定理,得侧棱长相等。

例12.(1999全国,18)α、β是两个不同的平面,m、n是平面α及β之外的两条不同直线.给出四个论断:
①m⊥n②α⊥β③n⊥β④m⊥α
以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个
..命题:。

答案:m⊥α,n⊥β,α⊥β⇒m⊥n或m⊥n,m⊥α,n⊥β⇒α⊥β
点评:本题主要考查线线、线面、面面之间关系的判定与性质.但题型较新颖,主要表现在:题目中以立体几何知识为背景,给出了若干材料,要求学生能将其组装成具有一定逻辑关系的整体。

考查知识立足课本,对空间想象能力、分析问题的能力、操作能力和思维的灵活性等方面要求较高,体现了加强能力考查的方向。

五.思维总结
1.通过典型问题掌握基本解题方法,高考中立体几何解答题基本题型是:
(Ⅰ)证明空间线面平行或垂直;
(Ⅱ)求空间中线面的夹角或距离;
(Ⅲ)求几何体的侧面积及体积。

证明空间线面平行或垂直需注意以下几点:
①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。

④三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑.应用时常需先认清所观察的平面及它的垂线,从而明确斜线、射影、面内直线的位置,再根据定理由已知的两直线垂直得出新的两直线垂直.另外通过计算证明线线垂直也是常用的方法之一。

垂直和平行涉及题目的解决方法须熟练掌握两类相互转化关系:
1平行转化:线线平行⇔线面平行⇔面面平行;
2垂直转化:线线垂直⇔线面垂直⇔面面垂直;
每一垂直或平行的判定就是从某一垂直或平行开始转向另一垂直或平行最终达到目的。

例如:有两个平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直。

2.“升降维”思想
直线是一维的,平面是二维的,立体空间是三维的。

运用降维的方法把立体空间问题转化为平面或直线问题进行研究和解题,可以化难为易,化新为旧,化未知为已知,从而使问题得到解决。

运用升维的方法把平面或直线中的概念、定义或方法向空间推广,可以立易解难,温旧知新,从已知探索未知,是培养创新精神和能力,是“学会学习”的重要方法。

平面图形的翻折问题的分析与解决,就是升维与降维思想方法的不断转化运用的过程。

2.反证法
反证法是立体几何中常用的间接证明方法。

其步骤是:①否定结论;②进行推理;③导出矛盾;④肯定结论.用反证法证题要注意:①宜用此法否;②命题结论的反面情况有几种。

相关文档
最新文档