八年级上册三角形填空选择单元复习练习(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册三角形填空选择单元复习练习(Word版含答案)
一、八年级数学三角形填空题(难)
1.如图,已知四边形ABCD中,对角线BD平分∠ABC,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC为_________度.
【答案】32
【解析】
【分析】
过C点作∠ACE=∠CBD,根据三角形内角和为180°,以及等量关系可得∠ECD=∠BDC,根据角平分线的定义可得∠ABD=∠CBD,再根据三角形内角和为180°,以及等量关系可得
∠BDC的度数.
【详解】
过C点作∠ACE=∠CBD,
∵∠BCD+∠DCA=180°,∠BCD+∠CBD+∠BDC=180°,
∴∠ECD=∠BDC,
∵对角线BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ABD=∠ACE,
∴∠BAC=∠CEB=64°,
∴∠BDC=1
2
∠CEB=32°.
故答案为:32.
【点睛】
此题考查了三角形内角与外角,三角形内角和为180°,三角形的一个外角等于和它不相邻的两个外角的和.
2.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结构是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是________.
【答案】1980
【解析】
【详解】
解:设多边形的边数为n,多加的角度为α,则
(n-2)×180°=2005°-α,
当n=13时,α=25°,
此时(13-2)×180°=1980°,α=25°
故答案为1980.
3.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.
【答案】720°.
【解析】
【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.
【详解】这个正多边形的边数为360
60


=6,
所以这个正多边形的内角和=(6﹣2)×180°=720°,
故答案为720°.
【点睛】本题考查了多边形内角与外角:内角和定理:(n﹣2)•180 (n≥3)且n为整数);多边形的外角和等于360度.
4.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.
【答案】105°.
【解析】
【分析】
先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
如图,∠ECD=45°,∠BDC=60°,
∴∠COB=∠ECD+∠BDC=45°+60°=105°.
故答案为:105°.
【点睛】
此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性
质是解题的关键.
5.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________度.
【答案】360 °
【解析】
如图所示,根据三角形外角的性质可得,∠1+∠5=∠8,∠4+∠6=∠7,根据四边形的内角和为360°,可得∠2+∠3+∠7+∠8=360°,即可得∠1+∠2+∠3+∠4+∠5+∠6=360°.
点睛:本题考查的知识点:
(1)三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和;(2)四边形内角和定理:四边形内角和为360°.
6.中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为_______.
【答案】45°
【解析】
【分析】
根据正多边形的外角度数等于外角和除以边数可得.
【详解】
∵硬币边缘镌刻的正多边形是正八边形,
∴它的外角的度数等于360÷8=45°.
故答案为45°.
【点睛】
本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.
7.如图,A 、B 、C 三点在同一条直线上,∠A =50°,BD 垂直平分AE ,垂足为D ,则∠EBC 的度数为_____.
【答案】100°
【解析】
【分析】
根据线段垂直平分线的性质,得BE BA =,
根据等腰三角形的性质,得50E A ∠=∠=︒,再根据三角形外角的性质即可求解.
【详解】
∵BD 垂直平分AE ,
∴BE BA =,
∴50E A ∠=∠=︒,
∴100EBC E A ∠=∠+∠=︒,
故答案为100°.
【点睛】
考查线段垂直平分线的性质以及三角形外角的性质,掌握线段垂直平分线的性质是解题的关键.
8.如图,△ABC 中,∠B 与∠C 的平分线交于点O ,过O 作EF ∥BC 交AB 、AC 于E 、F ,若△ABC 的周长比△AEF 的周长大12cm ,O 到AB 的距离为4cm ,△OBC 的面积_____cm 2.
【答案】242cm .
【解析】
【分析】
由BE=EO 可证得EF ∥BC ,从而可得∠FOC=∠OCF ,即得OF=CF ;可知△AEF 等于AB+AC ,所以根据题中的条件可得出BC 及O 到BC 的距离,从而能求出△OBC 的面积.
【详解】
∵BE=EO ,∴∠EBO=∠EOB=∠OBC ,∴EF ∥BC ,∴∠FOC=∠OCB=∠OCF ,
∴OF=CF ;△AEF 等于AB+AC ,
又∵△ABC的周长比△AEF的周长大12cm,∴可得BC=12cm,
根据角平分线的性质可得O到BC的距离为4cm,
∴S△OBC=1
2
×12×4=24cm2.
考点:1.三角形的面积;2.三角形三边关系.
9.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_____度.
【答案】45
【解析】
【分析】
根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求
∠ABC=∠BAD=45°.
【详解】
∵AD⊥BC于D,BE⊥AC于E
∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,
又∵∠BFD=∠AFE(对顶角相等)
∴∠EAF=∠DBF,
在Rt△ADC和Rt△BDF中,
CAD FBD
BDF ADC
BF AC
∠∠


∠∠







∴△ADC≌△BDF(AAS),
∴BD=AD,
即∠ABC=∠BAD=45°.
故答案为45.
【点睛】
三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
10.如图,在△ABC中,∠A=70°,点O到AB,BC,AC的距离相等,连接BO,CO,则
∠BOC=________.
【答案】125°
【解析】
【分析】
根据角平分线性质推出O 为△ABC 三角平分线的交点,根据三角形内角和定理求出∠ABC+∠ACB ,根据角平分线定义求出∠OBC+∠OCB ,即可求出答案.
【详解】
:∵点O 到AB 、BC 、AC 的距离相等,
∴OB 平分∠ABC ,OC 平分∠ACB ,
∴12OBC ABC ∠=∠,12
OCB ACB ∠=∠, ∵∠A=70°,
∴∠ABC+∠ACB=180°-70°=110°,
∴1110552
OBC OCB ∠+∠=⨯︒=︒, ∴∠BOC=180°-(∠OBC+∠OCB )=125°;
故答案为:125.
【点睛】
本题主要考查平分线的性质,三角形内角和定理的应用,能求出∠OBC+∠OCB 的度数是解此题的关键.
二、八年级数学三角形选择题(难)
11.如图,CD 是ABC 的一条中线,E 为BC 边上一点且2,BE CE AE CD =、相交于,F 四边形BDFE 的面积为6,则ABC 的面积是( )
A .14
B .14.4
C .13.6
D .13.2
【答案】B
【分析】
连结BF,设S△BDF=x,则S△BEF=6-x,由CD是中线可以得到S△ADF=S△BDF,S△BDC=S△ADC,
由BE=2CE可以得到S△CEF=1
2
S△BEF,S△ABE=
2
3
S△ABC,进而可用两种方法表示△ABC的面
积,由此可得方程,进而得解.【详解】
解:如图,连接BF,
设S△BDF=x,则S△BEF=6-x,
∵CD是中线,
∴S△ADF=S△BDF=x,S△BDC= S△ADC=1
2△ABC

∵BE=2CE,
∴S△CEF=1
2
S△BEF=
1
2
(6-x),S△ABE=
2
3
S△ABC,
∵S△BDC= S△ADC=1
2△ABC

∴S△ABC=2S△BDC
=2[x+3
2
(6-x)]
=18-x,
∵S△ABE=2
3
S△ABC,
∴S△ABC=3
2
S△ABE
=3
2
[2x+ (6-x)]
=1.5x+9,
∴18-x =1.5x+9,解得:x=3.6,
∴S△ABC=18-x,
=14.4,
故选:B.
【点睛】
本题考查了三角形的中线能把三角形的面积平分,等高三角形的面积比等于底的比,熟练掌握这个结论记以及方程思想是解题的关键.
A B C.再分12.如图,ABC的面积为1.分别倍长(延长一倍)AB,BC,CA得到111
A B C.…… 按此规律,倍长2018次后得到的
别倍长A1B1,B1C1,C1A1得到222
A B C的面积为()
201820182018
A.2017
8
7D.2018
6C.2018
6B.2018
【答案】C
【解析】
分析:根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A1B1C1的面积是△ABC的面积的7倍,依此类推写出即可.
详解:连接AB1、BC1、CA1,根据等底等高的三角形面积相
等,△A1BC、△A1B1C、△AB1C、△AB1C1、△ABC1、△A1BC1、△ABC的面积都相等,所以,S△A1B1C1=7S△ABC,同理S△A2B2C2=7S△A1B1C1=72S△ABC,依此类推,S△AnBnCn=7n S△ABC.∵△ABC 的面积为1,∴S△AnBnCn=7n,∴S△A2018B2018C2018=72018.
故选C.
点睛:本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.
13.如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB为∠1,
∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是()
A.∠1=∠2+∠A B.∠1=2∠A+∠2
C.∠1=2∠2+2∠A D.2∠1=∠2+∠A
【答案】B
【解析】
试题分析:如图在∆ABC中,∠A+∠B+∠C=180°,折叠之后在∆ADF中,
∠A+∠2+∠3=180°,∴∠B+∠C=∠2+∠3,∠3=180°-∠A-∠2,又在四边形BCFE中
∠B+∠C+∠1+∠3=360°,∴∠2+∠3+∠1+∠3=360°∴∠2+∠1+2∠3=∠2+∠1+2(180°-∠A-
∠2)=360°,∴∠2+∠1-2∠A-2∠2=0,∴∠1=2∠A+∠2.故选B
点睛:本题主要考查考生对三角形内角和,四边形内角和以及三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角和的理解及掌握。

在求∠A、∠1与∠2的数量关系时,,用到了等量代换的思想,进行角与角之间的转换。

14.已知如图,△ABC中,∠ABC=50°,∠BAC=60°,BO、AO分别平分∠ABC 和∠BAC,求∠BCO的大小()
A.35°B.40°C.55°D.60°
【答案】A
【解析】
分析:先根据三角内角和可求出∠ACB=180°-50°-60°=70°,根据角平分线的性质:角平分线上的点到角两边的距离相等可得:点O到AB和BC的距离相等,同理可得:点O到AC和BC的距离相等,然后可得: 点O到AC和BC的距离相等,再根据角平分线的判定可得:OC平分∠ACB,所
以∠BCO =1
2
∠ACB=35°.
详解: 因为∠ABC=50°,∠BAC=60°,
所以∠ACB=180°-50°-60°=70°,,
因为BO,AO分别平分∠ABC和∠BAC,
所以点O到AB和BC的距离相等,同理可得:点O到AC和BC的距离相等,所以点O到AC和BC的距离相等,
所以OC平分∠ACB,
所以∠BCO =1
2
∠ACB=35°.
点睛:本题主要考查三角形内角和和角平分线的性质和判定,解决本题的关键是要熟练掌握三角形内角和性质和角平分线的性质和判定.
15.有下列说法:
①有一个角为60°的等腰三角形是等边三角形;
②三边长为、、3的三角形为直角三角形;
③等腰三角形的两边长为3、4,则等腰三角形的周长为10;
④一边上的中线等于这边长的一半的三角形是等腰直角三角形.
其中正确的个数是()
A.4个 B.3个 C.2个 D.1个
【答案】C
【解析】
试题分析:根据等边三角形的性质可知,有一个角为60°的等腰三角形是等边三角形,故①正确;
根据三边可知:,,3²=9,因此可知:,由勾股定理的逆定理可知其是直角三角形,故②正确;
由等腰三角形的三边可知其边长为:3,3,4或3,4,4,则周长为10或11,故③不正确;由一边上的中线等于这边长的一半的直角三角形是等腰直角三角形,故④不正确.
故选:C
16.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,∠4的外角和等于215°,则∠BOD的度数为()
A.20°B.35°C.40°D.45°
【答案】B
【解析】
【分析】
由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∠BOD.
【详解】
解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,
∴∠1+∠2+∠3+∠4+215°=4×180°,
∴∠1+∠2+∠3+∠4=505°,
∵五边形OAGFE内角和=(5-2)×180°=540°,
∴∠1+∠2+∠3+∠4+∠BOD=540°,
∴∠BOD=540°-505°=35°,
故选:B.
【点睛】
本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.
17.一个多边形的每个内角都等于120°, 则此多边形是( )
A.五边形B.七边形C.六边形D.八边形
【答案】C
【解析】
【分析】
先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数即可得到边数.
【详解】
∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°﹣
120°=60°,∴边数n=360°÷60°=6.
故选C.
【点睛】
本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.
18.如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=85°,则∠2的度数()
A.24°B.25°C.30°D.35°
【答案】D
【解析】
【分析】
首先根据三角形内角和定理可得∠AEF+∠AFE=120°,再根据邻补角的性质可得
∠FEB+∠EFC=360°-120°=240°,再根据由折叠可得:
∠B′EF+∠EFC′=∠FEB+∠EFC=240°,然后计算出∠1+∠2的度数,进而得到答案.【详解】
解:∵∠A=60°,
∴∠AEF+∠AFE=180°-60°=120°,
∴∠FEB+∠EFC=360°-120°=240°,
∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,
∴∠1+∠2=240°-120°=120°,
∵∠1=85°,
∴∠2=120°-85°=35°.
故选:D.
【点睛】
此题主要考查了翻折变换,关键是根据题意得到翻折以后,哪些角是对应相等的.
19.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )
A.11 B.12 C.13 D.14
【答案】C
【解析】
【分析】
根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.
【详解】
解:设第三边为a,
根据三角形的三边关系,得:4-3<a<4+3,
即1<a<7,
∵a为整数,
∴a的最大值为6,
则三角形的最大周长为3+4+6=13.
故选:C.
【点睛】
本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.
20.一个多边形的每个内角均为108º,则这个多边形是()
A.七边形 B.六边形 C.五边形 D.四边形
【答案】C
【解析】
试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它
的边数=360
÷72=5(边).
考点:⒈多边形的内角和;⒉多边形的外角和.。

相关文档
最新文档