海门市种羊场初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海门市种羊场初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)实验课上,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()
A. 4种
B. 3种
C. 2种
D. 1种
【答案】C
【考点】二元一次方程的解,二元一次方程的应用
【解析】【解答】根据题意可得:5x+6y=40,根据x和y为非负整数可得:或,共两种,故选C.
【分析】根据总人数为40人,建立二元一次方程,再根据x和y为非负整数,,用含y的代数式表示出x,得到x=,求出y的取值范围为0<y<,得出满足条件的x、y的值即可。

2、(2分)计算=()
A. -8
B. 2
C. -4
D. -14
【答案】A
【考点】实数的运算
【解析】【解答】原式=-5-3=-8.故答案为:A
【分析】负数的绝对值是正数,再根据实数的运算性质计算即可。

3、(2分)2.﹣的绝对值是(),的算术平方根是().
A. - ;
B. ;-
C. - ;-
D. ;
【答案】D
【考点】算术平方根,实数的绝对值
【解析】【解答】解:﹣的绝对值是,的算术平方根是
【分析】根据绝对值的意义,一个负数的绝对值等于它的相反数,得出-的绝对值;再根据算数平方根的定义,,从而得出的算数平方根是。

4、(2分)如图,有下列判定,其中正确的有()
①若∠1=∠3,则AD∥BC;②若AD∥BC,则∠1=∠2=∠3;③若∠1=∠3,AD∥BC,则∠1=∠2;④若∠C+∠3+∠4=180°,则AD∥BC.
A. 1个
B. 2个
C. 3个
D. 4个
【答案】B
【考点】平行线的判定与性质
【解析】【解答】解:①若∠1=∠3,则AB=AD,故本小题不符合题意;
②若AD∥BC,则∠2=∠3,故本小题不符合题意
③,由AD∥BC,得出∠2=∠3,又∠1=∠3,故∠1=∠2,正确;故本小题符合题意
④若∠C+∠3+∠4=180∘,则AD∥BC 正确;故本小题符合题意
综上所述,正确的有③④共2个。

故选B.
【分析】根据平行线的判定定理及性质定理以及等量代换,等边对等角的性质即可一一作出判断。

5、(2分)把不等式x+1≤-1的解集在数轴上表示出来,下列正确的是()
A. B.
C. D.
【答案】D
【考点】在数轴上表示不等式(组)的解集,解一元一次不等式
【解析】【解答】移项并合并得,x≤-2,
故此不等式的解集为:x≤-2,
在数轴上表示为:
故答案为:D.
【分析】先求出此不等式的解集,再将解集再数轴上表示出来。

6、(2分)用加减法解方程组时,下列解法错误的是()
A. ①×3-②×2,消去x
B. ①×2-②×3,消去y
C. ①×(-3)+②×2,消去x
D. ①×2-②×(-3),消去y
【答案】D
【考点】解二元一次方程组
【解析】【解答】解:A、①×3-②×2,可消去x,故不符合题意;
B、①×2-②×3,可消去y,故不符合题意;
C、①×(-3)+②×2,可消去x,故不符合题意;
D、①×2-②×(-3),得13x-12y=31,不能消去y,符合题意.
故答案为:D
【分析】若要消去x,可将①×3-②×2或①×(-3)+②×2;若消去y,可将①×2-②×3,观察各选项,就可得出解法错误的选项。


7、(2分)若a=-0.32,b=(-3)-2,c=,d=,则()
A.a<b<c<d
B.a<b<d<c
C.a<d<c<b
D.c<a<d<b
【答案】B
【考点】实数大小的比较
【解析】【解答】解:∵a=-0.32=-0.9,
b=(-3)-2=,
c=(-)-2=(-3)2=9,
d=(-)0=1,
∴9>1>>-0.9,
∴a<b<d<c.
故答案为:B.
【分析】根据幂的运算和零次幂分别计算出各值,比较大小,从而可得答案.
8、(2分)若a>b,则下列各式变形正确的是()
A. a-2<b-2
B. -2a<-2b
C. |a|>|b|
D. a2>b2【答案】B
【考点】有理数大小比较,不等式及其性质
【解析】【解答】解:A、依据不等式的性质1可知A不符合题意;
B、由不等式的性质3可知B符合题意;
C、如a-3,b=-4时,不等式不成立,故C不符合题意;
D、不符合不等式的基本性质,故D不符合题意.故答案为:B
【分析】根据不等式的性质,不等式的两边都减去同一个数,不等号的方向不变;不等式的两边都乘以同一个负数,不等号的方向改变;只有两个正数,越大其绝对值就越大,也只有对于两个正数才存在越大其平方越大。

9、(2分)如图(1)是长方形纸带,∠DEF=α,将纸带沿EF折叠成图(2),再沿BF折叠成图(3),则图(3)中的∠CFE的度数是()
A.2α
B.90°+2α
C.180°﹣2α
D.180°﹣3α
【答案】D
【考点】平行线的性质,翻折变换(折叠问题)
【解析】【解答】解:∵AD∥BC,
∴∠DEF=∠EFB=α
在图(2)中,∠GFC=180°-2EFG=180°-2α,
在图(3)中,∠CFE=∠GFC-∠EFC=180°-2α-α=180°-3α。

故答案为:D。

【分析】根据题意,分别在图2和图3中,根据∠DEF的度数,求出最终∠CFE的度数即可。

10、(2分)关于x、y的方程组的解x、y的和为12,则k的值为()
A.14
B.10
C.0
D.﹣14
【答案】A
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:解方程得:
根据题意得:(2k﹣6)+(4﹣k)=12
解得:k=14.
故答案为:A
【分析】先将k看作已知数解这个方程组,可将x、y用含k的代数式表示出来,由题意再将x、y代入x+y=12可得关于k的一元一次方程,解这个方程即可求得k的值。

11、(2分)如果方程组的解与方程组的解相同,则a、b的值是()
A.
B.
C.
D.
【答案】A
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:由题意得:是的解,
故可得:,解得:.
故答案为:A.
【分析】由题意把x=3和y=4分别代入两个方程组中的第二个方程中,可得关于a、b的二元一次方程组,解这个方程组即可求得a、b的值。

12、(2分)等式组的解集在下列数轴上表示正确的是()。

A. B.
C. D.
【答案】B
【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组
【解析】【解答】解:不等式可化为:.
即-3<x≤2;
在数轴上表示为:
故答案为:B.
【分析】先分别求得两个不等式的解集,再在数轴上表示出两个解集,这两个解集的公共部分就是不等式的解集.
二、填空题
13、(1分)方程2x-y= 1和2x+y=7的公共解是________;
【答案】
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:联立方程组得:
解得:
【分析】解联立两方程组成的方程组,即可求出其公共解。

14、(1分)如图,已知AB∥CD,CE,AE分别平分∠ACD,∠CAB,则∠1+∠2=________.
【答案】90°
【考点】平行线的性质
【解析】【解答】解:∵CE、AE分别平分∠ACD、∠CAB,
∴∠1=∠DCE=∠ACD,∠2=∠BAE=∠CAB,
∴∠ACD=2∠1,∠CAB=2∠2,
又∵AB∥CD,
∴∠CAB+∠ACD=180°,
∴2∠2+2∠1=180°,
∴∠2+∠1=90°.
故答案为:90°.
【分析】根据角平分线定义得∠ACD=2∠1,∠CAB=2∠2,再由平行线性质得∠CAB+∠ACD=180°,代入、计算即可得出答案.
15、(1分)如图,在铁路旁边有一村庄,现要建一火车站,为了使该村人乘火车方便(即距离最短),
请你在铁路旁选一点来建火车站(位置已选好),说明理由:________.
【答案】垂线段最短
【考点】垂线段最短
【解析】【解答】解:依题可得:
垂线段最短.
故答案为:垂线段最短.
【分析】根据垂线的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短.
16、(1分)对于有理数,定义新运算:* ;其中是常数,等式右边是通常
的加法和乘法运算,已知,,则的值是________ .
【答案】-6
【考点】解二元一次方程组,定义新运算
【解析】【解答】解:根据题中的新定义化简1∗2=1,(−3)∗3=6得:,
解得:,
则2∗(−4)=2×(−1)−4×1=−2−4=−6.
故答案为:−6
【分析】根据新定义的运算法则:* ,由已知:,,建立关于a、b的
方程组,再利用加减消元法求出a、b的值,然后就可求出的结果。

17、(3分)同一平面内的三条直线a,b,c,若a⊥b,b⊥c,则a ________c .若a∥b,b∥c,则a ________c .若a∥b,b⊥c,则a ________c.
【答案】∥;∥;⊥
【考点】平行公理及推论
【解析】【解答】解:∵a⊥b,b⊥c,
∴a∥c;
∵a∥b,b∥c,
∴a∥c;
∵a∥b,b⊥c,
∴a⊥c.
故答案为:∥;∥;⊥.
【分析】根据垂直同一条直线的两条直线平行可得a∥c;
根据平行于同一条直线的两条直线平行可得a∥c;
根据垂直同一条直线的两条直线平行逆推即可.
18、(1分)若= =1,将原方程组化为的形式为________.
【答案】
【考点】二元一次方程组的其他应用
【解析】【解答】解:原式可化为:=1和=1,
整理得,.
【分析】由恒等式的特点可得方程组:=1,=1,去分母即可求解。

三、解答题
19、(5分)如图,直线AB和CD相交于点O,OD平分∠BOF,OE⊥CD于点O,∠AOC=40°,求∠EOF 的度数.
【答案】解:OE⊥CD,∴∠EOD=90°,∵∠AOC=40°,∴∠BOD=40°,∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∴∠BOF=2∠DOF=80°,∴∠EOF=90°+40°=130°
【考点】角的平分线,角的运算,对顶角、邻补角
【解析】【分析】根据题意和对顶角相等,求出∠BOD的度数,由角平分线性质求出∠BOF=2∠DOF=2∠BOD 的度数,求出∠EOF的度数.
20、(5分)如图,∠1= ∠2,∠1+∠2=162°,求∠3与∠4的度数.
【答案】解:∵∠1= ∠2,∠1+∠2=162°,
∴∠1=54°,∠2=108°.
∵∠1和∠3是对顶角,
∴∠3=∠1=54°
∵∠2和∠4是邻补角,
∴∠4=180°-∠2=180°-108°=72°
【考点】解二元一次方程组
【解析】【分析】将∠1= ∠2 代入∠1+∠2=162°,消去∠1,算出∠2的值,再将∠2的值代入∠1=
∠2算出∠1的值,然后根据对顶角相等及邻补角的定义即可分别算出∠3与∠4的度数.
21、(5分)如图,直线a,b相交,∠1=40°,求∠2、∠3、∠4的度数.
【答案】解:∵∠1=40°,∴∠3=∠1=40°,∴∠2=∠4=180°-∠1=180°-40°=140°
【考点】对顶角、邻补角
【解析】【分析】根据图形得到对顶角∠3=∠1、∠2=∠4,∠1+∠2=180°,由∠1的度数求出∠2、∠3、∠4的度数.
22、(15分)南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2014年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图:
请根据以上信息解答下列问题:
(1)种植油菜每亩的种子成本是多少元?
(2)农民冬种油菜每亩获利多少元?
(3)2014年南县全县农民冬种油菜的总获利为多少元?(结果用科学记数法表示)
【答案】(1)解:根据题意得:1﹣10%﹣35%﹣45%=10%,310×10%=31(元),
答:种植油菜每亩的种子成本是31元
(2)解:根据题意得:130×5﹣310=340(元),答:农民冬种油菜每亩获利340元
(3)解:根据题意得:340×500 000=170 000 000=1.7×108(元),
答:2014年南县全县农民冬种油菜的总获利为1.7×108元
【考点】统计表,扇形统计图,科学记数法—表示绝对值较大的数
【解析】【分析】(1)先根据扇形统计图计算种子的百分比,然后乘以每亩的成本可得结果;
(2)根据产量乘单价再减去生产成本可得获利;
(3)根据(2)中的利润乘以种植面积,最后用科学记数法表示即可.
23、(5分)如图,直线BE、CF相交于O,∠AOB=90°,∠COD=90°,∠EOF=30°,求∠AOD的度数.
【答案】解:∵∠EOF=30°
∴∠COB=∠EOF=30°
∵∠AOB=90°,∠AOB=∠AOC+∠COB
∴∠AOC=90°-30°=60°
∴∠AOD=∠COD+∠AOC=150°
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等得出∠COB=∠EOF=30°,根据角的和差得出∠AOC=90°-30°=60°,∠AOD=
∠COD+∠AOC=150°。

24、(5分)如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.
【答案】解:∵∠FOC=90°,∠1=40°,
∴∠3=∠AOB-∠FOC-∠1=180°-90°-40°=50°,
∴∠DOB=∠3=50°
∴∠AOD=180°-∠BOD=130°
∵OE平分∠AOD
∴∠2=∠AOD=×130°=65°
【考点】角的平分线,对顶角、邻补角
【解析】【分析】根据平角的定义,由角的和差得出∠3的度数,根据对顶角相等得出∠DOB=∠3=50°,再根据邻补角的定义得出∠AOD=180°-∠BOD=130°,再根据角平分线的定义即可得出答案。

25、(5分)小明在甲公司打工.几个月后同时又在乙公司打工.甲公司每月付给他薪金470元,乙公司每月付给他薪金350元.年终小明从这两家公司共获得薪金7620元.问他在甲、乙两公司分别打工几个月? 【答案】解:设他在甲公司打工x个月,在乙公司打工y个月,依题可得:
470x+350y=7620,
化简为:47x+35y=762,
∴x==16-y+,
∵x是整数,
∴47|10+12y,
∴y=7,x=11,
∴x=11,y=7是原方程的一组解,
∴原方程的整数解为:(k为任意整数),
又∵x>0,y>0,
∴,
解得:-<k<,
k=0,
∴原方程正整数解为:.
答:他在甲公司打工11个月,在乙公司打工7个月.
【考点】二元一次方程的解
【解析】【分析】设他在甲公司打工x个月,在乙公司打工y个月,根据等量关系式:甲公司乙公司+乙公司乙公司=总工资,列出方程,此题转换成求方程47x+35y=762的整数解,求二元一次不定方程的正整数解时,可先求出它的通解。

然后令x>0,y>0,得不等式组.由不等式组解得k的范围.在这范围内取k的整数值,代人通解,即得这个不定方程的所有正整数解.
26、(5分)如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.
【答案】解:∵∠AFE=90°,
∴∠AEF=90°﹣∠A=90°﹣35°=55°,
∴∠CED=∠AEF=55°,
∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°.
答:∠ACD的度数为83°
【考点】余角、补角及其性质,对顶角、邻补角,三角形内角和定理
【解析】【分析】先根据两角互余得出∠AEF =55°,再根据对顶角相等得出∠CED=∠AEF=55°,最后根据三角形内角和定理得出答案。

相关文档
最新文档