期末试卷2
八年级(下)数学期末试卷(2)
八年级(下)数学期末试卷(2)一.选择题(共11小题,满分33分,每小题3分)1.(3分)“漏壶”是一种古代计时器,如图所示.在壶内盛一定量的水,水从壶底的小孔漏出,壶内壁画有刻度,人们根据壶中水面的位置计算时间.用x表示漏水时间,y表示壶底到水面的高度,不考虑水量变化对压力的影响,下列图象能表示y与x对应关系的是()A.B.C..D.2.(3分)在一篇文章中,“的”、“地”、“得”三个字共出现100次.已知“的”和“地”的频率之和是0.7,那么“得”字出现的频数是()A.28B.30C.32D.343.(3分)甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位平均成绩较高且状态稳定的同学参加数学比赛,那么应选()甲乙丙丁平均数80858580方差42455459 A.甲B.乙C.丙D.丁4.(3分)下列二次根式中属于最简二次根式的是()A.B.C.D.5.(3分)下列各式中,无意义的是()A.B.C.D.6.(3分)若x+y=6,x2+y2=20,求xy的值是()A.6B.8C.26D.207.(3分)下列命题中,真命题是()A.任何数的零次幂都等于1B.对角线相等且垂直的四边形是正方形C.有一条边相等的两个等腰直角三角形全等D.有两直角边对应相等的两个直角三角形全等8.(3分)如图,将一副直角三角尺重叠摆放,使得60°角的顶点与等腰直角三角形的直角顶点重合,且DE⊥AB于点D,与BC交于点F,则∠DCF的度数为()A.20°B.15°C.30°D.45°9.(3分)如图,点E是Rt△ABC、Rt△ABD的斜边AB的中点,AC=BC,∠DBA=25°,则∠DCE的度数是()A.20°B.30°C.35°D.40°10.(3分)顺次联结四边形ABCD各边中点所形成的四边形是矩形,那么四边形ABCD是()A.平行四边形B.矩形C.菱形D.等腰梯形11.(3分)函数y=2x+3的图象可能是()A .B .C .D .二.填空题(共4小题,满分12分,每小题3分)12.(3分)小华在整理平行四边形、矩形、菱形、正方形的性质时,发现它们的对角线都具有同一性质是.13.(3分)在平行四边形ABCD 中,AB=3,BC=4,则平行四边形ABCD的周长等于.14.(3分)有5位教师和一群学生一起去公园,教师的全票票价是每人7元,学生票收半价.如果买门票共花费206.5元,那么学生有多少人?设学生有x人,填写下表:人数/人票价/元总票价/元教师学生根据题意,得方程,所以学生有人.15.(3分)直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x﹣nx>4n﹣m的解集为.三.解答题(共4小题,满分30分)16.(11分)计算:(1);(2).17.(6分)如图,A,B,H是直线上的三个点,AC⊥l于点A,BD⊥l于点B,HC=HD,AB=5,AC=2,BD=3,求AH的长.18.(6分)如图,任意四边形ABCD中,AB=CD,M、N分别为BC、AD的中点.说明∠1与∠2的大小关系.19.(7分)排球垫球是体育中考的项目之一,下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号12345678910成绩(分)7687758787(1)运动员甲测试成绩的众数为;运动员乙测试成绩的中位数为;运动员丙测试成绩的平均数为;(2)经计算三人成绩的方差分别为S甲2=0.8,S乙2=0.4,S丙2=0.6,如果在他们三人中选择一位垫球成绩较为稳定的接球能手作为自由人,则运动员更合适;(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)四.解答题(共3小题,满分23分)20.(7分)如图,四边形ABCD的对角线AC⊥BD于点E.点F为四边形ABCD外一点,且∠FCA=90°,BC平分∠DBF,∠CBF=∠DCB.(1)求证:四边形DBFC是菱形;(2)若AB=BC,∠F=45°,BD=2,则AC=.21.(8分)计算:(1)(+)÷﹣6;(2)﹣(1+)(2﹣).22.(8分)某城市有一类出租车,在5时到23时的时间段内运营,计费规定如下:行驶里程不超过3千米付费14元,超过3千米且不超过15千米的部分每千米付费2.50元;总里程超过15千米的部分每千米付费3.80元(等候时间管不计费).(1)该类出租车起步价为多少元?在多少千米内只收起步价?(2)某人乘该类出租车行驶了x千米,试写出当x(千米)超过3(千米)但不超过15(千米)时,乘车费用y(元)关于里程数x(千米)的函数解析式,并求当所付费用为26元时出租车行驶的里程数.(3)当乘车费用为82元时,出租车行驶了多少千米?五.解答题(共2小题,满分22分)23.(10分)(1)【探究发现】如图①,已知矩形ABCD的对角线AC的垂直平分线与边AD,BC分别交于点E,F.求证:四边形AFCE是菱形;(2)【类比应用】如图②,直线EF分别交矩形ABCD的边AD,BC于点E,F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D',若AB=3,BC=4,求四边形ABFE的周长;(3)【拓展延伸】如图③,直线EF分别交平行四边形ABCD的边AD,BC于点E,F,将平行四边形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D',若,BC=4,∠C=45°,求EF的长.24.(12分)已知:在矩形ABCD中,AB=6,AD=2,P是BC边上的一个动点,将矩形ABCD折叠,使点A与点P重合,点D落在点G处,折痕为EF.(1)如图1,当点P与点C重合时,则线段EB=,EF=;(2)如图2,当点P与点B,C均不重合时,取EF的中点O,连接并延长PO与GF的延长线交于点M,连接PF,ME,MA.①求证:四边形MEPF是平行四边形;②当tan∠MAD=时,求四边形MEPF的面积.。
《物理化学》期末试卷(二)(附答案)
**大学课程考核试卷学年第一学期级专业(类)考核科目物理化学课程类别必修考核类型考试考核方式闭卷卷别B(注:考生务必将答案写在答题纸上,写在本试卷上的无效)一、选择题( 共7题13分)1、2 分(0085)在体系温度恒定的变化中,体系与环境之间: ( )(A) 一定产生热交换(B) 一定不产生热交换? 不一定产生热交换(D) 温度恒定与热交换无关2、2 分(1032)对物质的量为n的理想气体,(T/p)S应等于:( )(A) V/R(B) V/nR? V/C V(D) V/C p3、1 分(1783)在恒温抽空的玻璃罩中封入两杯液面相同的糖水(A) 和纯水(B)。
经历若干时间后,两杯液面的高度将是:( )(B) A 杯高于 B 杯(B) A 杯等于 B 杯(B) A 杯低于 B 杯(B)视温度而定4、2 分(0675)理想气体在等温条件下反抗恒定外压膨胀,该变化过程中体系的熵变S体及环境的熵变S环应为:()(A) S体>0,S环=0 (B)S体<0,S环=0(C)S体>0,S环<0 (D)S体<0,S环>05. 2 分(3286)在刚性密闭容器中,有下列理想气体的反应达到平衡A(g) + B(g) =C(g)若在恒温下加入一定量的惰性气体,则平衡将()(A) 向右移动(B) 向左移动(C) 不移动(D) 无法确定6. 2 分(1031)1 mol 范德华气体的(S/V)T应等于:( )(A) R/(V m-b)(B) R/V m(C) 0(D) -R/(V m-b)7. 2 分(1247)某物质溶解在互不相溶的两液相和中,该物质在相中以 A 形式存在,在相中以A 2形式存在,则和两相平衡时:( )(A) μA dn A =μA 2dn A 2(B) c A = c A 2(C) a A = a A 2(D) 2μA = μA 2二、填空题( 共10题22分)8. 5 分(3048)NH 4HS(s) 放入抽空的瓶内发生分解:NH 4HS(s) =NH 3(g) + H 2S(g)则分解反应达到平衡时该体系的独立组分数为___________ ,相数为_________ ,自由度数为____ ;在25℃时测得体系达到平衡时的压力为66.66 kPa ,若此温度时NH 3的分压为13.33 kPa ;要使NH 3和H 2S 的混合气体体系中不形成NH 4HS 固体,则应将H 2S 的分压控制在_____于_____ kPa 。
北师大版八年级(下)数学期末试卷(2)
北师大版八年级(下)数学期末试卷(2)一、单项选择题(下列各题的四个选项中,只有一个选项最符合题意要求,请将最符合题意要求的选项涂在答题卡指定位置上。
每小题2分,共18分。
)1.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(2分)下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1)D.ax+bx+c=x(a+b)+c3.(2分)如图,ED为△ABC的边AC的垂直平分线,且AB=5,△BCE的周长为8,则BC长()A.6B.5C.4D.34.(2分)如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC 的中点,若BD=16,则EF的长为()A.32B.16C.8D.45.(2分)如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=4,若点Q是射线OB上一点,OQ=3,则△ODQ的面积是()A.3B.4C.5D.66.(2分)如图,l1:y=x+1和l2:y=mx+n相交于P(a,2),则x+1≥mx+n解集为()A.x>﹣1B.x<1C.x≥1D.x>a7.(2分)下列分式变形正确的是()A.B.C.D.8.(2分)若分式的值为正数,则x的取值范围是()A.x>﹣2B.x<1C.x>﹣2且x≠1D.x>19.(2分)已知2x﹣y=1,xy=2,则4x3y﹣4x2y2+xy3的值为()A.﹣2B.1C.﹣1D.2二、填空题(每题2分,共18分)10.(2分)多项式x2+mx+5因式分解得(x+5)(x+n),则m=.11.(2分)已知分式,当x=1时,分式无意义,则a=.12.(2分)已知一个多边形的内角和是外角和的3倍,则这个多边形为边形.13.(2分)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=10,将△ABC沿CB 方向向右平移得到△DEF,若四边形ABED的面积为20,则平移距离为.14.(2分)如图,在▱ABCD中,DE平分∠ADC,交BC于点E,若AD=8,BE=3,则ABCD的周长是.15.(2分)已知关于x的不等式组有且仅有三个整数解,则a的取值范围是.16.(2分)一次函数y=(2m﹣1)x+2﹣m的图象经过第一、二、四象限,则m的取值范围为.17.(2分)如果关于x的方程﹣=1的解为负数,则m的取值范围是.18.(2分)如图,将两个全等的等腰直角三角形摆成如图所示的样子,其中AB=AC=AG =FG,AF、AG分别与BC交于D、E两点,将△ACE绕着点A顺时针旋转90°得到△ABH,①BH⊥BC;②DA平分∠HDE;③若BD=3,CE=4.则AB=6;④若AB=BE,S△ABD=S△ADE,其中正确的序号有.三、解答题(19题10分;20题10分;21题8分;22题8分;23题8分;24题10分;25题10分;)19.(10分)(1)因式分解:﹣8ax2+16axy﹣8ay2;(2)解不等式组.20.(10分)(1)解分式方程:=+1;(2)先化简(﹣)÷,然后从2,0,﹣1三个数中选一个合适的数代入化简后的结果中进行求值.21.(8分)如图,等腰直角△ABC中,∠ABC=90°,点P在AC上,将△ABP绕顶点B 沿顺时针方向旋转90°后得到△CBQ.当AB=4,AP=时,求PQ的大小.22.(8分)某村计划对面积为1600m2的农场进行数字化硬件改造升级,经投标由甲、乙两个工程队来完成.已知甲队每天能完成改造的面积是乙队每天能完成改造面积的3倍,如果两队各自独立完成面积为720m2区域的改造时,甲队比乙队少用8天.(1)求甲、乙两工程队每天各能完成多少面积的改造;(2)若甲队每天改造费用是2.7万元,乙队每天改造费用为0.8万元,要使这次改造的总费用不超过22万元,则至少应安排乙工程队改造多少天?23.(8分)如图,已知点A、B、C、D在一条直线上,BF、CE相交于O,AE=DF,∠E =∠F,OB=OC.(1)求证:△ACE≌△DBF;(2)如果把△DBF沿AD折翻折使点F落在点G,连接BE和CG.求证:四边形BGCE 是平行四边形.24.(10分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的八折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价的九折优惠.设顾客预计累计购物x元(x>300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.25.(10分)(1)【问题发现】小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.小明发现,过点D 作DF∥AC,交AB于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系:;(2)【类比探究】如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论.(3)【拓展应用】当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.。
北师版数学六年级上学期期末真题试卷2(含答案)
一、认真审题,正确填写1.在同一个圆中,所有半径都小学数学六年级上期期末考试()。
2.学生体质健康调研最新最新数据表明,全国小学生近视眼发病率为22.8%,22.8%表示()占()的22.8%。
3.晚上,淘气竖立拿着一根竹竿走在街道上,海气离街边的路灯越近,竹竿在灯下的影子就越()。
(填“短”“长”)4.()()()()() 3=0.75=%=6=: 4÷=折。
5.0.4∶0.12化简为最简单的整数比是(),比值是()。
6.一瓶饮料的净含量是600毫升,它的30%是()毫升。
7.如图中涂色部分的面积是6cm 2,那么整个圆的面积是()cm 2。
8.在一场篮球比赛中,甲队全场共得了98分,上半场和下半场所得分数的比是3∶4,甲队下半场得了()分。
9.用200粒种子做发芽试验,发芽率是92%,有()粒种子没有发芽。
10.学校操场地面上画了一个周长是31.4m 的圆,六(1)班全体同学站在圆上做游戏,老师站在圆内,他和每个同学之间的距离都相等。
老师和每个同学之间的距离是()m 。
11.《九章算术》是我国古代一部数学专著,它给出了相当完整的分数运算法则。
该书所介绍的分数除法的运算方法采用了先将两个分数通分、再使分子相除的方法,称之为“经分”。
即:a c ad bc adb d bd bd bc÷=÷=按照上述方法计算()()()()()()4375÷=÷=。
12.如图,自行车的链条每节长为2.5cm ,每两节链条相连接部分重叠的圆的直径为0.8厘米,这段链条共有50节。
则这段链条总长度为()厘米。
期末复习与测试二、精心挑透。
填对序号。
13.某班上女生人数占全班人数的817,女生人数与全班人数的比是()。
A.8∶17B.9∶17C.8∶9D.9∶814.如下图,圆心的位置是()4,4,下面四句话()是错误的。
A.点()4,3在圆周内B.点()1,4在圆周上C.点()6,7在圆周外D.点()7,6在圆周上15.周长相等的正方形、长方形、正三角形、圆,()的面积最大。
五年级(下)期末数学试卷2
五年级(下)期末数学试卷一、选择题(每题2分,共30分)1.(2分)下面算式的结果比小的是()A.B.C.D.2.(2分)在、、0.66、这四个数中,最小的数是()A.B.C.0.66D.3.(2分)在长方体(不包括正方体)的6个面中,最多有()个面是正方形。
A.2B.3C.4D.54.(2分)如图是由8个小正方体拼成的,如果拿走一个小正方体,它的表面积和原来相比()A.变小了B.变大了C.没有变化D.无法确定5.(2分)一个正方体的棱长总和是72厘米,它的底面积是()平方厘米。
A.6B.24C.36D.2166.(2分)下面说法正确的是()A.0的倒数是0B.假分数一定大于1C.0.25和4互为倒数D.分母为5的真分数有5个7.(2分)淘气看到洗发水瓶的包装上印有“净含量500mL”的字样,这个“500mL”是指()A.洗发水瓶的体积B.洗发水瓶内洗发水的体积C.洗发水瓶的容积D.洗发水的质量8.(2分)图书馆在公园西偏南30°的方向,那么公园在图书馆()的方向。
A.南偏西30°B.东偏北30°C.北偏东30°D.南偏西60°9.(2分)一个正方体的棱长扩大为原来的3倍,体积扩大为原来的()倍。
A.6B.9C.12D.2710.(2分)下面的图形能折成正方体的是()A.B.C.D.11.(2分)在一次单元测试中,笑笑语文、数学和英语三科的平均成绩是94分,语文和数学的平均成绩是92.5分、笑笑的英语成绩是()分。
A.93B.94C.96D.9712.(2分)在中,最简分数有()个。
A.1B.2C.3D.413.(2分)淘气要统计深圳和北京去年的1~6月份气温变化情况,用()统计图比较合适。
A.条形B.折线C.复式条形D.复式折线14.(2分)将四个长10cm,宽5cm,高3cm的长方体盒子用彩纸包在一起,最省包装纸的方法是()A.B.C.D.15.(2分)把米长的绳子平均分成6段,每段长()A.米B.米C.米D.二、填空题(每空1分,共18分)16.(2分)在横线上填上合适的单位名称。
浙江省杭州市六年级下学期数学期末试卷(二)及答案
浙江省杭州市六年级下学期数学期末试卷(二)一、基础知识填空题1.2022年亚运主场馆奥体博览城核心区占地A5B3C00平方米,A为最小非零自然数,B为最小合数,C既是奇数又是合数,这七位数是,四舍五入到万位约为万平方米.2.÷75=()=40%=16:=成()3.3小时45分=小时 1.6万千克=吨4.世界人均粮食占有量为360公斤,约为我国人均粮食占有量的45,我国的人均粮食占有量为公斤;世界人均粮食占有量比我国人均水平少%.5.一个长方形广场长是200m,在设计图上长5cm,这幅图的比例尺为,图上长方形面积为20cm2,实际有m2.6.现在微信支付简单便捷,下面是童童爸爸2月份的零钱收支明细,2月份爸爸一共支出了元,零钱比上个月多了元.日期2月5日2月14日2月19日2月23日2月26日收支明细/元+200.00﹣80.00﹣9.80+2.40+18.807.观察如图,第6个图有个圆点,第n个图比它前一个图多个圆点。
图序1234……点群……圆点数151430……8.有一些相同的小正方体构成的几何体,从前面和右边看都是,则相同的小正方体最多有个,最少有个.9.一个长方体的长宽高分别为8cm,4cm,4cm,把它分成两个棱长为4cm的正方体,总表面积比原来(填“增加”或“减少”)了cm2.10.9个完全相同的小长方形围成一个大长方形(如图),那么小长方形长和宽的比是,大长方形长和宽的比是.二、判断题11.一个商品降价20%,就是打二折出售.()12.比例中,两内项互为倒数,则两外项之积一定是1.()13.2019=3×673,所以,2019的最大因数是673.()14.长、宽、高为10cm,8cm,1cm长方体刚好可放10个棱长为2cm的正方体.()15.小明吃了一个蛋糕的四分之一,小亮吃了剩下的25%,他们吃的一样多.()三、选择题16.一个三角形的三个内角的度数比是2:a:5,当a为()它是一个直角三角形.A.2B.5C.2或5D.3或717.把6支铅笔放入3个笔筒,错误的是()A.存在1个笔筒至少有2支铅笔B.可能有1笔筒有4支铅笔C.总有1个笔筒至少有3支铅笔D.可能会有2个笔筒均有1支铅笔18.把一个体积为9.42立方分米的圆锥放入底面半径为4分米的圆柱形装水容器中(水浸没且无溢出),水面上升了多少分米,列式正确的是()A.9.42÷3÷(3.14×4×4)B.9.42÷(3.14×4×4)C.9.42×3÷(3.14×4×4)D.9.42×9÷(3.14×4×4)19.如图,正方形ABCD和长方形BDFE哪个面积更大()A.长方形B.正方形C.一样大D.无法比较20.图中能作为圆柱侧面展开图的有()个A.1B.2C.3D.4四、基本技能21.直接写出得数2019﹣128=10﹣0.86=20×0.8=100÷20%=10÷0.5=58﹣0.375=59×0.81=52﹣32=0.125×5×0.8=13÷91= 3.14×8= 4.5﹣4.5÷15=6﹣2920=23×98=45÷32%=34×8÷34×8=22.递等式计算(1)828﹣828÷23(2)18÷45+40×0.35(3)(0.52+725)÷23﹣1423.简便计算(要求写出简算过程)(1)25−0.27+85−0.13(2)817÷23+123×917(3)2017÷2018201924.求未知数x(1)x﹣25%x=1.25(2)34(x﹣8)=32(3)56:x=225:1.8五、操作题25.(1)A点的位置为(,),画出绕A点逆时针旋转90°后得到的图形.(2)按1:2的比画出原三角形变化后的图形.26.在如图的长方形中画一个最大的半圆,并涂上阴影,再计算空白部分的面积.六、图形计算27.分别绕AB和AC边旋转得到的圆锥体积相差多少.28.正方形边长8cm,求阴影部分面积.七、看图填空29.如图是打国际长途电话所需付的电话费与通话时间之间的关系图.(1)打2分钟需要元电话费,3分钟以上每分钟元.(2)打6分钟需要元,10.4元打了分钟.八、综合应用30.修一条全长2400米的小路,前6天完成了75%,每天完成多少米?31.明明读一本书,每天读20页,15天读完.如果每天读25页,可提前几天看完?32.2019年1月2日,中国自行研造的“复兴号”动车首次实现时速350千米自动驾驶功能,从杭州到上海共210km,比以前乘坐200km/h的动车,可节约多少小时?33.要从含盐12.5%的盐水40千克中蒸去多少水分才能制出含盐20%的盐水?34.红领巾是少先队员的标志.小号红领巾是底边和腰长分别为1m和0.6m的等腰三角形,大号红领巾是小号红领巾按一定的比例放大,已知大号红领巾底边长1.2m,求腰长?(用比例解)35.足球,2019年纳入杭州市体测项目了!根据表中文件说明,测试距离(起点线至终点)为多少米?36.一个圆锥形的沙堆,底面直径是4米、高1.5米.用这堆沙子铺在宽10米,厚5厘米的路上,能铺多长?37.自2019年起,个人所得税又有新政策了,除了扣除5000元的个人免征额后,淙淙爸爸还可享受专项附加扣除项(如图),如果他1月份工资为11000元,根据新政策,他又可少缴纳多少个人所得税(剩余部分按3%税率交税)?附加扣除子女教育赡养老人额度1000元2000元38.氧气占空气含量的21%,人呼吸时吸进氧气,呼出二氧化碳等废气,每分钟大约消耗氧气1.2L.把一个人关在1立方米的密闭空间内,1小时后氧气浓度为百分之几?39.王大伯准备用12米长的篱笆围成一面靠墙的长方形菜地(如图,长和宽均取整数),这块菜地最大可以有多少平方米?请写出思考过程.答案解析部分1.【答案】1543900;154【解析】【解答】2022年亚运主场馆奥体博览城核心区占地A5B3C00平方米,A为最小非零自然数,B为最小合数,C既是奇数又是合数,这七位数是1543900,四舍五入到万位约为154万平方米。
语言学概论-本科版期末测试卷二(含答案)
期末试卷二一、单项选择题:(每题1分,共10分)1. 关于“言语活动”、“语言”和“言语”三者之间的关系,下列说法不正确的一项是()A.“语言”等于“言语活动”减去“言语”B.“语言”是主要的,而“言语”是次要的C.“言语”是“言语活动”中的社会部分D.“语言”是从“言语活动”抽象出来的一个均质的系统2.索绪尔创立的语言学可以称为()A.传统语言学B.历史比较语言学C.结构主义语言学D.社会语言学3.说话人根据表达需要有意识地加上去的句重音是()A.节律重音B.语法重音C.固定重音D.强调重音4、汉语普通话音节结构()A.最长由三个音素组成B. 最长由四个音素组成C.最长由五个音素组成D.最短由两个音素组成5.下列词组中,属于多义的是()A.两只学生送的花瓶B.两位学生送的花瓶C.两只学生送的花篮。
D.两个学生送的花篮6. 英语的‘foot”(脚,单数)变为“feet”(脚,复数)运用的语法手段是()A.附加B.异根C.内部屈折D.重叠7. 汉语普通话中的:“卡通片”中的“卡”是一个()A.语素B.音节C.前缀D.词8.下列词的词义,属于词义缩小的是()A.“皮”原指兽皮B.“涕”原指眼泪C.“瓦”原指一切烧好的上器D.“江”原捐“长江”9. 人类几种古老文字的原始字形,都是()A.象形的B.会意的C.表音的D.形声的10. 文字的前身是()A. 结绳记事B. 手势C. 图画记事D. 实物记事二、多项选择题:(每题2分,共20分)1.语流中有些音在发音上变弱,这种现象叫弱化。
弱化的表现有()A.脱落B.清辅音变成浊辅音C.浊辅音变成清辅音D.单元音变成复元音E.单元音向央元音靠拢2. 下列关于音位的表述,不正确的有()A. 音位区别意义的作用叫做“辨义功能”B. 音位可以从听感的角度直接切分出来C. 音位的分析和归纳可以跨语言和方言D. 音位可以分为音质音位和非音质音位E. 音位的归纳主要依据语音单位的发音3. 下列关于歧义的表述,正确的有()A. 歧义指语言片段的多个意义难以划分清楚B. 歧义以语言符号序列的同形为前提条件C. 语义的模糊性是歧义产生的根本原因D. 词语的一词多义也可能造成歧义E. 歧义可通过上下文和情景语境消除4. 下列可用于证明概念和词语、判断和句子、推理和复句不完全相等的证据有()A. 语言中的虚词基本不表示概念B. 多义词并不表示单一的概念C. 祈使句和疑问句都不表示判断D. 并列关系的复句不表示推理E. 略去大前提的复句不表示推理5. 语法单位的“形成(实现)关系”指()A. 长度增加,功能改变B. 长度增加,功能不改变C. 长度不增加,功能改变D. 长度不增加,功能不改变E. 与长度和功能无关的其他特性6. 从发音方法上看,一个辅音的特征取决于()A. 音高的高低B. 发音部位的前后C. 送气不送气D. 声带振动不振动E. 形成和克服阻碍的方式7. 下列关于语义场的表述中,正确的有()A. 语义场与上下位词没有关系B. 语义场是具有共同类属义素的义项的聚合体C. 语义场是一个层级体系D. 语义场是词义系统性的重要表现E. 不同语义场的系统性是均衡的8. 下列关于语素的表述中,正确的有()A. 语素是最小的有意义的语言单位B. 有些语素只有语音形式而没有意义C. 语素分为自由语素和不成词语素两大类D. 一个汉字就是一个语素E. 词都是由语素形成或组成的9. 下列有关汉字的表述中,正确的有()A. 汉字是一种自源文字B. 汉字是一种表意文字C. 汉字是一种音节文字D. 汉字是一种词语文字E. 几千年来,汉字的性质发生了根本的变化10.“民族语言政策”所包含的内容主要是()A. 关于民族语言教育的政策B.关于官方语言的选择问题C. 关于一个国家内部主体民族语言的政策D. 关于一个国家内部少数民族语言的政策E. 关于少数民族语言文字的法律地位问题三、名词解释:(每题5分,共15分)1.聚合关系2. 音位3. 符号四、简答题:(共35分)1.什么是组合关系?(7分)2.语言的作用是什么?(8分)3. 简述词缀与词尾的区别。
2022-2023学年辽宁省沈阳市三年级下册数学期末检测试卷(卷二)含解析
2022-2023学年辽宁省沈阳市三年级下册数学期末检测试卷(卷二)一、判断对错。
(对的打“√”,错的打“×”)(5分)1.(1分)40×56与560×4的积相等。
2.(1分)读作:五分之八..3.(1分)1吨=1000千克..4.(1分)边长是4dm的正方形,周长和面积相等.5.(1分)分母相同的两个分数,分子大的那个分数比较大。
二、选一选。
(将正确答案的字母涂黑)(10分)6.(2分)估算6□×3□的积是()A.三位数B.四位数C.可能是三位数或四位数7.(2分)一个正方形的边长是5分米,它的面积是()平方分米。
A.10B.20C.258.(2分)一只母鸡大约重2()A.克B.千克C.吨9.(2分)如图,涂色部分占整个长方形的()A.B.C.10.(2分)下面汉字,()组都是轴对称图形。
A.丰田B.儿童C.春天三、填空。
(第7题2分,其余每空1分,共20分)11.(2分)4000平方分米=平方米5千克﹣250克=克12.(2分)□83÷5,要使商是两位数,□里填,要使商是三位数,□里最小填。
13.(2分)把一个蛋糕平均分成8份,每份是这个蛋糕的,5份是这个蛋糕的。
14.(4分)在横线上填合适的单位。
(1)一颗葡萄大约重4(2)淘气朗读一篇课文用了3(3)数学书封面的面积约500(4)教室门的面积约215.(1分)爸爸驾车从博罗出发,到广州大学城要2时30分,如果爸爸想要9:00到达,他最迟就要出发。
16.(2分)一个长方形的周长是36厘米,它的长是12厘米,宽是厘米,它的面积是平方厘米。
17.(2分)在横线上填“>”“<”或“=”。
(1)4090克44千克(2)25×4040×25(3)800dm 280m 2(4)18.(2分)□÷6=14……〇,〇里是,这时的□是。
19.(2分)钟面上的分针的运动属于现象,拉动抽屉的运动属于现象。
部编版二年级语文下册期末试卷 附答案 (2)
部编版二年级语文下册期末教学质量检测试卷温馨提示:请注意书写工整,卷面整洁。
卷面分4分将计入总分。
一、读拼音,写字词。
(13分)x ún zh ǎo w ēn nu ǎn tu án yu án b ì k ōng r ú x ǐyu àn y ì s ài p ǎo h ài p à w áng y áng b ǔ l áom ào y óu j ú b āng zh ù 雷锋叔叔 着大雨,跑到 ,把钱寄给灾区需要 的人。
二、字词乐园。
(19分)1.圈出每组加点字中读音不同的一个词语。
(3分)◎漂.泊 漂.浮 漂.移 漂.亮 ◎尽.管 尽.兴 尽.头 山穷水尽.◎倒.下 倒.立 倒.退 倒.背如流 2.读一读,连一连。
(8分)3.选字组词,在正确的字上画“√”。
(8分)(沟 钩)子 (源 原)头 (张 涨)潮 (体 休)息(梅 海)花 (仙 灿)烂 (坟 蚊)墓 (平 苹)果三、字词句运用。
(25分)年迈的晶莹的弯弯的奔腾的 露珠 江河 大娘 小路 滋润 迎接 饲养 播撒 大地 鸽子 草籽 客人四、 1.把你积累的词语写下来。
(9分)(1)形容生气:、、(2)形容高兴:、、(3)形容难过:、、2.查字典,按要求填空。
(8分)3.把下面的每组词语连成一句话(只写序号),并加上标点。
(4分)①拿着②公文包③爸爸④上班⑤去公司①小泡泡②一连串的③鱼儿④轻轻地⑤吐出了4.照样子,写句子。
(4分)例:门前开着鲜花。
门前开着一大片五颜六色的鲜花。
(1)树林里飞来了鸟。
树林里飞来了鸟。
(2)小河里游着鱼。
小河里游着鱼。
例:最后一个太阳害怕极了....地躲进了大海里。
....,慌慌张张(3)小红高兴极了....,跑进了教室。
(4)中午回到家,我很饿..,端起碗就吃起来。
七年级数学上册期末考试试题2(含答案)
人教版七年级上数学期末试卷(时间:90分钟,满分100分)一、认真填一填(每题3分,共30分)1.实施西部大开发是党中央面向21世纪的重大战略决策,我国西部地区的面积为6400000平方千米,可用科学记数法将这个数字表示为 平方千米.2.下表是我国几个城市某年一月份的平均气温:把它们的平均气温按从高到低的顺序排列为: .3.绝对值大于1而小于4的整数有 . 4.9时45分时,时钟的时针与分针的夹角是 .5.如下图已知线段AD=16cm,线段AC=BD=10cm,E,F 分别是AB,CD 的中点,则EF 长为 .6.如果x=2是方程mx-1=2的解,那么m= . 7.如下图,从点A 到B 有a ,b ,c 三条通道,最近的一条 通道是 ,这是因为 .8. 某校女生占全体学生会数的52%,比男生多80人。
若设这个学校的学生数为x ,那么可出列方程 .9. 202135,3o αα'''∠=∠=则 . 10. 若=+=++-b a b a 那么,02)1(2 .二、仔细选一选(每题3分,共15分)请将正确答案的代号字母填入题后的括号内.11.F E BC DA B12.有下列四种说法:①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等;④锐角和钝角互补.其中正确的是( )A .①② B. ①③ C. ①②③ D. ①②③④ 13. 如果n 是正整数,那么])1(1[n n --的值( )A .一定是零 B.一定是偶数 C.一定是奇数 D.是零或偶数 14.如果a,b 互为相反数,x,y 互为倒数,则()1742a b xy ++的值是( )A .2 B. 3 C. 3.5 D. 415.右下图反映的是地球上七大洲的面积占陆地总面积的百分比,某同学根据右下图得出下列四个结论:①七大洲中面积最大的是亚洲;②南美洲、北美洲、非洲三大州面积的和 约占陆地总面积的50%;③非洲约占陆地总面积的20%; ④南美洲面积是大洋洲面积的2倍. 你认为上述四个结论中正确的为( )A .①② B. ①④ C. ①②④ D. ①②③④ 三、用心做一做16.(6分)22138(3)2()42()423-÷⨯-++÷-17.(6分)解方程2151136x x +--=29.3%20.2%北美洲16.1%南美洲南极洲18.(8分)请你来做主:小明家搬了新居要购买新冰箱,小明和妈妈在商场看中了甲、乙两种冰箱.其中,甲冰箱的价格为2100元,日耗电量为1度;乙冰箱是节能型新产品,价格为2220元,日耗电量为0.5度,并且两种冰箱的效果是相同的.老板说甲冰箱可以打折,但是乙冰箱不能打折,请你就价格方面计算说明,甲冰箱至少打几折时购买甲冰箱比较合算?(每度电0.5元,两种冰箱的使用寿命均为10年,平均每年使用300天)19.(10分)画图说明题 (1) 作∠AOB=90;(2) 在∠AOB 内部任意画一条射线OP ; (3) 画∠AOP 的平分线OM ,∠BOP 的平分线ON ; (4) 用量角器量得∠MON= . 试用几何方法说明你所得结果的正确性.20.( 8分)将连续的奇数1,3,5,7,9…,排成如下的数表: (1)十字框中的五个数的平均数与15有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.353121119121.(9分)牛奶加工厂现有鲜奶8吨,若在市场上直接销售鲜奶(每天可销售8吨),每吨可获利润500元;制成酸奶销售,每加工1吨鲜奶可获利润1200元;制成奶片销售,每加工1吨鲜奶可获利润2000元.该厂的生产能力是:若制酸奶,每天可加工3吨鲜奶;若制奶片,每天可加工1吨鲜奶;受人员和设备限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.请你帮牛奶加工厂设计一种方案,使这8吨鲜奶既能在4天内全部销售或加工完毕,又能获得你认为最多的利润.22.(8分)观察下图,回答下列问题:(1)在∠AOB 内部画1条射线OC ,则图中有 个不同的角; (2)在∠AOB 内部画2条射线OC ,OD ,则图中有 个不同的角; (3)在∠AOB 内部画3条射线OC ,OD ,OE 则图中有 个不同的角; (4)在∠AOB 内部画10条射线OC ,OD ,OE …则图中有 个不同的角; (5)在∠AOB 内部画n 条射线OC ,OD ,OE …则图中有个不同的角;(1) (2) (3)B B七年级上数学参考答案及评分意见一、认真填一填(每题3分,共30分)1.6.4×1062.13.1>3.8>2.4>-4.6>-19.4 3.±2,±3 4.22.5° 5.10cm 6.327.b ,两点之间线段最短 7.2 8. 80)52.01(52.0=--x x 9. 616'45'' 10.-1 二、仔细选一选(每题3分,共15分)11. A 12. B 13. D 14. C 15. D 三、用心做一做16.解: 22138(3)2()42()423-÷⨯-++÷-4339()44()928=⨯⨯-++⨯- ………………………………………………(3分)3642322=-+-=--72=- …………………………………………………………………………(6分)17.解:2151136x x +--= 去分母,得 2(21)(51)6x x +--=, ………………………………………(2分) 去括号,得 42516x x +-+=, ……………………………………………(4分) 移项及合并,得 3x -=,系数化为1,得 3x =-. ……………………………………………………(6分) 18.解:设甲冰箱至少打x 折时购买甲冰箱比较合算,依题意,得2100×10x+10×300×1×0.5=2220+10×300×0.5×0.5, 解这个方程,得 x=7.答:设甲冰箱至少打7折时购买甲冰箱比较合算.……………………………(8分) 19.画图说明题(1)略.………………………………………………………………………………(1分) (2)略.………………………………………………………………………………(3分)(3)略.………………………………………………………………………………(5分)(4)45°. …………………………………………………………………………(7分)下面用几何方法说明所得结果的正确性:因为∠POB+∠POA=∠AOB=90°,∠POM=12∠POB,∠PON=12∠POA,……………………………………(8分)所以∠POM+∠PON=12(∠POB+∠POA)=12∠AOB=12×90°=45°. ………(10分)20.(1)十字框中的五个数的平均数为15;………………………………………(2分)(2)十字框框住的五个数的和能等于315.……………………………………(3分)观察可知,同一行左右相邻两个数相差为2,同一列上下相邻两个数相差为10,因此,若设十字框中间的数为x,则十字框框住的五个数的和为:(x-2)+x+(x+2)+(x-10)+(x+10)=5x即十字框框住的五个数的和一定能被5整除。
2021-2022学年江苏省南京市七年级上学期期末数学典型试卷2(含答案)
2021-2022学年上学期南京初中数学七年级期末典型试卷2一.选择题(共8小题)1.(2020秋•建邺区期末)下列各数中,无理数是( ) A .﹣2B .3.14C .227D .π22.(2020秋•建邺区期末)下列各式中与a ﹣b ﹣c 的值不相等的是( ) A .a ﹣(b ﹣c )B .a ﹣(b +c )C .(a ﹣b )+(﹣c )D .(﹣c )﹣(b ﹣a )3.(2010•广州)下列运算正确的是( ) A .﹣3(x ﹣1)=﹣3x ﹣1 B .﹣3(x ﹣1)=﹣3x +1C .﹣3(x ﹣1)=﹣3x ﹣3D .﹣3(x ﹣1)=﹣3x +34.(2020秋•鼓楼区期末)在下列日常生活的操作中,能体现基本事实“两点之间,线段最短”的是( )A .用两颗钉子固定一根木条B .把弯路改直可以缩短路程C .用两根木桩拉一直线把树栽成一排D .沿桌子的一边看,可将桌子排整齐5.(2007•济南)已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A .相等B .互余C .互补D .互为对顶角6.(2019秋•溧水区期末)如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是( )A .秦B .淮C .源D .头7.(2019秋•高淳区期末)下列说法错误的是( )A.同角的补角相等B.对顶角相等C.锐角的2倍是钝角D.过直线外一点有且只有一条直线与已知直线平行8.(2020秋•盱眙县期末)如图,若将三个含45°的直角三角板的直角顶点重合放置,则∠1的度数为()A.15°B.20°C.25°D.30°二.填空题(共10小题)9.(2012•鲤城区校级一模)比﹣1小2的数是.10.(2020秋•南京期末)太阳的直径大约是1 392 000千米,将1 392 000用科学记数法表示为.11.(2020秋•建邺区期末)已知代数式x﹣3y的值是4,则代数式(x﹣3y)2﹣2x+6y﹣1的值是.12.(2020秋•建邺区期末)已知x=a是关于x的方程2a+3x=﹣5的解,则a的值是.13.(2020秋•鼓楼区期末)如图,直线a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示135°的点在直线b上,则∠1=°.14.(2020秋•鼓楼区期末)如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上表示“0cm”、“8cm”的点分别对应数轴上的﹣2和x,那么x的值为.15.(2019秋•海安市期末)正方体切去一个块,可得到如图几何体,这个几何体有条棱.16.(2020秋•沈河区期末)如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是 .17.(2019秋•高淳区期末)如图,把一张长方形纸条ABCD 沿EF折叠,若∠AEG =62°,则∠DEF = °.18.(2019秋•高淳区期末)如图,直线AB 、CD 相交于点O ,OE平分∠BOD ;OF 平分∠COE ,若∠AOC =82°,则∠BOF = °.三.解答题(共8小题)19.(2020秋•南京期末)计算: (1)(23+12−56)÷(−124); (2)(﹣2)3×(﹣2+6)﹣|﹣4|.20.(2020秋•南京期末)先化简,再求值:3(2a 2b ﹣4ab 2)﹣(﹣3ab 2+6a 2b ),其中a =1,b =−13.21.(2020秋•建邺区期末)解密数学魔术:魔术师请观众心想一个数,然后将这个数按以下步骤操作:魔术师能立刻说出观众想的那个数.(1)如果小玲想的数是﹣2,那么她告诉魔术师的结果应该是;(2)如果小明想了一个数计算后,告诉魔术师结果为73,那么魔术师立刻说出小明想的那个数是;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数.若设观众心想的数为a,请通过计算解密这个魔术的奥妙.22.(2020秋•建邺区期末)如图,已知DB=2,AC=10,点D为线段AC的中点,求线段BC的长度.23.(2020秋•鼓楼区期末)已知:如图,O是直线AB 上一点,OD是∠AOC的平分线,∠COD与∠COE互余.求证:∠AOE与∠COE互补.请将下面的证明过程补充完整;证明:∵O是直线AB上一点,∴∠AOB=180°.∵∠COD与∠COE互余,∴∠COD+∠COE=°.∴∠AOD+∠BOE=90°.∵OD是∠AOC的平分线,∴∠AOD=∠(理由:).∴∠BOE=∠COE(理由:).∵∠AOE+∠BOE=°.∴∠AOE+∠COE=180°.∴∠AOE与∠COE互补.24.(2020秋•鼓楼区期末)2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”.2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以3﹣0或者3﹣1取胜的球队积3分,负队积0分;而在比赛中以3﹣2取胜的球队积2分,负队积1分,前四名队伍积分榜部分信息如表所示.(1)中国队11场胜场中只有一场以3﹣2取胜,请将中国队的总积分填在表格中;(2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见表格,求巴西队胜场的场数.名次球队场次胜场负场总积分1中国111102美国11101283俄罗斯1183234巴西1121 25.(2019秋•溧水区期末)小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜24元.”问:小明今天计划买多少个纸杯蛋糕?若设小明今天计划买纸杯蛋糕的总价为x元,请你根据题意完善表格中的信息,并列方程解答.单价数量总价今天12x明天26.(2019秋•溧水区期末)如图,已知点A、B、C是数轴上三点,O为原点,点A表示的数为﹣10.点B表示的数为6,点C为线段AB的中点.(1)数轴上点C表示的数是;(2)点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q 从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为:t(t>0)秒.①当t为何值时,点O恰好是PQ的中点;②当t为何值时,点P、Q、C三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(是把一条线段平均分成三等分的点).(直接写出结果)2021-2022学年上学期南京初中数学七年级期末典型试卷2参考答案与试题解析一.选择题(共8小题)1.(2020秋•建邺区期末)下列各数中,无理数是( ) A .﹣2B .3.14C .227D .π2【考点】无理数. 【专题】实数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【解答】解:无理数是π2,故选:D .【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 2.(2020秋•建邺区期末)下列各式中与a ﹣b ﹣c 的值不相等的是( ) A .a ﹣(b ﹣c )B .a ﹣(b +c )C .(a ﹣b )+(﹣c )D .(﹣c )﹣(b ﹣a )【考点】去括号与添括号. 【专题】常规题型.【分析】依据去括号法则进行判断即可.【解答】解:A 、a ﹣(b ﹣c )=a ﹣b +c ,与要求相符; B 、a ﹣(b +c )=a ﹣b ﹣c ,与要求不符; C 、(a ﹣b )+(﹣c )=a ﹣b ﹣c ,与要求不符; D 、(﹣c )﹣(b ﹣a )=﹣c ﹣b +a ,与要求不符. 故选:A .【点评】本题主要考查的是去括号法则,熟练掌握去括号法则是解题的关键. 3.(2010•广州)下列运算正确的是( ) A .﹣3(x ﹣1)=﹣3x ﹣1 B .﹣3(x ﹣1)=﹣3x +1C .﹣3(x ﹣1)=﹣3x ﹣3D .﹣3(x ﹣1)=﹣3x +3【考点】去括号与添括号.【分析】去括号时,要按照去括号法则,将括号前的﹣3与括号内每一项分别相乘,尤其需要注意,﹣3与﹣1相乘时,应该是+3而不是﹣3.【解答】解:根据去括号的方法可知﹣3(x﹣1)=﹣3x+3.故选:D.【点评】本题属于基础题,主要考查去括号法则,理论依据是乘法分配律,容易出错的地方有两处,一是﹣3只与x相乘,忘记乘以﹣1;二是﹣3与﹣1相乘时,忘记变符号.本题直指去括号法则,没有任何其它干扰,掌握了去括号法则就能得分,不掌握就不能得分.4.(2020秋•鼓楼区期末)在下列日常生活的操作中,能体现基本事实“两点之间,线段最短”的是()A.用两颗钉子固定一根木条B.把弯路改直可以缩短路程C.用两根木桩拉一直线把树栽成一排D.沿桌子的一边看,可将桌子排整齐【考点】线段的性质:两点之间线段最短.【分析】根据实际、线段的性质判断即可.【解答】解:A、用两颗钉子固定一根木条体现基本事实“两点确定一条直线”;B、把弯路改直可以缩短路程体现基本事实“两点之间,线段最短”;C、用两根木桩拉一直线把树栽成一排体现基本事实“两点确定一条直线”;D、沿桌子的一边看,可将桌子排整齐体现基本事实“线段的延长线”;故选:B.【点评】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.5.(2007•济南)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.互为对顶角【考点】余角和补角;对顶角、邻补角;垂线.【专题】计算题.【分析】根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.【解答】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B.【点评】本题考查了余角和垂线的定义以及对顶角相等的性质.6.(2019秋•溧水区期末)如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是()A.秦B.淮C.源D.头【考点】专题:正方体相对两个面上的文字.【专题】投影与视图;空间观念.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“会”字对面的字是“源”.故选:C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.(2019秋•高淳区期末)下列说法错误的是()A.同角的补角相等B.对顶角相等C.锐角的2倍是钝角D.过直线外一点有且只有一条直线与已知直线平行【考点】余角和补角;对顶角、邻补角;平行公理及推论.【专题】线段、角、相交线与平行线;推理能力.【分析】根据平行公理,对顶角的定义,邻补角的定义,对各选项分析判断后利用排除法求解.【解答】解:A、同角的补角相等,正确;B、对顶角相等;正确;C、锐角的2倍不一定是钝角,错误;D、过直线外一点有且只有一条直线与已知直线平行,正确;故选:C.【点评】本题考查了平行公理,对顶角的定义,邻补角的定义,垂线段最短,是基础概念题.8.(2020秋•盱眙县期末)如图,若将三个含45°的直角三角板的直角顶点重合放置,则∠1的度数为()A.15°B.20°C.25°D.30°【考点】等腰直角三角形.【专题】等腰三角形与直角三角形;应用意识.【分析】求出∠2即可解决问题.【解答】解:∵∠AOB=∠COD=90°∴∠2=∠AOC=25°,∴∠1=∠EOF﹣∠2﹣∠DOF=90°﹣25°﹣35°=30°,故选:D.【点评】本题考查等腰直角三角形的性质角的和差定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二.填空题(共10小题)9.(2012•鲤城区校级一模)比﹣1小2的数是﹣3.【考点】有理数的减法.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:﹣1﹣2=﹣3.故答案为:﹣3.【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.10.(2020秋•南京期末)太阳的直径大约是1 392 000千米,将1 392 000用科学记数法表示为 1.392×106.【考点】科学记数法—表示较大的数.【专题】实数;数感.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:1392000=1.392×106.故答案是:1.392×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2020秋•建邺区期末)已知代数式x﹣3y的值是4,则代数式(x﹣3y)2﹣2x+6y﹣1的值是7.【考点】代数式求值.【专题】整体思想.【分析】把(x﹣3y)看作一个整体并代入代数式进行计算即可得解.【解答】解:∵x﹣3y=4,∴(x﹣3y)2﹣2x+6y﹣1=(x﹣3y)2﹣2(x﹣3y)﹣1,=42﹣2×4﹣1,=16﹣8﹣1,=7.故答案为:7.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.12.(2020秋•建邺区期末)已知x=a是关于x的方程2a+3x=﹣5的解,则a的值是﹣1.【考点】一元一次方程的解.【专题】一次方程(组)及应用;运算能力.【分析】把x=a代入方程,解关于a的一元一次方程即可.【解答】解:把x=a代入方程,得2a+3a=﹣5,所以5a=﹣5解得a=﹣1故答案是:﹣1.【点评】本题考查了一元一次方程的解.掌握一元一次方程的解法是解决本题的关键.13.(2020秋•鼓楼区期末)如图,直线a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示135°的点在直线b上,则∠1=75°.【考点】对顶角、邻补角.【分析】首先计算出∠2的度数,再根据对顶角相等可得∠1的度数.【解答】解:∵∠2=135°﹣60°=75°,∴∠1=∠2=75°,故答案为:75.【点评】此题主要考查了对顶角,关键是掌握对顶角相等.14.(2020秋•鼓楼区期末)如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上表示“0cm”、“8cm”的点分别对应数轴上的﹣2和x,那么x的值为6.【考点】数轴.【分析】根据直尺的长度知x为﹣2右边8个单位的点所表示的数,据此可得.【解答】解:由题意知,x的值为﹣2+(8﹣0)=6,故答案为:6.【点评】本题主要考查了数轴,解题的关键是确定x与表示﹣2的点之间的距离.15.(2019秋•海安市期末)正方体切去一个块,可得到如图几何体,这个几何体有12条棱.【考点】截一个几何体.【专题】推理填空题.【分析】通过观察图形即可得到答案.【解答】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点评】此题主要考查了认识正方体,关键是看正方体切的位置.16.(2020秋•沈河区期末)如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.【考点】线段的性质:两点之间线段最短.【专题】常规题型.【分析】直接利用线段的性质进而分析得出答案.【解答】解:田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是:两点之间线段最短.故答案为:两点之间线段最短.【点评】此题主要考查了线段的性质,正确把握线段的性质是解题关键.17.(2019秋•高淳区期末)如图,把一张长方形纸条ABCD沿EF折叠,若∠AEG=62°,则∠DEF=59°.【考点】翻折变换(折叠问题).【专题】线段、角、相交线与平行线;几何直观.【分析】由折叠的性质结合平角等于180°,即可得出∠DEF=12(180°﹣∠AEG),再代入∠AEG的度数即可求出结论.【解答】解:由折叠的性质,可知:∠DEF=∠GEF.∵∠AEG+∠GEF+∠DEF=180°,∠AEG=62°,∴∠DEF=12(180°﹣∠AEG)=12(180°﹣62°)=59°.故答案为:59.【点评】本题考查了翻折变换以及角的计算,利用折叠的性质结合平角等于180°,找出∠DEF=12(180°﹣∠AEG)是解题的关键.18.(2019秋•高淳区期末)如图,直线AB、CD相交于点O,OE平分∠BOD;OF平分∠COE,若∠AOC=82°,则∠BOF=28.5°.【考点】角平分线的定义;对顶角、邻补角.【专题】线段、角、相交线与平行线;推理能力.【分析】根据对顶角相等求得∠BOD的度数,然后根据角的平分线的定义求得∠EOD的度数,则∠COE即可求得,再根据角平分线的定义求得∠EOF,最后根据∠BOF=∠EOF ﹣∠BOF求解.【解答】解:∵∠AOC=82°∴∠BOD=∠AOC=82°,又∵OE平分∠BOD,∴∠DOE=12∠BOD=12×82°=41°.∴∠COE=180°﹣∠DOE=180°﹣41°=139°,∵OF平分∠COE,∴∠EOF=12∠COE=12×139°=69.5°,∴∠BOF =∠EOF ﹣∠BOE =69.5°﹣41°=28.5°. 故答案是:28.5.【点评】本题考查了角平分线的定义,以及对顶角的性质,理解角平分线的定义是关键. 三.解答题(共8小题) 19.(2020秋•南京期末)计算: (1)(23+12−56)÷(−124);(2)(﹣2)3×(﹣2+6)﹣|﹣4|. 【考点】有理数的混合运算. 【专题】实数;运算能力.【分析】(1)除法转化为乘法,再利用乘法分配律展开,进一步计算即可; (2)先计算乘方和绝对值、括号内的减法,再计算乘法,最后计算减法即可. 【解答】解:(1)原式=(23+12−56)×(﹣24)=﹣16﹣12+20 =﹣8;(2)(﹣2)3×(﹣2+6)﹣|﹣4|=(﹣8)×4﹣4 =﹣32﹣4 =﹣36.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.20.(2020秋•南京期末)先化简,再求值:3(2a 2b ﹣4ab 2)﹣(﹣3ab 2+6a 2b ),其中a =1,b =−13.【考点】整式的加减—化简求值. 【专题】计算题;整式;运算能力.【分析】先去括号,再合并同类项,最后代入求值. 【解答】解:原式=6a 2b ﹣12ab 2+3ab 2﹣6a 2b =﹣9ab 2; 当a =1,b =−13时, 原式=﹣9×1×(−13)2=﹣1.【点评】本题考查了整式的加减及有理数的混合运算,掌握去括号法则和合并同类项法则是解决本题的关键.21.(2020秋•建邺区期末)解密数学魔术:魔术师请观众心想一个数,然后将这个数按以下步骤操作:魔术师能立刻说出观众想的那个数.(1)如果小玲想的数是﹣2,那么她告诉魔术师的结果应该是3;(2)如果小明想了一个数计算后,告诉魔术师结果为73,那么魔术师立刻说出小明想的那个数是68;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数.若设观众心想的数为a,请通过计算解密这个魔术的奥妙.【考点】有理数的混合运算;解一元一次方程.【专题】实数;运算能力.【分析】(1)利用已知条件,这个数按步骤操作,直接代入即可;(2)假设这个数,根据运算步骤,求出结果等于73,得出一元一次方程,即可求出;(3)结合(2)中方程,关键是发现运算步骤的规律.【解答】解:(1)(﹣2×3﹣6)÷3+7=3;故答案为:3;(2)设这个数为x,(3x﹣6)÷3+7=73;解得:x=68,故答案为:68;(3)设观众想的数为a.3a−6+7=a+5.3因此,魔术师只要将最终结果减去5,就能得到观众想的数了.【点评】此题主要考查了有理数的运算,以及运算步骤的规律性,题目比较新颖.22.(2020秋•建邺区期末)如图,已知DB=2,AC=10,点D为线段AC的中点,求线段BC的长度.【考点】两点间的距离.【专题】线段、角、相交线与平行线;推理能力.【分析】根据线段中点的性质推出DC=AD=12AC=12×10=5,再结合图形根据线段之间的和差关系进行求解即可.【解答】解:∵AC=10,点D为线段AC的中点,∴DC=AD=12AC=12×10=5,∴BC=DC﹣DB=5﹣2=3,故BC的长度为3.【点评】本题考查两点间的距离,解题的关键是根据线段中点的性质推出DC=AD=12AC,注意数形结合思想方法的运用.23.(2020秋•鼓楼区期末)已知:如图,O是直线AB 上一点,OD是∠AOC的平分线,∠COD与∠COE互余.求证:∠AOE与∠COE互补.请将下面的证明过程补充完整;证明:∵O是直线AB上一点,∴∠AOB=180°.∵∠COD与∠COE互余,∴∠COD+∠COE=90°.∴∠AOD+∠BOE=90°.∵OD是∠AOC的平分线,∴∠AOD=∠COD(理由:角平分线的定义).∴∠BOE=∠COE(理由:等角的余角相等).∵∠AOE+∠BOE=180°.∴∠AOE+∠COE=180°.∴∠AOE与∠COE互补.【考点】角平分线的定义;余角和补角.【专题】线段、角、相交线与平行线;推理能力.【分析】根据证明过程可得答案.【解答】证明:∵O是直线AB上一点,∴∠AOB=180°.∵∠COD与∠COE互余,∴∠COD+∠COE=90°.∴∠AOD+∠BOE=90°.∵OD是∠AOC的平分线,∴∠AOD=∠COD(理由:角平分线的定义).∴∠BOE=∠COE(理由:等角的余角相等).∵∠AOE+∠BOE=180°.∴∠AOE+∠COE=180°.∴∠AOE与∠COE互补.故答案为:90;COD;角平分线的定义;等角的余角相等,180.【点评】本题考查推理证明的书写、互补(互余)及角平分线等知识,培养思维的严密性,题目较容易.24.(2020秋•鼓楼区期末)2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”.2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以3﹣0或者3﹣1取胜的球队积3分,负队积0分;而在比赛中以3﹣2取胜的球队积2分,负队积1分,前四名队伍积分榜部分信息如表所示.(1)中国队11场胜场中只有一场以3﹣2取胜,请将中国队的总积分填在表格中;(2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见表格,求巴西队胜场的场数.名次球队场次胜场负场总积分1中国11110322美国11101283俄罗斯1183234巴西1121【考点】一元一次方程的应用;推理与论证.【专题】一次方程(组)及应用;应用意识.【分析】(1)依据中国队11场胜场中只有一场以3﹣2取胜,即可得到中国队的总积分.(2)设巴西队积3分取胜的场数为x场,依据巴西队总积分为21分,即可得到方程,进而得出x的值.【解答】解:(1)中国队的总积分=3×10+2=32,填表如下:名次球队场次胜场负场总积分1中国11110322美国11101283俄罗斯1183234巴西1121故答案为:32;(2)设巴西队积3分取胜的场数为x场,则积2分取胜的场数为(x﹣5)场,依题意可列方程3x+2(x﹣5)+1=21,3x+2x﹣10+1=21,5x=30,x=6,则积2分取胜的场数为x﹣5=1,所以取胜的场数为6+1=7.答:巴西队取胜的场数为7场.【点评】本题主要考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答.25.(2019秋•溧水区期末)小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜24元.”问:小明今天计划买多少个纸杯蛋糕?若设小明今天计划买纸杯蛋糕的总价为x元,请你根据题意完善表格中的信息,并列方程解答.单价数量总价今天 12 x12x 明天10.8x−2410.8x ﹣24【考点】一元一次方程的应用.【专题】一次方程(组)及应用;应用意识.【分析】根据题意找出等量关系,列出方程即可求出答案. 【解答】解:表格由左至右,由上至下分别为:x 12,10.8,x−2410.8,x ﹣24,由题意可知:x−2410.8−x 12=1,解得:x =348,∴今天需要买纸杯蛋糕的数量为348÷12=29, 答:小明今天计划买29个纸杯蛋糕, 故答案为:x 12,10.8,x−2410.8,x ﹣24,【点评】本题考查一元一次方程,解题的关键是正确找出题中的等量关系,本题属于基础题型.26.(2019秋•溧水区期末)如图,已知点A 、B 、C 是数轴上三点,O 为原点,点A 表示的数为﹣10.点B 表示的数为6,点C 为线段AB 的中点. (1)数轴上点C 表示的数是 ﹣2 ;(2)点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为:t (t >0)秒.①当t 为何值时,点O 恰好是PQ 的中点;②当t 为何值时,点P 、Q 、C 三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(是把一条线段平均分成三等分的点).(直接写出结果)【考点】数轴;一元一次方程的应用.【专题】分类讨论;一次方程(组)及应用.【分析】(1)计算AB 长度,再计算BC 可确定C 表示数字; (2)用t 表示OP ,OQ ,根据OP =OQ 列方程求解; (3)分别以P 、Q 、C 为三等分点,分类讨论.【解答】解:(1)因为点A表示的数为﹣10.点B表示的数为6,所以AB=6﹣(﹣10)=16.因为点C是AB的中点,所以AC=BC=12AB=8所以点C表示的数为﹣10+8=﹣2故答案为:﹣2;(2)①设t秒后点O恰好是PQ的中点.由题意,得10﹣2t=6﹣t解得,t=4;即4秒时,点O恰好是PQ的中点.②当点C为PQ的三等分点时PC=2QC或QC=2PC,∵PC=8﹣2t,QC=8﹣t,所以8﹣2t=2(8﹣t)或8﹣t=2(8﹣2t)解得t=8 3;当点P为CQ的三等分点时(t>4)PC=2QP或QP=2PC ∵PC=2t﹣8,PQ=16﹣3t∴2t﹣8=2(16﹣3t)或16﹣3t=2(2t﹣8)解得t=5或t=32 7;当点Q为CP的三等分点时PQ=2CQ或QC=2PQ ∵PQ=3t﹣16,QC=8﹣t∴3t﹣16=2(8﹣t)或8﹣t=2(3t﹣16)解得t=325或t=407.综上,t=83,5,327,325,407秒时,三个点中恰好有一个点是以另外两个点为端点的线段的三等分点.【点评】本题考查一元一次方程应用,分类讨论是解答的关键.考点卡片1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向.(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.2.有理数的减法(1)有理数减法法则:减去一个数,等于加上这个数的相反数.即:a﹣b=a+(﹣b)(2)方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数);【注意】:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律.减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算.3.有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.【规律方法】有理数混合运算的四种运算技巧1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.4.科学记数法—表示较大的数(1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】(2)规律方法总结:①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此。
2022-2023学年北京大学附属中学高二上学期期末考复习数学试卷(2)含详解
期末复习二一、选择题(共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项)1.已知a R ∈,()13ai i i +=+,(i 为虚数单位),则=a ()A .1- B.1C.3- D.32.已知直线20l y ++=,下列说法中正确的是()A.直线l 的倾斜角为120︒B.(是直线l 的一个方向向量C.直线lD.)1-是直线l 的一个法向量3.的是()A.22142x y += B.221x y -= C.2213y x -= D.24y x=4.设a R ∈,则“a =1”是“直线ax+y-1=0与直线x+ay+1=0平行”的A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件,5.若直线l :0x y m --=经过抛物线28y x =的焦点,且与抛物线交于A ,B 两点,则下列说法中错误的是()A.抛物线的焦点为()2,0B.2m =C.抛物线的准线为4x =- D.16AB =6.下列关于圆C :22(1)4x y +-=的说法中正确的个数为()①圆C 的圆心为(0,1)C ,半径为2②直线l :3410x y -+=与圆C 相交③圆C 与圆1C :22(1)(2)9x y ++-=相交④过点2)作圆C 50y --=A.1B.2C.3D.47.公元前4世纪,古希腊数学家梅内克缪斯利用垂直于母线的平面去截顶角分别为锐角、钝角和直角的圆锥,发现了三种圆锥曲线.之后,数学家亚理士塔欧、欧几里得、阿波罗尼斯等都对圆锥曲线进行了深入的研究.直到3世纪末,帕普斯才在其《数学汇编》中首次证明:与定点和定直线的距离成定比的点的轨迹是圆锥曲线,定比小于、大于和等于1分别对应椭圆、双曲线和抛物线.已知,A B 是平面内两个定点,且|AB |=4,则下列关于轨迹的说法中错误的是()A.到,A B 两点距离相等的点的轨迹是直线B.到,A B 两点距离之比等于2的点的轨迹是圆C.到,A B 两点距离之和等于5的点的轨迹是椭圆D.到,A B 两点距离之差等于3的点的轨迹是双曲线8.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,若点P 满足1311534AP AB AD AA =++,则点P 到直线AB 的距离为()A.25144 B.512C.1320D.159.已知椭圆1C :222116x y m +=和双曲线2C :22214x yn-=有公共的焦点F 1(−3,0),F 2(3,0),点P 是C 1与C 2在第一象限内的交点,则下列说法中错误的个数为()①椭圆的短轴长为;②双曲线的虚轴长为③双曲线C 2的离心率恰好为椭圆C 1离心率的两倍;④ PF 1F 2是一个以PF 2为底的等腰三角形.A.0B.1C.2D.310.已知动圆C 经过点1(0)F ,,并且与直线1y =-相切,若直线50l y -+=与圆C 最多有一个公共点,则圆C 的面积()A.有最小值为16π9B.有最大值为16π9C.有最小值为16πD.有最大值为16π二、填空题(共6小题,每小题4分,共24分)11.若直线l 与直线2x-y-1=0垂直,且不过第一象限,试写出一个直线l 的方程:________.12.与双曲线224312y x -=有相同焦点,且长轴长为6的椭圆标准方程为_________.13.已知椭圆C :22221x y a b+=(0a b >>)中,1F ,2F 为椭圆的左、右焦点,1B ,2B 为椭圆的上、下顶点,若四边形1122F B F B 是一个正方形,则椭圆的离心率为__________.14.过点()2,5作圆22:(1)4C x y +-=的切线,则切线方程为__________.15.已知O 为坐标原点,抛物线的焦点F 在x 轴上,且过点(1,2)-,P 为抛物线上一点,||3PF =,则抛物线的标准方程为___________,OPF △的面积为_____________.16.若点()2,0到直线l 的距离小于1,则在下列曲线中:①28y x =;②()2234x y -+=;③22195x y +=;④2213y x -=;与直线l 一定有公共点的曲线的序号是_________.(写出你认为正确的所有序号)三、解答题(共3题,共36分,解答应写出文字说明,演算步骤或证明过程)17.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,,M N 分别为棱,PD BC 的中点,2PA AB ==.(1)求证://MN 平面PAB ;(2)求直线MN 与平面PCD 所成角的正弦值.18.已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为,A B ,且AB 4=,离心率为12,O 为坐标原点.(1)求椭圆C 的方程;(2)设P 是椭圆C 上不同于,A B 的一点,直线,PA PB 与直线4x =分别交于点,M N .证明:以线段MN 为直径作圆被x 轴截得的弦长为定值,并求出这个定值.19.已知抛物线2:4C y x =,O 为坐标原点,过焦点F 的直线l 与抛物线C 交于不同两点,A B .(1)记AFO V 和BFO V 的面积分别为12,S S ,若212S S =,求直线l 的方程;(2)判断在x 轴上是否存在点M ,使得四边形OAMB 为矩形,并说明理由.期末复习二一、选择题(共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项)1.已知a R ∈,()13ai i i +=+,(i 为虚数单位),则=a ()A.1-B.1C.3- D.3C【分析】首先计算左侧的结果,然后结合复数相等的充分必要条件即可求得实数a 的值.【详解】()213ai i i ai i a a i i +=-=-+=++=,利用复数相等的充分必要条件可得:3,3a a -=∴=-.故选:C.2.已知直线20l y ++=,下列说法中正确的是()A.直线l 的倾斜角为120︒B.(是直线l 的一个方向向量C.直线lD.)1-是直线l 的一个法向量A【分析】先根据方程得斜率,进而得到直线的倾斜角,以及方向向量和方法向量,从而判断各选项.【详解】因为直线:20l y ++=,所以斜率k =120︒,故A 正确,C 不正确;因为直线l 经过点()0,2A -,()B ,所以直线l 的一个方向向量为()AB =,因向量(与()AB =不共线,故(不是直线l 的一个方向向量,故B 不正确;又因为)13360AB -⋅=--=-≠,所以)1-不是直线l 的一个法向量,故D 不正确.故选:A.3.的是()A.22142x y += B.221x y -= C.2213y x -= D.24y x=B【分析】根据标准方程逐个求出离心率,即可得到.【详解】对于A :22142x y +=中2,a b c ===22c e a ==,所以A 错误;对于B :221x y -=中1,1,a b c ====,则ce a==B 正确;对于C :2213y x -=中1,2a b c ===,则2c e a ==,所以C 错误;对于D :24y x =中1e =,所以D 错误;故选:B4.设a R ∈,则“a =1”是“直线ax+y-1=0与直线x+ay+1=0平行”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件,C【详解】若直线ax+y-1=0与直线x+ay+1=0平行,则21a =,且11a-≠解得1a =故选C点睛:这是一道关于充分条件和必要条件判断的题目.考查的主要是充分条件,必要条件,熟练掌握掌握充分条件和必要条件的判定方法.本题中,利用直线平行的条件是解决问题的关键.5.若直线l :0x y m --=经过抛物线28y x =的焦点,且与抛物线交于A ,B 两点,则下列说法中错误的是()A.抛物线的焦点为()2,0B.2m =C.抛物线的准线为4x =-D.16AB =C【分析】求出抛物线的焦点坐标、准线方程,将焦点坐标代入直线方程求出实数m ,将直线方程与抛物线方程联立,求出焦点弦长,依次判断选项即可.【详解】设抛物线方程为22y px =(0p >),则焦点坐标为,02p F ⎛⎫ ⎪⎝⎭,准线方程为2px =-,∵抛物线方程为28y x =,∴4p =,22p=,∴抛物线的焦点坐标()2,0F ,准线方程为2x =-,将焦点()2,0F 代入直线l 的方程:0x y m --=得200m --=,∴2m =,∴直线l 的方程为20x y --=,设直线l 与抛物线28y x =两交点坐标为()11,A x y ,()22,B x y ,点A ,B 到准线的距离分别为A d ,B d ,由2820y x x y ⎧=⎨--=⎩消去y ,化简得21240x x -+=(0∆>),∴1212x x +=,∴由抛物线的定义,12A p AF d x ==+,22B p BF d x ==+,∴1212416AB AF BF x x p =+=++=+=.对于A ,抛物线的焦点坐标()2,0F ,选项A 正确;对于B ,实数m 的值为2m =,选项B 正确;对于C ,抛物线的准线方程为2x =-,选项C 错误;对于D ,弦长16AB =,选项D 正确,故以上说法中,错误的是C 选项.故选:C.6.下列关于圆C :22(1)4x y +-=的说法中正确的个数为()①圆C 的圆心为(0,1)C ,半径为2②直线l :3410x y -+=与圆C 相交③圆C 与圆1C :22(1)(2)9x y ++-=相交④过点2)作圆C 50y --=A.1 B.2C.3D.4C【分析】对于①,根据圆的标准方程求出圆心坐标和半径,可知①正确;对于②,根据圆心到直线的距离小于半径,可知②正确;对于③,根据圆心距与两圆半径之间的关系,可知③正确;对于④,点2)在圆C ,可知点2)在圆C ,求出切线的斜率,根据点斜式可求出切线方程,可知④不正确.【详解】对于①,由22(1)4x y +-=可知,圆心为(0,1)C ,半径为2,故①正确;对于②,圆心(0,1)C 到直线3410x y -+=的距离35d ==2<,所以直线l :3410x y -+=与圆C 相交,故②正确;对于③,圆1C :22(1)(2)9x y ++-=的圆心1(1,2)C -,半径为3,因为圆心距1||CC ==,且3232-<<+,所以圆C 与圆1C :22(1)(2)9x y ++-=相交,故③正确;对于④,因为点2)在圆C :22(1)4x y +-=上,所以点2)为切点,所以切点与圆心C3=,所以切线的斜率为,所以切线方程为:2y x -=-50y +-=,故④不正确.故选:C7.公元前4世纪,古希腊数学家梅内克缪斯利用垂直于母线的平面去截顶角分别为锐角、钝角和直角的圆锥,发现了三种圆锥曲线.之后,数学家亚理士塔欧、欧几里得、阿波罗尼斯等都对圆锥曲线进行了深入的研究.直到3世纪末,帕普斯才在其《数学汇编》中首次证明:与定点和定直线的距离成定比的点的轨迹是圆锥曲线,定比小于、大于和等于1分别对应椭圆、双曲线和抛物线.已知,A B 是平面内两个定点,且|AB |=4,则下列关于轨迹的说法中错误的是()A.到,A B 两点距离相等的点的轨迹是直线B.到,A B 两点距离之比等于2的点的轨迹是圆C.到,A B 两点距离之和等于5的点的轨迹是椭圆D.到,A B 两点距离之差等于3的点的轨迹是双曲线D【分析】判断到,A B 两点距离相等的点的轨迹是,A B 连线的垂直平分线,判断A;建立平面直角坐标系,求出动点的轨迹方程,可判断B;根据椭圆以及双曲线的定义可判断C,D .【详解】对于A ,到,A B 两点距离相等的点的轨迹是,A B 连线的垂直平分线,正确;对于B ,以AB 为x 轴,AB 的中垂线为y 轴建立平面直角坐标系,则()()2,0,2,0A B -,设动点(,)P x y ,由题意知||2||PA PB =,2=,化简为221064(39x y -+=,即此时点的轨迹为圆,B 正确;对于C ,不妨设动点P 到,A B 两点距离之和等于5,即5PA PB +=,由于54>,故到,A B 两点距离之和等于5的点的轨迹是以,A B 为焦点的椭圆,C 正确;对于D ,设动点P 到,A B 两点距离之差等于3,即||||3-=PA PB ,由于34<,故到,A B 两点距离之差等于3的点的轨迹是双曲线靠近B 侧的一支,D 错误,故选:D8.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,若点P 满足1311534AP AB AD AA =++,则点P 到直线AB 的距离为()A.25144 B.512C.1320D.10515B【分析】过P 作PM ⊥平面ABCD 于点M ,过M 作NM AB ⊥于点N ,连接PN ,则PN 即为所求,【详解】解:如图,过P 作PM ⊥平面ABCD 于点M ,过M 作NM AB ⊥于点N ,连接PN ,则PN 即为所求,因为满足1311534AP AB AD AA =++,所以35AN =,13MN =,14MP =,所以512PN ==,故选:B .【点睛】本题考查了求点到直线的距离的方法,属于基础题.9.已知椭圆1C :222116x y m +=和双曲线2C :22214x yn-=有公共的焦点F 1(−3,0),F 2(3,0),点P 是C 1与C 2在第一象限内的交点,则下列说法中错误的个数为()①椭圆的短轴长为;②双曲线的虚轴长为③双曲线C 2的离心率恰好为椭圆C 1离心率的两倍;④ PF 1F 2是一个以PF 2为底的等腰三角形.A.0 B.1C.2D.3A【分析】根据椭圆1C :222116x y m +=和双曲线2C :22214x yn-=有公共的焦点F 1(−3,0),F 2(3,0),求得m ,n ,再逐项判断.【详解】解:因为椭圆1C :222116x y m +=和双曲线2C :22214x yn-=有公共的焦点F 1(−3,0),F 2(3,0),所以2216949m n ⎧-=⎨+=⎩,解得m n ⎧=⎪⎨=⎪⎩则①椭圆的短轴长为,故正确;②双曲线的虚轴长为③双曲线C 2的离心率32e =,椭圆C 1离心率的34e =,故正确;④由22221167145x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,解得833P ⎛ ⎝⎭,则16PF =,211222,6PF a PF F F =-==,所以 PF 1F 2是一个以PF 2为底的等腰三角形,故正确.故选:A10.已知动圆C 经过点1(0)F ,,并且与直线1y =-相切,若直线50l y -+=与圆C 最多有一个公共点,则圆C 的面积()A.有最小值为16π9B.有最大值为16π9C.有最小值为16πD.有最大值为16πD【分析】已知直线:50l y -+=与圆C 最多有一个公共点,则直线l 与圆相切或相离,而圆C 经过点1(0)F ,,并且与直线1y =-相切,则直线l 与圆相切时圆最大,直线l 与圆相离时圆最小,数形结合求出半径即可得到圆C 的面积.【详解】解:已知直线50l y -+=与圆C 最多有一个公共点,则直线l 与圆相切或相离,当直线l 与圆相离时圆最小,满足经过点1(0)F ,,并且与直线1y =-相切的圆如图所示,此时以原点O 为圆心,1为半径,圆C 的面积2min π1πS =⋅=,故A ,C 选项错误;当直线l 与圆相切时圆最大,满足经过点1(0)F ,,并且与直线1y =-相切的圆如图所示,此时直线l 与直线1y =-为圆2C 的公切线,则圆心需在两直线所成角的角平分线上,因为直线l 60︒,所以角平分线的倾斜角为30︒,斜率为33,联立501y y -+==-⎪⎩,可得63,13A ⎛⎫-- ⎪ ⎪⎝⎭所以角平分线的方程为133y x ⎛⎫+=+ ⎪ ⎪⎝⎭,即13y x =+,恰好点1(0)F ,在角平分线上,则222r AF r =+,所以222224r r r r ===+,解得24r =,圆C 的面积2max π416πS =⋅=,故B 选项错误;故选:D.二、填空题(共6小题,每小题4分,共24分)11.若直线l 与直线2x-y-1=0垂直,且不过第一象限,试写出一个直线l 的方程:________.112y x =--(答案不唯一)【详解】由直线l 与直线210x y --=垂直,设直线l 的方程为12y x c =-+∵直线l 不经过第一象限∴0c ≤∴可令1c =-,即直线l 的方程为112y x =--故答案为112y x =--(答案不唯一).12.与双曲线224312y x -=有相同焦点,且长轴长为6的椭圆标准方程为_________.22129x y +=【分析】双曲线化为标准形式,求出焦点,即可由共焦点进一步求出椭圆短半轴,即可求得标准方程.【详解】224312y x -=即22134y x -=,焦点为(0,,椭圆长轴26a =,即3a =,故短半轴b ==22129x y +=.故答案为:22129x y +=.13.已知椭圆C :22221x y a b+=(0a b >>)中,1F ,2F 为椭圆的左、右焦点,1B ,2B 为椭圆的上、下顶点,若四边形1122F B F B 是一个正方形,则椭圆的离心率为__________.22【分析】四边形1122F B F B 是个正方形,则其对角线12F F 与12B B 相等,即22c b =,由此结合a ,b ,c 的关系,即可求出离心率.【详解】∵四边形1122F B F B 是一个正方形,∴正方形1122F B F B 的对角线相等,1212F F B B =,∵焦距122F F c =,短轴长122B B b =,∴22c b =即c b =,∴a ===,∴离心率22c e a ===.故答案为:2.14.过点()2,5作圆22:(1)4C x y +-=的切线,则切线方程为__________.2x =或34140x y -+=【分析】当斜率不存在时,检验即可;当斜率存在时,设出直线,利用圆心到直线的距离等于半径列方程求解即可.【详解】圆22:(1)4C x y +-=的圆心为()0,1,半径2r =过点()2,5的直线,当斜率不存在时,直线方程为2x =,符合与圆C 相切;当斜率存在时,设直线方程为()25y k x =-+,即250kx y k --+=,2=,解得34k =,此时直线方程为34140x y -+=.故答案为:2x =或34140x y -+=.15.已知O 为坐标原点,抛物线的焦点F 在x 轴上,且过点(1,2)-,P 为抛物线上一点,||3PF =,则抛物线的标准方程为___________,OPF △的面积为_____________.①.24y x =②.【分析】设抛物线方程为22y ax =(0)a ≠,将点(1,2)-代入求出a ,可得抛物线的标准方程;设00(,)P x y ,根据||3PF =以及抛物线的定义求出0x 和0y ,根据三角形的面积公式可求出结果.【详解】依题意,设抛物线方程为22y ax =(0)a ≠,因为抛物线过点(1,2)-,所以2(2)2a -=,所以2a =,所以抛物线的标准方程为:24y x =.由24y x =可知,准线方程为:=1x -,设00(,)P x y ,则0||1PF x =+,因为||3PF =,所以013x +=,即02x =.所以2004428y x ==⨯=,所以0||y =,所以OPF △的面积为:011||||122OF y ⋅=⨯⨯=.故答案为:24y x =.16.若点()2,0到直线l 的距离小于1,则在下列曲线中:①28y x =;②()2234x y -+=;③22195x y +=;④2213y x -=;与直线l 一定有公共点的曲线的序号是_________.(写出你认为正确的所有序号)①②③④【分析】将问题转化为直线l 必经过圆()2221x y -+=的内的点,分别作出每个选项与圆()2221x y -+=的图象,根据包含关系可确定结果.【详解】若点()2,0到直线l 的距离小于1,则直线l 必经过以()2,0为圆心,1为半径的圆的内部,即直线l 必经过圆()2221x y -+=的内的点;对于①,作出28y x =与()2221x y -+=图象如下图所示,则过圆()2221x y -+=内的点的所有直线与28y x =都有交点,①正确;对于②,作出()2234x y -+=与()2221x y -+=图象如下图所示,则过圆()2221x y -+=内的点的所有直线与()2234x y -+=都有交点,②正确;对于③,作出22195x y +=与()2221x y -+=图象如下图所示,则过圆()2221x y -+=内的点的所有直线与22195x y +=都有交点,③正确;对于④,作出2213y x -=与()2221x y -+=图象如下图所示,则过圆()2221x y -+=内的点的所有直线与2213y x -=都有交点,④正确.故答案为:①②③④.【点睛】关键点点睛:本题考查圆锥曲线中各种曲线图象之间的关系,解题关键是能够将问题转化为经过圆内部的点的直线与曲线永远有公共点,从而根据曲线方程作出图象,根据图象包含关系来确定结果.三、解答题(共3题,共36分,解答应写出文字说明,演算步骤或证明过程)17.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,,M N 分别为棱,PD BC 的中点,2PA AB ==.(1)求证://MN 平面PAB ;(2)求直线MN 与平面PCD 所成角的正弦值.(1)证明见解析;(2)1010.【分析】(1)证明线面平行,用线面平行的判定定理,在面PAB 内找一条直线与MN 平行;(2)建立空间直角坐标系,利用向量法求线面角.【详解】(1)在四棱锥P ABCD -中,取PA 的中点E ,连接EB 、EM ,因为M 是PD 的中点,所以EM AD ,且12EM AD =.又因为底面ABCD 是正方形,N 是BC 的中点,所以BN AD ∥,且12=BN AD ,所以EM BN ∥且=EM BN ,所以四边形MNBE 是平行四边形.所以MN BE ∥.由于EB ⊂平面PAB ,MN ⊄平面PAB ,所以//MN 平面PAB .(2)因为底面ABCD 是正方形,所以AB ⊥AD .又因为PA ⊥平面ABCD ,所以可以以点A 为坐标原点,AB 、AD 、AP 分别为x 、y 、z 轴,如图建立空间直角坐标系,则(0,0,0)A ,(2,2,0)C ,(0,2,0)D ,(0,0,2)P ,(0,1,1)M ,(2,1,0)N .(2,2,2),(2,0,0)PC CD →→=-=-,设平面PCD 的法向量为(,,)m x y z =,有:0,0,m PC m CD ⎧⋅=⎨⋅=⎩即0,0,x y z x +-=⎧⎨=⎩,令1y =,则=1z ,所以(0,1,1)m = .(2,0,1)MN =- ,设直线MN 与平面PCD 所成角为θ,有:sin cos ,MN m θ= =MN m MN m⋅⋅10.所以直线MN 与平面PCD 所成角的正弦值为1010.【点睛】立体几何解答题的基本结构:(1)第一问一般是几何位置关系的证明,通常用判定定理;(2)第二问是计算,求角或求距离(求体积通常需要先求距离),通常可以建立空间直角坐标系,利用向量法计算.18.已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为,A B ,且AB 4=,离心率为12,O 为坐标原点.(1)求椭圆C 的方程;(2)设P 是椭圆C 上不同于,A B 的一点,直线,PA PB 与直线4x =分别交于点,M N .证明:以线段MN 为直径作圆被x 轴截得的弦长为定值,并求出这个定值.(1)22143x y +=(2)证明见解析,定值为6【分析】(1)根据24AB a ==、离心率和椭圆,,a b c 之间关系可直接求得结果;(2)设(),P m n ,可得直线,PA PB 方程,进而确定,M N 两点坐标,设椭圆右焦点为F ,利用平面向量数量积的坐标运算可证得FM FN ⊥,可知以MN 为直径的圆过点()1,0F ,由此可确定线段MN 为直径作圆被x 轴截得的弦长.【小问1详解】由题意知:24AB a ==,解得:2a =,又离心率12c e a ==,1c ∴=,2223b a c ∴=-=,∴椭圆C 的方程为:22143x y +=.【小问2详解】由(1)得:()2,0A -,()2,0B ,设(),P m n ,则223412m n +=,即224123n m =-;直线():22n PA y x m =++,直线():22n PB y x m =--,M ∴点纵坐标62M n y m =+,N 点纵坐标22N n y m =-,即64,2n M m ⎛⎫ ⎪+⎝⎭,24,2n N m ⎛⎫ ⎪-⎝⎭,又椭圆右焦点为()1,0F ,63,2n FM m ⎛⎫∴= ⎪+⎝⎭ ,23,2n FN m ⎛⎫= ⎪-⎝⎭,()()22222231239412999990444m m n FM FN m m m --∴⋅=+=+=+=-=--- ,即FM FN ⊥,∴以MN 为直径的圆过点()1,0F ,又圆心横坐标为4,∴以MN 为直径的圆被x 轴截得的弦长为()2416⨯-=.即以线段MN 为直径作圆被x 轴截得的弦长为定值6.【点睛】关键点点睛:本题考查直线与椭圆综合应用中的定值问题的求解,本题求解定值问题的关键是能够利用平面向量数量积的坐标运算说明椭圆右焦点即为所求圆与x 轴的其中的一个交点,由圆的对称性可确定定值.19.已知抛物线2:4C y x =,O 为坐标原点,过焦点F 的直线l 与抛物线C 交于不同两点,A B .(1)记AFO V 和BFO V 的面积分别为12,S S ,若212S S =,求直线l 的方程;(2)判断在x 轴上是否存在点M ,使得四边形OAMB 为矩形,并说明理由.(1)440x -=;(2)不存在,理由见详解.【分析】(1)设直线l 方程为1x ty =+,()()1122,,,A x y B x y ,利用韦达定理及212y y =-计算可得答案;(2)假设存在点M ,使得四边形OAMB 为矩形,根据抛物线的性质推出OA OB ⊥不成立,则可得不存在点M ,使得四边形OAMB 为矩形.【小问1详解】设直线l 方程为1x ty =+,()()1122,,,A x y B x y 联立241y x x ty ⎧=⎨=+⎩,消去x 得2440y ty --=,得124y y t +=①,124y y =-②,又因为212S S =,则212y y =-③由①②③解得24t =±,即直线l 的方程为14x y =±+,即440x ±-=【小问2详解】假设存在点M ,使得四边形OAMB 为矩形,则,OM AB 互相平分所以线段AB 的中点在x 上,则AB x ⊥轴,此时()()1,2,1,2A B -41OA OB k k ∴=-≠-则OA OB ⊥不成立.故在x 轴上不存在点M ,使得四边形OAMB 为矩形。
三年级上册数学期末试卷(2)题目及解析
2020-2021学年三年级上册数学期末试卷(二)一.选择题(共8小题)1.如图中大正方形的周长是小正方形周长的多少倍?()A.2倍B.4倍C.6倍D.8倍2.1吨减去60千克()500千克+1000克.A.>B.<C.=3.800×5积的末尾有()个0。
A.1 B.2 C.3 D.44.下面的汉字中,从上剪下来的是()A.B.C.5.小丽、小红和小刚到超市买蛋糕.小丽用68元买了4块巧克力蛋糕,小红用104元钱买了8块豆沙蛋糕,小刚用84元钱买了6块奶油蛋糕.哪种蛋糕每块的价钱最贵?()A.巧克力蛋糕B.豆沙蛋糕C.奶油蛋糕6.算式72÷(3×3)应先算()A.除法B.乘法C.同时计算7.写数和读数时,要从()位起.A.个B.高C.百8.桌上有1张纸,第一次把它剪成3块放回桌上;第二次从桌上拿起1块剪成3块后放回桌上;….进行了这样的8次操作后,桌上一共有()块纸.A.24 B.21 C.19 D.17二.填空题(共8小题)9.如图,四个小动物排座位,一开始,小鼠坐在第1号座位,小猴坐在第2号座位,小兔坐在第3号座位,小猫坐在第4号座位.以后它们不断地交换位子.第一次上下两排交换,第二次在第一次交换后左右两列交换.第3次再上下两排交换,第4次再左右两列交换…这样下去,第十四次交换座位后,小兔在第号座位上.10.从墙上的镜子中,看到钟表(指针式,无数字)指示时间是9:20,此时的实际时间为.11.24×0÷8=6×;75﹣36=18+.12.在除法算式“□08÷6=?”中,要想使商是三位数,那么□里最小填,要想使商是两位数,□里最大填.13.120的4倍是,是60的6倍。
14.70000千克=吨.15.在一个长是12米,宽是6米的长方形花坛周围围上栏杆,栏杆的总长度是米;一个正方形的周长是328厘米,它的边长是厘米。
16.最大的四位数是,最小的三位数是,它们的和是.三.判断题(共5小题)17.10×20÷5+20的得数是0..(判断对错)18.一个长方形的长增加5厘米,宽减少5厘米,它的周长不变..(判断对错)19.三位数除以一位数,商一定是三位数.(判断对错)20.从上剪下来的是图案。
安徽省2023年八年级下学期期末考试数学试卷 (2)
安徽省八年级下学期期末考试数学试卷一、精心选一选,慧眼识金(每小题3分,共30分)1.(3分)下列各式是最简二次根式的是()A.B.C.D.考点:最简二次根式.专题:常规题型.分析:先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.解答:解:A、=3,故不是最简二次根式,故A选项错误;B、是最简二次根式,符合题意,故B选项正确;C、=2,故不是最简二次根式,故C选项错误;D、=,故不是最简二次根式,故D选项错误;故选:B.点评:本题考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.2.(3分)下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,23考点:勾股定理的逆定理.专题:计算题.分析:根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.解答:解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.点评:此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.3.(3分)已知一次函数y=kx+b的图象如图所示,则k、b的符号是()A.k<0,b<0 B.k>0,b<0 C.k<0,b>0 D.k>0,b>0考点:一次函数图象与系数的关系.专题:数形结合.分析:由图可知,一次函数y=kx+b的图象经过二、三、四象限,根据一次函数图象在坐标平面内的位置与k、b的关系作答.解答:解:由一次函数y=kx+b的图象经过二、三、四象限,当k<0时,直线必经过二、四象限,故k<0,直线与y轴负半轴相交,故b<0.故选:A.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.4.(3分)(•潍坊)在某校“我的中国梦”演讲比赛中,有9名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.方差C.平均数D.中位数考点:统计量的选择.分析:9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.解答:解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:D.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.5.(3分)连接对角线互相垂直的四边形的四边中点,所构成的四边形一定是()A.矩形B.菱形C.正方形D.梯形考点:中点四边形.专题:探究型.分析:根据中位线的与对角线平行的性质,因此顺次连接四边中点可以得到一个相邻的边互相垂直的四边形,根据矩形的定义,邻边垂直的四边形为矩形.解答:已知:AC⊥BD,E、F、G、H分别为各边的中点,连接点E、F、G、H.求证:四边形EFGH是矩形.证明:∵E、F、G、H分别为各边的中点,∴EF∥AC,GH∥AC,EH∥BD,FG∥BD,(三角形的中位线平行于第三边)∴四边形EFGH是平行四边形,(两组对边分别平行的四边形是平行四边形)∵AC⊥BD,EF∥AC,EH∥BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°,∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).故选:A.点评:本题考查的是矩形的判定方法,常用的方法有三种:①一个角是直角的平行四边形是矩形.②三个角是直角的四边形是矩形.③对角线相等的平行四边形是矩形.6.(3分)若的整数部分为x,小数部分为y,则的值是()A.B.C.1D.3考点:二次根式的加减法.专题:计算题.分析:因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.解答:解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.点评:关键是会表示的整数部分和小数部分,再二次根式的加减运算,即将被开方数相同的二次根式进行合并.7.(3分)将直线y=﹣2x向右平移2个单位所得直线的解析式为()A.y=﹣2x+2 B.y=﹣2x﹣4 C.y=﹣2x﹣2 D.y=﹣2x+4考点:一次函数图象与几何变换.分析:根据“左加右减”的平移规律可由已知的解析式写出新的解析式.解答:解:将直线y=﹣2x向右平移2个单位所得直线的解析式为y=﹣2(x﹣2),即y=﹣2x+4.故选:D.点评:本题考查了一次函数图象与几何变换,掌握解析式“左加右减”的平移规律是解题的关键.8.(3分)某班50名学生身高测量结果如下表:身高 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.64人数 1 1 3 4 3 4 4 6 8 10 6该班学生身高的众数和中位数分别是()A.1.60,1.56 B.1.59,1.58 C.1.60,1.58 D.1.60,1.60考点:众数;中位数.专题:图表型.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:表图为从小到大排列,数据1.60出现了10次,出现最多,故1.60为众数;1.58和1.58处在第25、26位,其平均数1.58,故1.58为中位数.所以本题这组数据的中位数是1.58,众数是1.60.故选:C.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.9.(3分)(•南昌)某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B地后发现油箱中还剩油4升,则从出发后到B地油箱中所剩油y(升)与时间t(小时)之间函数的大致图象是()A.B.C.D.考点:函数的图象.专题:图表型.分析:根据某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间,休息时油量不再发生变化,再次出发油量继续减小,即可得出符合要求的图象.解答:解:某人驾车从A地上高速公路前往B地,油量在减小;中途在服务区休息了一段时间,休息时油量不发生变化;再次出发油量继续减小;到B地后发现油箱中还剩油4升;只有C符合要求.故选:C.点评:本题考查了利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.10.(3分)(1998•内江)能判定四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边相等,一组邻角相等C.一组对边平行,一组邻角相等D.一组对边平行,一组对角相等考点:平行四边形的判定.专题:证明题.分析:平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.根据判定定理进行推导即可.解答:解:如图所示,若已知一组对边平行,一组对角相等,易推导出另一组对边也平行,两组对边分别平行的四边形是平行四边形.故根据平行四边形的判定,只有D符合条件.故选:D.点评:此题主要考查学生对平行四边形的判定的掌握情况.在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.二、耐心填一填,一锤定音(每小题3分,共21分)11.(3分)(•襄阳)使代数式有意义的x的取值范围是x≥且x≠3.考点:二次根式有意义的条件;分式有意义的条件.专题:计算题.分析:根据被开方数大于等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,2x﹣1≥0且3﹣x≠0,解得x≥且x≠3.故答案为:x≥且x≠3.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.(3分)请你写出同时具备下列两个条件的一次函数的表达式(写出一个即可)y=﹣x ﹣6.(1)y随x的增大而减小;(2)图象经过点(2,﹣8)考点:一次函数的性质.专题:开放型.分析:由题可知,需求的一次函数只要满足k<0且经过点(2,﹣8)即可.解答:解:设函数关系式是y=kx+b(k≠0)由y随着x的增大而减小得k<0可设k=﹣1,将(2,﹣8)代入函数关系式,得b=﹣6因此一次函数表达式为y=﹣x﹣6.(此题答案不唯一)故答案为:y=﹣x﹣6.点评:本题考查了一次函数的性质.此类题要首先运用待定系数法确定k,b应满足的一个确定的关系式,再根据条件确定k的值,进一步确定b的值,即可写出函数关系式.13.(3分)已知,则x3y+xy3=10.考点:二次根式的化简求值.专题:计算题.分析:由已知得x+y=2,xy=1,把x3y+xy3分解因式再代入计算.解答:解:∵,∴x+y=2,xy=1,∴x3y+xy3=xy(x2+y2)=xy[(x+y)2﹣2xy]=(2)2﹣2=10.点评:解题时注意,灵活应用二次根式的乘除法法则,切忌把x、y直接代入求值.14.(3分)已知一组数据为:10;8,10,10,7,则这组数据的方差是 1.6.考点:方差.专题:计算题.分析:结合方差公式先求出这组数据的平均数,然后代入公式求出即可.解答:解:平均数为:(10+8+10+10+7)÷5=9,S2=[(10﹣9)2+(8﹣9)2+(10﹣9)2+(10﹣9)2+(7﹣9)2],=(1+1+1+1+4),=1.6,故答案为:1.6.点评:此题主要考查了方差的有关知识,正确的求出平均数,并正确代入方差公式是解决问题的关键.15.(3分)已知一次函数y=2x+1,则它的图象与坐标轴围成的三角形面积是.考点:一次函数图象上点的坐标特征.专题:数形结合.分析:求得函数与坐标轴的交点,然后根据三角形的面积公式即可求得三角形的面积.解答:解:一次函数的关系式是y=2x+1,当x=0时,y=1;当y=0时,x=﹣,它的图象与坐标轴围成的三角形面积是:×1×|﹣|=.故答案是:.点评:本题主要考查了一次函数图象上点的坐标特征.求线段的长的问题一般是转化为求点的坐标的问题解决.16.(3分)一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是12cm.考点:勾股定理的逆定理.专题:数形结合.分析:过C作CD⊥AB于D,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.解答:解:如图:设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D,∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°,∵S△ACB=AC×BC=AB×CD,∴AC×BC=AB×CD15×20=25CD,∴CD=12(cm);故答案为:12.点评:本题考查勾股定理的逆定理和三角形的面积公式的应用.根据勾股定理的逆定理判断三角形为直角三角形是解答此题的突破点.17.(3分)如图,在直角坐标系中,正方形A1B1C1O、A2B2C2C1、A3B3C3C2、…A n B n C n C n 的顶点A1、A2、A3、…、A n均在直线y=kx+b上,顶点C1、C2、C3、…、C n在x轴上,﹣1若点B1的坐标为(1,1),点B2的坐标为(3,2),那么点B4的坐标为(15,8).考点:一次函数图象上点的坐标特征;正方形的性质.专题:规律型.分析:首先利用待定系数法求得直线A1A2的解析式,然后分别求得B1,B2,B3…的坐标,可以得到规律:B n(2n﹣1,2n﹣1),据此即可求解.解答:解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入y=kx+b得:,解得:,则直线A1A2的解析式是:y=x+1.∵A1B1=1,点B2的坐标为(3,2),∴点A3的坐标为(3,4),∴A3C2=A3B3=B3C3=4,∴点B3的坐标为(7,4),∴B1的纵坐标是:1=20,B1的横坐标是:1=21﹣1,∴B2的纵坐标是:2=21,B2的横坐标是:3=22﹣1,∴B3的纵坐标是:4=22,B3的横坐标是:7=23﹣1,∴B n的纵坐标是:2n﹣1,横坐标是:2n﹣1,则B n(2n﹣1,2n﹣1).∴B4的坐标是:(24﹣1,24﹣1),即(15,8).故答案为:(15,8).点评:此题主要考查了待定系数法求函数解析式和坐标的变化规律.此题难度较大,注意正确得到点的坐标的规律是解题的关键.三、用心做一做,马到成功(本大题共49分)18.(15分)计算(1)(﹣4)﹣(3﹣2);(2)(﹣)2+2×3;(3)5•(﹣4)(a≥0,b≥0).考点:二次根式的混合运算.专题:计算题.分析:(1)先把各二次根式化为最简二次根式,然后去括号后合并即可;(2)先利用完全平方公式和二次根式的乘法法则运算,然后合并即可;(3)利用二次根式的乘法法则运算.解答:解:(1)原式=4﹣﹣+=3;(2)原式=2﹣2+3+×3=5﹣2+2=5;(3)原式=﹣20=﹣20a2b.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.19.(8分)如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?用你学过的方法进行解释.考点:翻折变换(折叠问题);勾股定理.专题:几何图形问题.分析:根据矩形的性质得AB=CD=8,BC=AD=10,∠B=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC﹣BF=4,设CE=x,则DE=EF=8﹣x,在Rt△CEF中利用勾股定理得到∴42+x2=(8﹣x)2,然后解方程即可.解答:解:∵四边形ABCD为矩形,∴AB=CD=8,BC=AD=10,∠B=∠C=90°,∵长方形纸片ABCD折纸,顶点D落在BC边上的点F处(折痕为AE),∴AF=AD=10,DE=EF,在Rt△ABF中,AB=8,AF=10,∴BF==6,∴CF=BC﹣BF=4,设CE=x,则DE=EF=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8﹣x)2,解得x=3,即EC的长为3cm.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.20.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.考点:矩形的判定;全等三角形的判定与性质;等腰三角形的性质;平行四边形的性质.专题:证明题.分析:(1)可证△AFE≌△DBE,得出AF=BD,进而根据AF=DC,得出D是BC中点的结论;(证法2:可根据AF平行且相等于DC,得出四边形ADCF是平行四边形,从而证得DE是△BCF的中位线,由此得出D是BC中点)(2)若AB=AC,则△ABC是等腰三角形,根据等腰三角形三线合一的性质知AD⊥BC;而AF与DC平行且相等,故四边形ADCF是平行四边形,又AD⊥BC,则四边形ADCF是矩形.解答:(1)证明:∵E是AD的中点,∴AE=DE.∵AF∥BC,∴∠FAE=∠BDE,∠AFE=∠DBE.在△AFE和△DBE中,,∴△AFE≌△DBE(AAS).∴AF=BD.∵AF=DC,∴BD=DC.即:D是BC的中点.(2)解:四边形ADCF是矩形;证明:∵AF=DC,AF∥DC,∴四边形ADCF是平行四边形.∵AB=AC,BD=DC,∴AD⊥BC即∠ADC=90°.∴平行四边形ADCF是矩形.点评:此题主要考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形、矩形的判定等知识综合运用.21.(9分)在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港.最终到达C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图.(1)填空:A、C两港口间的距离为120km,a=4;(2)请分别求出y1、y2与x的函数关系式,并求出交点P的坐标;(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船经过多长时间正好相距10千米?考点:一次函数的应用.专题:综合题;分类讨论.分析:(1)从图中可以看出A、B两港是30km,B、C两港是90km,A、C两港口间的距离为30+90=120km,根据路程÷时间求出甲的速度,进而求出a的值;(2)利用待定系数法求出y1=,y2=15x(0≤x≤6),解方程组,即可求出点P的坐标.(3)先根据一次函数的图象求出乙的速度,再根据甲在乙船前和乙船后,及甲船已经到了而乙船正在行驶,三种情况进行解答即可.解答:解:(1)从图中可以看出A、B两港是30km,B、C两港是90km,所以A、C两港口间的距离为30+90=120(km);甲的速度为:30÷1=30(km/h),a=120÷30=4.故答案为:120,4;(2)当0≤x≤1时,由点(0,30),(1,0)求得y1=﹣30x+30;当1<x≤4时,由点(1,0),(4,90)求得y1=30x﹣30;即y1与x的函数关系式为y1=;由点(6,90)求得,y2=15x(0≤x≤6),即y2与x的函数关系式为y2=15x(0≤x≤6);由图象可知,交点P的横坐标x>1,此时y1=y2,解方程组,得,所以点P的坐标为(2,30);(3)由函数图象可知,乙船的速度为:90÷6=15(km/m).①甲在乙后10km,设行驶时间为xh,则x<2.如果0≤x≤1,那么(﹣30x+30)+15x=10,解得x=,不合题意舍去;如果1≤x<2,那么15x﹣(30x﹣30)=10,解得x=,符合题意;②甲超过乙后,甲在乙前10km,设行驶时间为xh,则x>2.由题意,得30x﹣30﹣15x=10,解得x=,符合题意;③甲船已经到了而乙船正在行驶,则4≤x<6.由题意,得90﹣15x=10,解得x=,符合题意;即甲、乙两船经过小时或小时或小时,正好相距10千米.点评:本题考查的是一次函数的图象及一次函数的应用,解答此题时要注意运用分类讨论的思想,不要漏解.22.(9分)如图,在线段AE的同侧作正方形ABCD和正方形BEFG(BE<AB),连接EG 并延长交DC于点M,作MN⊥AB,垂足为N,MN交BD于点P,设正方形ABCD的边长为1.(1)证明:四边形MPBG是平行四边形;(2)设BE=x,四边形MNBG的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)如果按题设作出的四边形BGMP是菱形,求BE的长.考点:四边形综合题;平行线的判定.专题:几何综合题.分析:(1)分别证得DB∥ME和MN∥CB后利用两组对边分别相等的四边形是平行四边形即可证得结论;(2)根据正方形BEFG,从而可得CM=1﹣x,然后得y=(BG+MN)•BN即可.(3)由已知易得四边形BGMP是平行四边形,要使四边形BGMP是菱形则BG=MG,可得x=(1﹣x),解得x即可.解答:证明:(1)∵ABCD、BEFG是正方形∴∠CBA=∠FEB=90°,∠ABD=∠BEG=45°,∴DB∥ME(同位角相等,两直线平行).∵MN⊥AB,CB⊥AB,∴MN∥CB.∴四边形MPBG是平行四边形;(2)∵正方形BEFG,∴BG=BE=x.∵∠CMG=∠BEG=45°,∴CG=CM=BN=1﹣x.∴y=(GB+MN)•BN=(1+x)(1﹣x)=﹣x2(0<x<1);(3)∵四边形BGMP是菱形,∴BG=MG,∴x=(1﹣x),∴x=2﹣,∴BE=2﹣.点评:此题考查了四边形的综合知识,较复杂,但充分利用题目所给的条件,根据四边形性质列出方程即可解答.解答此题,不要局限于一种方法,可以多试几种方法,以提高解题的“含金量”.教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
山西省长治市二年级语文下学期期末试卷(2)A卷
山西省长治市二年级语文下学期期末试卷(2)A卷姓名:________ 班级:________ 成绩:________同学们,经过一段时间的学习,你一定长进不少,让我们好好检验一下自己吧!一、拼音,识字 (共5题;共24分)1. (5分)拼一拼,写一写。
shàn zi yù jiàn tóu tònɡān xīn zuì hǎo________________________________________2. (4分)按要求完成练习。
(1)下列字形和读音完全正确的一组是()A . 几呼(jī hū)B . 答应(dā ying)C . 切开(qiè kāi)D . 稍息(shāo xī)(2)“诲”读“huì”,这个字和下列哪个意思有关?()A . 教导B . 后悔C . 时间D . 说话3. (7分)选择题。
(1)下列加点字的读音有误的一项是()。
A . 恳求(kěn)筛选(shāi)B . 梭子(suō)监狱(yù)C . 酝酿(niàng)瞌睡(kē)D . 稀罕(hān)拘束(jū)(2)下列带“儿”的词语,读法与其他三项不同的一项是()。
A . 小曲儿B . 一块儿C . 女儿D . 伴儿(3)给加点字选择正确的读音。
我昨晚睡觉落________枕了,脖子一动就疼。
早上我因为着急赶去学校,一疏忽又把书落________在家里了。
唉!今天的心情真是一落________千丈。
A.luò B.là C.lào D.luō4. (3分)读拼音,写句子。
zhōng qiū jié dào le,wǒ hěn gāo xìng.________bà ba zài chuáng shàng kàn shū.________tiān shàng yǒu yí gè jīn sè de tài yáng.________5. (5分)我家有个好习惯:晚上,爸爸妈妈常常为我念好听的故事。
2023八年级下学期期末考试语文试卷2
2023-2023八年级下学期期末考试语文试卷2023-2023八年级下学期期末考试语文试卷2023-2023八年级下学期期末考试语文试卷1 一、选择题〔题文〕以下词语中加点字的注音完全正确的一组是〔〕A、翘望〔qiáo〕嫉妒〔jí〕箴言〔zhēn〕拈轻怕重〔niān〕B、摒弃〔bìng〕遴选〔lián〕粗糙〔cāo〕锲而不舍〔qiè〕C、精华〔suí〕雕镂〔lòu〕吮吸〔shǔn〕鳞次栉比〔zhì〕D、抽噎〔yē〕踮脚〔diǎn〕叱咤〔chà〕半身不遂〔suí〕以下各句中,加点的成语使用不恰当的一项为哪一项〔〕A、这位教师教学有方,经常在课堂上故弄玄虚,以启发学生,收到了深化浅出的效果。
B、罕见雪灾袭向神州大地,一个个雪中送炭的场面立马再现。
C、就目前而言,南水北调工程正在如火如荼地进展,地方间跨流域调水也变得屡见不鲜。
D、这虽是几句无稽之谈,但他听后却很快乐,拼命地钻研《美国十大富豪传》,找发财致富的门径。
选择以下对课文描绘有错误的一项〔〕A.《白杨礼赞》,是现代作家茅盾的作品,文章以象征的手法,讴歌了中国____领导下的北方抗日军民以及中华民族的精神和意志。
B.《马说》、《陋室铭》,文体即题目所说的“说”“铭”,它们的作者分别是唐朝的韩愈、宋朝的刘禹锡。
C.《沙漠里的奇怪现象》是一篇科学小品文,文章由现象到本质,诠释了“魔鬼的海”和鸣沙原理;蒲松龄的《山市》那么着重表现了山市空虚缥缈、瞬息万变的特点。
D.《人的高贵在于灵魂》,作者周国平运用了比喻、引用等论证方法,说明了“人的高贵在于灵魂”的道理,提倡人们在生活中应该保持纯粹的精神追求。
以下句子顺序排列正确的一项为哪一项〔〕。
①有一些微生物发现,牛的胃是它们生长的乐园。
②于是,这些小家伙纷纷光临这里,居住下来。
③自然界存在着各种各样的微生物,它们总是各就各位,在适宜它们生长的地方安家落户。
多伦县二年级语文下学期期末试卷(2)B卷
多伦县二年级语文下学期期末试卷(2)B卷一、拼音,识字 (共5题;共40分)1. (3分)根据拼音写出词语。
cáo cāo zhù zi dà chèng________________________2. (8分)阅读下面这段话,完成下面各题。
原野热闹非凡。
成片的大豆摇动着豆荚,发出了哗啦啦的笑声,挺拔的高粱,扬起黑红黑红的脸庞,像是在乐呵呵地演唱。
山坡上,大路边,村子口,榛树叶子全都红了,红得像一团团火,把人们的心也给燃烧起来了。
(1)选择正确的读音,填在横线上。
豆荚(j iājiá)________ 高粱(liáng liang)________脸庞(liǎn niǎn)________燃烧(rán 1án)________(2)在括号里填上合适的词。
________ 的笑声________ 的高粱________ 的原野________ 的叶子3. (23分)阅读短文,完成练习。
___________一天下午,突然下起雨来。
一辆公共汽车靠站了,从车上下来一位老奶奶。
老奶奶没(代带戴)伞,心里真着(及急),她用手帕遮在头上,正准备向前走。
这时,小玲(刚钢)好打着伞路过这里。
我想,老奶奶年(记纪)大了。
被雨淋了会生病。
于是她连忙走上前说__老奶奶__慢点走__我和你一起打伞__老奶奶笑着说__谢谢你__好孩子__车站上的人们都(粉粉纷纷)夸(讲奖):“多好的孩子啊!”(1)把短文中缺少的标点符号补充完整。
被雨淋了会生病。
于是她连忙走上前说________老奶奶________慢点走________我和你一起打伞________老奶奶笑着说________谢谢你________好孩子________(2)选择括号里正确的字词。
(代带戴)________伞着________(及急)(刚钢)________好年________(记纪)(粉粉纷纷)________ 夸________(讲奖)(3)根据短文的内容选一个题目写在短文前的横线上。
期末试卷2
1、根据下面的意思写出词语。
把姓张的帽子给姓李的戴上,比喻弄颠倒了事实,认错了对象。
(张冠李戴)形容经历过很多的艰难困苦。
()把枣子整个儿吞下去,不辨滋味。
比喻读书不认真,不仔细,不理解意思。
(囫囵吞枣)连声称赞不止。
()2、把下列词语补充完整。
良师()友()流不息狂风怒()再接再()()转反侧威武不()汗流()背轻举()动万()俱寂3、读下面的句子,回答括号里的问题。
他没有回答我,只把他枯瘦的手按在我的头上,半天没动,最后深深地叹了一口气。
(鲁迅先生为什么要“深深地叹了一口气”?)詹天佑是我国杰出的爱国工程师。
(“杰出”是什么意思?哪些事例说明詹天佑是杰出的爱国工程师?)4、改写句子,去掉引号,但不改变原句的意思。
李涛报名时对老师说:“我叫李涛,家住荷花巷62号。
”—————————————————————————————————江姐回答说:“上级的姓名地址,我知道,下级的姓名地址,我也知道。
但是……”——————————————————————————————————伯父摸了摸自己的鼻子,笑着说:“我小的时候,鼻子跟你的爸爸的一样,也是又高又直的。
”———————————————————————————————————————5、改正下面句子中的错别字。
正是响午时候,武松走得肚中饥渴,望见前面有一个酒店。
()正是吃西瓜的季节。
中午,爸爸汗流夹背地搬回四只西瓜。
()我不后悔,奶奶、妈妈不是常常检不好吃的东西吃吗?()武松拿起碗来一饮而尽,叫道:“这酒正有气力。
”()7、写出下面词语的反义词。
生气勃勃()情深意切()大公无私()七嘴八舌()8、把下面的句子改成陈述句。
这时候天快黑了,你还过冈,岂不枉送自家性命?我是清河县人,这条景阳冈少说也走过了一二十遭,几时听说有大虫!不劳动,连棵花也养不活,这难道不是真理吗?9、仿照例句把下面的句子换成两种不同的说法。
例:在短短的40天多内,侵华日军杀死了35万中国人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乙烯1-戊醇
四、推结构题(每空6分,共12分)
得分
评阅人
1.
化合物A(C6H10),溶于乙醚,不溶于水。于A的CCl4溶液中定量地加入Br2,则0.100molA可使0.100molBr2褪色。A经催化氢化生成B,B的相对分子质量为84。A的NMR谱显示三个吸收峰,=4.82(五重峰,J=4Hz,相对强度=1)=2.22(多重峰,相对强度=2),=1.65 (多重峰,相对强度=2)。试推A,B结构式。
13.按碱性大小排列下列负离子( )
(A)(2)>(3)>(4)>(1)(B)(3)>(2)>(4)>(1)
(C). (4)>(2)>(3)>(1)(D)(2)>(4)>(3)>(1)
14.某烯烃经臭氧化和还原水解后只得CH3COCH3,该烯烃为:()
(A) (CH3)2C=CHCH3(B) CH3CH=CH2
5.2分写出下列反应的主要有机产物,如有立体化学问题,也应注明。
6.2分(8034)
2-硝基蒽的结构式是?
7. 2分化合物的CCS名称是:
8.2分异丙基环己基苯的结构式是?(2分)
9.写出下列反应的主要有机产物或所需之原料、试剂(如有立体化学问题请注明)。
(4分)
10.2分化合物的CCS名称是:
二、选择题(每空2分,共30分)
得分
评阅人
1.2分(7783)
一个烯烃(C4H8)与稀、冷KMnO4溶液反应得到一个内消旋体。这烯烃的结构为:
2.下面四个同分异构体中哪一种沸点最高?()
(A)己烷(B) 2-甲基戊烷
(C) 2,3-二甲基丁烷(D) 2,2-二甲基丁烷
3.苯、硝基苯、甲苯和苯胺进行亲电取代反应的速度快慢次序为:()
课程编号:课程名称:有机化学考试形式:闭卷
适用班级:姓名:学号:班级:
学院:专业:考试日期:
题号
一
二
三
四
五
六
七
八
九
十
总分
累分人签名
题分
100
得分
考生注意事项:1、本试卷共页,请查看试卷中是否有缺页或破损。如有立即举手报告以便更换。
2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。
一、填空题(每空2/4分,共26分)
得分
评阅人
1.2分化合物(CH3)2CHCH2CH2CH(C2H5)2的CCS名称是:
2.2分(8259)
下面化合物的CCS名称是:
3.4分(7203)
各写出一个能满足下列条件的化合物的构造式:
(1)具有手性碳原子的炔烃C6H10
(2)具有手性碳原子的烯烃C6H12
4.4分(8011)
写出下列反应的主要有机产物或所需之原料、试剂(如有立体化学问题请注明)。
(A)碳正离子重排(B)自由基反应
(C)碳负离子重排(D) 1,3-迁移
6.稳定性最大的碳正离子是()
(A) (B) (C) (D)
7.某烃C6H12能使溴溶液褪色,能溶于浓硫酸,催化氢化得正己烷,用酸性KMnO4氧化得二种羧酸,则该烃是:()
(A) CH3CH2CH=CHCH2CH3(B) (CH3)2CHCH=CHCH3
(CH3)2CHCH2Br +NaC≡CH───→?
(C) (CH3)2C=C(CH3)2(D) (CH3)2C=CH2
15.下列哪种试剂可将不饱和的二级醇氧化成相应的酮而双键不受影响?()
(A)高锰酸钾(B)浓硝酸(C)琼斯试剂(D)过量铬酸
三、合成题(每空5分,共20分)
得分
评阅人
1.如何实现下列转变?
2.如何实现下列转变?
3.如何实现下列转变?
(C) CH3CH2CH2CH=CHCH3(D) CH3CH2CH2CH2CH=CH2
8.分子式为C5H12的分子共有几种同分异构体()
(A)2(B)3(C)4(D)5
9.烯烃与卤素在高温或光照下进行反应,卤素进攻的主要位置是: ( )
(A)双键C原子(B)双键的α-C原子
(C)双键的β-C原子(D)叔C原子
2.化合物C3H6Cl2的1H NMR谱有一个单峰,试推出其可能的结构式。
五、机理题(每空6分,共12分)
得分
评阅人
1.预料下述反应的主要产物,并提出合理的、分步的反应机理(用弯箭头表示电子对的转移,用鱼钩箭头表示单电子的转移,并写出各步可能的中间体)。
对溴苄要产物,并提出合理的、分步的反应机理。
(A)硝基苯>苯>甲苯>苯胺
(B)苯胺>甲苯>苯>硝基苯
(C)甲苯>苯胺>>苯硝基>苯
(D)硝基苯>苯胺>甲苯>苯
4.含有两个相同手性碳原子的A-A型化合物有几种光学异构体?()
(A) 2种(B) 4种(C)3种(D) 5种
5. HBr与3,3-二甲基-1-丁烯加成生成2,3-二甲基-2-溴丁烷的反应机理是什么?()
10.正丙基苯在光照下溴代的主要产物是:()
(A)1-苯基-1-溴丙烷(B) 1-苯基-2-溴丙烷
(C)邻溴丙苯(D)对溴丙苯
11.实验室中常用Br2的CCl4溶液鉴定烯键,其反应历程是:()
(A)亲电加成反应(B)自由基加成
(C)协同反应(D)亲电取代反应
12.丁二烯与溴化氢进行加成反应构成什么中间体? ( )