材料学基本概念
材料力学概念及基础知识
一、基本概念1 材料力学的任务是:研究构件的强度、刚度、稳定性的问题,解决安全与经济的矛盾。
2 强度:构件抵抗破坏的能力。
3 刚度:构件抵抗变形的能力。
4 稳定性:构件保持初始直线平衡形式的能力。
5 连续均匀假设:构件内均匀地充满物质。
6 各项同性假设:各个方向力学性质相同。
7 内力:以某个截面为分界,构件一部分与另一部分的相互作用力。
8 截面法:计算内力的方法,共四个步骤:截、留、代、平。
9 应力:在某面积上,内力分布的集度(或单位面积的内力值)、单位Pa。
10 正应力:垂直于截面的应力(σ)11 剪应力:平行于截面的应力()12 弹性变形:去掉外力后,能够恢复的那部分变形。
13 塑性变形:去掉外力后,不能够恢复的那部分变形。
14 四种基本变形:拉伸或压缩、剪切、扭转、弯曲。
二、拉压变形15 当外力的作用线与构件轴线重合时产生拉压变形。
16 轴力:拉压变形时产生的内力。
17 计算某个截面上轴力的方法是:某个截面上轴力的大小等于该截面的一侧各个轴向外力的代数和,其中离开该截面的外力取正。
18 画轴力图的步骤是:①画水平线,为X轴,代表各截面位置;②以外力的作用点为界,将轴线分段;③计算各段上的轴力;④在水平线上画出对应的轴力值。
(包括正负和单位)19 平面假设:变形后横截面仍保持在一个平面上。
20 拉(压)时横截面的应力是正应力,σ=N/A21 斜截面上的正应力:σα=σcos²α22 斜截面上的切应力:α=σSin2α/223 胡克定律:杆件的变形时与其轴力和长度成正比,与其截面面积成反比,计算式△L=NL/EA(适用范围σ≤σp)24 胡克定律的微观表达式是σ=Eε。
25 弹性模量(E)代表材料抵抗变形的能力(单位Pa)。
26 应变:变形量与原长度的比值ε=△L/L(无单位),表示变形的程度。
27 泊松比(横向变形与轴向变形之比)μ=∣ε1/ε∣28 钢(塑)材拉伸试验的四个过程:比例阶段、屈服阶段、强化阶段、劲缩阶段。
材料科学基础基本概念和名词解释
晶体缺陷单晶体:是指在整个晶体内部原子都按照周期性的规则排列。
多晶体:是指在晶体内每个局部区域里原子按周期性的规则排列,但不同局部区域之间原子的排列方向并不相同,因此多晶体也可看成由许多取向不同的小单晶体(晶粒)组成点缺陷(Point defects):最简单的晶体缺陷,在结点上或邻近的微观区域内偏离晶体结构的正常排列。
在空间三维方向上的尺寸都很小,约为一个、几个原子间距,又称零维缺陷。
包括空位vacancies、间隙原子interstitial atoms、杂质impurities、溶质原子solutes 等。
线缺陷(Linear defects):在一个方向上的缺陷扩展很大,其它两个方向上尺寸很小,也称为一维缺陷。
主要为位错dislocations。
面缺陷(Planar defects):在两个方向上的缺陷扩展很大,其它一个方向上尺寸很小,也称为二维缺陷。
包括晶界grain boundaries、相界phase boundaries、孪晶界twin boundaries、堆垛层错stacking faults等。
晶体中点阵结点上的原子以其平衡位置为中心作热振动,当振动能足够大时,将克服周围原子的制约,跳离原来的位置,使得点阵中形成空结点,称为空位vacancies肖脱基(Schottky)空位:迁移到晶体表面或内表面的正常结点位置,使晶体内部留下空位。
弗兰克尔(Frenkel)缺陷:挤入间隙位置,在晶体中形成数目相等的空位和间隙原子。
晶格畸变:点缺陷破坏了原子的平衡状态,使晶格发生扭曲,称晶格畸变。
从而使强度、硬度提高,塑性、韧性下降;电阻升高,密度减小等。
热平衡缺陷:由于热起伏促使原子脱离点阵位置而形成的点缺陷称为热平衡缺陷(thermal equilibrium defects),这是晶体内原子的热运动的内部条件决定的。
过饱和的点缺陷:通过改变外部条件形成点缺陷,包括高温淬火、冷变形加工、高能粒子辐照等,这时的点缺陷浓度超过了平衡浓度,称为过饱和的点缺陷(supersaturated point defects) 。
掌握材料科学的一些基本概念
掌握材料科学的一些基本概念材料科学是一门研究材料的科学,可以说是现代工业发展的重要组成部分。
在日常生活中,我们所接触的很多物质都是材料,比如塑料、玻璃、金属、木材等等。
而材料科学就是研究如何利用这些常见的物质,改造它们的性质以适应特定的需求。
在这篇文章中,我将介绍一些材料科学的基本概念,希望有助于读者更好地理解材料科学的本质。
一、材料的结构材料的结构指的是材料内在的微观结构。
对于晶体材料来说,它的结构由原子或者分子的周期性排列构成。
而对于非晶体材料,它的结构则是一种无序的固态结构。
了解材料的结构可以帮助我们更好地预测和解释材料的性质。
二、材料的性质材料的性质是指材料能够表现出来的各种物理、化学和力学特性。
材料的性质与其微观结构密切相关。
常见的材料性质包括密度、热容、热导率、电导率、杨氏模量、屈服强度等等。
三、材料的制备材料的制备是制造业中十分重要的一个环节。
它包括各种工艺过程,例如炼铁、冶金、合成、成型和加工等。
不同的制备工艺会对材料的结构和性质产生不同的影响,因此选择合适的制备工艺非常关键。
四、材料的表征材料的表征是指对材料进行物理、化学和结构分析的过程。
这些分析方法可以用来确定材料的组成、结构和性质等参数。
常见的表征方法包括扫描电镜、X射线衍射、拉曼光谱、电子探针等等。
五、材料的应用材料的应用非常广泛,涉及到各个行业领域。
比如对于医药行业而言,材料的应用主要在于研发新型药物、医疗设备和医用材料。
而对于航空航天行业来说,材料的应用则是指研发各种高强度、轻量化的材料,以提高航空器的性能和安全性。
综上所述,材料科学作为一门十分交叉的学科,涉及到物理学、化学、材料工程等多个领域。
通过了解材料的结构、性质、制备、表征和应用,我们可以更好地理解材料科学在现代工业中的作用,同时也有助于我们更好地应用和发展材料科学的实践。
材料科学基础基本概念-名词解释
材料科学基础基本概念-名词解释单晶体:是指在整个晶体内部原子都按照周期性的规则排列。
多晶体:是指在晶体内每个局部区域里原子按周期性的规则排列,但不同局部区域之间原子的排列方向并不相同,因此多晶体也可看成由许多取向不同的小单晶体(晶粒)组成点缺陷(Point defects):最简单的晶体缺陷,在结点上或邻近的微观区域内偏离晶体结构的正常排列。
在空间三维方向上的尺寸都很小,约为一个、几个原子间距,又称零维缺陷。
包括空位vacancies、间隙原子interstitial atoms、杂质impurities、溶质原子solutes等。
线缺陷(Linear defects):在一个方向上的缺陷扩展很大,其它两个方向上尺寸很小,也称为一维缺陷。
主要为位错dislocations。
面缺陷(Planar defects):在两个方向上的缺陷扩展很大,其它一个方向上尺寸很小,也称为二维缺陷。
包括晶界grain boundaries、相界phase boundaries、孪晶界twin boundaries、堆垛层错stacking faults等。
空位:晶体中点阵结点上的原子以其平衡位置为中心作热振动,当振动能足够大时,将克服周围原子的制约,跳离原来的位置,使得点阵中形成空结点,称为空位vacancies肖脱基(Schottky)空位:迁移到晶体表面或内表面的正常结点位置,使晶体内部留下空位。
弗兰克尔(Frenkel)缺陷:挤入间隙位置,在晶体中形成数目相等的空位和间隙原子。
晶格畸变:点缺陷破坏了原子的平衡状态,使晶格发生扭曲,称晶格畸变。
从而使强度、硬度提高,塑性、韧性下降;电阻升高,密度减小等。
热平衡缺陷:由于热起伏促使原子脱离点阵位置而形成的点缺陷称为热平衡缺陷(thermal equilibrium defects),这是晶体内原子的热运动的内部条件决定的。
过饱和的点缺陷:通过改变外部条件形成点缺陷,包括高温淬火、冷变形加工、高能粒子辐照等,这时的点缺陷浓度超过了平衡浓度,称为过饱和的点缺陷(supersaturated point defects) 。
材料力学的任务及基本概念
四、杆件的几何特性
直杆 曲杆
主要几何因素: 横截面、轴线 等截面杆和变截面杆
例1:试求图示悬臂梁截面上的内力
解:截面法 (1)切 (2)留 (3)代 (4)平 平衡条件:
F 0 M 0
y O
Fs F 0
M Fa 0
求得: Fs F
M Fa
(剪力) (弯矩)
一、应力
0
F2
FS 1 FN 1
0
y
0, FS1 F2 cos 45 F 0
0 C
F
2a
M
0, M1 F 3a F2 sin 45 a 0
M1
C
1 1
a
E
D
解得: FN1 2F , FS1 F , M1 Fa, F2 2 2F
F2
250
例
已知:薄板的两条边 固定,变形后a'b, a'd 仍为直线。 求:ab 边的m 和 ab、ad 两边夹角 的变化。 解:
如右图,δ远小于构件的最小尺寸, 所以通过节点平衡求各杆内力时,把支架 的变形略去不计。计算得到很大的简化。
A
δ1
B C F δ2
§5-3 杆件的分类和杆件的基本变形
一、材料力学的研究对象 构件的分类:杆件、板壳*、块体* 材料力学主要研究杆件
{ 曲杆—— 轴线为曲线的杆
直杆—— 轴线为直线的杆
{
工 程 力 学
(Engineering Mechanics)
六盘水师范学院
矿业工程系
第二篇 材料力学
材料力学:研究材料的强度、刚度和稳定性 问题。其研究对象是变形体,是变形体力学。
材料学(精选)
04
材料的表征与分析
材料的表征方法
X射线衍射分析(XRD)
通过测量材料对X射线的衍射角度,确定 材料的晶体结构和相组成。
透射电子显微镜(TEM)
通过电子束穿透样品,观察材料的内部 结构和缺陷。
扫描电子显微镜(SEM)
利用电子束扫描样品表面,获得高分辨 率的形貌和结构信息。
原子力显微镜(AFM)
利用原子间的相互作用力,探测样品表 面的形貌和物理性质。
包括热重分析(TGA)、差热分析( DTA)等,用于研究材料的热稳定性和 热分解过程。
表征与分析在材料研究中的应用
材料结构与性能关系研究
通过表征和分析技术,揭示材料结构 与性能之间的内在联系,为材料设计 提供依据。
材料制备工艺优化
通过对材料制备过程中的结构演变和 性能变化进行实时监测,优化制备工 艺参数,提高材料性能。
、钎焊等。
04
热处理
通过加热、保温和冷却等手段 ,改变材料内部的组织结构, 从而获得所需性能的一种工艺 方法。包括退火、正火、淬火
、回火等。
制备与加工对材料性能的影响
制备方法对材料性能的影响
不同的制备方法会导致材料的成分、组织、结构和性能等方面存在差异。例如,粉末冶金 法制备的材料通常具有细晶粒组织和优异的力学性能;而熔铸法制备的材料则可能存在成 分偏析和组织粗大等问题。
材料的发展趋势与前景展望
复合材料
通过融合不同性质的材料,获得 综合性能优异的复合材料,如碳 纤维复合材料、金属基复合材料
等。
纳米பைடு நூலகம்料
利用纳米技术制造的材料,具有 独特的物理和化学性质,如纳米 线、纳米管、纳米颗粒等,在电 子学、生物医学等领域具有广阔
大学材料导论知识点总结
大学材料导论知识点总结一、材料的基本概念1、材料的定义:材料是人类使用的各种原始、半成品和成品物质的统称。
它们通常包括金属、陶瓷、高分子材料、复合材料等,并且广泛应用于工业、建筑、医疗、航天航空等领域。
2、材料的分类:可以根据不同的属性将材料划分为金属材料、非金属材料和复合材料三大类。
金属材料包括铁、铜、铝等金属元素及其合金;非金属材料包括陶瓷、高分子材料等;复合材料是由两种或两种以上不同种类的材料组成的混合材料。
3、材料的性能:材料的性能包括力学性能、物理性能、热学性能、电学性能、化学性能等。
在材料导论中,学生将学习如何通过实验或者理论计算等方法来评价和分析材料的各种性能。
二、材料的结构和性质1、金属材料的结构和性质:金属材料通常以金属原子通过金属键连接而成的结晶结构,具有良好的导电、导热、可塑性和韧性等性质。
在材料导论课程中,学生将学习如何通过晶体学和相变等知识来理解和分析金属材料的结构和性质。
2、非金属材料的结构和性质:非金属材料通常以共价键或者离子键连接而成的分子、离子或原子结构,具有较好的绝缘、耐热、耐腐蚀等性质。
学生将学习如何通过结构化学等知识来理解和分析非金属材料的结构和性质。
3、复合材料的结构和性质:复合材料由两种或两种以上不同种类的材料组成,它具有各种不同种类材料的优点,并且能够弥补各种不同种类材料的缺点。
在材料导论中,学生将学习复合材料的组成、制备方法、结构和性质等知识。
三、材料的应用和研究方法1、材料的应用:材料广泛应用于工业、建筑、医疗、航天航空等领域。
在材料导论课程中,学生将学习各种材料的应用领域、特点以及相关的工程实例。
2、材料的研究方法:为了解释和分析材料的结构与性质,学者们提出了许多研究材料性质的方法。
例如,X射线衍射、透射电镜、扫描电镜等方法可以用来研究材料的结构;拉伸实验、冲击实验、硬度实验等方法可以用来研究材料的力学性能。
在材料导论中,学生将学习这些研究方法的原理、应用和操作技巧。
材料学基础
材料学基础材料学基础是指关于材料科学与工程领域中一些基本概念和原理的学习,包括材料的组成、结构、性能和应用等方面的知识。
以下是材料学基础的一些重要内容。
首先,材料的组成是指材料的构成成分。
材料可以分为金属、非金属和复合材料等多种类型。
金属材料主要由金属元素构成,具有良好的导电性、导热性和可塑性等特点。
非金属材料主要由非金属元素构成,包括陶瓷、塑料和高分子材料等,具有绝缘性和耐高温性等特点。
复合材料是由两种或多种不同材料组合而成的材料,具有多种材料的优点,如轻质、高强度和耐腐蚀性等。
其次,材料的结构是指材料的内部组织。
晶体结构是最基本的材料结构,材料中的原子、离子或分子按照一定规律排列而成的结晶体。
晶体结构的类型有很多,如立方晶系、六方晶系和四方晶系等。
除了晶体结构,还有非晶体结构,即无定型结构,原子、离子或分子的排列没有规则性。
再次,材料的性能是指材料在不同条件下表现出来的特点。
材料的力学性能包括强度、硬度和韧性等,用来描述材料的抗压、抗剪和抗拉等方面的性能。
材料的物理性能包括密度、导热性和热膨胀系数等,用来描述材料在物理方面的特性。
材料的化学性能包括腐蚀性和耐磨性等,用来描述材料在化学性质和耐久性方面的特点。
最后,材料的应用是指材料在实际工程中的使用。
不同类型的材料具有不同的特点和应用领域。
金属材料广泛应用于汽车制造、飞机制造和建筑工程等领域。
非金属材料广泛应用于电子器件、塑料制品和建筑装饰等领域。
复合材料广泛应用于航空航天、体育器材和高速运输工具等领域。
综上所述,材料学基础是学习材料科学与工程领域中一些基本概念和原理的过程,包括材料的组成、结构、性能和应用等方面的知识。
掌握材料学基础对于深入理解材料科学和工程领域具有重要意义,并为进一步研究和应用材料提供了基础。
材料学概论基础知识点总结
材料学概论基础知识点总结一、材料学概论概念及发展历程材料学是一门研究材料结构、性能、加工工艺及应用的学科,是现代工程技术和科学研究的基础。
材料学的研究对象主要包括金属材料、无机非金属材料、有机高分子材料和复合材料等。
材料学概论是材料学的基础课程,主要介绍材料学的基本概念、发展历程、分类、性能和应用等内容。
材料学的发展可以追溯到古代,人类在生产和生活中使用各种原始材料制作工具、器物、建筑等。
随着工业革命的到来,材料学得到了迅速的发展,尤其是在20世纪以来,材料科学和工程学得到了迅速发展,涌现了一大批优秀的材料科学家和工程师,推动了材料学的发展。
二、材料的分类和基本性能1. 材料的分类材料按其化学成分和组织结构可分为金属材料、无机非金属材料、有机高分子材料和复合材料四大类。
根据材料的性能和用途,还可以进一步细分为结构材料、功能材料和特种材料等。
金属材料是由金属元素组成的材料,具有亲密的金属结合,通常具有优良的导电性、导热性和塑性等特点,广泛应用于工程技术中。
无机非金属材料是由非金属元素或其化合物组成的材料,主要包括陶瓷、硅酸盐、玻璃等,具有高硬度、抗热、抗腐蚀等特点,广泛应用于建筑、电子、化工等领域。
有机高分子材料是由含碳的高分子化合物组成的材料,主要包括塑料、橡胶、纤维等,具有轻质、良好的可塑性和绝缘性能,广泛应用于包装、建筑、医疗、轻工等领域。
复合材料是由两种或两种以上的不同材料组合而成的新材料,具有多种材料的优点,广泛应用于航空航天、汽车、建筑、体育用品等领域。
2. 材料的基本性能材料的性能是材料的重要特征,反映了材料在特定工程条件下的行为。
材料的基本性能包括力学性能、物理性能、化学性能、热性能、电性能等。
力学性能包括强度、硬度、韧性、塑性、抗疲劳性等,是材料抵抗外部力量影响的能力。
物理性能包括密度、导热性、导电性、磁性、光学性能等,是材料与外部物理环境相互作用的特性。
化学性能包括腐蚀性、氧化性、渗透性等,是材料与各种化学介质相互作用的特性。
材料科学与工程的基本概念和应用领域
材料科学与工程的基本概念和应用领域材料科学与工程是一门高度交叉的学科,它涉及材料的制备、性质、结构和应用等方面。
面对日新月异的科学技术发展,强化材料科学与工程的研究与应用,成为各国竞争的重要目标之一。
本文将从材料科学与工程的基本概念、应用领域、发展历程、前沿科技和未来发展方向等角度进行讲述。
一、基本概念材料科学与工程是研究材料结构、性能、制备和应用的一门学科,它是机械、电子、电力、信息、航空、航天、房产、医疗保健、环保、能源等领域的重要支撑。
材料科学和工程的最大特点在于它具有广泛的应用领域和较强的实践性,它的发展不断促进着科技的进步和社会的发展。
二、应用领域材料科学和工程涉及到多种领域,包括材料设计、晶体学与表征、材料制备与处理、多尺度计算、材料物理与化学、材料质量控制、体系工程化及其应用等。
这些领域的应用范围极广,从基础材料如金属和非金属材料,到应用材料如纳米结构材料、高温合金,以及各种功能材料如光催化材料、磁性材料、光电材料、高分子材料等都有涉及。
同时,材料科学和工程在人工智能、大数据和云计算等领域也有着广泛应用。
三、发展历程材料科学和工程的发展历程主要可以分为三个阶段,第一阶段是原始时期,主要是人们运用原始的工具和工艺手艺,从自然环境中开采材料,制作出最基本的器具和设备,创造了各种传统的工艺方法;第二阶段是材料科学和工程的形成阶段,包括从试错和增加新材料这样的经验方法,到材料的应用和离子与电子影响等基础研究;第三阶段是材料科学和工程的发展及创新阶段,物理和化学概念开始被应用于材料设计与制造,新的合成技术被不断发展,大量新材料和功能材料被研发出来,使材料科学和工程发展到了一个更高的层次。
四、前沿科技现代材料科学和工程不断涌现出前沿技术,其中包括高温复合材料、晶须增强陶瓷、金属玻璃、纳米材料等。
其它一些创新技术也是相当重要的,如合金元素协同作用、液晶聚合物、新型半导体材料、光纤材料和光子晶体等。
材料科学与工程基本概念及其应掌握的内容
基本概念再结晶退火、再结晶、动态再结晶、二次再结晶、晶体、点阵、空间点阵、点阵畸变、晶胞、晶族、同质多晶、同质异构体、晶粒生长、一级相变、二级相变、珠光体相变、相图中的自由度、相平衡、连线规则、共晶转变、中间相、伪共析转变、共析转变、包晶转变、离异共晶、晶界偏聚、金属键、共价键、离子键、配位数、费米能级、能带、储存能、形变组织、临界变形量、形变织构、网络形成体、网路变性体、尖晶石结构、反尖晶石结构、线缺陷、组分缺陷、福伦克尔(Frenker)缺陷、肖特基缺陷、位错、位错滑移、交滑移、螺位错、全位错、弗兰克尔空位、非化学计量结构缺陷、孪生、空间群、点群、电子化合物、稳态扩散、上坡扩散、反应扩散、弛豫、时效、均相成核、异相成核、固溶体、索氏体、珠光体、配位多面体、高分子的数均相对分子质量(Mn)、高分子链的构型、间同立构、平衡分凝系数、热力学势函数、活性氧、调幅分解、金属玻璃、金属间化合物、润湿、.独立组分、烧结填空题1. 材料的组织结构包括:、、和。
2. 在描述原子中电子的空间位置和能量的4个量子数中,其中决定体系角动量和电子几率分布的空间对称性的是第量子数。
3. 派生键合包括和4. 组合成分子轨道的条件是、、和。
5. 晶体结构= +。
6. 晶胞的基本要素:和。
7. 固体的表面特性包括、和。
8. 最紧密堆积的晶体结构有两种:一种是,每个晶胞中有个原子;另外一种是,每个晶胞中有个原子。
9. 金刚石结构中,C是链连接,配位数为。
10. 固态相变的驱动力是,阻力是和。
11. 金属材料常用的强化手段有、、和。
12. 在离子晶体结构中,正离子构成,正负离子间的距离取决于,配位数取决于正负离子的。
13. 高分子链中由于而产生的分子在空间的不同形态称为构象,高分子能够改变构象的性质称为。
14. 形成置换固溶体的影响因素有、、和。
15. 马氏体相变的两个基本特点是和。
16. 多晶体材料塑性变形至少需要独立滑移系开动。
大一材料科学导论知识点
大一材料科学导论知识点材料科学导论是材料科学与工程专业的基础课程之一,它主要介绍了材料科学的基本概念、发展历程以及相关的核心知识点和理论基础。
本文将围绕大一材料科学导论的知识点展开论述,帮助大家更好地理解和掌握这门课程。
一、材料的基本概念在学习材料科学导论之前,首先要了解材料的基本概念。
材料是人类用来满足需求的物质实体,可以分为金属材料、非金属材料和复合材料等多种类型。
材料的性能取决于其组成成分、结构以及制备工艺。
二、材料的分类和性能1.材料的分类材料可以按照其成分和结构进行分类。
按成分可分为金属材料、无机非金属材料和有机高分子材料等;按结构可分为晶体材料、非晶材料和纳米材料等。
2.材料的性能材料的性能是指材料在特定条件下表现出来的特征和行为。
常见的材料性能包括力学性能、热学性能、电学性能、磁学性能和光学性能等。
三、材料性能与结构的关系1.影响材料性能的因素材料的性能与其结构密切相关。
材料的微观结构可以通过原子、微观晶体结构来描述,而宏观结构指的是材料在大尺度上的形态和组织结构。
不同的结构会对材料的性能产生不同的影响。
2.结构与性能的关系结构与性能的关系是材料科学研究的重要内容。
例如,晶体结构的不同会导致材料的力学性能有所差异,非晶态结构则决定了材料的导热性能。
了解结构与性能的关系有助于我们设计和选择适用于特定应用的材料。
四、材料的制备和加工1.材料的制备方法材料的制备方法多种多样,包括传统的熔炼、冶金、陶瓷制备,以及近年来发展起来的各种先进制备技术,如纳米材料的制备、薄膜的制备等。
2.材料的加工方法材料的加工是将原始材料进行成型、改变形状的过程。
常见的加工方法有锻造、铸造、焊接、涂覆、切削等。
不同的材料对应不同的加工方法,选择合适的加工方法可以提高材料的性能和使用价值。
五、材料的性能测试和评价为了评估材料的性能是否满足使用要求,需要进行性能测试和评价。
常用的材料测试方法包括力学测试、热学测试、电学测试和光学测试等。
基本概念 材料力学
复 习一、基本概念:1.材料力学研究变形固体,对变形固体作了连续性、均匀性,各向同性假设。
2..杆件变形基本形式有:轴向拉压、扭转、平面弯曲、剪切。
3.轴向拉压,外力作用线与杆轴线重合,内力在横截面上均匀分布,变形是杆长度变化。
4.塑性材料拉、压强度相等,脆性材料抗拉强度小。
5..衡量材料强度的两个重要指标是屈服极限和强度极限;衡量材料塑性的两个指标是伸长率和断面收缩率。
6.扭转时,横截面上是切应力。
变形是横截面转动。
7.纯弯曲时,横截面上是正应力,横力弯曲时,横截面上有正应力和切应力。
8.提高梁的弯曲强度措施之一是选择合理的截面形状。
合理截面的形状应该是抗弯截面系数大。
9.应用积分法计算梁的弯曲变形将出现积分常数,积分常数由边界条件和连续条件确定。
10. 对于三向应力状态,三个主应力为321σσσ≥≥;最大正应力为1σ,最大切应力为31σσ-。
11.几个基本变形同时作用在一个杆上是组合变形。
12.细长压杆的破坏由失稳引起。
二、练习题1.作出图示杆件的轴力图:(KN )2.作出图示轴的扭矩图。
ABCD 50304020ABCD 4P3P9P2PABC D 4P5P P 100N ·m100N ·m200N ·m200N ·m 200N ·m 100N ·m 100N ·m3. 作出图示梁的剪力图和弯矩图。
4. 已知应力状态如图所示,试求:主应力大小,最大切应力,主平面方位,并画出主单元。
5. 交通指示牌由钢管支承,如图所示。
受到水平风力F =100N ,钢管的外径,D =60mm ,内径d = 55mm ,许用应力[]σ=70MPa 。
试按第三和第四强度理论校核钢管的强度。
6. 细长压杆为圆杆,直径d =120mm ,材料为Q235钢,弹性模量E =200GPa ,求临界压力F cr 。
qA Ca2a BqaACaaB PPa20MPa30MPa30MPa30MPa30MPa50MPa30MPaFyxz3m0.5mFyx2.5m0.3m FF8mF7m10m。
材料学概论重点.doc
材料学概论重点.doc材料学概论是材料学的入门课程,主要介绍材料科学的基本概念、理论和方法。
本文将重点介绍材料学概论中的一些重要内容。
1. 材料的基本分类材料可以按照其组成、特性及用途等方面进行分类。
从组成角度来看,材料可以分为金属材料、无机非金属材料和有机高分子材料等。
从特性角度来看,材料可以分为金属材料、陶瓷材料、塑料材料、纤维材料和半导体材料等。
从用途角度来看,材料可以分为结构材料、功能材料和生物材料等。
2. 材料的物理性质材料的物理性质包括密度、热力学性质、光学性质、磁性和导电性等。
密度是指单位体积内的质量,可以反映材料的重量和体积之间的关系。
热力学性质包括热容、热导率、热膨胀系数等,这些指标可以反映材料的热响应能力。
光学性质包括折射率、吸收系数、反射率等,可以反映材料的光传播和吸收能力。
磁性是指材料对磁场的响应能力,主要包括铁磁性、顺磁性和抗磁性。
导电性是指材料对电场的响应,主要包括导电材料和绝缘材料。
材料的化学性质包括化学组成、化学稳定性、反应性等。
化学组成是指材料中元素或化合物的种类和相对量,可以决定材料的性质和用途。
化学稳定性是指材料在不同环境下的稳定性,主要包括氧化性、还原性和腐蚀性等。
反应性是指材料与其他物质发生各种化学反应的能力。
4. 材料的制备和表征材料的制备包括物理制备和化学制备两类。
物理制备包括熔融法、凝固法、沉淀法和气相沉积法等,化学制备包括溶胶-凝胶法、水热法、电化学沉积法等。
材料的表征主要包括物理性质表征和化学性质表征。
物理性质表征主要包括形貌表征、结构表征和力学性质表征等,化学性质表征主要包括元素定量分析、化学反应等。
5. 材料的应用材料的应用涉及到多个领域,主要包括电子材料、光学材料、结构材料、生物材料等。
电子材料包括半导体材料、金属材料和磁性材料等,可以用于电子元件的制造;光学材料包括玻璃、透镜等,可以用于光学仪器和装置等;结构材料包括钢铁、混凝土等,可用于建筑和工程结构;生物材料包括医用材料和食品包装材料等。
材料学、材料物理与化学、材料化学、化工等相关专业;-概述说明以及解释
材料学、材料物理与化学、材料化学、化工等相关专业;-概述说明以及解释1.引言1.1 概述材料学、材料物理与化学、材料化学、化工等专业是研究和应用材料的重要学科领域。
随着科学技术的发展和社会进步的需要,这些专业逐渐成为了理工科领域中备受关注的热门专业。
材料学是研究材料的结构、性能、制备和应用的学科。
它包括了对材料的组成、结构、特性以及制备、加工、性能与应用的理论和实验研究。
随着科学技术的进步和社会对新材料的需求,材料学的研究内容也不断扩展和深化。
目前,材料学已经发展为多学科交叉的综合学科,涉及到物理学、化学、生物学、工程学等多个领域。
材料物理与化学是研究材料物理性质与化学性质之间相互关系的学科。
它探讨了材料的物理性质,如电学、磁学、热学等以及化学性质,如反应性、稳定性等。
通过深入研究材料的物理和化学特性,可以更好地理解和掌握材料的性能与行为,为材料的设计、制备和应用提供基础理论和科学方法。
材料化学是研究材料的化学合成、性能调控和应用的学科。
它主要关注原子、分子与材料的相互作用、反应及其机制,以及通过化学方法来改变材料的性质和结构。
材料化学涉及到有机材料、无机材料、高分子材料等不同类型的材料,研究方法包括合成、分析、测试等多个方面。
化工是研究和应用化学原理、工程技术和材料科学知识的学科。
它的研究范围包括化学反应的原理、工艺及其应用,化工过程设计与控制,材料与能源转化等。
化工专业在现代化工生产、环境保护、新能源开发等方面具有重要的作用。
综上所述,材料学、材料物理与化学、材料化学、化工等相关专业在科技进步和社会发展中起到了关键的作用。
通过对材料的研究和应用,可以推动技术创新和产业发展,为社会进步做出贡献。
因此,对这些专业领域的学习和研究具有重要意义。
1.2 文章结构文章结构部分的内容可以包括以下信息:本文将分为六个主要部分进行论述,每个部分都涵盖了与材料学、材料物理与化学、材料化学、化工等相关专业密切相关的重要内容。
材料学概论教案模板范文
教学目标:1. 了解材料学的基本概念、发展历程及其在现代社会中的重要性。
2. 掌握材料的分类、性质、制备和应用等方面的基本知识。
3. 培养学生运用所学知识分析实际问题、解决实际问题的能力。
4. 激发学生对材料科学研究的兴趣,为后续专业课程学习打下基础。
教学对象:大一新生,材料科学与工程专业教学课时:2课时教学内容:一、导入1. 引入材料学的概念,强调材料在现代社会的重要性。
2. 通过实例介绍材料学的发展历程,激发学生的学习兴趣。
二、基本概念与分类1. 材料的基本概念:物质、材料、高性能材料、功能材料等。
2. 材料的分类:金属材料、无机非金属材料、高分子材料、复合材料等。
3. 每一类材料的典型代表及其应用领域。
三、材料的性质1. 物理性质:密度、硬度、弹性、导电性、导热性等。
2. 化学性质:耐腐蚀性、抗氧化性、耐热性等。
3. 力学性质:强度、韧性、硬度等。
四、材料的制备与应用1. 金属材料的制备:炼铁、炼钢、有色金属等。
2. 无机非金属材料的制备:水泥、玻璃、陶瓷等。
3. 高分子材料的制备:合成橡胶、合成塑料、合成纤维等。
4. 复合材料的制备与应用:玻璃钢、碳纤维等。
五、案例分析1. 介绍国内外材料科学研究领域的热点问题。
2. 分析案例中的材料性能、制备工艺及应用领域。
教学过程:一、导入1. 提问:同学们,你们知道什么是材料学吗?材料学在现代社会中有什么作用?2. 回答后,简要介绍材料学的概念和发展历程。
二、基本概念与分类1. 讲解材料的基本概念,如物质、材料、高性能材料、功能材料等。
2. 介绍材料的分类,并举例说明每一类材料的典型代表及其应用领域。
三、材料的性质1. 讲解材料的物理性质、化学性质和力学性质。
2. 结合实例,让学生了解不同性质的材料在实际应用中的表现。
四、材料的制备与应用1. 介绍金属、无机非金属、高分子和复合材料的基本制备工艺。
2. 分析各类材料的典型应用领域。
五、案例分析1. 介绍国内外材料科学研究领域的热点问题。
材料力学的基本概念
三、胡克定律 应力 正应力 切应力
正应变 应变
切应变
1、单向应力状态:
E
E 称为弹性模量
2、纯剪切
G
G 称为切变模量
ε :M点沿Ma方向的正应变。
正应变:即单位长度的变形量。无量纲量,其 物理意义是构件上一点沿某一方向变形量的大小。
切应变:即一点单元体两棱边直 角的改变量。无量纲量,单位为: rad
思考题
二、单向应力、纯剪切与切应力互等定理 在构件的同一截面上,不同点的应力一般不同,
同时,在通过同一点的不同方位的截面上,应力 一般也不同。 最基本、最简单的两种形式:单向应力状态和纯剪切。
1)截:欲求某一截面的内力, 沿该截面将构件假想地截成两 部分。 2)取:取其中任意部分为研 究对象,而弃去另一部分。
3)代:用作用于截面上的内 力,代替弃去部分对留下部分 的作用力。 4)平:建立留下部分的平衡 条件,确定未知的内力。
3.应力
定义:横截面上单位面积的内力集
度。
pm
F A
pm —— 在ΔA上的平均应力,矢量。
pLeabharlann limA0pm
lim
A0
F A
dF dA
M A
p —— M点的应力,矢量。
垂直于截面的分量——正应力—— 相切于截面的分量——切应力——
国际单位制:Pa(N/m2)、 MPa 、GPa
5.应变
在变形固体中取一微单元体。 = u s
:平均线应变(线段Ma单位长度的 平均变形)。 lim u s0 s
材料学知识点总结
材料学知识点总结材料学是一门研究材料的结构、性能、制备及应用的学科。
它包括从材料的原子结构和晶体结构到材料的力学性能、电学性能、热学性能、光学性能等方面的研究。
在现代工业和科技的发展中,材料学发挥着重要的作用,因为材料的性能决定了产品的品质和耐久性。
在这篇文章中,我们将对材料学的若干知识点进行总结。
第一部分:材料的分类按照不同的分类标准,材料可以被分成不同的类别。
以下是一些常见的材料分类方法:1.按化学成分分类。
根据材料的化学成分可将其分为金属材料、无机非金属材料和有机材料三类。
2.按组织结构分类。
根据材料的组织结构可将其分为晶体材料和非晶体材料两类。
3.按制备方法分类。
根据材料的制备方法可将其分为铸造材料、粉末冶金材料、热塑性塑料、热固性塑料、合成材料、复合材料等几类。
4.按性能分类。
根据材料的性能可将其分为导电材料、磁性材料、光学材料、超导材料、高温材料等几类。
第二部分:晶体结构晶体是一种具有规则的、周期性的三维结构的固体。
在晶体中,原子或离子沿着一定方向排列,形成了三维周期性的结构,即晶格。
晶体的结构是由晶胞重复平移得来的。
晶体结构有以下几种类型:1.简单立方结构。
简单立方结构的晶胞由一个正方形的基本面和八个固定在角落上的原子组成。
这种结构适用于金属钠、银、铝等。
2.面心立方结构。
在面心立方结构中,晶胞是由四个面心构成的正方形基本面和八个位于每个面的中心的原子构成。
这种结构适用于金属铁、铜等。
3.体心立方结构。
在体心立方结构中,晶胞由一个立方体的基本面和一个位于体心的原子构成。
这种结构适用于金属钨、铁等。
4.六方最密堆积结构。
六方最密堆积结构由最密堆积的六个六面体单元构成,每个六面体由12个原子构成,其中6个位于底面上,3个位于顶面上,3个位于底面上相邻六面体的中心处。
这种结构适用于金属镁、钙等。
第三部分:材料的物理性能材料的物理性能是指材料在各种条件下的物理反应和现象。
这些性能可以通过物理实验来测定,例如材料的密度、导电性、热导率、伸长率等。
建筑材料学
建筑材料学引言建筑材料学是一门涉及建筑材料的学科,研究建筑材料的性质、特点以及在建筑工程中的应用。
合理选择和使用建筑材料是建筑工程成功的关键之一。
本文将介绍建筑材料学的基本概念、分类、性能要求以及常见的建筑材料。
基本概念建筑材料学的定义建筑材料学是研究建筑材料的性质、特点、制造工艺以及在建筑工程中的应用的一门学科。
建筑材料的作用建筑材料在建筑工程中起到承重、隔热、隔音、防水、装饰等多种作用。
不同的建筑材料适用于不同的工程环境和功能需求。
分类根据不同的性质和用途,建筑材料可以分为以下几类:1.结构材料:如钢筋混凝土、钢材等,用于承担建筑物的荷载和提供结构强度。
2.隔热材料:如保温材料、隔热板等,用于降低建筑物内外的热传导。
3.隔音材料:如隔音板、隔音棉等,用于减少声音的传播和传递。
4.防水材料:如防水涂料、防水膜等,用于防止水分渗透和漏水。
5.装饰材料:如瓷砖、油漆等,用于美化建筑物的外观和室内环境。
性能要求建筑材料在使用过程中需要满足一定的性能要求,常见的性能要求包括:1.强度和刚度:建筑材料需要具有足够的强度和刚度来承受荷载并保持结构的稳定性。
2.耐久性:建筑材料需要能够长期抵抗外部环境的侵蚀和损坏,以确保建筑物的寿命和安全性。
3.热性能:建筑材料需要具有良好的隔热和导热性能,以确保室内的舒适性和节能性。
4.吸音性能:建筑材料需要具有良好的吸音性能,以减少噪音对室内环境的影响。
5.防火性能:建筑材料需要具有一定的防火性能,以提高建筑物的火灾安全性。
常见的建筑材料混凝土混凝土是一种由水泥、砂、石料和水按一定配合比混合而成的建筑材料。
由于混凝土具有良好的强度和耐久性,广泛应用于建筑工程中的结构部位,如墙体、地板和梁柱等。
砖块砖块是一种常见的建筑材料,采用粘土经过成型、干燥和烧制而成。
砖块具有一定的强度和隔热性能,常用于砌筑墙体和隔墙。
钢材钢材是一种具有高强度和较好延展性的金属材料,广泛应用于建筑工程中的结构部位,如钢结构框架、支撑构件等。
800材料科学基础参考书目
800材料科学基础参考书目800材料科学基础参考书目是一个全面介绍材料科学基础知识的书单,包含了各个方面的著作,帮助读者系统地学习和了解材料科学的基本概念、理论和应用。
本文将从材料科学的基础概念、材料分类、材料性能以及材料应用等几个方面来详细阐述,以期帮助读者更好地理解这些参考书目所涵盖的知识。
一、材料科学的基础概念材料科学是研究材料的组成、结构、性能和制备工艺等方面的学科。
在学习材料科学的基础概念时,建议阅读《材料科学与工程导论》。
这本书详细介绍了材料的分类、结构与性能的关系,以及材料的应用范围和未来发展趋势。
通过阅读这本书,读者可以初步了解材料科学的基本概念和研究方法。
二、材料分类与性能材料可以根据其组成、结构和性能进行分类。
在学习材料分类和性能时,推荐阅读《材料科学与工程》。
这本书详细介绍了金属、陶瓷、聚合物和复合材料等不同类型材料的特点和性能,以及它们在不同领域的应用。
通过阅读这本书,读者可以系统地了解不同材料的性能和应用特点。
三、材料制备和表征技术材料的制备和表征技术是材料科学的重要内容。
在学习材料制备和表征技术时,推荐阅读《材料制备与测量技术》。
这本书介绍了常见的材料制备方法,如熔融法、溶液法和气相沉积法等,以及常用的材料表征技术,如扫描电子显微镜(SEM)和透射电子显微镜(TEM)等。
通过阅读这本书,读者可以了解不同制备和表征技术的原理和应用。
四、材料性能与应用材料的性能与应用是材料科学的核心内容。
在学习材料性能和应用时,推荐阅读《材料性能与应用》。
这本书介绍了材料的力学性能、热学性能和电学性能等方面的知识,以及材料在航空航天、能源、生物医学和电子等领域的应用。
通过阅读这本书,读者可以深入了解材料的性能与应用之间的关系,并掌握材料应用的基本原理。
五、材料科学的前沿与发展材料科学是一个不断发展和创新的学科。
在学习材料科学的前沿与发展时,推荐阅读《材料科学的发展与前沿》。
这本书介绍了材料科学中的新材料、新技术和新应用等方面的最新研究成果和发展动态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、晶体原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。
2、中间相两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。
由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。
3、亚稳相亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。
4、配位数晶体结构中任一原子周围最近邻且等距离的原子数。
5、再结晶冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶。
(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)6、伪共晶非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为伪共晶。
7、交滑移当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。
8、过时效铝合金经固溶处理后,在加热保温过程中将先后析出GP 区,θ”,θ ’,和θ。
在开始保温阶段,随保温时间延长,硬度强度上升(时效强化),当保温时间过长,将析出θ ’,这时材料的硬度强度将下降,这种现象称为过时效。
9、形变强化金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为形变强化。
10、固溶强化由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。
11、弥散强化许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,则这种材料的强度往往会增加,称为弥散强化。
12、不全位错柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。
13、扩展位错通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。
14、螺型位错位错线附近的原子按螺旋形排列的位错称为螺型位错。
15、包晶转变在二元相图中,包晶转变就是已结晶的固相与剩余液相反应形成另一固相的恒温转变。
16、共晶转变由一个液相生成两个不同固相的转变。
17、共析转变由一种固相分解得到其他两个不同固相的转变。
18、上坡扩散溶质原子从低浓度向高浓度处扩散的过程称为上坡扩散。
表明扩散的驱动力是化学位梯度而非浓度梯度。
19、间隙扩散这是原子扩散的一种机制,对于间隙原子来说,由于其尺寸较小,处于晶格间隙中,在扩散时,间隙原子从一个间隙位置跳到相邻的另一个间隙位置,形成原子的移动。
20、成分过冷界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷。
21、一级相变凡新旧两相的化学位相等,化学位的一次偏导不相等的相变。
22、二级相变:从相变热力学上讲,相变前后两相的自由能(焓)相等,自由能(焓)的一阶偏导数相等,但二阶偏导数不等的相变称为二级相变,如磁性转变,有序-无序转变,常导-超导转变等。
23、共格相界如果两相界面上的所有原子均成一一对应的完全匹配关系,即界面上的原子同时处于两相晶格的结点上,为相邻两晶体所共有,这种相界就称为共格相界。
24、调幅分解过饱和固溶体在一定温度下分解成结构相同、成分不同的两个相的过程。
25、回火脆性淬火钢在回火过程中,一般情况下随回火温度的提高,其塑性、韧性提高,但在特定的回火温度范围内,反而形成韧性下降的现象称为回火脆性。
对于钢铁材料存在第一类和第二类回火脆性。
他们的温度范围、影响因素和特征不同。
26、再结晶退火所谓再结晶退火工艺,一般是指将冷变形后的金属加热到再结晶温度以上,保温一段时间后,缓慢冷却至室温的过程。
27、回火索氏体淬火刚在加热到400-600℃温度回火后形成的回火组织,其由等轴状的铁素体和细小的颗粒状(蠕虫状)渗碳体构成。
28、有序固溶体当一种组元溶解在另一组元中时,各组元原子分别占据各自的布拉维点阵的一种固溶体,形成一种各组元原子有序排列的固溶体,溶质在晶格完全有序排列。
29、非均匀形核新相优先在母相中存在的异质处形核,即依附于液相中的杂质或外来表面形核。
30、马氏体相变钢中加热至奥氏体后快速淬火所形成的高硬度的针片状组织的相变过程。
31、贝氏体相变钢在珠光体转变温度以下,马氏体转变温度以上范围内(550℃-230℃)的转变称为贝氏体转变。
32、铝合金的时效经淬火后的铝合金强度、硬度随时间延长而发生显著提高的现象称之为时效,也称铝合金的时效。
33、热弹性马氏体马氏体相变造成弹性应变,而当外加弹性变性后可以使马氏体相变产生逆转变,这种马氏体称为热弹性马氏体。
或马氏体相变由弹性变性来协调。
这种马氏体称为热弹性马氏体。
34、柯肯达尔效应反映了置换原子的扩散机制,两个纯组元构成扩散偶,在扩散的过程中,界面将向扩散速率快的组元一侧移动。
35、热弹性马氏体相变当马氏体相变的形状变化是通过弹性变形来协调时,称为热弹性马氏体相变。
36、非晶体原子没有长程的周期排列,无固定的熔点,各向同性等。
37、致密度晶体结构中原子体积占总体积的百分数。
38、多滑移当外力在几个滑移系上的分切应力相等并同时达到了临界分切应力时,产生同时滑移的现象。
39、过冷度相变过程中冷却到相变点以下某个温度后发生转变,平衡相变温度与该实际转变温度之差称过冷度。
40、间隙相当非金属(X)和金属(M)原子半径的比值rX/rM<0.59 时,形成的具有简单晶体结构的相,称为间隙相。
41、全位错把柏氏矢量等于点阵矢量或其整数倍的位错称为全位错。
42、滑移系晶体中一个滑移面及该面上一个滑移方向的组合称一个滑移系。
43、离异共晶共晶体中的α相依附于初生α相生长,将共晶体中另一相β推到最后凝固的晶界处,从而使共晶体两组成相相间的组织特点消失,这种两相分离的共晶体称为离异共晶。
44、均匀形核新相晶核是在母相中存在均匀地生长的,即晶核由液相中的一些原子团直接形成,不受杂质粒子或外表面的影响。
45、刃型位错晶体中的某一晶面,在其上半部有多余的半排原子面,好像一把刀刃插入晶体中,使这一晶面上下两部分晶体之间产生了原子错排,称为刃型位错。
46、细晶强化晶粒愈细小,晶界总长度愈长,对位错滑移的阻碍愈大,材料的屈服强度愈高。
晶粒细化导致晶界的增加,位错的滑移受阻,因此提高了材料的强度。
47、双交滑移如果交滑移后的位错再转回和原滑移面平行的滑移面上继续运动,则称为双交滑移。
48、单位位错把柏氏矢量等于单位点阵矢量的位错称为单位位错。
49、反应扩散伴随有化学反应而形成新相的扩散称为反应扩散。
50、晶界偏聚由于晶内与晶界上的畸变能差别或由于空位的存在使得溶质原子或杂质原子在晶界上的富集现象。
51、柯氏气团通常把溶质原子与位错交互作用后,在位错周围偏聚的现象称为气团,是由柯垂尔首先提出,又称柯氏气团。
52、形变织构多晶体形变过程中出现的晶体学取向择优的现象叫形变织构。
53、点阵畸变在局部范围内,原子偏离其正常的点阵平衡位置,造成点阵畸变。
54、稳态扩散在稳态扩散过程中,扩散组元的浓度只随距离变化,而不随时间变化。
55、包析反应由两个固相反应得到一个固相的过程为包析反应。
56、非共格晶界当两相在相界处的原子排列相差很大时,即错配度δ很大时形成非共格晶界。
同大角度晶界相似,可看成由原子不规则排列的很薄的过渡层构成。
57、置换固溶体当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。
58、间隙固溶体溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙固溶体。
59、二次再结晶再结晶结束后正常长大被抑制而发生的少数晶粒异常长大的现象。
60、伪共析转变非平衡转变过程中,处在共析成分点附近的亚共析、过共析合金,转变终了组织全部呈共析组织形态。
61、肖脱基空位在个体中晶体中,当某一原子具有足够大的振动能而使振幅增大到一定程度时,就可能克服周围原子对它的制约作用,跳离其原来位置,迁移到晶体表面或内表面的正常结点位置上而使晶体内部留下空位,称为肖脱基空位。
62、弗兰克尔空位离开平衡位置的原子挤入点阵中的间隙位置,而在晶体中同时形成相等数目的空位和间隙原子。
63、非稳态扩散扩散组元的浓度不仅随距离x 变化,也随时间变化的扩散称为非稳态扩散。
64、时效过饱和固溶体后续在室温或高于室温的溶质原子脱溶过程。
65、回复指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段。
66、相律相律给出了平衡状态下体系中存在的相数与组元数及温度、压力之间的关系,可表示为:f=C+P-2,f 为体系的自由度数,C 为体系的组元数,P 为相数。
67、合金两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成并具有金属特性的物质。
68、孪晶孪晶是指两个晶体(或一个晶体的两部分)沿一个公共晶面构成镜面对称的位向关系,这两个晶体就称为孪晶,此公共晶面就称孪晶面。
69、相图描述各相平衡存在条件或共存关系的图解,也可称为平衡时热力学参量的几何轨迹。
70、孪生晶体受力后,以产生孪晶的方式进行的切变过程叫孪生。
71、晶界晶界是成分结构相同的同种晶粒间的界面。
72、晶胞在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。
73、位错是晶体内的一种线缺陷,其特点是沿一条线方向原子有规律地发生错排;这种缺陷用一线方向和一个柏氏矢量共同描述。
74、偏析合金中化学成分的不均匀性。
75、金属键自由电子与原子核之间静电作用产生的键合力。
76、固溶体是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶剂原子)所形成的均匀混合的固态溶体,它保持溶剂的晶体结构类型。
77、亚晶粒一个晶粒中若干个位相稍有差异的晶粒称为亚晶粒。
78、亚晶界相邻亚晶粒间的界面称为亚晶界。
79、晶界能不论是小角度晶界或大角度晶界,这里的原子或多或少地偏离了平衡位置,所以相对于晶体内部,晶界处于较高的能量状态,高出的那部分能量称为晶界能,或称晶界自由能。
80、表面能表面原子处于不均匀的力场之中,所以其能量大大升高,高出的能量称为表面自由能(或表面能)。
81、界面能界面上的原子处在断键状态,具有超额能量。
平均在界面单位面积上的超额能量叫界面能。
82、淬透性淬透性指合金淬成马氏体的能力,主要与临界冷速有关,大小用淬透层深度表示。
83、淬硬性淬硬性指钢淬火后能达到的最高硬度,主要与钢的含碳量有关。
84、惯习面固态相变时,新相往往在母相的一定晶面开始形成,这个晶面称为惯习面。
85、索氏体中温段珠光体转变产物,由片状铁素体渗碳体组成,层片间距较小,片层较薄。
86、珠光体铁碳合金共析转变的产物,是共析铁素体和共析渗碳体的层片状混合物。
87、莱氏体铁碳相图共晶转变的产物,是共晶奥氏体和共晶渗碳体的机械混合物。