人教版七年级上册数学 一元一次方程单元综合测试(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学一元一次方程解答题压轴题精选(难)
1.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.
(1)求 a,b;A、B 两点之间的距离.
(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.
(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,
∴a+5=0,b﹣7=0,
∴a=﹣5,b=7;
∴A、B两点之间的距离=|﹣5|+7=12;
(2)解:设向左运动记为负数,向右运动记为正数,
依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.
答:点P所对应的数为﹣1015
(3)解:设点P对应的有理数的值为x,
①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,
依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;
②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,
依题意得:7﹣x=3(x+5),
解得:x=﹣2;
③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,
依题意得:x﹣7=3(x+5),
解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.
综上所述,点P所对应的有理数分别是﹣11和﹣2.
所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.
【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。

(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。

(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。

2.同学们都知道,表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:
(1)求=________.
(2)若,则 =________
(3)同理表示数轴上有理数x所对应的点到-1和2所对应的两点距离之和,请你找出所有符合条件的整数x,使得,这样的整数是
________(直接写答案)
【答案】(1)7
(2)7或-3
(3)-1,0,1,2.
【解析】【解答】(1)|5-(-2)|=7,
故答案为:7;
( 2 )|x-2|=5,
x-2=5或x-2=-5,
x=7或-3,
故答案为:7或-3;
( 3 )如图,
当x+1=0时x=-1,
当x-2=0时x=2,
如数轴,通过观察:-1到2之间的数有-1,0,1,2,
都满足|x+1|+|x-2|=3,这样的整数有-1,0,1,2,
故答案为: -1,0,1,2.
【分析】(1)化简符号求出式子的值;(2)根据绝对值的性质得到x-2=5或x-2=-5,求出x的值;(3)根据题意画出数轴,得到-1到2之间的整数有-1,0,1,2,得到满足方程的整数值有-1,0,1,2.
3.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.
(1)求a、b的值;
(2)若线段AB=a,在直线AB上取一点P,恰好使 =b,点Q为PB的中点,请画出图形并求出线段AQ的长.
【答案】(1)解:2(a-2)=a+4,
2a-4=a+4
a=8,
∵x=a=8,
把x=8代入方程2(x-3)-b=7,
∴2(8-3)-b=7,
b=3
(2)解:①如图:点P在线段AB上,
=3,
AB=3PB,AB=AP+PB=3PB+PB=4PB=8,
PB=2,Q是PB的中点,PQ=BQ=1,
AQ=AB-BQ=8-1=7,
②如图:点P在线段AB的延长线上,
=3,
PA=3PB,PA=AB+PB=3PB,
AB=2PB=8,
PB=4,
Q是PB的中点,BQ=PQ=2,
AQ=AB+BQ=8+2=10.
所以线段AQ的长是7或10.
【解析】【分析】(1)根据题意可得两个方程的解相同,所以根据第一个方程的解,可求出第二个方程中的b。

(2)分类讨论,P在线段AB上,根据,可求出PB的长,再根据中点的性质可得
PQ的长,最后根据线段的和差可得AQ;P在线段AB的延长线上,根据,可求出PB的长,再根据中点的性质可得BQ的长,最后根据线段的和差可得AQ.
4.如图1,已知,在内,在内,
.
(1)从图1中的位置绕点逆时针旋转到与重合时,如图2,
________ ;
(2)若图1中的平分,则从图1中的位置绕点逆时针旋转到与
重合时,旋转了多少度?
(3)从图2中的位置绕点逆时针旋转,试问:在旋转过程中的度数是否改变?若不改变,请求出它的度数;若改变,请说明理由.
【答案】(1)100
(2)解:∵平分,
∴,
设,
则,,
由,
得:,
解得:,
∴从图1中的位置绕点逆时针旋转到与重合时,旋转了12度;
(3)解:不改变
①当时,如图,
,,
∵,,


② 时,如图,
此时,与重合,
此时,;
③当时,如图,
,,

综上,在旋转过程中,的度数不改变,始终等于
【解析】【解答】(1)解:由题意:∠EOF= ∠AOB+ ∠COD=80°+20°=100°
【分析】(1)根据∠EOF=∠BOE+∠BOF计算即可;(2)设,得,,再根据列方程求解即可;(3)分三种情形分别计算即可;
5.甲、乙两班学生到集市上购买苹果,苹果的价格如下:
购苹果数不超过10千克超过10千克但不超过20千克超过20千克
每千克价格10元9元8元
苹果30千克.
(1)乙班比甲班少付出多少元?
(2)设甲班第一次购买苹果x千克.
①则第二次购买的苹果为多少千克;
②甲班第一次、第二次分别购买多少千克?
【答案】(1)解:乙班购买苹果付出的钱数=8×30=240元,
∴乙班比甲班少付出256-240=16元
(2)解:①甲班第二次购买的苹果为(30-x)千克;
②若x≤10,则10x+(30-x)×8=256,
解得:x=8
若10<x≤15,则9x+(30-x)×9=256
无解.
故甲班第一次购买8千克,第二次购买22千克
【解析】【分析】(1)根据20kg以上每千克的价格为8元可求出乙班付出的钱数,从而可求出乙班比甲班少付出多少.(2)设甲班第一次购买x千克,第二次购买30-x千克,则需要讨论①x≤10,②10<x≤15,列出方程后求解即可得出答案.
6.对于三个数a,b,c,用 b,表示a,b,c这三个数的平均数,用 b,表示a,b,c这三个数中最小的数,如: 2,, 2, .
(1)若,求x的值;
(2)已知, 0,,是否存在一个x值,使得
0,若存在,请求出x的值;若不存在,请说明理由.
【答案】(1)解:由题意:,

解得: .
(2)解:由题意:,
若,则 .
解得 .
此时与条件矛盾;
若,则 .
解得 .
此时与条件矛盾;
不存在.
【解析】【分析】(1)由,结合题意得,解之可得;(2)由,再分和两种情况分别求解可得.
7.定义:若一个关于x的方程的解为,则称此方程为“中点方程”.如:的解为,而;的解为,而 .
(1)若,有符合要求的“中点方程”吗?若有,请求出该方程的解;若没有请说明理由;
(2)若关于x的方程是“中点方程”,求代数式的值.
【答案】(1)解:没有符合要求的“奇异方程”,理由如下:
把代入原方程解得:x= ,
若为“中点方程”,则x= ,
∵≠ ,
∴不符合“中点方程”定义,故不存在
(2)解:∵,
∴(2a-b)x+b=0.
∵关于x的方程是“中点方程”,
∴x= =a.
把x=a代入原方程得:,
∴ =
【解析】【分析】(1)把代入原方程解得:x= ,若为“中点方程”,则x= ,由于b≠b-2,根据“中点方程”定义即可求解;(2)根据“中点方程”定义得到, = ,整体代入即可.
8.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.
(1)若以B为原点.写出点A,D,C所对应的数,并计算p的值;
(2)①若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x.
②此时,若数轴上存在一点E,使得AE=2CE,求点E所对应的数(直接写出答案)。

【答案】(1)解:∵B为原点,AB=2,则A点对应的数为-2;BD=3,则D点对应的数为3;DC=1,则C点对应的数为3+1=4,则P=-2+3+4=5.
(2)解:①∵CO=x, 则C点表示的数为x, D点表示的数为x-1, B点表示的数为x-1-3=x-4, A点表示的数为x-4-2=x-6,
∴p=x+x-1+x-4+x-6=-71,
移项得4x=60,
解得x=15.
②由上题知:A表示的数为15-6=9, C点表示的数为15,
设E点表示的数为x, ∵AE=2CE,
1)当E在AC之间时,
∴x-9=2(15-x),
解得x=13;
2)当E在C的右边时,
x-9=2(x-15),
解得x=21.
【解析】【分析】(1)因为B为原点,根据数轴上两点间距离公式分别求出点A,D,C 所对应的数,然后再求这三个数之和即可.
(2)①由原点O在数轴上点C的右边,且CO=x,得出C表示的数为x, 再根据其他几个点在数轴上的位置关系把各点用含x的代数式表示,根据p=-71列式求出x即可.
②先确定A、C所表示的数,设E点表示的数为x,再根据数轴上两点间距离公式,结合AE=2CE列式,分情况求出E点坐标即可.
9.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.
(1)求A、B所表示的数;
(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解
①求线段BC的长;
②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,
∴a+3=0,b﹣2=0,
解得,a=﹣3,b=2,
即点A表示的数是﹣3,点B表示的数是2。

(2)解:①2x+1= x﹣8
解得,x=﹣6,
∴BC=2﹣(﹣6)=8,
即线段BC的长为8;
②存在点P,使PA+PB=BC,
设点P的表示的数为m,
则|m﹣(﹣3)|+|m﹣2|=8,
∴|m+3|+|m﹣2|=8,
当m>2时,解得,m=3.5,
当﹣3<m<2时,无解,
当x<﹣3时,m=﹣4.5,
即点P对应的数是3.5或﹣4.5.
【解析】【分析】(1)根据绝对值,偶次幂的非负性,即可解答;
(2)①先解方程得到点C表示的数,再结合点B表示的数即可确定线段BC的长;
②设点P表示的数为m,由点A、C所表示的数可得PA=,PB=,根据
PA+PB=BC可得|m+3|+|m﹣2|=8,再分m>2、-3<m<2、m<-3三种情况,去绝对值符号解方程即可解答。

10.如图,面积为30的长方形OABC的边OA在数轴上,O为原点,OC=5.将长方形OABC沿数轴水平移动,O,A,B,C移动后的对应点分别记为O1, A1, B1, C1,移动后的长方形O1A1B1C1与原长方形OABC重叠部分的面积记为S
(1)当S恰好等于原长方形面积的一半时,数轴上点A1表示的数是多少?
(2)设点A的移动距离AA1=x
①当S=10时,求x的值;
②D为线段AA.的中点,点E在线段OO1上,且OE= OO1,当点D,E所表示的数互为相反数时,求x的值.
【答案】(1)解:∵S长方形OABC=OA·OC=30,OC=5,
∴OA=6,
∴点A表示的数是6,
∵S=S长方形OABC=×30=15,
①当向左移动时,如图1:
∴OA1·OC=15,
∴OA1=3,
∴A1表示的数是3;
②当向右移动时,如图2:
∴O1A·AB=15,
∴O1A=3,
∵OA=O1A1=6,
∴OA1=6+6-3=9,
∴A1表示的数是9;
综上所述:A1表示的数是3或9.
(2)解:①由(1)知:OA=O1A1=6,OC=O1C1=5,
∵AA1=x,
∴OA1=6-x,
∴S=5×(6-x)=10,
解得:x=4.
②如图1,
∵AA1=x,
∴OA1=6-x,OO1=x,
∴OE=OO1=x,
∴点E表示的数为-x,
又∵点D为AA1中点,
∴A1D=AA1=x,
∴OD=OA1+A1D=6-x+x=6-x,
∴点D表示的数为6-x,
又∵点E和点D表示的数互为相反数,
∴6-x-x=0,
解得:x=5;
如图2,当原长方形OABC向右移动时,点D、E表示的数都是正数,不符合题意.
【解析】【分析】(1)根据长方形的面积可得OA长即点A表示的数,在由已知条件得S=15,根据题意分情况讨论:①当向左移动时,②当向右移动时,根据长方形面积公式分别计算、分析即可得出答案.
(2)①由(1)知:OA=O1A1=6,OC=O1C1=5,由AA1=x得OA1=6-x,由长方形面积公式列出方程,解之即可.
②当向左移动时,由AA1=x得OA1=6-x,OO1=x,根据题意分别得出点E、点D表示的数,由点E和点D表示的数互为相反数列出方程,解之即可;当向右移动时,点D、E表示的数都是正数,不符合题意.
11.某服装厂计划购进某种布料做服装,已知米布料能做件上衣,米布料能做
件裤子.
(1)一件上衣的用料是一条裤子用料的多少倍;
(2)这种布料是按匹购买的,每匹布料是将这种厚度为布料卷在直径为的圆柱形轴上,卷完布后的圆柱直径为D=20cm,其形状和尺寸如图所示,为使一匹布料所做的上衣和裤子刚好配成套,应分别用多少米的布料生产上衣和裤子(π取3)? (3)在(2)的条件下,一件上衣用料1米,服装厂要生产1000套,则需采购这样的布料多少匹?
【答案】(1)解:由题意可得:• 1.5.
答:一件上衣的用料是一条裤子用料的1.5倍
(2)解:一匹布的长度=100π+100.8π+101.6π+...+200π≈3×(100+100.8+101.6+...+200)=3× =56700mm=56.7m.
设应用x米的布料生产上衣,则用(56.7-x)米的布料生产裤子,根据题意得:
x=1.5 (56.7-x)
解得:x=34.02(米)≈34(米)
当x=34时,56.7-x=22.7(米)
答:应用34米的布料生产上衣,则用22.7米的布料生产裤子.
(3)解:1000÷34≈29.4≈30(匹)
答:需采购这样的布料30匹.
【解析】【分析】(1)求一件上衣的用料是一条裤子用料的多少倍,应先把各自的用料多
少表示出来.一件上衣的用料是:;一条裤子用料是:;将两个式子相除即可;(2)先求出一匹布的长度,然后根据一件上衣的用料是一条裤子用料的 1.5倍列方程求解即可;(3)由(2)可得一匹布生产衣服裤子的套数,用总套数÷一匹布生产衣服裤子的套数即可得到答案.
12.如图是一种数值转换机的运算程序.
(1)若输入的数x=1,y=-1,则输出的数为________;
若输入的数x=3,y=-5,则输出的数为________;
若输入的数x=n,y=-n,则输出的数为________;
(2)若输入的数x=2,输出的数为20,求输入的数y.
【答案】(1)1;17;n2
(2)解:由图可知:输出数为:,
∵x=2,输出的数为20,
∴=20,
解得:y=±6.
【解析】【解答】解:(1)由图可知:输出数为:,
∵x=1,y=-1,
∴==1;
∵x=3,y=-5,
∴==17;
∵x=n,y=-n,
∴==n 2;
故答案为:1,,17,n2.
【分析】(1)由图可知输出数为:,分别将x、y的值代入,计算即可得出答案.
(2)由图可知输出数为:,,分别将x、输出的数代入,计算即可求得y值.。

相关文档
最新文档