新版高中数学人教A版选修2-3:课时跟踪检测(二)两个计数原理的综合应用-含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新版高中数学人教A版选修2-3:课时跟踪检测(二)两个
计数原理的综合应用-含解析
层级一学业水平达标
1.由数字1,2,3组成的无重复数字的整数中,偶数的个数为
( )
B.12
A.15
C.10 D.5
解析:选D 分三类,第一类组成一位整数,偶数有1个;第二类组成两位整数,其中偶数有2个;第三类组成3位整数,其中偶数有2个.由分类加法计数原理知共有偶数5个.
2.三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有( ) A.4种 B.5种
C.6种 D.12种
解析:选C 若甲先传给乙,则有甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,甲→乙→丙→乙→甲3种不同的传法;同理,甲先传给丙也有3种不同的传法,故共有6种不同的传法.
3.若三角形的三边长均为正整数,其中一边长为4,另外两边长分别为b,c,且满足b≤4≤c,则这样的三角形有( ) A.10个 B.14个
C.15个 D.21个
解析:选A 当b=1时,c=4;当b=2时,c=4,5;当b=3时,c=4,5,6;当b=4时,c=4,5,6,7.故共有10个这样的三角形.选
A.
4.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系中,第一、二象限不同点的个数为( )
A.18 B.16
C.14 D.10
解析:选C 分两类:一是以集合M中的元素为横坐标,以集合N中的元素为纵坐标有3×2=6个不同的点,二是以集合N中的元素为横坐标,以集合M中的元素为纵坐标有4×2=8个不同的点,故由分类加法计数原理得共有6+8=14个不同的点.
5.如图,某电子器件是由三个电阻组成的回路,其
中共有6个焊接点A,B,C,D,E,F,如果某个焊接点
脱落,整个电路就会不通,现在电路不通了,那么焊接点脱落的可能性共有( )
A.6种 B.36种
C.63种 D.64种
解析:选 C 每个焊接点都有正常与脱落两种情况,只要有一个脱落电路即不通,∴共有26-1=63种.故选C.
6.如图所示为一电路图,则从A到B共有________
条不同的单支线路可通电.
解析:按上、中、下三条线路可分为三类:从上线路中有3条,中线路中有1条,下线路中有2×2=4(条).根据分类加法计数原理,共有3+1+4=8(条).
答案:8
7.将4种蔬菜种植在如图所示的5块试验田里,每块试验田种
植一种蔬菜,相邻试验田不能种植同一种蔬菜,不同的种法有________种.(种植品种可以不全)
解析:分五步,由左到右依次种植,种法分别为4,3,3,3,3.
由分步乘法计数原理共有4×3×3×3×3=324(种) .
答案:324
8.古人用天干、地支来表示年、月、日、时的次序.用天干的“甲、丙、戊、庚、壬”和地支的“子、寅、辰、午、申、戌”相配,用天干的“乙、丁、己、辛、癸”和地支的“丑、卯、巳、未、酉、亥”相配,共可配成______组.
解析:分两类:第一类,由天干的“甲、丙、戊、庚、壬”和地支的“子、寅、辰、午、申、戌”相配,则有5×6=30组不同的结果;同理,第二类也有30组不同的结果,共可得到30+30=60组.
答案:60
9.某高中毕业生填报志愿时,了解到甲、乙两所大学有自己感兴趣的专业,具体情况如下:
多少种?
解:由图表可知,分两类,第一类:甲所大学有5个专业,共有5种专业选择方法;
第二类:乙所大学有3个专业,共有3种专业选择方法.。