瓦恰乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
瓦恰乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)用不等式表示如图所示的解集,其中正确的是()
A.x>-2
B.x<-2
C.x≥-2
D.x≤-2
【答案】C
【考点】在数轴上表示不等式(组)的解集
【解析】【解答】解:图中数轴上表达的不等式的解集为:.
故答案为:C.
【分析】用不等式表示如图所示的解集都在-2的右边且用实心的圆点表示,即包括-2,应用“ ≥ ”表示。
2、(2分)已知且-1<x-y<0,则k的取值范围是()
A. -1<k<-
B. 0<k<
C. 0<k<1
D. <k<1
【答案】D
【考点】解二元一次方程组,解一元一次不等式组
【解析】【解答】解:由②-①得:x-y=-2k+1
∵-1<x-y<0,
∴-1<-2k+1<0,
解之:<k<1
故答案为:D
【分析】观察方程组同一未知数的系数特点及已知条件-1<x-y<0,因此将②-①,求出x-y的值,再整体代入,建立关于k的一元一次不等式组,解不等式组,即可得出结果。
3、(2分)已知x,y满足关系式2x+y=9和x+2y=6,则x+y=()
A. 6
B. ﹣1
C. 15
D. 5
【答案】D
【考点】解二元一次方程组
【解析】【解答】解:2x+y=9即2x+y﹣9=0……①,
x+2y=6即x+2y﹣6=0……②,
①×2﹣②可以得3x﹣12=0,
∴x=4,代入①式得y=1,
∴x+y=5,故答案为:D.
【分析】观察方程组中同一未知数的系数特点,求出方程组的解,再求出x+y的值即可;或将两方程相加除以3,即可得出结果。
4、(2分)下列说法正确的是()
A. |-2|=-2
B. 0的倒数是0
C. 4的平方根是2
D. -3的相反数是3
【答案】D
【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,有理数的倒数,平方根
【解析】【解答】A、根据绝对值的代数意义可得|﹣2|=2,不符合题意;
B、根据倒数的定义可得0没有倒数,不符合题意;
C、根据平方根的定义可4的平方根为±2,不符合题意;
D、根据相反数的定义可得﹣3的相反数为3,符合题意,
故答案为:D.
【分析】根据绝对值的意义,可对选项A作出判断;利用倒数的定义,可对选项B作出判断;根据正数的平方根有两个,它们互为相反数,可对选项C作出判断;根据相反数的定义,可对选项D作出判断。
5、(2分)已知方程组,则(x﹣y)﹣2=()
A. 2
B.
C. 4
D.
【答案】D
【考点】代数式求值,解二元一次方程组
【解析】【解答】解:,
①﹣②得:x﹣y=2,
则原式=2﹣2= .故答案为:D
【分析】观察方程组中同一未知数的系数特点及所求代数式的底数,由①﹣②得出x-y的值,再整体代入求值即可。
6、(2分)下图是《都市晚报》一周中各版面所占比例情况统计.本周的《都市晚报》一共有206版.体
育新闻约有()版.
A. 10版
B. 30版
C. 50版
D. 100版
【答案】B
【考点】扇形统计图,百分数的实际应用
【解析】【解答】观察扇形统计图可知,体育新闻约占全部的15左右,206×15%=30.9,选项B符合图意. 故答案为:B.
【分析】把本周的《都市晚报》的总量看作单位“1”,从统计图中可知,财经新闻占25%,体育新闻和生活共占25%,体育新闻约占15%,据此利用乘法计算出体育新闻的版面,再与选项对比即可.
7、(2分)在,1.01001000100001,2 ,3.1415,- ,,0,,这些数中,无理数共有()
A. 2个
B. 3个
C. 4个
D. 5个
【答案】A
【考点】无理数的认识
【解析】【解答】解:∵=3,=2,∴无理数有:2 ,- ,一共有2个.故答案为:A.
【分析】无理数是指无限不循环小数,根据无理数的定义可知,-是无理数。
8、(2分)下列各数:0.3333…,0,4,-1.5,,,-0.525225222中,无理数的个数是()
A. 0个
B. 1个
C. 2个
D. 3个
【答案】B
【考点】无理数的认识
【解析】【解答】解:是无理数,故答案为:B
【分析】根据无理数的定义,无限不循环的小数就是无理数,常见的无理数有三类:①开方开不尽的;②及含的式子;③象0.101001001…这类有规律的数;从而得出答案。
9、(2分)下列各式中正确的是()
A. B. C. D.
【答案】A
【考点】平方根,算术平方根,立方根及开立方
【解析】【解答】解:A、,故A选项符合题意;
B、,故B选项不符合题意;
C、,故C选项不符合题意;
D、,故D选项不符合题意;
故答案为:A.
【分析】一个正数的算数平方根是一个正数,一个正数的平方根有两个,它们互为相反数;任何数都只有一个立方根,正数的立方根是一个正数,根据定义即可一一判断。
10、(2分)下列各式正确的是().
A.
B.
C.
D.
【答案】A
【考点】立方根及开立方
【解析】【解答】A选项中表示为0.36的平方根,正数的平方根有两个,(±0.6)2=0.36,0.36的平方根为±0.6,所以正确;
B选项中表示9的算术平方根,而一个数的算术平方根只有1个,是正的,所以错误;
C选项中表示(-3)3的立方根,任何一个数只有一个立方根,(-3)3=-27,-27的立方根是-3,所以错误;D选项中表示(-2)2的算术平方根,一个正数的算术平方根只有1个,(-2)2=4,4的算术平方根是2,所以错误。
故答案为:A
【分析】正数有两个平方根,零的平方根是零,负数没有平方根,任意一个数只有一个立方根,A选项中被开方数是一个正数,所以有两个平方根;B选项中被开方数是一个正数,而算式表示是这个正数的算术平方根,是正的那个平方根;C选项中是一个负数,而负数的立方根是一个负数;D选项中是一个正数,正数的算术平方根是正的。
11、(2分)如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()
A. ∠1=∠3
B. ∠5=∠4
C. ∠5+∠3=180°
D. ∠4+∠2=180°
【答案】B
【考点】平行线的判定
【解析】解:A、已知∠1=∠3,根据内错角相等,两直线平行可以判断,故命题正确
B、不能判断
C、同旁内角互补,两直线平行,可以判断,故命题正确,
D、同旁内角互补,两直线平行,可以
故答案为:B
【分析】观察图形,可知∠1和∠3 是内错角,可对A作出判断;而∠5和∠4 不是两条直线被第三条直线所截而形成的角,可对B作出判断;∠5和∠3,∠4和∠2,它们是同旁内角,可对C、D作出判断;从而可得出答案。
12、(2分)下列调查中,调查方式选择合理的是()
A. 为了解福建省初中学生每天锻炼所用时间,选择全面调查;
B. 为了解福州电视台《福州新闻》栏目的收视率,选择全面调查;
C. 为了解神舟飞船设备零件的质量情况,选择抽样调查;
D. 为了解一批节能灯的使用寿命,选择抽样调查.
【答案】D
【考点】全面调查与抽样调查
【解析】【解答】解:A. 为了解福建省初中学生每天锻炼所用时间,选择抽样调查,故A不符合题意;
B. 为了解福州电视台《福州新闻》栏目的收视率,选择抽样调查,故B不符合题意;
C. 为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;
D. 为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;
故答案为:D.
【分析】全面调查适合工作量不大,没有破坏性及危害性,调查结果又需要非常精确的调查,反之抽样调查适合工作量大,有破坏性及危害性,调查结果又不需要非常精确的调查,根据定义即可一一判断。
本题考查了全面调查与抽样调查的选择,当数据较大,且调查耗时较长并有破坏性的时候选用抽样调查,但是对于高精密仪器的调查则必须使用全面调查.
二、填空题
13、(1分)如果是关于的二元一次方程,那么=________
【答案】
【考点】二元一次方程的定义
【解析】【解答】解:∵是关于的二元一次方程
∴
解之:a=±2且a≠2
∴a=-2
∴原式=-(-2)2-=
故答案为:
【分析】根据二元一次方程的定义,可知x的系数≠0,且x的次数为1,建立关于a的方程和不等式求解即可。
14、(1分)某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒,甲工人步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于________米.
【答案】1.3
【考点】一元一次不等式的应用
【解析】【解答】解:设导火线的长度为x(m),
工人转移需要的时间为:+ =130(s),
由题意得,>130,
解得x>1.3m.
故答案为:1.3
【分析】先计算出工人转移所需时间,再利用导火线的长度除以燃烧的速度表示出燃烧导火线所需的时间,该时间应大于工人转移的时间,即可列出一元一次不等式,解不等式即可求得导火线长度的范围.
15、(1分)已知那么|x-3|+|x-1|=________
【答案】2
【考点】绝对值及有理数的绝对值,代数式求值,解一元一次不等式组
【解析】【解答】解:解不等式①得:x>1
解不等式②得:2x-2<x+1
解之:x<3
∴不等式组的解集为:1<x<3
即x-3<0,x-1>0
原式=3-x+x-1=2
故答案为:2
【分析】先求出不等式组的解集是1<x<3,然后利用绝对值的性质化简可得结果是2
16、(3分)如图是某小学六年级学生视力情况统计图.
①视力正常的有76人,视力近视的有________人;
②假性近视的同学比视力正常的人少________%;(百分号前保留一位小数)
③视力正常的学生与视力非正常学生人数的比是________.
【答案】60;15.8%;19:31
【考点】扇形统计图
【解析】【解答】解:①76÷38%×30%,=200×30%,
=60(人);
所以视力近视的有60人.
②(38%﹣32%)÷38%,
=6%÷38%,
≈15.8%;
所以假性近视的同学比视力正常的人少15.8%.
③38%:(32%+30%),
=38%:62%,
=38:62,
=19:31;
所以视力正常的学生与视力非正常学生人数的比是19:31.
故答案为:60,15.8%,19:31.
【分析】由图可知:把总人数看成单位“1”,视力正常的人数占总人数的38%,近视的人数占总人数的30%,假性近视的人数占总人数的32%;①视力正常的有76人,它对应的百分数是38%,由此用除法求出总人数,再求出总人数的30%就是近似的人数;②用视力正常占的百分数减去假性近视人数占的百分数,然后用求得的差除以视力正常占的百分数即可;③先求出视力非正常学生人数占总人数的百分数,然后作比.解决本题关键是从图中读出数据,找出单位“1”,再根据基本的数量关系求解.
17、(1分)如图,已知AD∥BC,∠C=38°,∠EAC=88°,则∠B=________
【答案】50°
【考点】平行线的性质
【解析】【解答】解:∵AD∥BC
∴∠EAD=∠B,∠DAC=∠C=38°
∴∠EAD=∠EAC-∠DAC=88°-38°=50°
∴∠B=50°
故答案为:50°
【分析】根据平行线的性质可得出∠EAD=∠B,∠DAC=∠C,再根据已知求出∠EAD的度数,就可求出∠B 的度数。
18、(1分)某校为了举办庆祝中国共产党成立96周年的活动,调查了本校所有学生,调查的结果如图所示,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有________
人.
【答案】100
【考点】扇形统计图,条形统计图
【解析】【解答】解:由图表可得:总人数为:180÷45%=400(人),故这所学校赞成举办演讲比赛的学生有:400×(1﹣45%﹣30%)=100(人).
故答案为:100
【分析】根据A在两个统计图中的数据先计算总人数,然后根据扇形统计图计算赞成举报演讲比赛的学生的比例,最后乘以400可得对应的人数.
三、解答题
19、(5分)已知一个正数的两个平方根分别是a和2a-9,求a的值,并求这个正数.
【答案】解:∵一个正数有两个平方根,且互为相反数,
∴a+2a-9=0,
解得:a=3,
将a=3带入a和2a-9,
得到3和-3,
32=9,
∴这个正数是9
【考点】平方根
【解析】【分析】根据平方根的意义:一个正数有两个平方根,且互为相反数,从而得出关于a的方程,求解得出a的值,从而得出这个数的两个平方根,进一步得出这个正数。
20、(5分)用甲、乙两种原料配制某种饮料,已知这两种原料的维生素C含量分别为甲种600单位/千克,乙种100单位/千克..现要配制这种饮料10千克,要求至少含有4200单位的维生素C,请写出所需要甲种原料的质量千克应满足的不等式
【答案】解:
【考点】一元一次不等式的应用
【解析】【分析】设所需要甲种原料的质量x 千克,则甲种原料所含维生素C的质量为600 x单位,乙种原料所含维生素C的质量为100(10−x)单位,根据两种原料所含的维生素C的总量应该不少于4200单位,即可列出不等式。
21、(5分)若(3a+2b-c)2与互为相反数,求a、b、c的值.
【答案】解:依题可得:
(3a+2b-c)2+ | 2 a + b | + | 2 b + c |=0,
∴,
(1)+(3)得:
3a+4b=0(4),
(2)×4-(4)得:
a=0,
∴b=c=0,
∴a=b=c=0.
【考点】三元一次方程组解法及应用,偶次幂的非负性,绝对值的非负性
【解析】【分析】根据互为相反数的和为0可得:(3a+2b-c)2+ | 2 a + b | + | 2 b + c |=0,再由绝对值和平方的非负性得一个关于a、b、c的三元一次方程组,解之即可得出答案.
22、(5分)解不等式组并将解集在数轴上表示出来.
【答案】解:,
解①得:x≥﹣3,
解②得:x<2.
不等式组的解集是:﹣3≤x<2
【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组
【解析】【分析】先分别求得两个不等式的解集,再在数轴上表示出两个解集,两个解集的公共部分即为不等式组的解集.
23、(5分).在,-1,0,,1,3,5中,哪些值是x-1<0的解?哪些是x≥2的解?
【答案】解:不等式x-1<0,
解得:x<1,
∵-2 ,-1,0,都小于1,
∴-2 ,-1,0,是x-1<0的解;
∵3,5都大于2,
∴3,5是x≥2的解
【考点】有理数大小比较,不等式的解集
【解析】【分析】解出不等式x-1<0,求出x的取值范围,然后根据有理数比大小判断出在其解集范围内的有理数即可得出满足不等式x-1<0的解;根据有理数比大小判断出在x≥2其解集范围内的有理数即可得出满足不等式x≥2的解。
24、(5分)若单项式与的和仍是单项式,求m,n的值.
【答案】解:∵单项式与的和仍是单项式,
∴单项式与是同类项,
∴,
解得:
【考点】解二元一次方程组,同类项
【解析】【分析】由题意可知这两个单项式是同类项,根据同类项的概念列出m、n的方程组,据此解答即可。
25、(5分)已知x﹣1的平方根为±2,3x+y﹣1的平方根为±4,求3x+5y的算术平方根.
【答案】解:由x﹣1的平方根是±2,3x+y﹣1的平方根是±4,得:
,
解得:,
∴3x+5y=15+10=25,
∵25的算术平方根为5,
∴3x+5y的算术平方根为5.
【考点】平方根
【解析】【分析】平方根是指如果一个数的平方等于a,则这个数叫作a的平方根。
根据平方根的定义和已知条件可得关于x、y的方程组:x−1=4,3x+y−1=16 ,解方程组即可求得x、y的值,再将其代入3x+5y即可求得3x+5y的算术平方根。
26、(10分)解方程组
(1)解方程组
(2)解不等式组.
【答案】(1)解:
①×2﹣②,得:3x=6,
解得:x=2,
将x=2代入①,得:4+y=5,
解得:y=1,
则方程组的解为
(2)解:解不等式4(x﹣3)>﹣1,得:x>,
解不等式+3>x,得:x<6,
则不等式组的解集为<x<6
【考点】解二元一次方程组,解一元一次不等式组
【解析】【分析】第一题是解二元一次方程组,可用加减消元法解也可用代入消元法,因为方程(1)中y的系数为1,(2)中x的系数为1.
第二题是不等式组,应先将第一个不等式去括号、合并同类项求出解集,再将第二个去分母,求出解集,即可得到不等式组的解集.。