阜平县高中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阜平县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 函数y=2sin 2x+sin2x 的最小正周期( )
A .
B .
C .π
D .2π
2. 过抛物线y=x 2上的点
的切线的倾斜角( )
A .30°
B .45°
C .60°
D .135°
3. 已知f (x )为R 上的偶函数,对任意x ∈R 都有f (x+6)=f (x )+f (3),x 1,x 2∈[0,3],x 1≠x 2时,有
成立,下列结论中错误的是( )
A .f (3)=0
B .直线x=﹣6是函数y=f (x )的图象的一条对称轴
C .函数y=f (x )在[﹣9,9]上有四个零点
D .函数y=f (x )在[﹣9,﹣6]上为增函数
4. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )
A .
B .18
C .
D .
5. 设有直线m 、n 和平面α、β,下列四个命题中,正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β C .若α⊥β,m ⊂α,则m ⊥β
D .若α⊥β,m ⊥β,m ⊄α,则m ∥α
6. 在ABC ∆中,2
2
tan sin tan sin A B B A =,那么ABC ∆一定是( )
A .锐角三角形
B .直角三角形
C .等腰三角形
D .等腰三角形或直角三角形
7. 已知双曲线22
22:1(0,0)x y C a b a b
-=>>,12,F F 分别在其左、右焦点,点P 为双曲线的右支上
的一点,圆M 为三角形12PF F 的内切圆,
PM 所在直线与轴的交点坐标为(1,0),与双曲线的一条渐
,则双曲线C 的离心率是( )
A B .2 C D 8. 已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )
A .{2,1,1}--
B .{1,1,2}-
C .{1,1}-
D .{2,1}--
【命题意图】本题考查集合的交集运算,意在考查计算能力.
9. 直线的倾斜角是( )
A .
B .
C .
D .
10.已知d 为常数,p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列,则¬p 是¬q 的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
11.已知两点M (1,),N (﹣4,﹣),给出下列曲线方程: ①4x+2y ﹣1=0;
②x 2+y 2
=3;
③+y 2=1;

﹣y 2
=1.
在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( )
A .①③
B .②④
C .①②③
D .②③④
12.若复数z 满足iz=2+4i ,则在复平面内,z 对应的点的坐标是( )
A .(2,4)
B .(2,﹣4)
C .(4,﹣2)
D .(4,2)
二、填空题
13.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x ﹣1)<f (2﹣x )的解集是 .
14.圆心在原点且与直线2x y +=相切的圆的方程为_____ .
【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.
15.已知sinα+cosα=,且<α<,则sinα﹣cosα的值为.
16.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是.
17.已知点E、F分别在正方体的棱上,且, ,则面AEF与面ABC所成的二面角的正切值等于 .
18.定义:[x](x∈R)表示不超过x的最大整数.例如[1.5]=1,[﹣0.5]=﹣1.给出下列结论:
①函数y=[sinx]是奇函数;
②函数y=[sinx]是周期为2π的周期函数;
③函数y=[sinx]﹣cosx不存在零点;
④函数y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.
其中正确的是.(填上所有正确命题的编号)
三、解答题
4天的用电量与当天气温.
气温(℃)14 12 8 6
用电量(度)22 26 34 38
(1)求线性回归方程;()
(2)根据(1)的回归方程估计当气温为10℃时的用电量.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:=,=﹣.
20.如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),
(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;
(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小。

21.命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,q:函数f(x)=(3﹣2a)x是增函数.若p ∨q为真,p∧q为假.求实数a的取值范围.
22.本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
Ⅰ若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,n∈N的函数解析式;
,整理得下表:
,求这50天的日利润单位:元的平均数;
②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[400,550]内的概率.
23.已知函数f(x)=log a(1+x)﹣log a(1﹣x)(a>0,a≠1).
(Ⅰ)判断f(x)奇偶性,并证明;
(Ⅱ)当0<a<1时,解不等式f(x)>0.
24.如图,在Rt△ABC中,∠ACB=,AC=3,BC=2,P是△ABC内一点.
(1)若P是等腰三角形PBC的直角顶角,求PA的长;
(2)若∠BPC=,设∠PCB=θ,求△PBC的面积S(θ)的解析式,并求S(θ)的最大值.
阜平县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】C
【解析】解:函数y=2sin2
x+sin2x=2×+sin2x=sin(2x﹣)+1,
则函数的最小正周期为=π,
故选:C.
【点评】本题主要考查三角恒等变换,函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周
期为,属于基础题.
2.【答案】B
【解析】解:y=x2的导数为y′=2x,
在点的切线的斜率为k=2×=1,
设所求切线的倾斜角为α(0°≤α<180°),
由k=tanα=1,
解得α=45°.
故选:B.
【点评】本题考查导数的运用:求切线的斜率,考查直线的倾斜角的求法,考查运算能力,属于基础题.3.【答案】D
【解析】解:对于A:∵y=f(x)为R上的偶函数,且对任意x∈R,均有f(x+6)=f(x)+f(3),
∴令x=﹣3得:f(6﹣3)=f(﹣3)+f(3)=2f(3),
∴f(3)=0,故A正确;
对于B:∵函数y=f(x)是以6为周期的偶函数,
∴f(﹣6+x)=f(x),f(﹣6﹣x)=f(x),
∴f(﹣6+x)=f(﹣6﹣x),
∴y=f(x)图象关于x=﹣6对称,即B正确;
对于C:∵y=f(x)在区间[﹣3,0]上为减函数,在区间[0,3]上为增函数,且f(3)=f(﹣3)=0,
∴方程f(x)=0在[﹣3,3]上有2个实根(﹣3和3),又函数y=f(x)是以6为周期的函数,
∴方程f(x)=0在区间[﹣9,﹣3)上有1个实根(为﹣9),在区间(3,9]上有一个实根(为9),
∴方程f(x)=0在[﹣9,9]上有4个实根.故C正确;
对于D :∵当x 1,x 2∈[0,3]且x 1≠x 2时,有

∴y=f (x )在区间[0,3]上为增函数,又函数y=f (x )是偶函数,
∴y=f (x )在区间[﹣3,0]上为减函数,又函数y=f (x )是以6为周期的函数, ∴y=f (x )在区间[﹣9,﹣6]上为减函数,故D 错误. 综上所述,命题中正确的有A 、B 、C . 故选:D .
【点评】本题考查抽象函数及其应用,命题真假的判断,着重考查函数的奇偶性、对称性、周期性、单调性,考查函数的零点,属于中档题.
4. 【答案】D
【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:
故该几何体的表面积为:3×22
+3×(
)+=,
故选:D .
5. 【答案】D
【解析】解:A 不对,由面面平行的判定定理知,m 与n 可能相交,也可能是异面直线;B 不对,由面面平行的判定定理知少相交条件;
C 不对,由面面垂直的性质定理知,m 必须垂直交线; 故选:
D .
6. 【答案】D 【解析】
试题分析:在ABC ∆中,2
2
tan sin tan sin A B B A =,化简得
22sin sin sin sin cos cos A B
B A A B
=,解得 sin sin sin cos sin cos cos cos B A
A A
B B A B =⇒=,即s
i n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或
2
A B π
+=
,所以三角形为等腰三角形或直角三角形,故选D .
考点:三角形形状的判定.
【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2
A B π
+=是试
题的一个难点,属于中档试题. 7. 【答案】C 【解析】
试题分析:由题意知()1,0到直线0bx ay -=的距离为
22=
,得a b =,则为等轴双曲
故本题答案选C. 1 考点:双曲线的标准方程与几何性质.
【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造,,a b c 的关系,处理方法与椭圆相同,但需要注意双曲线中,,a b c 与椭圆中,,a b c 的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出,a c 的值,可得;(2)建立,,a b c 的齐次关系式,将用,a c 表示,令两边同除以或2
a 化为的关系式,解方程或者不等式求值或取值范围.
8. 【答案】C
【解析】当{2,1,1,2,4}x ∈--时,2log ||1{1,1,0}y x =-∈-,所以A B ={1,1}-,故选C .
9. 【答案】A
【解析】解:设倾斜角为α,
∵直线的斜率为,
∴tan α=

∵0°<α<180°,
∴α=30° 故选A .
【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握.
10.【答案】A
【解析】解:p :对于任意n ∈N *
,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列, 则¬p :∃n ∈N *
,a n+2﹣a n+1≠d ;¬q :数列 {a n }不是公差为d 的等差数列,
由¬p ⇒¬q ,即a n+2﹣a n+1不是常数,则数列 {a n }就不是等差数列,
若数列 {a n }不是公差为d 的等差数列,则不存在n ∈N *
,使得a n+2﹣a n+1≠d ,
即前者可以推出后者,前者是后者的充分条件, 即后者可以推不出前者,
故选:A.
【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立.
11.【答案】D
【解析】解:要使这些曲线上存在点P满足|MP|=|NP|,需曲线与MN的垂直平分线相交.
MN的中点坐标为(﹣,0),MN斜率为=
∴MN的垂直平分线为y=﹣2(x+),
∵①4x+2y﹣1=0与y=﹣2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知①不符合题意.
②x2+y2=3与y=﹣2(x+),联立,消去y得5x2﹣12x+6=0,△=144﹣4×5×6>0,可知②中的曲线与MN的垂直平分线有交点,
③中的方程与y=﹣2(x+),联立,消去y得9x2﹣24x﹣16=0,△>0可知③中的曲线与MN的垂直平分线有交点,
④中的方程与y=﹣2(x+),联立,消去y得7x2﹣24x+20=0,△>0可知④中的曲线与MN的垂直平分线有
交点,
故选D
12.【答案】C
【解析】解:复数z满足iz=2+4i,则有z===4﹣2i,
故在复平面内,z对应的点的坐标是(4,﹣2),
故选C.
【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,复数与复平面内对应点之间的关系,属于基础题.
二、填空题
13.【答案】(1,2).
【解析】解:∵f(x)=log a x(其中a为常数且a>0,a≠1)满足f(2)>f(3),
∴0<a<1,x>0,
若f (2x ﹣1)<f (2﹣x ),


解得:1<x <2, 故答案为:(1,2).
【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题.
14.【答案】222x y +=
【解析】由题意,圆的半径等于原点到直线2x y +=的距离,所以
r d ==
=222x y +=.
15.【答案】 .
【解析】解:∵sin α+cos α=
,<α<

∴sin 2α+2sin αcos α+cos 2
α=

∴2sin αcos α=﹣1=

且sin α>cos α,
∴sin α﹣cos α=
=
=

故答案为:.
16.【答案】

【解析】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,
8个三棱锥的体积为:
=.
剩下的凸多面体的体积是1﹣=.
故答案为:.
【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力.
17.【答案】
【解析】延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。

18.【答案】②③④
【解析】解:①函数y=[sinx]是非奇非偶函数;
②函数y=[sinx]的周期与y=sinx的周期相同,故是周期为2π的周期函数;
③函数y=[sinx]的取值是﹣1,0,1,故y=[sinx]﹣cosx不存在零点;
④函数数y=[sinx]、y=[cosx]的取值是﹣1,0,1,故y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.
故答案为:②③④.
【点评】本题考查命题的真假判断,考查新定义,正确理解新定义是关键.
三、解答题
19.【答案】
【解析】解:(1)由表可得:;
又;
∴,;
∴线性回归方程为:;
(2)根据回归方程:当x=10时,y=﹣2×10+50=30;
∴估计当气温为10℃时的用电量为30度.
【点评】考查回归直线的概念,以及线性回归方程的求法,直线的斜截式方程.
20.【答案】(1)1
(2)60°
【解析】(1)设BD=x,则CD=3﹣x
∵∠ACB=45°,AD⊥BC,∴AD=CD=3﹣x
∵折起前AD⊥BC,∴折起后AD⊥BD,AD⊥CD,BD∩DC=D
∴AD ⊥平面BCD
∴V A ﹣BCD =×AD ×S △BCD =×(3﹣x )××x (3﹣x )=(x 3﹣6x 2+9x ) 设f (x )=(x 3﹣6x 2+9x ) x ∈(0,3),
∵f ′(x )=(x ﹣1)(x ﹣3),∴f (x )在(0,1)上为增函数,在(1,3)上为减函数 ∴当x=1时,函数f (x )取最大值
∴当BD=1时,三棱锥A ﹣BCD 的体积最大; (2)以D 为原点,建立如图直角坐标系D ﹣xyz ,
21.【答案】
【解析】解:设g (x )=x 2+2ax+4,由于关于x 的不等式x 2
+2ax+4>0对一切x ∈R 恒成立, ∴函数g (x )的图象开口向上且与x 轴没有交点,
故△=4a 2
﹣16<0,∴﹣2<a <2. 又∵函数f (x )=(3﹣2a )x
是增函数,
∴3﹣2a >1,得a <1.
又由于p 或q 为真,p 且q 为假,可知p 和q 一真一假.
(1)若p 真q 假,则,得1≤a <2;
(2)若p 假q 真,则
,得a ≤﹣2.
综上可知,所求实数a 的取值范围为1≤a <2,或a ≤﹣2.
22.【答案】
【解析】:Ⅰ当日需求量10n ≥时,利润为5010(10)3030200y n n =⨯+-⨯=+; 当需求量10n <时,利润50(10)1060100y n n n =⨯--⨯=-.
所以利润y 与日需求量n 的函数关系式为:30200,10,60100,10,n n n N
y n n n N +≥∈⎧=⎨-<∈⎩
Ⅱ50天内有9天获得的利润380元,有11天获得的利润为440元,有15天获得利润为500元,有10天获得的利润为530元,有5天获得的利润为560元.

3809
4401150015530105605
477.2
50
⨯+⨯+⨯+⨯+⨯= ② 若利润在区间[400,550]内的概率为11151018
5025
P ++==
23.【答案】
【解析】解:(Ⅰ)由
,得

即﹣1<x <1,即定义域为(﹣1,1),
则f (﹣x )=log a (1﹣x )﹣log a (1+x )=﹣[log a (1+x )﹣log a (1﹣x )]=﹣f (x ),
则f (x )为奇函数.
(Ⅱ)当0<a <1时,由f (x )>0, 即log a (1+x )﹣log a (1﹣x )>0, 即log a (1+x )>log a (1﹣x ), 则1+x <1﹣x , 解得﹣1<x <0,
则不等式解集为:(﹣1,0).
【点评】本题主要考查函数奇偶性的判断以及对数不等式的求解,利用定义法以及对数函数的单调性是解决本题的关键.
24.【答案】
【解析】解:(1)∵P 为等腰直角三角形PBC 的直角顶点,且BC=2,
∴∠PCB=,PC=

∵∠ACB=
,∴∠ACP=

在△PAC 中,由余弦定理得:PA 2=AC 2+PC 2
﹣2AC •PC •cos
=5,
整理得:PA=;
(2)在△PBC 中,∠BPC=,∠PCB=θ,
∴∠PBC=
﹣θ,
由正弦定理得: =
=,
∴PB=sinθ,PC=sin(﹣θ),
∴△PBC的面积S(θ)=PB•PCsin=sin(﹣θ)sinθ=sin(2θ+)﹣,θ∈(0,),
则当θ=时,△PBC面积的最大值为.
【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.。

相关文档
最新文档