八年级数学上册 轴对称填空选择单元培优测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册轴对称填空选择单元培优测试卷
一、八年级数学全等三角形填空题(难)
1.如图,MN∥PQ,AB⊥PQ,点A,D,B,C分别在直线MN和PQ上,点E在AB
上,AD+BC=7,AD=EB,DE=EC,则AB=_____.
【答案】7
【解析】
由MN∥PQ,AB⊥PQ,可知∠DAE=∠EBC=90°,可判定△ADE≌△BCE,从而得出AE=BC,则AB=AE+BE=AD+BC=7.
故答案为:7.
点睛:本题考查了直角三角形全等的判定和性质以及平行线的性质,是基础知识,比较简单.
2.在ABC中给定下面几组条件:
①BC=4cm,AC=5cm,∠ACB=30°;
②BC=4cm,AC=3cm,∠ABC=30°;
③BC=4cm,AC=5cm,∠ABC=90°;
④BC=4cm,AC=5cm,∠ABC=120°.
若根据每组条件画图,则ABC能够唯一确定的是___________(填序号).
【答案】①③④
【解析】
【分析】
根据全等三角形的判定方法进行分析,从而得到答案.
【详解】
解:①符合全等三角形的判定定理SAS,即能画出唯一三角形,正确;
②根据BC=4cm,AC=3cm,∠ABC=30°不能画出唯一三角形,如图所示△ABC和
△BCD,
错误;
③符合全等三角形的判定定理HL,即能画出唯一三角形,正确;
④∵∠ABC为钝角,结合②可知,只能画出唯一三角形,正确.
故答案为:①③④.
【点睛】
本题考查的是全等三角形的判定方法;解答此题的关键是要掌握三角形全等判定的几种方法即可,结合已知逐个验证,要找准对应关系.
3.如图,CA⊥BC,垂足为C,AC=2Cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以
1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动_______秒时,△BCA与点P、N、B为顶点的三角形全等.(2个全等三角形不重合)
【答案】0;4;8;12
【解析】
【分析】
此题要分两种情况:①当P在线段BC上时,②当P在BQ上,再分别分两种情况AC=BP 或AC=BN进行计算即可.
【详解】
解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,
∵AC=2,
∴BP=2,
∴CP=6−2=4,
∴点P的运动时间为4÷1=4(秒);
②当P在线段BC上,AC=BN时,△ACB≌△NBP,
这时BC=PN=6,CP=0,因此时间为0秒;
③当P在BQ上,AC=BP时,△ACB≌△PBN,
∵AC=2,
∴BP=2,
∴CP=2+6=8,
∴点P的运动时间为8÷1=8(秒);
④当P在BQ上,AC=NB时,△ACB≌△NBP,
∵BC=6,
∴BP=6,
∴CP=6+6=12,
点P的运动时间为12÷1=12(秒),
故答案为:0或4或8或12.
【点睛】
本题考查三角形全等的判定方法,判定两个三角形全等时必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
4.如图,平面直角坐标系中,A(0,3),B(4,0),BC∥y轴,且BC<OA,第一象限内有一点P(a,2a-3),若使△ACP是以AC斜边的等腰直角三角形,则点P的坐标为
_______________.
【答案】(10
3

11
3
).
【解析】
【详解】
解:∵点P的坐标为(a,2a-3),
∴点P在直线y=2x-3上,
如图所示,当点P在AC的上方时,过P作y轴的垂线,垂足为D,交BC的延长线于E,
则∠E=∠ADP=90°,
∵△ACP是以AC为斜边的等腰直角三角形,∴AP=PC,∠APD=∠PCE,
∴△APD≌△PCE,
∴PE=AD,
又∵OD=2a-3,AO=3,
∴AD=2a-6=PE,
∵DE=OB=4,DP=a,
又∵DP+PE=DE,
∴a+(2a-6)=4,
解得a=10 3
∴2a-3=11 3

∴P(10
3

11
3
);
当点P在AC下方时,过P作y轴的垂线,垂足为D,交BC于E,a=2,
此时,CE=2,BE=2,
即BC=2+2=4>AO,不合题意;
综上所述,点P的坐标为P(10
3

11
3

故答案为P(10
3

11
3
).
5.已知在△ABC中,AD是BC边上的中线,若AB=10,AC=4,则AD的取值范围是_____.【答案】3<AD<7
【解析】
【分析】
连接AD并延长到点E,使DE=DA,连接BE,利用SAS证得△BDE≌△CDA,进而得到
BE=CA=4,利用三角形两边之和大于第三边,两边之差小于第三边,即可求得AE的取值范围,进而求出AD的取值范围.
【详解】
如图,连接AD并延长到点E,使DE=DA,连接BE,
∵在△ABC中,AD是BC边上的中线
∴BD=CD
在△BDE和△CDA中
BD CD
BDE CDA
DE DA
=


∠=∠

⎪=

∴△BDE≌△CDA(SAS)
∴BE=CA=4
在△ABE中,AB+BE>AE,且AB﹣BE<AE
∵AB=10,AC=4,
∴6<AE<14
∴3<AD<7
故答案为3<AD<7
【点睛】
本题考点涉及三角形全等的判定及性质、三角形的三边关系等知识点,熟练掌握相关性质定理是解题关键.
6.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=12cm,AC=6cm.动点E 从A点出发以3cm/s沿射线AN运动,动点D在射线BM上,随着
E点运动而运动,始终保持ED=CB.当点E经过______s时,△DEB与△BCA全等.
【答案】0、2、6、8
【解析】
∵CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,
∴∠CAB=∠DBE=90°,
∴△CAB和△EBD都是Rt△,
∵点E运动过程中两三角形始终保持斜边ED=CB,
∴当BE=BA=12cm或BE=AC=6cm时,两三角形全等,
如图共有四种情形,此时AE分别等于0cm、6cm、18cm、24cm,
又∵点E每秒钟移动3cm,
∴当点E移动的时间分别为0秒、2秒、6秒和8秒时,两三角形全等.
7.如图,Rt△ABC中,AB=AC,∠BAC=90°,BE⊥CE,垂足是E,BE交AC于点D,F是BE 上一点,AF⊥AE,且C是线段AF的垂直平分线上的点,AF=22,则DF=________.
【答案】3.
【解析】
【分析】
由题意可证的△ABF≌△ACE,可得△AEF为等腰直角三角形,取AF的中点O,连接CO交BE与点G,连接AG,可得△AGF, △AGE,△CEG均为等腰直角三角形,可得AG平行等于CE,可得四边形AGCE为平行四边形,可得FD的长.
【详解】
解:如图
Rt△ABC中,AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,
又∠BAC=90°,BE⊥CE,∠DAE为∠BAC与EAF的公共角
∴∠BAF=∠CAE,
∠ABC=∠ACB=45°, BE⊥CE
∴∠ABF+∠CBE=45°,∠CBE+∠ACB+∠ACE=90°,即: ∠CBE+∠ACE=45°,
∴∠
ABF=∠ACE,
在△ABF与△ACE中,有
AB AC
BAF CAE
ABF ACE
=


∠=∠

⎪∠=∠

,∴△ABF≌△ACE,
∴AE=AF, △AEF为等腰直角三角形, 取AF的中点O,连接CO交BE与点G,连接AG,
C是线段AF的垂直平分线上的点,易得△AGF, △AGE,△CEG均为等腰直角三角形,AF=22∴AG=GE=CE=FG=2,
又AG⊥BE,CE⊥BE,可得AG∥CE,
∴四边形AGCE为平行四边形,
∴GD=DE=1,
∴DF=FG+GD=2+1=3.
【点睛】
本题主要考查三角形全等及性质,综合性强,需综合运用所学知识求解.
8.如图,已知AB∥CD,O为∠CAB、∠ACD的角平分线的交点,OE⊥AC于E,且OE=2,CO=3,则两平行线间AB、CD的距离等于________.
【答案】4
【解析】
试题解析:如图,过点O作MN,MN⊥AB于M,交CD于N,
∵AB∥CD,
∴MN⊥CD,
∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,
∴OM=OE=2,
∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,
∴ON=OE=2,
∴MN=OM+ON=4,
即AB与CD之间的距离是4.
点睛:要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一
点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.
9.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的边长分别为5和12,则b 的面积为_________________.
【答案】169
【解析】
解:由于a 、b 、c 都是正方形,所以AC =CD ,∠ACD =90°;
∵∠ACB +∠DCE =∠ACB +∠BAC =90°,即
∠BAC =∠DCE ,∠ABC =∠CED =90°,AC =CD ,∴△ACB ≌△DCE ,∴AB =CE ,BC =DE ; 在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =22512+=169. 故答案为:169.
点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.
10.把两个三角板如图甲放置,其中90ACB DEC ∠=∠=︒,45A ∠=︒,30D ∠=︒,斜边12AB =,14CD =,把三角板DCE 绕着点C 顺时针旋转15︒得到△11D CE (如图乙),此时AB 与1CD 交于点O ,则线段1AD 的长度为_________.
【答案】10
【解析】
试题分析:如图所示,∠3=15°,∠1E =90°, ∴∠1=∠2=75°, 又∵∠B=45°,
∴∠OF 1E =∠B+∠1=45°+75°=120° ∴∠1D FO=60° ∵∠C 11D E =30°,
∴∠5=∠4=90°, 又∵AC=BC ,AB=12, ∴OA=OB=6 ∵∠ACB=90°,
∴CO=12
AB=6, 又∵C 1D =CD=14, ∴O 1D =C 1D -OC=14-6=8, 在Rt △A 1D O 中,222211A 6810D OA OD =+=+=
点睛:本题主要考查的就是旋转的性质、三角形的外角性质、直角三角形的性质及判定以及勾股定理的应用.解决这个问题的关键就是首先根据三角形外角的性质以及旋转图形的性质得出△AO 1D 为直角三角形,然后根据直角三角形的性质得出AO 和O 1D 的长度,最后根据直角三角形的勾股定理得出答案.
二、八年级数学全等三角形选择题(难)
11.已知:如图,在长方形ABCD 中,AB=4,AD=6.延长BC 到点E ,使CE=2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC-CD-DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,△ABP 和△DCE 全等.
A .1
B .1或3
C .1或7
D .3或7 【答案】C
【解析】
【分析】 分两种情况进行讨论,根据题意得出BP=2t=2和AP=16-2t=2即可求得.
【详解】
解:因为AB=CD ,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS 证得△ABP ≌△DCE , 由题意得:BP=2t=2,
所以t=1,
因为AB=CD ,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS 证得△BAP ≌△DCE ,
由题意得:AP=16-2t=2,
解得t=7.
所以,当t 的值为1或7秒时.△ABP 和△DCE 全等.
故选C .
【点睛】
本题考查全等三角形的判定,判定方法有:ASA ,SAS ,AAS ,SSS ,HL .
12.如图,已知等腰Rt △ABC 和等腰Rt △ADE ,AB=AC=4,∠BAC=∠EAD=90°,D 是射线BC 上任意一点,连接EC .下列结论:①△AEC △ADB ;② EC ⊥BC ; ③以A 、C 、D 、E 为顶点的四边形面积为8;④当BD=
时,四边形AECB 的周长为10524++;⑤ 当BD=32
B 时,ED=5AB ;其中正确的有( )
A .5个
B .4个
C .3 个
D .2个
【答案】B 【解析】解:
∵∠BAC =∠EAD =90°,∴∠BAD =∠CAE ,∵AB =AC ,AD =AE ,∴△AEC ≌△ADB ,故①正确; ∵△AEC ≌△ADB ,∴∠ACE =∠ABD =45°,∵∠ACB =45°,∴J IAO ECB =90°,∴EC ⊥BC ,故②正确;
∵四边形ADCE 的面积=△ADC 的面积+△ACE 的面积=△ADC 的面积+△ABD 的面积=△ABC 的面积=4×4÷2=8.故③正确;
∵BD =
2,∴EC =2,DC =BC -BD =422=32,∴DE 2=DC 2+EC 2,=(2222+=20,∴DE =25,∴AD =AE =
252=10.∴AECB 的周长=AB +DC +CE +AE =442210+45210+,故④正确;
当BD =32BC 时,CD =12BC ,∴DE 22
1322BC BC ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭
10BC 5.故⑤错误. 故选B .
点睛:此题是全等三角形的判定与性质的综合运用,熟练掌握等腰直角三角形的性质是解答此题的关键.
13.如图,在ABC ∆中,AC BC =,90ACB ∠=︒,AE 平分BAC ∠交BC 于点E ,BD AE ⊥于点D ,DF AC ⊥交AC 的延长线于点F ,连接CD ,给出四个结
论:①45ADC ∠=︒;②12
BD AE =;③AC CE AB +=;④2AB BC FC -=;其中正确的结论有 ( )
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】
试题解析:如图,
过E 作EQ ⊥AB 于Q ,
∵∠ACB=90°,AE 平分∠CAB ,
∴CE=EQ ,
∵∠ACB=90°,AC=BC ,
∴∠CBA=∠CAB=45°,
∵EQ ⊥AB ,
∴∠EQA=∠EQB=90°,
由勾股定理得:AC=AQ ,
∴∠QEB=45°=∠CBA ,
∴EQ=BQ ,
∴AB=AQ+BQ=AC+CE ,
∴③正确;
作∠ACN=∠BCD ,交AD 于N , ∵∠CAD=
12
∠CAB=22.5°=∠BAD , ∴∠ABD=90°-22.5°=67.5°,
∴∠DBC=67.5°-45°=22.5°=∠CAD ,
∴∠DBC=∠CAD ,
在△ACN 和△BCD 中, DBC CAD AC BC
ACN DCB ∠∠⎧⎪⎨⎪∠∠⎩
===,
∴△ACN ≌△BCD ,
∴CN=CD ,AN=BD ,
∵∠ACN+∠NCE=90°,
∴∠NCB+∠BCD=90°,
∴∠CND=∠CDA=45°,
∴∠ACN=45°-22.5°=22.5°=∠CAN ,
∴AN=CN ,
∴∠NCE=∠AEC=67.5°,
∴CN=NE ,
∴CD=AN=EN=
12AE , ∵AN=BD ,
∴BD=12
AE , ∴①正确,②正确;
过D 作DH ⊥AB 于H ,
∵∠FCD=∠CAD+∠CDA=67.5°,
∠DBA=90°-∠DAB=67.5°,
∴∠FCD=∠DBA ,
∵AE 平分∠CAB ,DF ⊥AC ,DH ⊥AB ,
∴DF=DH ,
在△DCF 和△DBH 中
90F DHB FCD DBA DF DH ∠∠︒⎧⎪∠∠⎨⎪⎩
====, ∴△DCF ≌△DBH ,
∴BH=CF ,
由勾股定理得:AF=AH , ∴
2,2AC AB AC AH BH AC AM CM AC AF CF AF AF AF AM AF AF
+++++++====, ∴AC+AB=2AF ,
AC+AB=2AC+2CF ,
AB-AC=2CF ,
∵AC=CB ,
∴AB-CB=2CF , ∴④正确.
故选D
14.如图,点P 、Q 分别是边长为6cm 的等边ABC △边AB 、BC 上的动点,点P 从顶
点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,下面四个结论:
①BQ AM
=②ABQ
△≌CAP
△③CMQ
∠的度数不变,始终等于60︒④当第2秒或第4秒时,PBQ
△为直角三角形,正确的有()个.
A.1B.2C.3D.4
【答案】C
【解析】
∵点P、Q速度相同,
∴AP BQ
=.
在ACP
△和ABQ
△中,
60
AP BQ
CAP ABQ
AC BA
=


∠==︒

⎪=


∴ACP
△≌BAQ
△,故②正确.
则AQC CPB
∠=∠.
即B BAQ BAQ AMP
∠+∠=∠+∠.
∴60
AMP B
∠=∠=︒.
则60
CMQ AMP
∠=∠=︒,故③正确.
∵APM
∠不一定等于60︒.
∴AP AM
≠.
∴BQ AM
≠.故①错误.
设时间为t,则AP=BQ=t,PB=4-t
①当∠PQB=90°时,
∵∠B=60°,
∴PB=2BQ,得6-t=2t,t=2 ;
②当∠BPQ=90°时,
∵∠B=60°,
∴BQ=2BP,得t=2(6-t),t=4;
∴当第2秒或第4秒时,△PBQ为直角三角形.
∴④正确.
故选C.
点睛:本题考查了等边三角形的性质、全等三角形的判定与性质、直角三角形的性质等知识点,综合性强,难度较大.
15.如图,在Rt△ABC中,∠CBA=90°,∠CAB的角平分线AP和∠ACB外角的平分线CF相交于点D,AD交CB于点P,CF交AB的延长线于点F,过点D作DE⊥CF交CB的延长线于点G,交AB的延长线于点E,连接CE并延长交FG于点H,则下列结论:①∠CDA=45°;
②AF-CG=CA;③DE=DC;④FH=CD+GH;⑤CF=2CD+EG;其中正确的有()
A.①②④B.①②③C.①②④⑤D.①②③⑤
【答案】D
【解析】
试题解析:①利用公式:∠CDA=1
2
∠ABC=45°,①正确;
②如图:延长GD与AC交于点P',
由三线合一可知CG=CP',
∵∠ADC=45°,DG⊥CF,
∴∠EDA=∠CDA=45°,
∴∠ADP=∠ADF,
∴△ADP'≌△ADF(ASA),
∴AF=AP'=AC+CP'=AC+CG,故②正确;
③如图:
∵∠EDA=∠CDA,
∠CAD=∠EAD,
从而△CAD≌△EAD,
故DC=DE,③正确;
④∵BF⊥CG,GD⊥CF,
∴E为△CGF垂心,
∴CH⊥GF,且△CDE、△CHF、△GHE均为等腰直角三角形,
∴HF=CH=EH+CE=GH+CE=GH+2CD,故④错误;
⑤如图:作ME⊥CE交CF于点M,
则△CEM为等腰直角三角形,从而CD=DM,CM=2CD,EM=EC,
∵∠MFE=∠CGE,
∠CEG=∠EMF=135°,
∴△EMF≌△CEG(AAS),
∴GE=MF,
∴CF=CM+MF=2CD+GE,
故⑤正确;
故选D
点睛:本题考查了角平分线的性质、等腰三角形的判定与性质、三角形垂心的定义和性质、全等三角形的判定与性质等多个知识点,技巧性很强,难度较大,要求学生具有较高的几何素养.对于这一类多个结论的判断型问题,熟悉常见的结论及重要定理是解决问题的关键,比如对第一个结论的判定,若熟悉该模型则可以秒杀.
16.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为()
A.2 B.3 C.4 D.5
【答案】C
【解析】
【分析】
可延长DE至F,使EF=BC,利用SAS可证明△ABC≌△AEF,连AC,AD,AF,再利用SSS证明△ACD≌△AFD,可将五边形ABCDE的面积转化为两个△ADF的面积,进而求解即可.
【详解】
延长DE至F,使EF=BC,连AC,AD,AF,
在△ABC与△AEF中,
=90
AB AE
ABC AEF
BC EF


∠∠







∴△ABC≌△AEF(SAS),
∴AC=AF,
∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,
∴CD=EF+DE=DF,
在△ACD与△AFD中,
AC AF
CD DF
AD AD









∴△ACD≌△AFD(SSS),
∴五边形ABCDE的面积是:S=2S△ADF=2×
1
2
•DF•AE=2×
1
2
×2×2=4.
故选C.
【点睛】
本题主要考查了全等三角形的判定及性质以及三角形面积的计算,正确作出辅助线,利用全等三角形把五边形ABCDE的面积转化为两个△ADF的面积是解决问题的关键.
17.如图,△ABC的两条外角平分线AP、CP相交于点P,PH⊥AC于H;如果∠ABC=60º,则下列结论:①∠ABP=30º;②∠APC=60º;③PB=2PH;④∠APH=∠BPC;其中正确的结论个数是()
A .1
B .2
C .3
D .4
【答案】B
【解析】
【分析】 作PM ⊥BC 于M ,PN ⊥BA 于N .根据角平分线的性质定理可证得PN=PM ,再根据角平分线的判定定理可得PB 平分∠ABC ,即可判定①;证明△PAN ≌△PAH ,△PCM ≌△PCH ,根据全等三角形的性质可得∠APN=∠APH ,∠CPM=∠CPH ,由此即可判定②;在Rt △PBN 中,∠PBN=30°,根据30°角直角三角形的性质即可判定③;由∠BPN=∠CPA=60°即可判定④.
【详解】
如图,作PM ⊥BC 于M ,PN ⊥BA 于N .
∵∠PAH=∠PAN ,PN ⊥AD ,PH ⊥AC ,
∴PN=PH ,同理PM=PH ,
∴PN=PM ,
∴PB 平分∠ABC ,
∴∠ABP=
12
∠ABC=30°,故①正确, ∵在Rt △PAH 和Rt △PAN 中, PA PA PN PH =⎧⎨=⎩
, ∴△PAN ≌△PAH ,同理可证,△PCM ≌△PCH ,
∴∠APN=∠APH ,∠CPM=∠CPH ,
∵∠MPN=180°-∠ABC=120°,
∴∠APC=
12
∠MPN=60°,故②正确, 在Rt △PBN 中,∵∠PBN=30°, ∴PB=2PN=2PH ,故③正确,
∵∠BPN=∠CPA=60°,
∴∠CPB=∠APN=∠APH,故④正确.
综上,正确的结论为①②③④.
故选D.
【点睛】
本题考查了角平分线的性质定理及判定定理、全等三角形的判定与性质及30°角直角三角形的性质,熟练运用相关知识是解决问题的关键.
18.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE,试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的序号有()
A.①②B.①②③C.①②④D.①②③④
【答案】C
【解析】
【分析】
由∠BCD=∠ACD+60°,∠ACE=∠ACD+60°可得∠BCD=∠ACE,利用SAS可证明
△BCD≌△ACE,可得AE=BD,①正确;∠CBD=∠CAE=60°,进而可得∠EAD=60°,②正确,当∠BCD=90°时,可得∠ACD=∠ADC=30°,可得AD=AC,即可得CE2+AD2=AC2+DE2,④正确;当D点在BA延长线上时,∠BDE-∠BDC=60°,根据△BCD≌△ACE可得∠AEC=∠BDC,进而可得∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,即可证明∠BDE-∠BDC=∠BDC+∠AED,即∠BDE-∠AED=2∠BDC,当点D在AB上时可证明∠BDE-∠AED=120°,③错误,综上即可得答案.
【详解】
∵∠BCA=∠DCE=60°,
∴∠BCA+∠ACD=∠DCE+∠ACD,
∴∠BCD=∠ACE,
又∵AC=BC,CE=CD,
∴△BCD≌△ACE,
∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,
∴∠BAE=120°,
∴∠EAD=60°,②正确,
∵∠BCD=90°,∠BCA=60°,
∴∠ACD=∠ADC=30°,
∴AC=AD,
∵CE=DE,
∴CE2+AD2=AC2+DE2,④正确,
当D点在BA延长线上时,∠BDE-∠BDC=60°,
∵∠AEC=∠BDC,
∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,
∴∠BDE-∠BDC=∠BDC+∠AED
∴∠BDE-∠AED=2∠BDC,
如图,当点D在AB上时,
∵△BCD≌△∠ACE,
∴∠CAE=∠CBD=60°,
∴∠DAE=∠BAC+∠CAE=120°,
∴∠BDE-∠AED=∠DAE=120°,③错误
故正确的结论有①②④,
故选C.
【点睛】
此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握19.如图, AB=AC,AD=AE, BE、CD交于点O,则图中全等三角形共有()
A.五对B.四对C.三对D.二对
【答案】A
【解析】
如图,由已知条件可证:①△ABE≌△ACD;②△DBC≌△ECB;③△BDO≌△ECO;
④△ABO≌△ACO;⑤△ADO≌△AEO;
∴图中共有5对全等三角形.故选A.
20.如图,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论不正确的是
A.BF=DF B.∠1=∠EFD C.BF>EF D.FD∥BC
【答案】B
【解析】
【分析】
根据余角的性质得到∠C=∠ABE,∠EBC=∠BAC.根据SAS推出△ABF≌△ADF,根据全等三角形的性质得到BF=DF,故A正确;由全等三角形的性质得到∠ABE=∠ADF,等量代换得到∠ADF=∠C,根据平行线的判定得到DF∥BC,故D正确;根据直角三角形的性质得到DF >EF,等量代换得到BF>EF;故C正确;根据平行线的性质得到
∠EFD=∠EBC=∠BAC=2∠1,故B错误.
【详解】
∵AB⊥BC,BE⊥AC,∴∠C+∠BAC=∠ABE+∠BAC=90°,∴∠C=∠ABE.同
理:∠EBC=∠BAC.
在△ABF与△ADF中,∵12
AD AB
AF AF
=


∠=∠

⎪=

,∴△ABF≌△ADF,∴BF=DF,故A正确,
∵△ABF≌△ADF,∴∠ABE=∠ADF,∴∠ADF=∠C,∴DF∥BC,故D正确;
∵∠FED=90°,∴DF>EF,∴BF>EF;故C正确;
∵DF∥BC,∴∠EFD=∠EBC.∵∠EBC=∠BAC=∠BAC=2∠1,∴∠EFD=2∠1,故B错误.
故选B.
【点睛】
本题考查了全等三角形的判定和性质,平行线的判定和性质,证得△ABF≌△ADF是解题的关键.
21.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G.下列结论:
①BD=CD;②AD+CF=BD;③CE=
1
2
BF;④AE=BG.其中正确的是
A.①②B.①③C.①②③D.①②③④
【答案】C
【解析】
【分析】
根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出
CE=AE=1
2
AC,又因为BF=AC所以CE=
1
2
AC=
1
2
BF,连接CG.因为△BCD是等腰直角三角
形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.
【详解】
解:∵CD⊥AB,∠ABC=45°,
∴△BCD是等腰直角三角形.
∴BD=CD.故①正确;
在Rt△DFB和Rt△DAC中,
∵∠DBF=90°−∠BFD,∠DCA=90°−∠EFC,且∠BFD=∠EFC,
∴∠DBF=∠DCA.
又∵∠BDF=∠CDA=90°,BD=CD,
∴△DFB≌△DAC.
∴BF=AC;DF=AD.
∵CD=CF+DF,
∴AD+CF=BD;故②正确;
在Rt△BEA和Rt△BEC中.
∵BE平分∠ABC,
∴∠ABE=∠CBE.
又∵BE=BE,∠BEA=∠BEC=90°,
∴Rt△BEA≌Rt△BEC.
∴CE=AE=1
2 AC.
又由(1),知BF=AC,
∴CE=1
2
AC=
1
2
BF;故③正确;
连接CG.
∵△BCD 是等腰直角三角形,
∴BD=CD.
又DH ⊥BC ,
∴DH 垂直平分BC.∴BG=CG.
在Rt △CEG 中,
∵CG 是斜边,CE 是直角边,
∴CE<CG.
∵CE=AE ,
∴AE<BG.故④错误.
故选C.
【点睛】
本题考查了等腰直角三角形、等腰三角形的判定与性质、全等三角形的判定与性质.此类问题涉及知识点较多,需要对相关知识点有很高的熟悉度.
22.如图,在四边形ABCD 中,//AB CD .不能判定ABD CDB ∆≅∆的条件是( )
A .A
B CD =
B .AD B
C = C .//A
D BC D .A C ∠=∠
【答案】B
【解析】
【分析】
根据已知条件,分别添加选项进行排查,即可完成解答;注意BD 是公用边这个条件.
【详解】
解:A.若添加AB=CD,根据AB ∥CD ,则∠ABD=∠CDB ,依据SAS 可得
△ABD ≌△CDB ,故A 选项正确;
B.若添加AD=BC,根据AB ∥CD ,则∠ADB=∠CBD ,不能判定△ABD ≌△CDB ,故B 选项错误;
C.若添加//AD BC ,则四边形ABCD 是平行四边形,能判定△ABD ≌△CDB ,故C 选项正确;
D.若添加∠A=∠C ,根据AB ∥CD ,则∠ABD=∠CDB ,且BD 公用,能判定
△ABD ≌△CDB ,故D 选项正确;
故选:B.
【点睛】
本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.
23.如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D,过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G,则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH,其中正确的是()
A.1 B.2 C.3 D.4
【答案】C
【解析】
【分析】
①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出
∠CAP,再根据角平分线的定义∠ABP=1
2
∠ABC,然后利用三角形的内角和定理整理即可
得解;
②先求出∠APB=∠FPB,再利用“角边角”证明△ABP和△FBP全等,根据全等三角形对应边相等得到AB=BF,AP=PF;
③根据直角的关系求出∠AHP=∠FDP,然后利用“角角边”证明△AHP与△FDP全等,根据全等三角形对应边相等可得DF=AH;
④根据PF⊥AD,∠ACB=90°,可得AG⊥DH,然后求出∠ADG=∠DAG=45°,再根据等角对等边可得DG=AG,再根据等腰直角三角形两腰相等可得GH=GF,然后求出DG=GH+AF,有直角三角形斜边大于直角边,AF>AP,从而得出本小题错误.
【详解】
解:①∵∠ABC的角平分线BE和∠BAC的外角平分线,
∴∠ABP=1
2
∠ABC,
∠CAP=1
2(90°+∠ABC)=45°+1
2
∠ABC,
在△ABP中,∠APB=180°-∠BAP-∠ABP,
=180°-(45°+
12∠ABC+90°-∠ABC )-12
∠ABC , =180°-45°- 12∠ABC-90°+∠ABC-12
∠ABC , =45°,故本小题正确;
②∵PF ⊥AD ,∠APB=45°(已证),
∴∠APB=∠FPB=45°,
∵∵PB 为∠ABC 的角平分线,
∴∠ABP=∠FBP ,
在△ABP 和△FBP 中, APB FPB PB PB
ABP FBP ∠=∠⎧⎪=⎨⎪∠=∠⎩
, ∴△ABP ≌△FBP (ASA ),
∴AB=BF ,AP=PF ;故②正确;
③∵∠ACB=90°,PF ⊥AD ,
∴∠FDP+∠HAP=90°,∠AHP+∠HAP=90°,
∴∠AHP=∠FDP ,
∵PF ⊥AD ,
∴∠APH=∠FPD=90°,
在△AHP 与△FDP 中,
90AHP FDP APH FPD AP PF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩
∴△AHP ≌△FDP (AAS ),
∴DF=AH ,
∵BD=DF+BF ,
∴BD=AH+AB ,
∴BD-AH=AB ,故③小题正确;
④∵PF ⊥AD ,∠ACB=90°,
∴AG ⊥DH ,
∵AP=PF ,PF ⊥AD ,
∴∠PAF=45°,
∴∠ADG=∠DAG=45°,
∴DG=AG ,
∵∠PAF=45°,AG ⊥DH ,
∴△ADG 与△FGH 都是等腰直角三角形,
∴DG=AG ,GH=GF ,
∴DG=GH+AF ,
∵AF >AP ,
∴DG=AP+GH不成立,故本小题错误,
综上所述①②③正确.
故选:C.
【点睛】
本题考查了直角三角形的性质,全等三角形的判定,以及等腰直角三角形的判定与性质,等角对等边,等边对等角的性质,综合性较强,难度较大,做题时要分清角的关系与边的关系.
24.Rt△ABC中,AB=AC,D点为Rt△ABC外一点,且BD⊥CD,DF为∠BDA的平分线,当∠ACD=15°,下列结论:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2D,其中正确的是( )
A.①③B.①②④C.①③④D.①②③④
【答案】C
【解析】
【分析】
由题意可证点A,点C,点B,点D四点共圆,可得∠ADC=∠ABC=45°;由角平分线的性质和外角性质可得∠AFD=∠BDF+∠DBF>∠ADF,可得AD≠AF;如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,由“SAS”可证△ADF≌△HDF,可得∠DHF=
∠DAF=30°,AF=HF,由等腰三角形的性质可得BH=AF,可证BD=BH+DH=AF+AD;由“SAS”可证△BDG≌△BDE,可得∠BGD=∠BED=75°,由三角形内角和定理和等腰三角形的性质可得BC=BG=2DE+EC.
【详解】
∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,且∠ACD=15°,
∵∠BCD=30°,
∵∠BAC=∠BDC=90°,
∴点A,点C,点B,点D四点共圆,
∴∠ADC=∠ABC=45°,故①符合题意,
∠ACD=∠ABD=15°,∠DAB=∠DCB=30°,
∵DF为∠BDA的平分线,
∴∠ADF=∠BDF,
∵∠AFD=∠BDF+∠DBF>∠ADF,
∴AD≠AF,故②不合题意,
如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,
∵DH =AD ,∠HDF =∠ADF ,DF =DF ,
∴△ADF ≌△HDF(SAS)
∴∠DHF =∠DAF =30°,AF =HF ,
∵∠DHF =∠HBF+∠HFB =30°,
∴∠HBF =∠BFH =15°,
∴BH =HF ,
∴BH =AF ,
∴BD =BH+DH =AF+AD ,故③符合题意,
∵∠ADC =45°,∠DAB =30°=∠BCD ,
∴∠BED =∠ADC+∠DAB =75°,
∵GD =DE ,∠BDG =∠BDE =90°,BD =BD ,
∴△BDG ≌△BDE(SAS)
∴∠BGD =∠BED =75°,
∴∠GBC =180°﹣∠BCD ﹣∠BGD =75°,
∴∠GBC =∠BGC =75°,
∴BC =BG ,
∴BC =BG =2DE+EC ,
∴BC ﹣EC =2DE ,故④符合题意,
故选:C.
【点睛】
本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,
25.如图,AOB ∆的外角,CAB DBA ∠∠的平分线,AP BP 相交于点P ,PE OC ⊥于E ,PF OD ⊥于F ,下列结论:(1)PE PF =;(2)点P 在COD ∠的平分线上;(3)90APB O ∠=︒-∠,其中正确的有 ( )
A .0个
B .1个
C .2个
D .3个
【答案】C
【解析】
【分析】
过点P 作PG ⊥AB ,由角平分线的性质定理,得到PE PG PF ==,可判断(1)(2)正
确;由12APB EPF ∠=
∠,180EPF O ∠+∠=︒,得到1902
APB O ∠=︒-∠,可判断(3)错误;即可得到答案.
【详解】
解:过点P 作PG ⊥AB ,如图:
∵AP 平分∠CAB ,BP 平分∠DBA ,PE OC ⊥,PF OD ⊥,PG ⊥AB ,
∴PE PG PF ==;故(1)正确;
∴点P 在COD ∠的平分线上;故(2)正确;
∵12
APB APG BPG EPF ∠=∠+∠=
∠, 又180EPF O ∠+∠=︒, ∴11(180)9022
APB O O ∠=
⨯︒-∠=︒-∠;故(3)错误; ∴正确的选项有2个;
故选:C .
【点睛】 本题考查了角平分线的判定定理和性质定理,解题的关键是熟练掌握角平分线的判定和性质进行解题.
26.如图,ABC ∆中,45ABC ∠=,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论正确的有( )个
①BF AC =;②12
AE BF =;③67.5A ∠=;④DGF ∆是等腰三角形;⑤ADGE GHCE S S =四边形四边形.
A .5个
B .4个
C .3个
D .2个
【答案】B
【解析】
【分析】 只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF =∠DFG =67.5°,即可判断①②③④正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断⑤错误.
【详解】
∵CD ⊥AB ,BE ⊥AC ,
∴∠BDC =∠ADC =∠AEB =90°,
∴∠A +∠ABE =90°,∠ABE +∠DFB =90°,
∴∠A =∠DFB ,
∵∠ABC =45°,∠BDC =90°,
∴∠DCB =90°−45°=45°=∠DBC ,
∴BD =DC ,
在△BDF 和△CDA 中
BDF CDA A DFB
BD CD ∠∠⎧⎪∠∠⎨⎪⎩
===, ∴△BDF ≌△CDA (AAS ),
∴BF =AC ,故①正确.
∵∠ABE =∠EBC =22.5°,BE ⊥AC ,
∴∠A =∠BCA =67.5°,故③正确,
∴BA =BC ,
∵BE ⊥AC ,
∴AE =EC =
12AC =12
BF ,故②正确, ∵BE 平分∠ABC ,∠ABC =45°,
∴∠ABE =∠CBE =22.5°,
∵∠BDF =∠BHG =90°,
∴∠BGH =∠BFD =67.5°,
∴∠DGF =∠DFG =67.5°,
∴DG =DF ,故④正确.
作GM⊥AB于M.
∵∠GBM=∠GBH,GH⊥BC,
∴GH=GM<DG,
∴S△DGB>S△GHB,
∵S△ABE=S△BCE,
∴S四边形ADGE<S四边形GHCE.故⑤错误,
∴①②③④正确,
故选:B.
【点睛】
此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.
27.程老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题,操作学具时,点Q在轨道槽AM上运动,点P既能在以A为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动,图2是操作学具时,所对应某个位置的图形的示意图.
有以下结论:
①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ
②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ
③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ
④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ
其中所有正确结论的序号是( )
A .②③
B .③④
C .②③④
D .①②③④
【答案】C
【解析】
【分析】 分别在以上四种情况下以P 为圆心,PQ 的长度为半径画弧,观察弧与直线AM 的交点即为Q 点,作出PAQ ∆后可得答案.
【详解】
如下图,当∠PAQ=30°,PQ=6时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,所以PAQ ∆不唯一,所以①错误.
如下图,当∠PAQ=30°,PQ=9时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以②正确.
如下图,当∠PAQ=90°,PQ=10时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,但是此时两个三角形全等,所以形状相同,所以PAQ ∆唯一,所以③正确.
如下图,当∠PAQ=150°,PQ=12时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以④正确.
综上:②③④正确.
故选C.
【点睛】
本题考查的是三角形形状问题,为三角形全等来探索判定方法,也考查三角形的作图,利用对称关系作出另一个Q是关键.
28.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()
①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.
A.①②③B.①②④C.①②D.①②③④
【答案】A
【解析】
【分析】
根据题意结合图形证明△AFB≌△AEC;利用四点共圆及全等三角形的性质问题即可解决.【详解】
如图,
∵∠EAF=∠BAC,
∴∠BAF=∠CAE;
在△AFB与△AEC中,
AF
AE BAF CAE AB AC ⎧⎪∠∠⎨⎪⎩
===, ∴△AFB ≌△AEC (SAS ),
∴BF=CE ;∠ABF=∠ACE ,
∴A 、F 、B 、C 四点共圆,
∴∠BFC=∠BAC=∠EAF ;
故①、②、③正确,④错误.
故选A..
【点睛】
本题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是准确找出图形中隐含的全等三角形,灵活运用四点共圆等几何知识来分析、判断、推理或证明.
29.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ',连接AO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60°得到:②点O 与O '的距离为4;③150AOB ∠=︒;④S 四边形643AOBO ;⑤9634
AOC AOB S S +=+△△.其中正确的结论是( )
A .①②③④
B .①②③⑤
C .①②④⑤
D .①②③④⑤
【答案】D
【解析】
【分析】 证明△BO ′A ≌△BOC ,又∠OBO ′=60°,所以△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;
由△OBO ′是等边三角形,可知结论②正确;
在△AOO ′中,三边长为3,4,5,这是一组勾股数,故△AOO ′是直角三角形;进而求得∠AOB =150°,故结论③正确;
643AOO OBO AOBO S S S '∆'∆'=+=+四边形④正确;
如图②,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.利用旋转变换构造等边三角形与直角三角形,将S △AOC +S △AOB 转化为S △COO ″+S △AOO ″,计算可得结论⑤正确.
【详解】
解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,
又∵OB =O ′B ,AB =BC ,
∴△BO ′A ≌△BOC ,又∵∠OBO ′=60°,
∴△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,
故结论①正确;
如图①,连接OO ′,
∵OB =O ′B ,且∠OBO ′=60°,
∴△OBO ′是等边三角形,
∴OO ′=OB =4.
故结论②正确;
∵△BO ′A ≌△BOC ,∴O ′A =5.
在△AOO ′中,三边长为3,4,5,这是一组勾股数,
∴△AOO ′是直角三角形,∠AOO ′=90°,
∴∠AOB =∠AOO ′+∠BOO ′=90°+60°=150°,
故结论③正确;
2313446432AOO OBO AOBO S S S '∆'∆'=+=⨯⨯+⨯=+四边形, 故结论④正确;
如图②所示,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.
易知△AOO ″是边长为3的等边三角形,△COO ″是边长为3、4、5的直角三角形,
则23193436324
AOC AOB COO AOO AOCO S S S S S ∆∆∆''∆''''+==+=⨯⨯+⨯=+四边形, 故结论⑤正确.
综上所述,正确的结论为:①②③④⑤.
故选:D .
【点睛】
本题考查了旋转变换中等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.在判定结论⑤时,将△AOB 向不同方向旋转,体现了结论①﹣结论④解题思路的拓展应用.
30.如图,四边形ABCD 中,∠A 、∠B 、∠C 、∠D 的角平分线恰相交于一点P ,记△APD 、△APB 、△BPC 、△DPC 的面积分别为S 1、S 2、S 3、S 4,则有( )。

相关文档
最新文档