计算机控制系统 康博 李云霞课后习题答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=
⎪⎧0 ⎨5 ⎪⎩6
+
5 4

25 12
0.6 k −1
k =0 k = 1,2,"
(3) F (z)
=
z(z
5 + 0.2)
=
z −2 ⎜⎛ ⎝
z
5z + 0.2
⎟⎞ ⎠
=
z
−2
⎜⎛ ⎝
1
+
5 0.2
z
−1
⎟⎞ ⎠
⎧0 f (kT ) = ⎩⎨5(−0.2)k−2
k = 0,1 k = 2,3,"
(z)
=
z
(1
+
z −1 2z −1
)2
⎧0
y(k
)
=
⎨ ⎩(k
+
1
)(−2)k
k <0 k ≥0
3.5
求题图
3.1

z
传递函数 G(z)
=
Y (z) R(z)
,设 G1(s)
=
s
1 +
1

G1
(
s)
=
s
1 +2
( )( ) 解:(a)
G(z)
=
Z
⎡ ⎢⎣
(s
+
1
1)(s
+

2)⎥⎦
=
(e−T − e−2T )z −1 1 − e−T z −1 1 − e−2T z −1
z −2
3.8
解:Φ
(z)
=
D( z )G ( z ) 1+ D(z)G(z)
=
0.6z −1 1 − 0.4z−1
输出:
( )( ) Y
(
z)
=
Φ
(
z)R(z)
=
1
1 −z
−1
1
0.6z −1 − 0.4z−1
=
0.6z −1 1 − z −1 1 − 0.4z−1
稳态输出:
( ) y(∞) = lim 1− z−1 Y (z) = lim(z −1) 0.6z
z −1
[ ] F(z) =
(6)
Z
⎡1 ⎢ ⎣

e s
−Ts
1⎤
s(s
+
1)
⎥ ⎦
= (1 − z−1)
(T
−1 + e−T ) + (1 − e−T − Te−T )z −1 (1 − z −1)2 (1 − e−T z −1)
z −1
[ ] =
(T −1 + e−T ) + (1 − e−T − Te−T )z −1 z −1 (1 − z −1)(1 − e−T z −1)
(6)
F
(z)
=
z −2
⎡ ⎢1 ⎣
+
1
4z −1 − 2z −1
⎤ ⎥ ⎦
=
z −2
+
z −3⎜⎛ ⎝1

4 2z −1
⎟⎞ ⎠
⎧0 k = 0,1 f (kT ) = ⎪⎨1 k = 2
⎪⎩2k−1 k = 3,4,"
3.3 求下列函数的初值和终值。
解:(1)
f
(0)
=
lim F (z)
z →∞
1]⎢⎡

x1 x2
(k)⎤ (k )⎥⎦
+
u
(k
)
(2)串行法
G(z)
=
Y (z) U (z)
=1+
0.1(z + 0.09) z2 + z + 0.09
=1+
z
0.1 + 0.9

z + 0.09 z + 0.1
框图为
u(k)
0.1
z + 0.09
z + 0.9
x1(k)
z + 0.1
根据框图,可得到状态变量具有如下关系
=
lim
z→∞
1
1 −z
−1
=1
[ ] f (∞) = lim1 (1− z−1)F (z) z →1
=
lim1
z→1

z
−1
1
1 −z
−1
=1
(2)
f
(0)
=
lim
z →∞
F(z)
=
lim
z→∞
(1 +
1 − 0.25z−2 0.25z−2 )(1 + 1.25z−1
+
0.375z −2 )
=1
f
3.2 求下列函数的z反变换。
解:(1) f (kT ) = 0.4k , k = 0,1,2,"
5 (2) F (z) = 6 +
5 4
− 25 + 12
=
⎜⎛ z −1⎜
5
+
5z 4
− 25 z ⎟⎞ + 12 ⎟
z z −1 z − 0.6
⎜⎜⎝ 6 z −1 z − 0.6 ⎟⎟⎠
f
(kT
)
⎡ x1(k
⎢ ⎣
x2
(k
+ 1) ⎤ + 1)⎥⎦
=
⎡ ⎢⎣−
0 0.16
1⎤ − 1⎥⎦
⎡ ⎢ ⎣
x1 x2
(k)⎤ (k )⎥⎦
+
⎡ ⎢⎣−
0⎤ 0.16⎥⎦u(k
)
y(k) = [1
0]⎢⎡

x1 x2
(k)⎤ (k )⎥⎦
+
u
(k
)
(2)令
⎧ ⎪ ⎨
x1 (k ) x2 (k)
= =
y(k) y(k +
1)
⎪⎩x3(k) = y(k + 2)
可得
x1(k +1) = x2 (k) x2 (k +1) = x3(k) x3(k +1) = −5x1(k) − 2x2 (k) − 4x3(k) + u(k)
以及
y(k) = x1(k)
因此可得状态空间表达为
⎡ x1(k +1)⎤ ⎡ 0 1 0 ⎤⎡ x1(k)⎤ ⎡0⎤
⎢ ⎢
x2
(k
+ 1)⎥⎥
=
⎢ ⎢
0
0
1
⎥ ⎥
⎢ ⎢
x2
(k
)⎥⎥
+
⎢⎢0⎥⎥u (k )
⎢⎣x3(k +1)⎥⎦ ⎢⎣− 5 − 2 − 4⎥⎦⎢⎣x3(k)⎥⎦ ⎢⎣1⎥⎦
⎡ x1(k)⎤
y(k) = [1 0 0]⎢⎢x2 (k)⎥⎥
⎢⎣ x3 (k ) ⎥⎦
3.10 解:(1) 并行法
G(z)
=
1+
0.1z−1 + 0.009z−2 1 + z −1 + 0.09z −2

W
(
z
)
=
1
+
z
U (z) −1 + 0.09
z
−2

( ) Y (z) = 0.1z−1 + 0.009z−2 W (z) + U (z)
进一步可得:
⎪⎧W (z) = −z−1W (z) − 0.09z−2W (z) + U (z) ⎪⎩⎨Y (z) = 0.1z−1W (z) + 0.009z−2W (z) + U (z)
=
−0.81X 1 ( z )

0.1X
2
(
z)
+
0.1U
(
z)
对应的差分方程为
⎧ ⎨ ⎩
x1 (k x2 (k
+ 1) + 1)
= =
−0.9 x1 (k ) −0.81x1 (k
+ 0.1u(k ) − 0.1x2
) (k
)
+
0.1u(k
)
对应的状态方程的矩阵形式为
⎡ x1(k
பைடு நூலகம்⎢ ⎣
x2
(k
+ 1) ⎤ + 1)⎥⎦
D(z)
=
1 1− z −1
, G(z)
=
1−
1 e−2T
z −1
H(z) = 2
1
1
( )( ) ( ) Φ (z) = 1− z−1 1− e−2T z−1 =
1+
1 1 − z −1
1

1 e−2T
z −1
2
1 − z −1
1 1 − e−2T z −1
+
2
=
3−
1+
e−2T
1 z −1
+
e−2T
(2)对差分方程求 z 变换,得
Y (z) + 3z−1Y (z) + 2z−2Y (z) = R(z) + z−1R(z)
( ) ( ) Y
(
z)
=
1
1 +
+ 3
z−1 R(z) z −1 + 2z −2
=
1
+
1+ 3z −1
z −1 +2
z
−2
1 1 + 2z −1
=
1 1 + 2z −1
2
Y
1
1 −z
−1

1

e
1
−2.5T
z
−1
⎟⎞ ⎠
=
0.4(1 − e−2.5T )z −1 (1 − z −1 )(1 − e−2.5T z −1 )
[ ] (5) F (z) =
(2T −1 + e−2T ) + (1 − e−2T − 2Te−2T )z −1 4(1 − z −1)2 (1 − e−2T z −1)
3.7 已知系统结构题如图 3.3 所示,已知 D(s) = 1 ,G(s) = 1 ,H (s) = 2 ,试求其闭
s
s +1
环脉冲传递函数Φ (z) 。
解: C(z) = R(z)D(z)G(z) 1+ D(z)G(z)H (z)
Φ (z) = C(z) = D(z)G(z) R(z) 1+ D(z)G(z)H (z)
(∞)
=
⎡ lzi→m1 1⎢⎣(1

z
−1 )
(1
+
0.25z
−2
1 − 0.25z −2 )(1 + 1.25z−1
+
0.375z
−2
)
⎤ ⎥ ⎦
=
0
(3)
f
(0)
=
lim
z →∞
F(z)
=
lim
z→∞
(z
− 1)( z 2
0.8 z 2 − 0.416z
+
0.208)
=
0
f
(∞)
=
⎡ lzi→m1 1⎢⎣(1 −
+
0.8)
⎤ ⎥ ⎦
=
0.9975
3.4 求解下列差分方程。
解:(1)对差分方程求 z 变换,得
Y
(z)

0.3z
−1Y
(
z)
=
R(
z)
=
1

1 0.6z
−1
Y (z)
=
(1 −
1 0.3z−1)(1 −
0.6 z −1 )
=
1−
−1 0.3z −1
+
1−
2 0.6z −1
⎧0
k <0
y(k) = ⎩⎨− (0.3)k + 2 ⋅ 0.6k k ≥ 0
(b)
G(
z)
=
Z
⎡ ⎢⎣
(s
1 +

1)⎥⎦

Z
⎡ ⎢⎣
(s
1 +

2)⎥⎦
=
1

1 e−T
z
−1
1

1 e−2T
z
−1
3.6 求题图 3.2 的闭环 z 传递函数Φ (z) = Y (z) 。 R(z)
解:(a)Φ (z) = G1(z)G2 (z) 1+ G1(z)G2H (z)
(b)Φ (z) = R(z)G1(z)G2 (z) 1+ G2 (z) + G1(z)G2H (z)
(4) F (z) =
z
= −1+ 2
z (z −1)(z − 2) z z − 2
F(z) = − z + 2z z z−2
f (kT ) = −1 + 2k+1, k = 0,1,2,"
(5)
F (z)
=
z −1 T
⎡ Tz −1
⎢ ⎣
(1

z
−1
)2
⎤ ⎥ ⎦
f
(kT
)
=
⎧0 ⎩⎨k
-
1
k =0 k = 1,2,"
z −1)
(z
− 1)( z 2
0.8z 2 − 0.416z
+
0.208)
⎤ ⎥ ⎦
=
0.9975
(4)
f
(0)
=
lim
z →∞
F(z)
=
lim
z→∞
(z2

z2 (z2 + z + 1) 0.8z +1)(z2 + z
+
0.8)
=
0
f
(∞)
=
⎡ lzi→m1 1⎢⎣(1 −
z −1)
(z2

z2 (z2 + z +1) 0.8z +1)(z2 + z
部分习题解答
第3章
3.1
解:(1)
F
( z)
=
1

1

1 e −T
z
−1
=
− e−T z − e−T
(2)
F(z)
=
Te −T z −1 (1 − e−T z −1 ) 2
(3)
F
(z)
=
1

1 0.3z
−1
(4) F (s) = 0.4⎜⎛ 1 − 1 ⎟⎞ ⎝ s s + 2.5 ⎠
F(z)
=
0.4⎜⎛ ⎝
输出方程为
y(k) = x1(k) + x2 (k) + u(k)
对应的状态方程和输出方程的矩阵形式分别为
⎡ x1(k
⎢ ⎣
x2
(k
+ 1) ⎤ + 1)⎥⎦
=
⎡− ⎢⎣
0.9 0

0⎤ 0.1⎥⎦
⎡ ⎢ ⎣
x1 x2
(k)⎤ (k )⎥⎦
+
⎡ 0.1013 ⎤ ⎢⎣− 0.0013⎥⎦u
(k
)
y(k) = [1
相关文档
最新文档