(专题精选)初中数学方程与不等式之二元二次方程组难题汇编含答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(专题精选)初中数学方程与不等式之二元二次方程组难题汇编含答案解析一、选择题
1.解方程组:
22
694(1)
23(2)
x xy y
x y
⎧-+=
⎨
-=
⎩
【答案】1
15 1
x y =
⎧
⎨
=⎩或2
2
13
5
x
y
=⎧
⎨
=⎩
【解析】
【分析】
先将①中的x2 -6xy+9y2分解因式为:(x-3y)2,则x-3y=±2,与②组合成两个方程组,解出即可
【详解】
解:由①,得(x﹣3y)2=4,
∴x﹣3y=±2,
∴原方程组可转化为:
33
23
x y
x y
-=
⎧
⎨
-=
⎩
或
3-2
23
x y
x y
-=
⎧
⎨
-=
⎩
解得1
15 1
x y =
⎧
⎨
=⎩或2
2
13
5
x
y
=⎧
⎨
=⎩
所以原方程组的解为:1
15 1
x y =
⎧
⎨
=⎩或2
2
13
5
x
y
=⎧
⎨
=⎩
【点睛】
此题考查二元二次方程组的解,解题关键在于掌握运算法则2.解方程组:
(1)
4
{
526
y x
x y
=-
+=
;(2)
358
{
32
x y
x y
+=
-=
【答案】(1)
2
2
x
y
=
⎧
⎨
=-
⎩
;(2)
【解析】
方程组利用加减消元法求出解即可.解:(1) ①代入②得x=2
把x=2代入①得y=-2
∴
(2) ①-②得y=1
把y=1代入①得x=1
∴
“点睛”本题通过“代入”“加减”达到消元的目的,将解二元一次方程组的问题转化为解一元一次方程的问题.
3.解方程组:2263100x y x xy y -=⎧⎨+-=⎩
【答案】11126x y =⎧⎨
=⎩,1151x y =⎧⎨=-⎩ 【解析】
【分析】
先将二次方程化为两个一次方程,则原方程组化为两个二元一次方程组,解方程组即可.
【详解】
解:226
3100x y x xy y -=⎧⎨+-=⎩
由②得:()()250x y x y -+=
原方程组可化为620x y x y -=⎧⎨-=⎩或650
x y x y -=⎧⎨+=⎩, 解得:11126x y =⎧⎨=⎩,11
51x y =⎧⎨=-⎩. ∴原方程组的解为11126x y =⎧⎨
=⎩,11
51x y =⎧⎨=-⎩. 【点睛】
本题考查了解高次方程组,将高次方程化为一次方程是解题的关键.
4.22x -y -3x 10y ⎧=⎨++=⎩
,①,② 【答案】x 1y -2=⎧⎨
=⎩
【解析】
【分析】
根据解二元二次方程组的步骤求解即可.
【详解】
解:由方程①得:()()x y x-y -3+⋅=,③
由方程②得:x y -1+=,④
联解③④得x-y=3,⑤
联解④⑤得x 1y -2
=⎧⎨=⎩ 所以原方程组的解为x 1y -2=⎧⎨
=⎩ 【点睛】
本题考查解二元二次方程组,解二元二次方程组的基本思想是先消元转化为一元二次方程,再降次转化为一元一次方程解之.
5.解方程组:22+2-0110x y x y ⎧=⎨-+=⎩
【答案】:2112113,02
3x x y y ⎧=-⎪=-⎧⎪⎨⎨=⎩⎪=⎪⎩
【解析】
【分析】
把(2)変形后代入(1)便可解得答案
【详解】
22+2-1010x y x y ⎧=⎪⎨-+=⎪⎩
①② 由②得:x=y-1
代入①得:12023y y =⎧⎪⎨=⎪⎩
, 分别代入②得:12113x x =-⎧⎪⎨=-⎪⎩
, 故原方程组的解为:2112113,02
3x x y y ⎧=-⎪=-⎧⎪⎨⎨=⎩⎪=⎪⎩
【点睛】
此题考查高次方程,解题关键在于掌握运算法则
6.解方程组:22x y 2{x xy 2y 0
-=---=. 【答案】 11x 1y 1=-⎧⎨=⎩,22
x 4y 2=-⎧⎨=-⎩ 【解析】
【分析】
注意到22x xy 2y --可分解为
,从而将原高次方程组转换为两个二元一次
方程组求解.
【详解】
解:由22x xy 2y 0--=得()()x y x 2y 0+-=,即x y 0+=或x 2y 0-=, ∴原方程组可化为x y 2x y 0-=-⎧⎨+=⎩或x y 2x 2y 0-=-⎧⎨-=⎩
. 解x y 2x y 0-=-⎧⎨+=⎩得x 1y 1=-⎧⎨=⎩;解x y 2x 2y 0-=-⎧⎨-=⎩得x 4y 2=-⎧⎨=-⎩
. ∴原方程组的解为11x 1y 1=-⎧⎨=⎩,22x 4y 2
=-⎧⎨=-⎩.
7.解方程组:2225210x y x y xy +=⎧⎨+--=⎩
. 【答案】7343x y ⎧=⎪⎪⎨⎪=⎪⎩
或12x y =⎧⎨=⎩. 【解析】
【分析】
将方程22
210x y xy +--=变形整理求出1x y -=或1x y -=-,然后分别与25x y +=组成方程组,求出对应的x ,y 的值即可.
【详解】
解:2225210x y x y xy +=⎧⎨+--=⎩①②
, 对②变形得:()21x y -=,
∴1x y -=③或1x y -=-④,
①-③得:34y =,解得:43y =
, 把43
y =代入①得:4253x +⨯=,解得:73x =; ①-④得:36y =,解得:2y =,
把2y =代入①得:225x +⨯=,解得:1x =,
故原方程组的解为:7343x y ⎧=⎪⎪⎨⎪=⎪⎩
或12x y =⎧⎨=⎩. 【点睛】
本题考查了解二元二次方程组,解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和“降次”,掌握好消元和降次的方法和技巧是解二元二次方程组的关键.
8.某商场计划销售一批运动衣,能获得利润12000元.经过市场调查后,进行促销活动,由于降低售价,每套运动衣少获利润10元,但可多销售400套,结果总利润比计划多4000元.求实际销售运动衣多少套?每套运动衣实际利润是多少元?
【答案】实际销售运动衣800套,实际每套运动衣的利润是20元
【解析】
【分析】
根据计划销售的套数×计划每套运动衣的利润=计划获利12000元;实际销售的套数×实际每套运动衣的利润=实际获利12000+4000元;那么可列出方程组求解.
【详解】
解:设实际销售运动衣x 套,实际每套运动衣的利润是y 元.
根据题意 ,可列方程组
()()4001012000
120004000x y xy ⎧-+=⎨=+⎩
解得:1212
800800,2020x x y y ==-⎧⎧⎨⎨==-⎩⎩(舍去), 答:实际销售运动衣800套,每套运动衣的实际利润20元.
【点睛】
本题考查了二元二次方程组的应用,关键是根据题意列出方程组求解后要判断所求的解是否符合题意,舍去不合题意的解.
9.已知直角三角形周长为48厘米,面积为96平方厘米,求它的各边长.
【答案】12cm 、16cm 、20cm.
【解析】
【分析】
设两直角边为a 、b
+1=962
a b ab ⎧⎪⎨⎪⎩求解即可.
【详解】
设该直角三角形的两条直角边为a 、b
22++=481=962
a b a b ab ⎧+⎪⎨⎪⎩ 解得=12=16a b ⎧⎨⎩或=16=12
a b ⎧⎨⎩, 经检验,=12=16a b ⎧⎨
⎩和=16=12a b ⎧⎨⎩都是方程的解,所以斜边长为221216=20+cm. 答:该直角三角形的三边长分别是12cm 、16cm 、20cm.
【点睛】
此题运用三角形面积表示出1=962
ab ,然后由勾股定理导出22a b +是关键.
10.有一批机器零件共400个,若甲先单独做1天,然后甲、乙两人再合做2天,则还有60个未完成;若甲、乙两人合做3天,则可超产20个. 问甲、乙两人每天各做多少个零件?
【答案】甲每天做60个零件,乙每天做80个零件.
【解析】
试题分析:根据题意,设甲每天做x 个零件,乙每天做y 个零件,然后根据根据题目中的两种工作方式列出方程组,解答即可.
试题解析:设甲每天做x 个零件,乙每天做y 个零件.
根据题意,得
解这个方程组,得 答:甲每天做60个零件,乙每天做80个零件.
11.解方程组:222232()x y x y x y ⎧-=⎨-=+⎩
. 【答案】111,1x y =⎧⎨=-⎩;223232x y ⎧=-⎪⎪⎨⎪=⎪⎩;331252x y ⎧=-⎪⎪⎨⎪=-⎪⎩
. 【解析】
分析:
把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.
详解:
由方程222()x y x y -=+可得,0x y +=,2x y -=;
则原方程组转化为223,0.x y x y ⎧-=⎨+=⎩(Ⅰ)或 223,2.
x y x y ⎧-=⎨-=⎩ (Ⅱ), 解方程组(Ⅰ)得21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩
, 解方程组(Ⅱ)得43341,1,21;5.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=-⎪⎩
, ∴原方程组的解是21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩ 331,25.2x y ⎧=-⎪⎪⎨⎪=-⎪⎩
. 点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y ,即可得到关于x 的一元二次方程.
12.已知正比例函数()()249m n y m n x
m -=++-的图像经过第二、四象限,求这个正比例函数的解析式.
【答案】19y x =-
【解析】
【分析】
根据正比例函数的定义可得关于m 、n 的方程组,解方程组即可求出m 、n 的值,再根据其所经过的象限进行取舍即可.
【详解】
解:∵该函数为正比例函数,∴2190m n m -=⎧⎨-=⎩,解得32m n =⎧⎨=⎩或34m n =-⎧⎨=-⎩
, ∵该函数图像经过第二、四象限,∴40m n +<,∴34m n =-⎧⎨
=-⎩
, ∴函数解析式为:19y x =-.
【点睛】 本题考查了正比例函数的定义和性质以及二元二次方程组的求解,熟练掌握正比例函数的定义和性质是解题关键.
13.21238438xy x y yz z y zx z x =+-⎧⎪=+-⎨⎪=+-⎩
【答案】231x y z =⎧⎪=⎨⎪=⎩或3521
x y z =⎧⎪⎪=⎨⎪=-⎪⎩ 【解析】
【分析】
将x 和z 分别都用y 表示出来,代入第三个方程,解出y ,然后就可以解出x 、z .
【详解】
解:21238438xy x y yz z y zx z x =+-⎧⎪=+-⎨⎪=+-⎩
①②③ 由①得:12y x y -=
-④ 由②得:382
y z y -=-⑤ 将④⑤代入③得:
1384(38)3(1)82222y y y y y y y y ----=+-----g , 去分母整理得:2422300y y -+=,
∴2(3)(25)0y y --=,
3y ∴=或52
=, 将3y =分别代入④⑤得:2x =,1z =; 将52
y =分别代入④⑤得:3x =,1z =-; 综上所述,方程组的解为:231x y z =⎧⎪=⎨⎪=⎩或3521
x y z =⎧⎪⎪=⎨⎪=-⎪⎩. 【点睛】
本题考查了三元二次方程组的解法,解方程的基本思想是消元,任意选择两个方程将两个未知数用第三个未知数表示,即可代入第三个方程,解出一个未知数之后,剩下两未知数就可直接算出.
14.()()22244922120
x xy y x y x y ⎧-+=⎪⎨+-+-=⎪⎩ 【答案】117214x y ⎧=⎪⎪⎨⎪=⎪⎩,22032x y =⎧⎪⎨=-⎪⎩,331274x y ⎧=⎪⎪⎨⎪=⎪⎩
,4430x y =-⎧⎨=⎩ 【解析】
【分析】
由于组中的两个二元二次方程都可以分解为两个二元一次方程,所以先分解组中的两个二元二次方程,得到四个二元一次方程,重新组合成四个二元一次方程组,再解答即可.
【详解】
解:()()22244922120x xy y x y x y ⎧-+=⎪⎨+-+-=⎪⎩①
②
将①因式分解得:2(2)9x y -=,
∴23x y -=或23x y -=-
将②因式分解得:(24)(23)0x y x y +-++=
∴240x y +-=或230x y ++=
∴原方程化为:23240x y x y -=⎧⎨+-=⎩或23230x y x y -=⎧⎨++=⎩或23240x y x y -=-⎧⎨+-=⎩或23230x y x y -=-⎧⎨++=⎩
解上述方程组得:117214x y ⎧=⎪⎪⎨⎪=⎪⎩,22032x y =⎧⎪⎨=-⎪⎩,331274x y ⎧=⎪⎪⎨⎪=⎪⎩
,4430x y =-⎧⎨=⎩ ∴原方程组的解为:117214x y ⎧=⎪⎪⎨⎪=⎪⎩,22032x y =⎧⎪⎨=-⎪⎩,331274x y ⎧=⎪⎪⎨⎪=⎪⎩
,4430x y =-⎧⎨=⎩ 【点睛】
本题考查了二元二次方程组的解法,解题的关键是利用因式分解法将原方程组转化为四个方程组.
15.解方程:22310x y x y ⎧-=-⎨++=⎩
【答案】12x y =⎧⎨=-⎩
【解析】
【分析】
本题可用代入消元法进行求解,即把方程2写成x=-1-y ,代入方程1,得到一个关于y 的一元二次方程,求出y 值,进而求x .
【详解】
解:()()
2231102x y x y ⎧-=-⎪⎨++=⎪⎩ 由(2)得:1x y =--(3)
把(3)代入(1):22(1)3y y ---=-
∴2y =-
∴1x =
原方程组的解是12x y =⎧⎨=-⎩
【点睛】
本题中考查了由一个二元一次方程和一个二元二次方程组成的方程组的解法,可用代入法求解.
16.如图在矩形ABCD 中,AB= n AD,点E 、F 分别在AB 、AD 上且不与顶点A 、B 、D 重合, AEF BCE ∠=∠, 圆O 过A 、E 、F 三点。
(1)求证:圆O 与CE 相切于点E.
(2)如图1,若AF=2FD ,且30AEF ∠=︒,求n 的值。
(3)如图2,若EF=EC ,且圆O 与边CD 相切,求n 的值。
【答案】(1)证明见解析;(233)74
【解析】(1)由四边形ABCD 是矩形证明∠FEC=90°即可;(2)在直角三角形中利用三角函数求解;(3)利用三角形中位线、勾股定理和题意可列方程求出n n 的值.
(1)证明:∵四边形ABCD 是矩形,∴∠B=90°,
∠BCE+∠BEC=90°,
又∵∠AEF=∠BCE ,∵∠AEF+∠BEC=90°,
∴∠FEC=90°,∴⊙O 与CE 相切.
(2)∵AF=2FD,设FD=a 。
则AF=2a ,
在直角三角形AEC 中,∵∠AEF=30°,
∴∠BCE=30°.
∴EF=4a ,由勾股定理:AE=23 , .
∴BC=3a ,又在直角三角形EBC 中,
3EB a ∴=,
23333AB AE EB a a n AD AD a
++====.
过E 作EM DC 于M,因为圆O 与CD 相切,设切点为N ,连接ON,又过F 作FQ EM 交ON 于H , Q FE=EC, EF ⊥EC, ∴ AEF CBE ∆≅∆,
根据题意和作图,可设AE=BC=ME=AD= y ,AF=QE=EB= x ,
易证明OH 为EFQ ∆的中位线,OH=
22EQ x =, 2ON=EF=
,
由勾股定理和题意可列方程: 222
2){y x x y x y ny
-=++=(, 化简:
74
n ∴= . “点睛”本题考查了直线与圆的位置关系,将方程与几何融合在一起,利用勾股定理和方程组解答;解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.
17.温州三垟湿地的瓯柑名气很大,但今年经济不景气,某经销商为了打开销路,对1220斤瓯柑进行包装优惠出售.包装方式及售价如下图.假设用这两种包装方式恰好装完全部瓯柑.
(1)若销售2箱纸盒装和3筐萝筐装瓯柑的收入共 元(请直接写出答案).
(2)假如预计这批瓯柑全部售完,总销售额为3210元时.请问纸盒装包装了多少箱,箩筐装包装了多少筐?
(3)但由于天气原因,瓯柑腐烂了a 斤(不能出售),在售价不变的情况下,为了保证总.销售额为....3210元,剩余瓯柑必须用以上两种方式重新包装,且恰好装完,那么纸盒装 箱, 箩筐装 箱.(请直接写出答案)
【答案】(1)495;(2)纸盒装包装了16箱,箩筐装包装了18筐;(3)41,6
【解析】
(1)根据题意可得出方程解出即可;
(2)设纸盒装包装了x 箱,箩筐装包装了y 筐,根据等量关系列出方程组,解出即可; (3)根据(3)问的条件直接写出答案即可.
解:(1)495元
(2)设纸盒装包装了x 箱,箩筐装包装了y 筐,根据题意得:
20501220601253210x y x y +=⎧⎨+=⎩
1618x y =⎧⎨=⎩
解得 答:纸盒装包装了16箱,箩筐装包装了18筐.
(3)41箱,6箱.
“点睛”本题考查了二元一次方程组的应用,解题关键是仔细审题,理解题目所给条件,转化为方程思想求解.
18.解方程组:2220{25x xy y x y --=+=①②
【答案】5{
5x y ==-或21x y =⎧⎨=⎩
. 【解析】
【分析】
将①左边因式分解,化为两个二元一次方程,分别与②联立构成两个二元一次方程组求解即可.
【详解】
2220{25x xy y x y --=+=①②
由①得()()20x y x y +-=,即0x y +=或20x y -=,
∴原方程组可化为0{25x y x y +=+=或20{25
x y x y -=+=. 解0{25x y x y +=+=得5{5x y ==-;解20{25x y x y -=+=得21
x y =⎧⎨=⎩. ∴原方程组的解为5
{5x y ==-或21x y =⎧⎨=⎩
.
19.解方程: 【答案】
【解析】 解:原方程组即为
···································· (2分)
由方程(1)代人(2)并整理得: ······························································· (2分) 解得,
························································ (2分) 代人得
20.有一直立杆,它的上部被风吹折,杆顶着地处离杆脚20dm ,修好后又被风吹折,因新断处比前次低5dm ,故杆顶着地处比前次远10dm ,求此杆的高度.
【答案】此竿高度为50dm
【解析】
【分析】
由题中条件,作如下示意图,可设第一次折断时折断处距地面AB的高为x dm,余下部分BC长为y dm,进而再依据勾股定理建立方程组,进而求解即可.
【详解】
解:设第一次折断时,折断处距地面AB=x dm,余下部分为BC为ydm.
由题意得
222
222
20; (5)(5)30.
y x
y x
⎧=+
⎨
+=-+
⎩
解得
21
29 x
y
=
⎧
⎨
=
⎩
此杆的高度为x+y=21+19=50 dm
答:此竿高度为50dm
【点睛】
本题主要考查了简单的勾股定理的应用问题,能够熟练掌握.。