南山矿区高中2018-2019学年高三下学期第三次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南山矿区高中2018-2019学年高三下学期第三次月考试卷数学一、选择题
1.
定义运算
,例如
.若已知
,则
=()
A
.B
.C
.D

2.在△ABC中,若A=2B,则a等于()
A.2bsinA B.2bcosA C.2bsinB D.2bcosB
3.如图,已知正方体ABCD﹣A1B1C1D1的棱长为4,点E,F分别是线段AB,C1D1上的动点,点P是上底
面A1B1C1D1内一动点,且满足点P到点F的距离等于点P到平面ABB1A1的距离,则当点P运动时,PE的
最小值是()
A.5 B.4 C.
4D.
2
4.
下面是关于复数的四个命题:
p1:|z|=2,
p2:z2=2i,
p3:z的共轭复数为﹣1+i,
p4:z的虚部为1.
其中真命题为()
A.p2,p3B.p1,p2C.p2,p4D.p3,p4
5.已知双曲线和离心率为
4
sin
π
的椭圆有相同的焦点
2
1
F
F、,P是两曲线的一个公共点,若
2
1
cos
2
1
=
∠PF
F,则双曲线的离心率等于()
A.B.
2
5
C.
2
6
D.
2
7 6.已知点A(﹣2,0),点M(x,y)
为平面区域上的一个动点,则|AM|的最小值是()班

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_


_
_
_
_
_
_


_
_
_
_
_
_
_
_
_
_
_
_
_
_
_


_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
A .5
B .3
C .2
D .
7. 数列中,若,,则这个数列的第10项( ) A .19
B .21
C .
D .
8. 设集合A={x|﹣2<x <4},B={﹣2,1,2,4},则A ∩B=( ) A .{1,2}
B .{﹣1,4}
C .{﹣1,2}
D .{2,4}
9. 将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函
数图象的一条对称轴方程是( )
A .x=π
B .
C .
D .
10.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( )
A .
B .
C .
D .
11.设函数()()21x
f x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的 取值范围是( ) A .3,12e ⎡⎫-
⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫
⎪⎢⎣⎭
1111] 12.下列哪组中的两个函数是相等函数( )
A .()()4
f x x =
g B .()()24
=
,22
x f x g x x x -=-+
C .()()1,01,1,0x f x g x x >⎧==⎨<⎩
D .()()=f x x x =,g 二、填空题
13.已知奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f (1﹣m )+f (1﹣2m )<0的实数m 的取值范围是 .
14.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数1
2
12
||z z z +在复平面内对应的点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力. 15.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为 .
16.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ .
17.抛物线y 2=6x ,过点P (4,1)引一条弦,使它恰好被P 点平分,则该弦所在的直线方程为 . 18.在复平面内,复数

对应的点关于虚轴对称,且
,则
____.
三、解答题
19.已知集合A={x|
>1,x ∈R},B={x|x 2
﹣2x ﹣m <0}.
(Ⅰ)当m=3时,求;A ∩(∁R B );
(Ⅱ)若A ∩B={x|﹣1<x <4},求实数m 的值.
20.已知在等比数列{a n }中,a 1=1,且a 2是a 1和a 3﹣1的等差中项.
(1)求数列{a n }的通项公式;
(2)若数列{b n }满足b 1+2b 2+3b 3+…+nb n =a n (n ∈N *
),求{b n }的通项公式b n .
21.设△ABC 的内角A ,B ,C 所对应的边长分别是a ,b ,c 且cosB=,b=2 (Ⅰ)当A=30°时,求a 的值;
(Ⅱ)当△ABC 的面积为3时,求a+c 的值.
22.已知函数f(x)=log a(x2+2),若f(5)=3;
(1)求a的值;
(2)求的值;
(3)解不等式f(x)<f(x+2).
23.已知直线l经过两条直线2x+3y﹣14=0和x+2y﹣8=0的交点,且与直线2x﹣2y﹣5=0平行.
(Ⅰ)求直线l的方程;
(Ⅱ)求点P(2,2)到直线l的距离.
24.已知,且.
(1)求sinα,cosα的值;
(2)若,求sinβ的值.
25.在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l:.
(1)求圆O和直线l的直角坐标方程;
(2)当θ∈(0,π)时,求直线l与圆O公共点的极坐标.
26.数列{a n}满足a1=,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).(Ⅰ)证明数列{tan2a n}是等差数列,并求数列{tan2a n}的前n项和;(Ⅱ)求正整数m,使得11sina1•sina2•…•sina m=1.
南山矿区高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)一、选择题
1.【答案】D
【解析】解:由新定义可得,
====.
故选:D.
【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.
2.【答案】D
【解析】解:∵A=2B,
∴sinA=sin2B,又sin2B=2sinBcosB,
∴sinA=2sinBcosB,
根据正弦定理==2R得:
sinA=,sinB=,
代入sinA=2sinBcosB得:a=2bcosB.
故选D
3.【答案】D
【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,
建立空间直角坐标系,
设AE=a,D1F=b,0≤a≤4,0≤b≤4,P(x,y,4),0≤x≤4,0≤y≤4,
则F(0,b,4),E(4,a,0),=(﹣x,b﹣y,0),
∵点P到点F的距离等于点P到平面ABB1A1的距离,
∴当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,
PE取最小值,
此时,P(2,2,4),E(4,2,0),
∴|PE|min==2.
故选:D.
【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.
4. 【答案】C
【解析】解:p
1:|z|==
,故命题为假;
p 2:z 2=
=
=2i ,故命题为真;
,∴z 的共轭复数为1﹣i ,故命题p 3为假;

,∴p 4:z 的虚部为1,故命题为真.
故真命题为p 2,p 4 故选:C .
【点评】本题考查命题真假的判定,考查复数知识,考查学生的计算能力,属于基础题.
5. 【答案】C 【解析】
试题分析:设椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,焦距为c 2,m PF =1,n PF =2,且不妨设
n m >,由12a n m =+,22a n m =-得21a a m +=,21a a n -=,又2
1
c os 21=
∠PF F ,∴由余弦定理可知:mn n m c -+=2224,2
221234a a c +=∴,432
221=+∴c a c a ,设双曲线的离心率为,则
432
2122=+e
)(,解得2
6
=e .故答案选C .
考点:椭圆的简单性质.
【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由P 为公共点,可把焦半径1PF 、2PF 的长度用椭圆的半长轴以及双曲线的半实轴21,a a 来表示,
接着用余弦定理表示2
1
cos 21=∠PF F ,成为一个关于21,a a 以及的齐次式,等式两边同时除以2
c ,即可求得离心率.圆锥曲线问题在选择填空中以考
查定义和几何性质为主. 6. 【答案】D
【解析】解:不等式组
表示的平面区域如图,
结合图象可知|AM|的最小值为点A 到直线2x+y ﹣2=0的距离,
即|AM|min =.
故选:D .
【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义.
7. 【答案】C
【解析】 因为
,所以
,所以数列构成以为首项,2为公差的等差数
列,通项公式为,所以
,所以
,故选C
答案:C
8. 【答案】A
【解析】解:集合A={x|﹣2<x <4},B={﹣2,1,2,4},则A ∩B={1,2}. 故选:A .
【点评】本题考查交集的运算法则的应用,是基础题.
9. 【答案】B
【解析】解:将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),
得到y=cos x ,再向右平移个单位得到y=cos[(x )],
由(x )=k π,得x =2k π,

+2k π,k ∈Z ,
当k=0时,,
即函数的一条对称轴为,
故选:B
【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键.
10.【答案】C
【解析】解:设等比数列{a n }的公比为q , ∵S 3=a 2+10a 1,a 5=9,
∴,解得



故选C .
【点评】熟练掌握等比数列的通项公式是解题的关键.
11.【答案】D 【解析】

点:函数导数与不等式.1 【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令()0f x =将函数变为两个函
数()()()21,x
g x e x h x ax a =-=-,将题意中的“存在唯一整数,使得()g t 在直线()h x 的下方”,转化为
存在唯一的整数,使得()g t 在直线()h x ax a =-的下方.利用导数可求得函数的极值,由此可求得m 的取值
范围.
12.【答案】D111] 【解析】
考点:相等函数的概念.
二、填空题
13.【答案】[﹣,].
【解析】解:∵函数奇函数f(x)的定义域为[﹣2,2],且在定义域上单调递减,
∴不等式f(1﹣m)+f(1﹣2m)<0等价为f(1﹣m)<﹣f(1﹣2m)=f(2m﹣1),
即,即,得﹣≤m≤,
故答案为:[﹣,]
【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键.注意定义域的限制.
14.【答案】D
【解析】
15.【答案】3+.
【解析】解:本小题考查归纳推理和等差数列求和公式.
前n﹣1行共有正整数1+2+…+(n﹣1)个,
即个,
因此第n行第3个数是全体正整数中第3+个,
即为3+.
故答案为:3+

16.【答案】1-1,3] 【解析】
试题分析:A ∪B ={}{}|03,|12,x x x R x x x R <∈-∈≤≤≤=1-1,3]
考点:集合运算 【方法点睛】
1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.
2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.
3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍. 17.【答案】 3x ﹣y ﹣11=0 .
【解析】解:设过点P (4,1)的直线与抛物线的交点 为A (x 1,y 1),B (x 2,y 2),
即有y 12=6x 1,y 22
=6x 2,
相减可得,(y 1﹣y 2)(y 1+y 2)=6(x 1﹣x 2),
即有k AB =
=
==3,
则直线方程为y ﹣1=3(x ﹣4), 即为3x ﹣y ﹣11=0.
将直线y=3x ﹣11代入抛物线的方程,可得 9x 2﹣72x+121=0,判别式为722﹣4×9×121>0, 故所求直线为3x ﹣y ﹣11=0. 故答案为:3x ﹣y ﹣11=0.
18.【答案】-2
【解析】【知识点】复数乘除和乘方 【试题解析】由题知:
所以
故答案为:-2
三、解答题
19.【答案】
【解析】解:(1)当m=3时,由x 2
﹣2x ﹣3<0⇒﹣1<x <3,
由>1⇒﹣1<x<5,
∴A∩B={x|﹣1<x<3};
(2)若A∩B={x|﹣1<x<4},
∵A=(﹣1,5),
∴4是方程x2﹣2x﹣m=0的一个根,
∴m=8,
此时B=(﹣2,4),满足A∩B=(﹣1,4).
∴m=8.
20.【答案】
【解析】解:(1)设等比数列{a n}的公比为q,由a2是a1和a3﹣1的等差中项得:
2a2=a1+a3﹣1,∴,
∴2q=q2,∵q≠0,∴q=2,
∴;
(2)n=1时,由b1+2b2+3b3+…+nb n=a n,得b1=a1=1.
n≥2时,由b1+2b2+3b3+…+nb n=a n ①
b1+2b2+3b3+…+(n﹣1)b n﹣1=a n﹣1②
①﹣②得:.

∴.
【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题.
21.【答案】
【解析】解:(Ⅰ)∵cosB=,B∈(0,π),
∴sinB==,
由正弦定理可知:,
∴a=.
(Ⅱ)∵S△ABC===3,
∴ac=.
由余弦定理得:b2=a2+c2﹣2accosB=(a+c)2﹣2ac﹣2ac×=4,
∴(a+c)2=+4=28,
故:a+c=2.
22.【答案】
【解析】解:(1)∵f(5)=3,
∴,
即log a27=3
解锝:a=3…
(2)由(1)得函数,
则=…
(3)不等式f(x)<f(x+2),
即为
化简不等式得…
∵函数y=log3x在(0,+∞)上为增函数,且的定义域为R.
∴x2+2<x2+4x+6…
即4x>﹣4,
解得x>﹣1,
所以不等式的解集为:(﹣1,+∞)…
23.【答案】
【解析】解:(Ⅰ)联立,解得其交点坐标为(4,2).…
因为直线l与直线2x﹣2y﹣5=0平行,所以直线l的斜率为1.…
所以直线l的方程为y﹣2=1×(x﹣4),即x﹣y﹣2=0.…
(Ⅱ)点P(2,2)到直线l的距离为.…
【点评】本题考查直线方程的求法,点到直线距离公式的应用,考查计算能力.
24.【答案】
【解析】解:(1)将sin+cos=两边平方得:(sin+cos)2=sin2+2sin cos+cos2=1+sinα=,
∴sinα=,
∵α∈(,π),
∴cosα=﹣=﹣;
(2)∵α∈(,π),β∈(0,),
∴α+β∈(,),
∵sin(α+β)=﹣<0,
∴α+β∈(π,),
∴cos(α+β)=﹣=﹣,
则sinβ=sin=sin(α+β)cosα﹣cos(α+β)sinα=﹣×(﹣)﹣(﹣)×=+=.【点评】此题考查了两角和与差的正弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键.
25.【答案】
【解析】解:(1)圆O:ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ,
故圆O 的直角坐标方程为:x2+y2=x+y,即x2+y2﹣x﹣y=0.
直线l:,即ρsinθ﹣ρcosθ=1,则直线的直角坐标方程为:y﹣x=1,即x﹣y+1=0.
(2)由,可得,直线l与圆O公共点的直角坐标为(0,1),
故直线l 与圆O 公共点的一个极坐标为.
【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,属于基础题.
26.【答案】
【解析】(Ⅰ)证明:∵对任意正整数n,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).
故tan2a n+1==1+tan2a n,
∴数列{tan2a n}是等差数列,首项tan2a1=,以1为公差.
∴=.
∴数列{tan2a n}的前n项和=+=.
(Ⅱ)解:∵cosa n>0,∴tana n+1>0,.
∴tana n=,,
∴sina1•sina2•…•sina m=(tana1cosa1)•(tana2•cosa2)•…•(tana m•cosa m)
=(tana2•cosa1)•(tana3cosa2)•…•(tana m•cosa m﹣1)•(tana1•cosa m)
=(tana1•cosa m)==,
由,得m=40.
【点评】本题考查了等差数列的通项公式及其前n项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题.。

相关文档
最新文档