赣榆区实验中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
赣榆区实验中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 某棵果树前n 年的总产量S n 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,则m 的值为( )
A .5
B .7
C .9
D .11
2. 已知集合{}
2
|10A x x =-=,则下列式子表示正确的有( )
①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆.
A .1个
B .2个
C .3个
D .4个 3. 已知定义在区间[0,2]上的函数y=f (x )的图象如图所示,则y=f (2﹣x )的图象为( )
A
. B
. C
. D
.
4. 已知直线ax+by+c=0与圆O :x 2+y 2=1相交于A ,B
两点,且
,则的值是( )
A
.
B
.
C
.
D .0
5. 若复数满足
7
1i i z
+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -
6. 在△ABC 中,已知A=30°,C=45°,a=2,则△ABC 的面积等于( )
A
.
B
.
C
.
D
.
7. “x >0”是“>0”成立的( )
A .充分非必要条件
B .必要非充分条件
C .非充分非必要条件
D .充要条件
8. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .50x -<<或5x >
B .5x <-或5x >
C .55x -<<
D .5x <-或05x << 9. 等差数列{a n }中,已知前15项的和S 15=45,则a 8等于( )
A .
B .6
C .
D .3
10.己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( )
A .
B .或
C .
D .
或
11.已知菱形ABCD 的边长为3,∠B=60°,沿对角线AC 折成一个四面体,使得平面ACD ⊥平面ABC ,则经过这个四面体所有顶点的球的表面积为( )
A .15π
B .
C .
π
D .6π
12.设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )
A.{}|12x x <≤
B.{}|21x x -≤≤
C. {}2,1,1,2--
D. {}1,2
【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.
二、填空题
13.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}2
2sin
cos []1x x +=的实数解为6π-;
③若3n n a ⎡⎤
=⎢⎥⎣⎦
(n N *∈),则数列{}n a 的前3n 项之和为2
3
1
22n n -;
④当0100x ≤≤时,函数{}22
()sin []sin 1f x x x =+-的零点个数为m ,函数{}()[]13
x
g x x x =⋅-
-的 零点个数为n ,则100m n +=.
其中的真命题有_____________.(写出所有真命题的编号)
【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。
14.已知复数,则1+z 50+z 100
= .
15.若
与
共线,则y= .
16.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()1
e e
x
x f x =-,其中e 为自然对数的底数,则不等式()()
2
240f x f x -+-<的解集为________.
17.如果椭圆+=1弦被点A (1,1)平分,那么这条弦所在的直线方程是 .
18.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.
三、解答题
19.已知函数g (x )=f (x )+
﹣bx ,函数f (x )=x+alnx 在x=1处的切线l 与直线x+2y=0垂直.
(1)求实数a的值;
(2)若函数g(x)存在单调递减区间,求实数b的取值范围;
(3)设x1、x2(x1<x2)是函数g(x)的两个极值点,若b,求g(x1)﹣g(x2)的最小值.
20.已知椭圆C1:+x2=1(a>1)与抛物线C:x2=4y有相同焦点F1.
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当△OBC面积最大时,求直线l的方程.
21.设函数f(x)=|x﹣a|﹣2|x﹣1|.
(Ⅰ)当a=3时,解不等式f(x)≥1;
(Ⅱ)若f(x)﹣|2x﹣5|≤0对任意的x∈[1,2]恒成立,求实数a的取值范围.
22.已知函数f(x)=cos(ωx+),(ω>0,0<φ<π),其中x∈R且图象相邻两对称轴之间的距离为
;
(1)求f(x)的对称轴方程和单调递增区间;
(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值时所对应的x的集合.
23.(本小题满分12分)
已知A 、B 、C 、D 为同一平面上的四个点,且满足2AB =,1BC CD DA ===,设BAD θ∠=,ABD ∆的面积为S ,BCD ∆的面积为T . (1)当3
π
θ=
时,求T 的值; (2)当S T =时,求cos θ的值;
24.为了了解湖南各景点在大众中的熟知度,随机对15~65岁的人群抽样了n 人,回答问题“湖南省有哪几个”
(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人? (Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.
赣榆区实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】C
【解析】解:若果树前n 年的总产量S 与n 在图中对应P (S ,n )点 则前n 年的年平均产量即为直线OP 的斜率 由图易得当n=9时,直线OP 的斜率最大 即前9年的年平均产量最高, 故选C
2. 【答案】C 【解析】
试题分析:{}1,1A =-,所以①③④正确.故选C. 考点:元素与集合关系,集合与集合关系. 3. 【答案】A
【解析】解:由(0,2)上的函数y=f (x )的图象可知f (x )=
当0<2﹣x <1即1<x <2时,f (2﹣x )=2﹣x 当1≤2﹣x <2即0<x ≤1时,f (2﹣x )=1
∴y=f (2﹣x )=,根据一次函数的性质,结合选项可知,选项A 正确
故选A .
4. 【答案】A
【解析】解:取AB 的中点C ,连接OC ,,则AC=
,OA=1
∴sin
=sin ∠AOC=
=
所以:∠AOB=120°
则
•
=1×1×cos120°=
.
故选A .
5. 【答案】A 【解析】
试题分析:42731,1i i i i i ==-∴==-,因为复数满足7
1i i z +=,所以()1,1i i i i z i z
+=-∴=-,所以复数的虚部为,故选A.
考点:1、复数的基本概念;2、复数代数形式的乘除运算.
6. 【答案】B
【解析】解:因为△ABC 中,已知A=30°,C=45°,所以B=180°﹣30°﹣45°=105°.
因为a=2,也由正弦定理,c=
=
=2
.
所以△ABC 的面积,
S==
=2
=2()=1+
. 故选:B .
【点评】本题考查三角形中正弦定理的应用,三角形的面积的求法,两角和正弦函数的应用,考查计算能力.
7. 【答案】A
【解析】解:当x >0时,x 2
>0,则>0
∴“x >0”是“>0”成立的充分条件;
但
>0,x 2
>0,时x >0不一定成立
∴“x >0”不是“>0”成立的必要条件;
故“x >0”是“>0”成立的充分不必要条件;
故选A
【点评】判断充要条件的方法是:①若p ⇒q 为真命题且q ⇒p 为假命题,则命题p 是命题q 的充分不必要条件;②若p ⇒q 为假命题且q ⇒p 为真命题,则命题p 是命题q 的必要不充分条件;③若p ⇒q 为真命题且q ⇒p 为真命题,则命题p 是命题q 的充要条件;④若p ⇒q 为假命题且q ⇒p 为假命题,则命题p 是命题q 的即不充分也不必要条件.⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.
8. 【答案】B
考
点:函数的奇偶性与单调性.
【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.1 9. 【答案】D
【解析】解:由等差数列的性质可得:S 15=
=15a 8=45,则a 8=3.
故选:D .
10.【答案】B
【解析】解:因为y=f (x )为奇函数,所以当x >0时,﹣x <0, 根据题意得:f (﹣x )=﹣f (x )=﹣x+2,即f (x )=x ﹣2, 当x <0时,f (x )=x+2,
代入所求不等式得:2(x+2)﹣1<0,即2x <﹣3,
解得x <﹣,则原不等式的解集为x <﹣; 当x ≥0时,f (x )=x ﹣2,
代入所求的不等式得:2(x ﹣2)﹣1<0,即2x <5,
解得x <,则原不等式的解集为0≤x <,
综上,所求不等式的解集为{x|x <﹣或0≤x <}. 故选B
11.【答案】A
【解析】解:如图所示,设球心为O ,在平面ABC 中的射影为F ,E 是AB 的中点,OF=x ,则CF=
,EF=
R 2=x 2+()2
=(﹣x )2
+()2,
∴x=
∴R 2=
∴球的表面积为15π. 故选:A .
【点评】本题考查球的表面积,考查学生的计算能力,确定球的半径是关键.
12.【答案】D
【解析】由绝对值的定义及||2x ≤,得22x -≤≤,则{}|22A x x =-≤≤,所以{}1,2A B =,故选D.
二、填空题
13.【答案】①③
【解析】对于①,由高斯函数的定义,显然1[]x x x -<≤,①是真命题;对于②,由{}2
2sin
cos []1x x +=得,
{}22sin 1cos []x x =-,即{}22sin sin []x x =.当12x << 时,011x <-<,0sin(1)sin1x <-<,此时
{}22sin sin []x x =化为22sin (1)sin 1x -=,方程无解;当23x ≤< 时,021x ≤-<,0sin(2)sin1x ≤-<,此时{}2
2sin
sin []x x =化为sin(2)sin 2x -=,所以22x -=或22x π-+=,即4x =或x π=,所以原方
程无解.故②是假命题;对于③,∵3n n a ⎡⎤
=⎢⎥⎣⎦(n N *∈),∴1103a ⎡⎤==⎢⎥⎣⎦,2203a ⎡⎤==⎢⎥⎣⎦,3313a ⎡⎤
==⎢⎥⎣⎦
,4413a ⎡⎤==⎢⎥⎣⎦,…,31311[]133n n a n n --⎡⎤==-=-⎢⎥⎣⎦,33[]3n n a n n ⎡⎤
===⎢⎥⎣⎦
,所以数列{}n a 的前3n 项之和为3[12(1)]n n +++-+=231
22
n n -,故③是真命题;对于④,由
14.【答案】i.
【解析】解:复数,
所以z2=i,又i2=﹣1,所以1+z50+z100=1+i25+i50=1+i﹣1=i;
故答案为:i.
【点评】本题考查了虚数单位i的性质运用;注意i2=﹣1.
15.【答案】﹣6.
【解析】解:若与共线,则2y﹣3×(﹣4)=0
解得y=﹣6 故答案为:﹣6
【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y 的方程,是解答本题的关键.
16.【答案】()32-,
【解析】∵()1e ,e x
x f x x R =-
∈,∴()()11x
x x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝
⎭,即函数()f x 为奇函数,又∵()0x
x
f x e e
-=+>'恒成立,故函数()f x 在R 上单调递增,不等式()()2240f x f x -+-<可转化为
()()224f x f x -<-,即224x x -<-,解得:32x -<<,即不等式()()
2240f x f x -+-<的解集为
()32-,
,故答案为()32-,. 17.【答案】 x+4y ﹣5=0 .
【解析】解:设这条弦与椭圆
+
=1交于P (x 1,y 1),Q (x 2,y 2),
由中点坐标公式知x 1+x 2=2,y 1+y 2=2,
把P (x 1,y 1),Q (x 2,y 2)代入x 2+4y 2
=36,
得, ①﹣②,得2(x 1﹣x 2)+8(y 1﹣y 2)=0,
∴k=
=﹣,
∴这条弦所在的直线的方程y ﹣1=﹣(x ﹣1),
即为x+4y ﹣5=0,
由(1,1)在椭圆内,则所求直线方程为x+4y ﹣5=0.
故答案为:x+4y ﹣5=0.
【点评】本题考查椭圆的方程的运用,运用点差法和中点坐标和直线的斜率公式是解题的关键.
18.【答案】
【解析】由y =x 2+3x 得y ′=2x +3, ∴当x =-1时,y ′=1,
则曲线y =x 2+3x 在点(-1,-2)处的切线方程为y +2=x +1, 即y =x -1,设直线y =x -1与曲线y =ax +ln x 相切于点(x 0,y 0), 由y =ax +ln x 得y ′=a +1
x
(x >0),
∴⎩⎪⎨⎪
⎧a +1x 0
=1y 0=x 0
-1y 0
=ax 0
+ln x
,解之得x 0
=1,y 0
=0,a =0. ∴a =0. 答案:0
三、解答题
19.【答案】
【解析】解:(1)∵f (x )=x+alnx , ∴f ′(x )
=1+,
∵f (x )在x=1处的切线l 与直线x+2y=0垂直, ∴k=f ′(x )|x=1=1+a=2, 解得a=1.
(2)∵g (x )
=lnx+x 2
﹣(b ﹣1)x ,
∴g ′(x )
=+x ﹣(b ﹣1)
=
,x >0,
由题意知g ′(x )<0在(0,+∞)上有解, 即
x++1﹣b <0有解, ∵定义域x >0, ∴
x+≥2,
x+<b ﹣1有解,
只需要
x+的最小值小于b ﹣1, ∴2<b ﹣1,
解得实数b 的取值范围是{b|b >3}.
(3)∵g (x )
=lnx+x 2
﹣(b ﹣1)x ,
∴g ′(x )
=+x ﹣(b ﹣1)
=
,x >0,
由题意知g ′(x )<0在(0,+∞)上有解, x 1+x 2=b ﹣1,x 1x 2=1,
∵x >0,设μ(x )=x 2
﹣(b ﹣1)x+1,
则μ(0)=[ln (x 1
+x 12﹣(b ﹣1)x 1]﹣[lnx 2
+x 22
﹣(b ﹣1)x 2]
=ln
+(x 12﹣x 22)﹣(b ﹣1)(x 1﹣x 2)
=ln+(x12﹣x22)﹣(x1+x2)(x1﹣x2)
=ln﹣(﹣),
∵0<x1<x2,
∴设t=,0<t<1,
令h(t)=lnt﹣(t﹣),0<t<1,
则h′(t)=﹣(1+)=<0,
∴h(t)在(0,1)上单调递减,
又∵b≥,∴(b﹣1)2≥,
由x1+x2=b﹣1,x1x2=1,
可得t+≥,
∵0<t<1,∴由4t2﹣17t+4=(4t﹣1)(t﹣4)≥0得0<t≤,
∴h(t)≥h()=ln﹣(﹣4)=﹣2ln2,
故g(x1)﹣g(x2)的最小值为﹣2ln2.
【点评】本题考查导数的运用:求切线的斜率和单调区间、极值,考查函数的最小值的求法,解题时要认真审题,注意函数的单调性的合理运用.
20.【答案】
【解析】解:(Ⅰ)∵抛物线x2=4y的焦点为F1(0,1),
∴c=1,又b2=1,∴
∴椭圆方程为:+x2=1.…
(Ⅱ)F2(0,﹣1),由已知可知直线l1的斜率必存在,
设直线l1:y=kx﹣1
由消去y并化简得x2﹣4kx+4=0
∵直线l1与抛物线C2相切于点A.
∴△=(﹣4k)2﹣4×4=0,得k=±1.…
∵切点A在第一象限.
∴k=1…
∵l∥l1
∴设直线l的方程为y=x+m
由,消去y整理得3x2+2mx+m2﹣2=0,…
△=(2m)2﹣12(m2﹣2)>0,
解得.
设B(x1,y1),C(x2,y2),则,
.…
又直线l交y轴于D(0,m)
∴…
=
当,即时,.…
所以,所求直线l的方程为.…
【点评】本题主要考查椭圆、抛物线的有关计算、性质,考查直线与圆锥曲线的位置关系,考查运算求解能力及数形结合和化归与转化思想.
21.【答案】
【解析】解:(Ⅰ)f(x)≥1,即|x﹣3|﹣|2x﹣2|≥1
x
时,3﹣x+2x﹣2≥1,∴x≥0,∴0≤x≤1;
1<x<3时,3﹣x﹣2x+2≥1,∴x≤,∴1<x≤;
x≥3时,x﹣3﹣2x+2≥1,∴x≤﹣2∴1<x≤,无解,…
所以f(x)≥1解集为[0,].…
(Ⅱ)当x∈[1,2]时,f(x)﹣|2x﹣5|≤0可化为|x﹣a|≤3,
∴a﹣3≤x≤a+3,…
∴,…
∴﹣1≤a≤4.…
22.【答案】
【解析】解:(1)函数f(x)=cos(ωx+)的图象的两对称轴之间的距离为=,
∴ω=2,f(x)=cos(2x+).
令2x+=kπ,求得x=﹣,可得对称轴方程为x=﹣,k∈Z.
令2kπ﹣π≤2x+≤2kπ,求得kπ﹣≤x≤kπ﹣,
可得函数的增区间为,k∈Z.
(2)当2x+=2kπ,即x=kπ﹣,k∈Z时,f(x)取得最大值为1.
当2x+=2kπ+π,即x=kπ+,k∈Z时,f(x)取得最小值为﹣1.
∴f(x)取最大值时相应的x集合为{x|x=kπ﹣,k∈Z};
f(x)取最小值时相应的x集合为{x|x=kπ+,k∈Z}.
23.【答案】
【解析】(1)在ABC
∆中,由余弦定理得
2222cos
BD AB AD AB ADθ
=+-⋅
22
1
122123
2
=+-⨯⨯⨯=,
在BCD
∆中,由余弦定理得
222
cos
2
BC CD BD
BCD
BC CD
+-
∠=
⋅
1
2
==-,
∵(0,180)
BCD
∠∈,∴cos60
BCD
∠=.
∴11
sin11
2224
T BC CD BCD
=⋅∠=⨯⨯⨯=.
(2)1sin sin
2
S AD AB BCDθ
=⋅∠=.
2222cos54cos
BD AB AD AB ADθθ
=+-⋅=-,
2224cos3
cos
22
BC CD BD
BCD
BC CD
θ
+--
∠==
⋅
,
11
sin sin
22
T BC CD BCD BCD
=⋅∠=∠,
∵S T=,∴1
sin sin
2
BCD
θ=∠,
∴2224cos3
4sin sin1cos1()
2
BCD BCD
θ
θ
-
=∠=-∠=-,
∴7
cos
8
θ=.
24.【答案】
【解析】解:(Ⅰ)由频率表中第4组数据可知,第4组总人数为,
再结合频率分布直方图可知n=,
∴a=100×0.01×10×0.5=5,b=100×0.03×10×0.9=27,
;
(Ⅱ)因为第2,3,4组回答正确的人数共有54人,
∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:人;第3组:人;
第4组:人
(Ⅲ)设第2组2人为:A1,A2;第3组3人为:B1,B2,B3;第4组1人为:C1.
则从6人中随机抽取2人的所有可能的结果为:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),
(A2,B1),(A2,B2),(A2,B3),(A2,C1),(B1,B2),(B1,B3),(B1,C1),(B2,B3),(B2,C1),(B3,C1)共15个基本事件,
其中恰好没有第3组人共3个基本事件,
∴所抽取的人中恰好没有第3组人的概率是:.
【点评】本题考查了频率分布表与频率分布直方图,考查了古典概型的概率计算,解题的关键是读懂频率分布直方图.。