通化市七年级上学期期末数学试题题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通化市七年级上学期期末数学试题题及答案 一、选择题 1.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( )
A .49
B .59
C .77
D .139 2.在220.23,3,2,
7-四个数中,属于无理数的是( ) A .0.23 B .3 C .2- D .227
3.下列选项中,运算正确的是( )
A .532x x -=
B .2ab ab ab -=
C .23a a a -+=-
D .235a b ab += 4.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( )
A .﹣9℃
B .7℃
C .﹣7℃
D .9℃
5.方程3x +2=8的解是( )
A .3
B .103
C .2
D .12
6.观察下列算式,用你所发现的规律得出22015的末位数字是( )
21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….
A .2
B .4
C .6
D .8
7.下列变形不正确的是( )
A .若x =y ,则x+3=y+3
B .若x =y ,则x ﹣3=y ﹣3
C .若x =y ,则﹣3x =﹣3y
D .若x 2=y 2,则x =y
8.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )
A .
B .
C .
D .
9.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的
是( )
A .∠AOC=∠BOC
B .∠AOB=2∠BO
C C .∠AOC=12
∠AOB D .∠AOC+∠BOC=∠AOB 10.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( )
A.0 B.1 C.1
2
D.3
11.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x人到甲处,则所列方程是()
A.2(30+x)=24﹣x B.2(30﹣x)=24+x
C.30﹣x=2(24+x)D.30+x=2(24﹣x)
12.下列各组数中,互为相反数的是( )
A.2与1
2
B.2
(1)
-与1 C.2与-2 D.-1与21-
二、填空题
13.一个角的余角等于这个角的1
3
,这个角的度数为________.
14.若|x|=3,|y|=2,则|x+y|=_____.
15.把一张长方形纸按图所示折叠后,如果∠AOB′=20°,那么∠BOG的度数是_____.
16.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.
17.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x,使第2次输出的数也是x,则x=_____.
18.若单项式3a3 b n与-5a m+1 b4所得的和仍是单项式,则m - n 的值为_____.
19.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)
20.|﹣1
2
|=_____.
21.将520000用科学记数法表示为_____.
22.已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC=______cm.23.钟表显示10点30分时,时针与分针的夹角为________.
24.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两
种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.
三、压轴题
25.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板
(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都
在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.
(1)如图2,经过t 秒后,OP 恰好平分∠BOC .
①求t 的值;
②此时OQ 是否平分∠AOC ?请说明理由;
(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一
周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;
(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).
26.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG
对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的
点A ′处,得折痕EN .
(1)如图1,若点F 与点G 重合,求∠MEN 的度数; (2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数;
(3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.
27.综合试一试
(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.
(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计
算()()532-⊗⊗-=⎡⎤⎣⎦______.
(3)a 是不为1的有理数,我们把11a
-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()
11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a
的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.
(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉
一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到
十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.
(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是
______
(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,
甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后
甲和乙、丙的距离相等.
28.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填
数之和都相等.
(1)可求得 x =______,第 2021 个格子中的数为______; (2)若前 k 个格子中所填数之和为 2019,求 k 的值; (3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算
|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,
求所有的|m-n|的和.
29.观察下列等式:
111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344
++=-+-+-=⨯⨯⨯. ()1观察发现
()1n n 1=+______;()
1111122334n n 1+++⋯+=⨯⨯⨯+______. ()2拓展应用
有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记
2个数的和为1a ;第二次再将两个半圆周都分成
14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18
圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13
,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14
,记16个数的和为4a ;⋯⋯如此进行了n 次.
n a =①______(用含m 、n 的代数式表示);
②当
n a 6188=时,求123n
1111a a a a +++⋯⋯+的值.
30.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.
(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?
(3)动点Q 从点B
出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?
(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.
31.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A ,B 在数轴上分别对应的数为a ,b (a <b ),则AB 的长度可以表示为AB =b -a .
请你用以上知识解决问题:
如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A 点,再向右移动3个单位长度到达B 点,然后向右移动5个单位长度到达C 点.
(1)请你在图②的数轴上表示出A ,B ,C 三点的位置.
(2)若点A 以每秒1个单位长度的速度向左移动,同时,点B 和点C 分别以每秒2
个单位长度和3个单位长度的速度向右移动,设移动时间为t 秒.
①当t =2时,求AB 和AC 的长度;
②试探究:在移动过程中,
3AC -4AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.
32.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.
(1)填空:AB = ,BC = ;
(2)现有动点M、N都从A点出发,点M以每秒2个单位长度的速度向右移动,当点M 移动到B点时,点N才从A点出发,并以每秒3个单位长度的速度向右移动,求点N移动多少时间,点N追上点M?
(3)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC-AB的值是否随着时间的变化而改变?请说明理由.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b)与ab表示的形式,然后把已知代入即可求解.
【详解】
解:∵(5ab+4a+7b)+(3a-4ab)
=5ab+4a+7b+3a-4ab
=ab+7a+7b
=ab+7(a+b)
∴当a+b=7,ab=10时
原式=10+7×7=59.
故选B.
2.B
解析:B
【解析】
【分析】
根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可.
【详解】
0.23是有限小数,是有理数,不符合题意,
是开方开不尽的数,是无理数,符合题意,
-2是整数,是有理数,不符合题意,
22
是分数,是有理数,不符合题意,
7
故选:B.
【点睛】
本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.
3.B
解析:B
【解析】
【分析】
根据整式的加减法法则即可得答案.
【详解】
A.5x-3x=2x,故该选项计算错误,不符合题意,
-=,计算正确,符合题意,
B.2ab ab ab
C.-2a+3a=a,故该选项计算错误,不符合题意,
D.2a与3b不是同类项,不能合并,故该选项计算错误,不符合题意,
故选:B.
【点睛】
本题考查整式的加减,熟练掌握合并同类项法则是解题关键.
4.D
解析:D
【解析】
【分析】
这天的温差就是最高气温与最低气温的差,列式计算.
【详解】
解:该日的最高与最低气温的温差为8﹣(﹣1)=8+1=9(℃),
故选:D.
【点睛】
本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数,这是需要熟记的内容.
5.C
解析:C
【解析】
【分析】
移项、合并后,化系数为1,即可解方程.
【详解】
x=,
解:移项、合并得,36
x=,
化系数为1得:2
故选:C.
【点睛】
本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.
6.D
解析:D
【分析】
【详解】
解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….
2015÷4=503…3,
∴22015的末位数字和23的末位数字相同,是8.
故选D.
【点睛】
本题考查数字类的规律探索.
7.D
解析:D
【解析】
【分析】
根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.
【详解】
解:A、两边都加上3,等式仍成立,故本选项不符合题意.
B、两边都减去3,等式仍成立,故本选项不符合题意.
C、两边都乘以﹣3,等式仍成立,故本选项不符合题意.
D、两边开方,则x=y或x=﹣y,故本选项符合题意.
故选:D.
【点睛】
本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.
8.C
解析:C
【解析】
【分析】
利用棱柱的展开图中两底面的位置对A、D进行判断;根据侧面的个数与底面多边形的边数相同对B、C进行判断.
【详解】
棱柱的两个底面展开后在侧面展开图相对的两边上,所以A、D选项错误;
当底面为三角形时,则棱柱有三个侧面,所以B选项错误,C选项正确.
故选:C.
【点睛】
本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.
解析:D
【解析】
A. ∵∠AOC=∠BOC,
∴OC平分∠AOB,
即OC是∠AOB的角平分线,正确,故本选项错误;
B. ∵∠AOB=2∠BOC=∠AOC+∠BOC,
∴∠AOC=∠BOC,
∴OC平分∠AOB,
即OC是∠AOB的角平分线,正确,故本选项错误;
C. ∵∠AOC=1
2
∠AOB,
∴∠AOB=2∠AOC=∠AOC+∠BOC,
∴∠AOC=∠BOC,
∴OC平分∠AOB,
即OC是∠AOB的角平分线,正确,故本选项错误;
D. ∵∠AOC+∠BOC=∠AOB,
∴假如∠AOC=30°,∠BOC=40°,∠AOB=70°,符合上式,但是OC不是∠AOB的角平分线,故本选项正确.
故选D.
点睛:本题考查了角平分线的定义,注意:角平分线的表示方法,①OC是∠AOB的角平分线,②∠AOC=∠BOC,③∠AOB=2∠BOC(或2∠AOC),④∠AOC(或
∠BOC)=1
2
∠AOB.
10.C
解析:C
【解析】
【分析】
根据同类项的定义得出2m=1,求出即可.【详解】
解:∵单项式-3a2m b与ab是同类项,
∴2m=1,
∴m=1
2

故选C.
【点睛】
本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.
11.D
【解析】
【分析】
设应从乙处调x 人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x 的一元一次方程,此题得解.
【详解】
设应从乙处调x 人到甲处,依题意,得:
30+x =2(24﹣x ).
故选:D .
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.
12.C
解析:C
【解析】
【分析】
根据相反数的定义进行判断即可.
【详解】
A. 2的相反数是-2,所以2与12
不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意;
C. 2与-2互为相反数,符合题意;
D. 211=--,所以-1与21-不是相反数,不符合题意;
故选:C .
【点睛】
本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.
二、填空题
13.【解析】
【分析】
设这个角度的度数为x 度,根据题意列出方程即可求解.
【详解】
设这个角度的度数为x 度,依题意得90-x=
解得x=67.5
故填
【点睛】
此题主要考查角度的求解,解题的关键是
【解析】
【分析】
设这个角度的度数为x度,根据题意列出方程即可求解.【详解】
设这个角度的度数为x度,依题意得90-x=1 3 x
解得x=67.5
故填67.5
【点睛】
此题主要考查角度的求解,解题的关键是熟知补角的性质.
14.1或5.
【解析】
【分析】
根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】
解:∵|x|=3,|y|=2,
∴x=±3,y=±2,
(1)x=3
解析:1或5.
【解析】
【分析】
根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.
【详解】
解:∵|x|=3,|y|=2,
∴x=±3,y=±2,
(1)x=3,y=2时,
|x+y|=|3+2|=5
(2)x=3,y=﹣2时,
|x+y|=|3+(﹣2)|=1
(3)x=﹣3,y=2时,
|x+y|=|﹣3+2|=1
(4)x=﹣3,y=﹣2时,
|x+y|=|(﹣3)+(﹣2)|=5
故答案为:1或5.
【点睛】
此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.15.80°
【分析】
由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】
解:根据轴对称的性质得:∠B′OG=∠BOG
又∠AOB′=20°,可得∠B′OG+∠BOG=
解析:80°
【解析】
【分析】
由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.
【详解】
解:根据轴对称的性质得:∠B′OG=∠BOG
又∠AOB′=20°,可得∠B′OG+∠BOG=160°
∴∠BOG=1
2
×160°=80°.
故答案为80°.
【点睛】
本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 16.09.
【解析】
【分析】
把千分位上的数字4进行四舍五入即可.
【详解】
解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.
故答案为0.09.
【点睛】
本题考查了近似数和
解析:09.
【解析】
【分析】
把千分位上的数字4进行四舍五入即可.
【详解】
解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.
故答案为0.09.
【点睛】
本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.
17.2; 0或3或6
【解析】
【分析】
先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】
解析:2; 0或3或6
【解析】
【分析】
先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.
【详解】
解:∵第1次输出的结果为7+3=10,
第2次输出的结果为1
2
×10=5,
第3次输出结果为5+3=8,
第4次输出结果为1
2
×8=4,
第5次输出结果为1
2
×4=2,
第6次输出结果为1
2
×2=1,
第7次输出结果为1+3=4,
第8次输出结果为1
2
×4=2,
……
∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,
∴第2018次输出的数是2,
如图,
若x=1
4
x,则x=0;
若x=1
2
x+3,则x=6;
若x=1
2
(x+3),则x=3;
故答案为:2、0或3或6.
【点睛】
此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.
18.-2
【解析】
【分析】
根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.
【详解】
根据题意得m+1=3,n=4,
解得m=2,n=4.
则m-
解析:-2
【解析】
【分析】
根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.
【详解】
根据题意得m+1=3,n=4,
解得m=2,n=4.
则m-n=2-4=-2.
故答案为-2.
【点睛】
本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.
19.>
【解析】
【分析】
根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.
【详解】
解:,,

故答案为:
【点睛】
本题考查了多重符号化简和有理数的大小比较,
解析:>
【解析】
【分析】
根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.
【详解】
解:(9)9--=,(9)9-+=-,
(9)(9)∴-->-+.
故答案为:>
【点睛】
本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.
20.【解析】
【分析】
当a 是负有理数时,a 的绝对值是它的相反数﹣a .
【详解】
解:|﹣|=.
故答案为:
【点睛】
考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 解析:12
【解析】
【分析】
当a 是负有理数时,a 的绝对值是它的相反数﹣a .
【详解】
解:|﹣1
2
|=
1
2

故答案为:1 2
【点睛】
考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
21.2×105
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数
解析:2×105
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将520000用科学记数法表示为5.2×105.
故答案为:5.2×105.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
22.5或11
【解析】
【分析】
由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】
由于C点的位置不确定,故要分两种情况讨论:
当C点在B点右侧时,如图所示:
AC=AB+
解析:5或11
【解析】
【分析】
由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.
【详解】
由于C点的位置不确定,故要分两种情况讨论:
当C点在B点右侧时,如图所示:
AC=AB+BC=8+3=11cm;
当C点在B点左侧时,如图所示:
AC=AB﹣BC=8﹣3=5cm;
所以线段AC等于11cm或5cm.
23.【解析】
由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.
解:10点30分时,钟面上时针指向数字
解析:【解析】
由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11
的中间,分针指向数字6,则它们所夹的角为4×30°+1
2
×30°.
解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,
所以时针与分针所成的角等于4×30°+1
2
×30°=135°.
故答案为:135°.
24.28x-20(x+13)=20
【解析】
【分析】
利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.
【详解】
设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,
解析:28x-20(x+13)=20
【解析】
【分析】
利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.
【详解】
设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,
故答案为: 28x-20(x+13)=20.
【点睛】
本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系.
三、压轴题
25.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;
(3)t=70
3
秒.
【解析】
【分析】
(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;
(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.
【详解】
(1)①∵∠AOC=30°,
∴∠BOC=180°﹣30°=150°,
∵OP平分∠BOC,
∴∠COP=1
2
∠BOC=75°,
∴∠COQ=90°﹣75°=15°,
∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;
②是,理由如下:
∵∠COQ=15°,∠AOQ=15°,
∴OQ平分∠AOC;
(2)∵OC平分∠POQ,
∴∠COQ=1
2
∠POQ=45°.
设∠AOQ=3t,∠AOC=30°+6t,
由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,
当30+6t﹣3t=225,也符合条件,
解得:t=65,
∴5秒或65秒时,OC平分∠POQ;
(3)设经过t秒后OC平分∠POB,
∵OC平分∠POB,
∴∠BOC=1
2
∠BOP,
∵∠AOQ+∠BOP=90°,
∴∠BOP=90°﹣3t,
又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,
∴180﹣30﹣6t=1
2
(90﹣3t),
解得t=70 3

【点睛】
本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 26.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.
【解析】
【分析】
(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.
(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.
(3)分两种情形分别讨论求解.
【详解】
(1)∵EN平分∠AEF,EM平分∠BEF
∴∠NEF=1
2
∠AEF,∠MEF=
1
2
∠BEF
∴∠MEN=∠NEF+∠MEF=1
2
∠AEF+
1
2
∠BEF=
1
2
(∠AEF+∠BEF)=
1
2
∠AEB
∵∠AEB=180°
∴∠MEN=1
2
×180°=90°
(2)∵EN平分∠AEF,EM平分∠BEG
∴∠NEF=1
2
∠AEF,∠MEG=
1
2
∠BEG
∴∠NEF+∠MEG=1
2
∠AEF+
1
2
∠BEG=
1
2
(∠AEF+∠BEG)=
1
2
(∠AEB﹣∠FEG)
∵∠AEB=180°,∠FEG=30°
∴∠NEF+∠MEG=1
2
(180°﹣30°)=75°
∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°
(3)若点G在点F的右侧,∠FEG=2α﹣180°,
若点G在点F的左侧侧,∠FEG=180°﹣2α.
【点睛】
考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会
用分类讨论的思想思考问题.
27.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)
25032
;(4)9.38;(5)0;(6)24或40
【解析】
【分析】
(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得
9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.
【详解】
(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,
故答案为23+(-3)3+43,73+(-5)3+(-6)3
(2)∵2a b a ab ⊗=-,
∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)] =(-5)⊗15
=(-5)2-(-5)×15
=100.
(3)∵a 1=2,
∴a 2=
1112=--, a 3=11(1)--=12
, 412112
a ==-
a 5=-1
…… ∴从a 1开始,每3个数一循环,
∵2500÷3=833……1,
∴a 2500=a 1=2,
∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032
.
(4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,
∴平均分为中间8个分数的平均分,
∵平均分精确到十分位的为9.4,
∴平均分在9.35至9.44之间,
9.35×8=74.8,9.44×8=75.52,
∴8个裁判所给的总分在74.8至75.52之间,
∵打分都是整数,
∴总分也是整数,
∴总分为75,
∴平均分为75÷8=9.375,
∴精确到百分位是9.38.
故答案为9.38
(5)2019÷4=504……3,
∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……
∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0
∴所得结果可能的最小非负数是0,
故答案为0
(6)设x分钟后甲和乙、丙的距离相等,
∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,
∴120x-400-100x=90x+800-120x
解得:x=24.
∵当乙追上丙时,甲和乙、丙的距离相等,
∴400÷(100-90)=40(分钟)
∴24分钟或40分钟时甲和乙、丙的距离相等.
故答案为24或40.
【点睛】
本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.
28.(1)6,-1;(2)2019或2014;(3)234
【解析】
【分析】
(1)根据三个相邻格子的整数的和相等列式求出a、x的值,再根据第9个数是-2可得
b=-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.
(2)可先计算出这三个数的和,再照规律计算.
(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.
【详解】
(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a+b=a+b+x,解得x=6,a+b+x=b+x-
1,∴a =-1,所以数据从左到右依次为6、-1、b 、6、-1、b ,第9个数与第三个数相同,即b =-2,所以每3个数“6、-1、-2”为一个循环组依次循环.
∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1. 故答案为:6,-1.
(2)∵6+(-1)+(-2)=3,∴2019÷3=673.
∵前k 个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k 的值为:673×3=2019或671×3+1=2014.
故答案为:2019或2014.
(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.
故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.
【点睛】
本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.
29.(1)
11n n 1-+,n n 1+(2)①()()n 1n 2m 3
++②75364 【解析】
【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;
()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3
==,找规律可得结论;
②由()()n 1n 2m 22713173
++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.
【详解】
()1观察发现:
()111n n 1n n 1
=-++; ()
1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1
=-+-+-+⋯+-+,
11n 1=-
+, n 11n 1
+-=+, n n 1
=+; 故答案为
11n n 1-+,n n 1+. ()2拓展应用
16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3
==, ⋯⋯
()()n n 1n 2a m 3
++∴=, 故答案为()()n 1n 2m.3
++ ()()n n 1n 2a m 61883②++==,且m 为质数,
对6188分解质因数可知61882271317=⨯⨯⨯⨯,
()()n 1n 2m 22713173
++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,
m 7∴=,n 50=,
()()n 7a n 1n 23
∴=++, ()()
n 131a 7n 1n 2=⋅++, 123n
1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++
()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦
31131172n 27252⎛⎫⎛⎫=
-=- ⎪ ⎪+⎝⎭⎝⎭ 75364
=.
【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1
=-++. 30.(1)-12,8-5t ;(2)
94或114;(3)10;(4)MN 的长度不变,值为10. 【解析】
【分析】
(1)根据已知可得B 点表示的数为8﹣20;点P 表示的数为8﹣5t ;
(2)运动时间为t 秒,分点P 、Q 相遇前相距2,相遇后相距2两种情况列方程进行求解即可;
(3)设点P 运动x 秒时追上Q ,根据P 、Q 之间相距20,列方程求解即可;
(4)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.
【详解】
(1)∵点A 表示的数为8,B 在A 点左边,AB=20,
∴点B 表示的数是8﹣20=﹣12,
∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒,
∴点P 表示的数是8﹣5t ,
故答案为﹣12,8﹣5t ;
(2)若点P 、Q 同时出发,设t 秒时P 、Q 之间的距离恰好等于2;
分两种情况:
①点P 、Q 相遇之前,
由题意得3t+2+5t=20,解得t=
94; ②点P 、Q 相遇之后,
由题意得3t ﹣2+5t=20,解得t=
114, 答:若点P 、Q 同时出发,94或114
秒时P 、Q 之间的距离恰好等于2; (3)如图,设点P 运动x 秒时,在点C 处追上点Q ,
则AC=5x ,BC=3x ,
∵AC ﹣BC=AB ,
∴5x ﹣3x=20,
解得:x=10,
∴点P 运动10秒时追上点Q ;。

相关文档
最新文档