阿克塞哈萨克族自治县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阿克塞哈萨克族自治县高级中学2018-2019学年高三上学期11月月考数学试卷含答案 一、选择题
1. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( ) A .
3
B .
2
C .
3
D .
4
2.
函数
是( )
A .最小正周期为2π的奇函数
B .最小正周期为π的奇函数
C .最小正周期为2π的偶函数
D .最小正周期为π的偶函数
3. 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( ) A .120° B .60° C .45° D .30°
4. 在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1
=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成
角的正切值为( )
A
.
B
.
C
.
D
.
5. 设集合A={x|2x ≤4},集合B={x|y=lg (x ﹣1)},则A ∩B 等于( ) A .(1,2) B .[1,2]
C .[1,2)
D .(1,2]
6. 下面各组函数中为相同函数的是( )
A .f (x )
=
,g (x )=x ﹣1
B .f (x )
=
,g (x )
=
C .f (x )=ln e x 与g (x )=e lnx
D .f (x )=(x ﹣1)0与g (x )
=
7. 有下列四个命题:
①“若a 2+b 2=0,则a ,b 全为0”的逆否命题; ②“全等三角形的面积相等”的否命题; ③“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题;
④“矩形的对角线相等”的逆命题. 其中真命题为( )
A .①②
B .①③
C .②③
D .③④
8. 已知F 1,F 2分别是双曲线C
:
﹣
=1(a >0,b >0)的左右两个焦点,若在双曲线C 上存在点P 使
∠F 1PF 2=90°,且满足2∠PF 1F 2=∠PF 2F 1,那么双曲线C 的离心率为( ) A
.
+1
B .2
C
.
D
.
9. 在△ABC 中,关于x 的方程(1+x 2)sinA+2xsinB+(1﹣x 2)sinC=0有两个不等的实根,则A 为( ) A .锐角 B .直角 C .钝角 D .不存在
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
10.设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2')()(2x x xf x f >+,则不等式
0)2(4)2014()2014(2>--++f x f x 的解集为
A 、)2012
,(--∞ B 、)0,2012(- C 、)2016,(--∞ D 、)0,2016(- 11.已知函数f (x )满足:x ≥4,则f (x )
=;当x <4时f (x )=f (x+1),则f (2+log 23)=( )
A
.
B
.
C
.
D
.
12.sin (﹣510°)=( ) A
.
B
.
C
.﹣ D
.﹣
二、填空题
13.已知,x y 满足41
y x
x y x ≥⎧⎪
+≤⎨⎪≥⎩
,则222
23y xy x x -+的取值范围为____________. 14.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示).
15.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元. 16.集合A={x|﹣1<x <3},B={x|x <1},则A ∩B= . 17
.计算:
×5﹣1
= .
18.在△ABC 中,若角A
为锐角,且=(2,3
),=(3,m ),则实数m 的取值范围是 .
三、解答题
19.函数f (x )=Asin (ωx+φ)(A >0,ω>0,|φ|
<)的一段图象如图所示.
(1)求f (x )的解析式;
(2)求f (x )的单调减区间,并指出f (x )的最大值及取到最大值时x 的集合;
(3)把f (x )的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数.
20.本小题满分10分选修45-:不等式选讲 已知函数2()log (12)f x x x m =++--. Ⅰ当7=m 时,求函数)(x f 的定义域;
Ⅱ若关于x 的不等式2)(≥x f 的解集是R ,求m 的取值范围.
21.(本小题满分12分)
两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中 放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设,,x y z 分别表示甲,乙,丙3个 盒中的球数.
(1)求0x =,1y =,2z =的概率;
(2)记x y ξ=+,求随机变量ξ的概率分布列和数学期望.
【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力.
22.有编号为A 1,A 2,…A 10的10个零件,测量其直径(单位:cm ),得到下面数据:
编号 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 直径
1.51
1.49
1.49
1.51
1.49
1.51
1.47
1.46
1.53 1.47
其中直径在区间[1.48,1.52]内的零件为一等品. (Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(Ⅱ)从一等品零件中,随机抽取2个. (ⅰ)用零件的编号列出所有可能的抽取结果;
(ⅱ)求这2个零件直径相等的概率.
23.甲乙两个地区高三年级分别有33000人,30000人,为了了解两个地区全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个地区一共抽取了105名学生的数学成绩,并作出了如下的频数分布统计表,规定考试成绩在[120,150]内为优秀.
(Ⅱ)根据抽样结果分别估计甲地区和乙地区的优秀率;若将此优秀率作为概率,现从乙地区所有学生中随机抽取3人,求抽取出的优秀学生人数ξ的数学期望;
(Ⅲ)根据抽样结果,从样本中优秀的学生中随机抽取3人,求抽取出的甲地区学生人数η的分布列及数学期望.
24.已知函数f(x)=x2﹣(2a+1)x+alnx,a∈R
(1)当a=1,求f(x)的单调区间;(4分)
(2)a>1时,求f(x)在区间[1,e]上的最小值;(5分)
(3)g(x)=(1﹣a)x,若使得f(x0)≥g(x0)成立,求a的范围.
阿克塞哈萨克族自治县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答
案)
一、选择题
题号 1 2 3 4 5 6 7 8 9 10
答案 A B A D D D B A A C.
题号11 12
答案 A C
2,6
13.[]
14.180
15.2300
16.{x|﹣1<x<1}.
17.9.
18..
三、解答题
19.
20.
21.
22.
23.
24.解:(1)当a=1,f(x)=x2﹣3x+lnx,定义域(0,+∞),
∴…(2分)
,解得x=1或x=,x∈,(1,+∞),f′(x)>0,f(x)是增函数,x∈(,1),
函数是减函数.…(4分)
(2)∴,∴,
当1<a<e时,
∴f(x)min=f(a)=a(lna﹣a﹣1)
当a≥e时,f(x)在[1,a)减函数,(a,+∞)函数是增函数,
∴
综上…(9分)
(3)由题意不等式f(x)≥g(x)在区间上有解
即x2﹣2x+a(lnx﹣x)≥0在上有解,
∵当时,lnx≤0<x,
当x∈(1,e]时,lnx≤1<x,∴lnx﹣x<0,
∴在区间上有解.
令…(10分)
∵,∴x+2>2≥2lnx∴时,h′(x)<0,h(x)是减函数,x∈(1,e],h(x)是增函数,
∴,
∴时,,∴
∴a的取值范围为…(14分)。